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Abstract

In this paper we propose a nonparametric method, based on locally variable band-
widths kernel estimators, to describe the space-time variation of seismic activity of a
region of Southern California. The flexible estimation approach is introduced together
with a diagnostic method for space-time point process, based on the interpretation of
some second-order statistics, to analyze the dependence structure of observed data and
suggest directions for fit improvement. In this paper we review a diagnostic method for
space-time point processes based on the interpretation of the transformed version of some
second-order statistics. The method is useful to analyze dependence structures of observed
data and suggests directions for fit improvement also when a more flexible estimator of the
conditional intensity function is used, such as the kernel one. In particular locally variable
bandwidths kernel estimators are used to describe space-time variations of seismic activity
of a region of Southern California.

Keywords: Point process, second-order statistics, residual analysis, kernel estimator, seismic
process.

1. Introduction

The definition of effective stochastic models to describe adequately the seismic activity of a
fixed area is of great interest in seismology, since a reliable description of earthquake occur-
rence might suggest useful ideas on the mechanism of such a complex phenomenon.

Earthquake catalogs are conventionally analyzed as point processes; in this context second-
order statistics may have a relevant role in the study and the comprehension of a seismic
process and its realization, since features like self-similarity, long-range dependence and fractal
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dimension need often to be analyzed for a more realistic description of seismicity.
The diagnostic method introduced in Adelfio and Schoenberg (2009) is here used to assess
the fitting of a space-time non-homogeneous Poisson process estimated by kernel smoothing.
The residual analysis approach proposed in this paper is based on the interpretation of a
transformed version of second-order statistics obtained by weighting data by a quantity pro-
portional to the inverse of the conditional intensity function. As shown in this paper, this
diagnostic tool enables one to detect properties of clustering and inhibition of observed data
and therefore may suggest directions for fitting, even if the conditional intensity function of
the model is estimated by kernel estimators. Indeed, because of their particularly adaptive
properties to anomalous behavior in data, kernel density estimators with variable bandwidths
(i.e. locally variable smoothing parameters) are here used to interpret dependence features of
seismic activity of a given area of Southern California.
For a better exposition of the application results of the diagnostic method in this context,
some formal definitions are reported. Point processes and the conditional intensity function
are reviewed in section 2. The diagnostic method is introduced in section 3; the base of the
model used to describe the seismic activity of the analyzed area is reviewed in section 4. In
section 5 the description of nonparametric estimation procedures for point processes and the
use of the proposed diagnostic approach are shown. Conclusions are provided in section 6.

2. Point processes and conditional intensity function

Point processes are well studied objects in probability theory and a powerful tool in statistics
for modeling and analyzing the distribution of real phenomena, such as seismicity, the study
of epidemic diffusions, the spatial distribution of some pathologies as a function of pollution
sources location, etc. Point processes can be specified mathematically in several ways, for
instance, by considering the joint distributions of the counts of points in arbitrary sets or
defining a complete intensity function. For temporal point processes with no simultaneous
occurrences, an alternative specification considers the joint distributions of intervals between
successive points starting from a fixed origin. These point processes are frequently used as
models for random events in time, such as the arrival of customers in a queue (queueing
theory).
More formally, a point process is a random point patterns on a set X ! Rd, d ≥ 1. For a
mathematical definition of a point pattern specified as a locally finite counting measure with
positive values in Z see Daley and Vere-Jones (2003).
Let N be a point process on a spatial-temporal domain X ⊆ Rd×R+ and !(x) be the Lebesgue
measure of x; its conditional intensity function is defined by:

λ(t, s|Ht) = lim
!(δt,δs)→0

E[N([t, t + δt)× [s, s + δs)|Ht)]
!(δtδs)

(1)

where Ht is the space-time occurrence history of the process up to time t, i.e. the σ-algebra
of events occurring at times up to but not including t; δt, δs are time and space increments
respectively, and E[N([t, t + δt)× [s, s + δs)|Ht)] is the history-dependent expected value of
occurrence in the volume {[t, t + δt) × [s, s + δs)}. The conditional intensity function is a
function of the point history and it is itself a stochastic process depending on the past up to
time t.
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Assuming that such a limit exists for each point (t, s) in the space-time domain and that
the point process N is simple, the conditional intensity process uniquely characterizes the
finite-dimensional distributions of the point process Daley and Vere-Jones (2003).
If the conditional intensity function is independent of the past history, but dependent only on
the current time and the spatial locations, (1) identifies an inhomogeneous Poisson process.
A process with constant conditional intensity provides a stationary Poisson process.

3. Second-order residual analysis

A major difficulty in residual analysis for point processes, is to find a good definition of
residuals.
Some approaches require the transformation of data into a residual point pattern (result of a
thinning or rescaling procedure (Meyer 1971)) and the use of tests to assess the consistency of
the residuals with the homogeneous Poisson process (Schoenberg 2003). The residuals ought
to be a homogeneous Poisson process, if the model used for the transformation is indeed the
model that generated the data. Although literature provides several approaches to assess the
consistence of observed points with homogeneous Poisson processes (Diggle (1983), Bartlett
(1964), Ripley (1976), Baddeley (1984), Heinrich (1991)), these kinds of approaches often
constitute only a starting point of a more complex analysis, necessary to build and fit a more
realistic process. An alternative is represented by the weighted measures here introduced.
References with earlier work are included in Adelfio and Schoenberg (2009).
The proposed method deals with the definition and the interpretation of a weighted version
of second-order statistics (such as autocorrelation, K-function, spectrum, fractal dimension
and R/S statistic), just weighting the contribution of each observed point by the inverse of
the conditional intensity function that identifies the process.
Weighted second-order statistics, and hence second-order residuals, are so obtained.
Second-order residual analysis directly applies to data, since its definition does not require a
homogeneity assumption or previous transformation of data into residuals. Therefore, if we
assume as known the conditional intensity function, or at least a good (ideally consistent)
estimate be available, second-order weighted measures overcome some limitations that charac-
terize the rescaling or the thinning procedures. Indeed, the probabilities used in the thinning
method to retain points are replaced here by weights in order to offset the inhomogeneity of
the process including all the observed points as in Zhuang, Ogata, and Vere-Jones(2002).
The proposed diagnostic measures can be applied to processes of any dimension, assuming
that the statistics here discussed can be computed and interpreted to analyze features such
as clustering and inhibition.
Some distributional theoretical results related to the weighted version of some second-order
statistics are provided in Adelfio and Schoenberg (2009), by an easily generalizable approach
based on the theory of martingales. In that work, it is shown that some weighted second-order
statistics behave as the corresponding ones (not weighted) of a homogeneous Poisson process.
Second-order residual analysis is here applied to give directions for a better space-time seis-
mic model definition, by using nonparametric estimation methods. Some definitions and
theoretical results relative to the second-order residual analysis are reviewed in Appendix A.
Examples of applications to seismic data are also provided in Adelfio and Chiodi (2009).



4 Diagnostics for nonparametric estimation

4. A point process describing seismic occurrence

Earthquake sequences may be considered as a stochastic point process in a multidimensional
space, since each earthquake may be identified by a point in space (epicentral coordinates),
in time (origin time) and magnitude domain (where magnitude is a logarithmic measure of
earthquake strength). The seismic activity is traditionally considered as the superposition
of two different components: the background seismicity and the space-time clustered one,
induced by main earthquakes. Earthquake sequences are schematically composed of main-
shocks and events that could occur before and after the mainshock, named foreshocks and
aftershocks, respectively; isolated events constitute the background.

Although most earthquake catalogs exhibit a variability character as their dominant statistical
feature, it is not possible to study statistical properties of a random process without a general
model of the process, that includes, for instance, considerations on stationarity or space-time
interactions.

Indeed a number of statistical models have been proposed for representing the intensity func-
tion of earthquakes. Simpler models assume that earthquakes occur in space and time ac-
cording to a stationary point process, such that conditional rate becomes a constant. In
seismology, however, the stationarity hypothesis might be acceptable only with respect to
time and for main earthquakes, after aftershocks are removed, because epicenters usually
display a substantial degree of spatial heterogeneity and clustering. On the other hand, uni-
variate analysis is not informative about multivariate seismic processes. For these reasons,
the description of seismic events often requires the definition of more complex models than
stationary Poisson processes and the relaxation of the assumption of statistical independence
of earthquakes (Adelfio Chiodi, De Luca, and Luzio 2006). Therefore, second-order properties
of point processes may have a relevant role in the study and the comprehension of the seismic
process and its realization; second-order moments may give us valuable information about the
interdependence among earthquakes, and constitute a first step beyond a Poissonian model
in which the events are assumed to be statistically independent.

Hence, when aggregation is present, generalizations of the simple Poisson process, such as
self-exciting point processes, are useful to model events that are clustered together, and self-
correcting processes when regularities are observed, e.g. the strain-release model (Daley and
Vere-Jones 2003). A widely used model is the epidemic type aftershocks-sequences (ETAS)
model (Ogata (1988),Ogata (1998)) , that is a self-exciting point process, describing earth-
quake activity in a given region during a period of time, through a branching structure.

4.1. Space-time ETAS model

The ETAS model is completely characterized by its conditional intensity function, which
provides a quantitative evaluation of the future seismic activity and is proportional to the
probability that an event with magnitude m will take place at time t, with epicenter of
coordinates (x, y), that is a position on the surface of the earth expressed in latitude and
longitude. It is defined as the sum of a term describing spontaneous activity (background)
and one relative to the induced seismicity. The main hypothesis of the model states that
all events, both mainshocks or aftershocks, have the possibility of possessing offspring. The
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ETAS conditional intensity function is:

λθ(x, y, t, m|Ht) = J(m)



µ(x, y) +
∑

tj<t

νθ(t− tj , x− xj , y − yj |m)



 (2)

with νθ(t−tj , x−xj , y−yj |m) = g(t−tj ;θ)f(x−xj , y−yj |m,θ) and θ a vector of parameters.
The ETAS model is a special case of a marked Hawkes process, with marks given by the
magnitude values, such that m ∈ M = R; the marks distribution J(m) corresponds to the
Gutenberg-Richter frequency magnitude law (Gutenberg and Richter 1944).
In the ETAS model, the background seismicity µ(x, y) is assumed to be stationary in time,
while the temporal distribution of the seismicity triggered by previous events is modeled as
a non-stationary Poisson process according to the modified Omori’s formula (Utsu 1961). In
this model, the occurrence rate of aftershocks at time t following the earthquake of time τ , is
described by:

g(t− τ) =
K

(t− τ + c)p
, with t > τ (3)

with K a normalizing constant, c and p characteristic parameters of the seismic activity of
the given region; p is useful for characterizing the pattern of seismicity, indicating the decay
rate of aftershocks in time.
To describe the spatial clustering of aftershocks, conditioned on the magnitude of the gener-
ating event, Ogata (1998) suggests the use of the following spatial density function:

f(x− xj , y − yj |mj) =
{

(x− xj)2 + (y − yj)2

eα(mj−m0)
+ d

}−q

where α measures the influence on the relative weight of each sequence, m0 is the completeness
threshold of magnitude, i.e. the lower bound for which earthquakes with higher values of
magnitude are surely recorded in the catalog, d and q are two parameters related to the
spatial influence of the mainshock.

5. Nonparametric estimation and diagnostics

In seismic models, parametric estimation suffers from many drawbacks related to the defini-
tion of a reliable mathematical model from the geophysical theory and to the sensitivity of
statistical estimates to the composition of the sample, that is the space-time region under
study. Many of the disadvantages of the parametric modeling can be avoided by making use
of nonparametric techniques, such as kernel density methods (Silverman 1986). Therefore a
flexible procedure based on kernel estimators is proposed, useful when a clear discrimination
between principal and secondary events is not available.
The kernel estimator of an unknown density f in Rd is defined as:

f̂(z1, . . . , zd) =
1

nhz1 · · ·hzd

n∑

i=1

K

(
z1 − zi1

hz1

, · · · ,
zd − zid

hzd

)

where K(z1, . . . , zd) denotes a multivariate kernel function operating on d arguments (z1, . . . , zd)
centred at (zi1, . . . , zid) and (hz1 , . . . , hzd) are the smoothing parameters (bandwidths) of ker-
nel functions.
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The kernel estimator can be obtained as the sum of n surfaces, each corresponding to a single
point: the kernel function, that is a density function (usually Gaussian), defines the shape of
these surfaces.
The application of this technique requires the parameters h = (hz1 , . . . , hzd) to be opti-
mized in order to achieve the best compromise according to some criteria between the surface
smoothness and the level of detail in the phenomenon representation.
In Adelfio, Chiodi, De Luca, Luzio, and Vitale (2006b) the seismicity of the Southern Tyrrhe-
nian Sea is described by the use of Gaussian kernels and the optimum value of h is chosen such
as to minimize the mean integrated square error (MISE) of the estimator f̂(·). In particular
the authors used the value hopt that Silverman (1986) obtained minimizing the MISE of f̂(·)
assuming multivariate normality:

hopt = A(K)n
−1
d+4 (4)

with A(K) a function of the used kernel density. This is referred to as Silverman’s rule.
In order to get a more realistic and sensitive estimation, in this paper locally variable smooth-
ing parameters are estimated. The variable bandwidths estimation procedure is described by
the main following steps:

1. let z1, . . . , zd be the d arguments of the multivariate kernel function centered at zi1, . . . , zid,
i = 1, . . . , n;

2. choose a suitable integer between 10 and 100 for the parameter np p (Zhuang et al.
2002).

3. For each event calculate a bandwidth value

hi = (hi
z1

, . . . , hi
zd

) (5)

as the radius of the smallest circle centered at the location of the ith event (zi1, . . . , zid)
that includes at least np other events.

5.1. Details of the application

In this work second-order residuals are used to get a better description of the seismic activity
of Southern California occurring between January 1984 and June 2004 in a rectangular area
around Los Angeles, between longitude -122 and -114 and latitude 32 and 37; the dataset
consists of 2030 earthquakes with magnitude not smaller than 3.5; the estimated fractal
dimension for the whole set, based on the correlation integral estimator (Grassberger and
Procaccia 1983), is 1.4729. (fig. 1). The space-time kernel intensity estimator is defined by
the superposition of the separable kernel densities, as in Adelfio and Ogata (2010):

λ(t, x, y) =
n∑

i=1

φ(x− xi, y − yi)γ(t− ti)

with φ and γ spatial and temporal probability density functions, respectively. Therefore, the
complex estimation issue of a self-exciting process now reduces to the simple estimation of the
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Figure 1: Earthquakes (on the left epicenters and on the right latitude versus time plot)
occurred in the east coast of the of Southern California, in the region defined by 32◦ ∼ 37◦ N
and −122◦ ∼ −114◦ E for all depth and for the time span 1984-2004, with magnitude equal
or larger than 3.5. (Big-stars: m ≥ 7).

intensity function of an inhomogeneous Poisson process identified by a space-time Gaussian
kernel density, assuming independence between spatial and temporal densities.

As introduced in the previous section, the choice of an appropriate bandwidth could be
critical in intensity estimation issues. Indeed, too high bandwidths may provide very smooth
estimates, blurring local clustered features of the observed seismicity. On the other hand, too
low bandwidths tend to preserve noisy seismicity features.

In this section we compare two estimates of the seismicity rate by using both a global (invariant
in the analyzed region) and a local bandwidth approach. First a space-time kernel density
estimate of the seismic activity with constant bandwidth values in space and time (see eq.
(4)) and Gaussian kernel functions (denoted by approach a) is estimated.

Afterwards, a nonparametric kernel density with variable bandwidth values (5) and Gaussian
kernel is estimated (denoted by approach b). As a direction for future work we are considering
the possibility of using asymmetric kernel estimator, since the Gaussian one, especially for the
temporal distribution of triggered seismicity, might overestimate the seismic activity before
strong earthquakes.

In approach b smoothing parameters are obtained as described by (5) fixing np = 10 (Zhuange-
tal. 2002).

To study the goodness of fit of the two alternative approaches the weighted spectral density
(fig. 2) is analyzed (see Appendix A.1 for more details). Because of the strong clustering
nature of data, evident from fig. 1, approach a tends to smooth more than expected. On
the other hand the nonparametric model with variable bandwidth values (approach b) seems
to account for the residual correlation (due to the presence of aftershocks) not taken into
account by approach a.

Looking at the plot on the right in fig. 2 we could say that by fitting locally variable band-
widths kernel estimators, the estimated weighted spectral density behaves as the one of a
temporal homogeneous Poisson process.

Moreover if we apply approach b, the estimated weighted correlation dimension (defined in
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Figure 2: Original periodogram (on the left), weighted periodogram for constant bandwidth
approach (approach a; in the middle) and for varying bandwidths model (approach b; on the
right), with 95%-bounds of a homogeneous Poisson process (dotted lines).
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Figure 3: Weighted periodogram for ETAS model, with 95%-bounds of a homogeneous Poisson
process (dotted lines).

Appendix A.2) is DW = 1.91, not significatively different from 2, that is the expected value
of the correlation dimension for a homogeneous Poisson process in space. For the model with
constant bandwidth values the estimated weighted correlation dimension is DW = 1.45. These
results suggest that the variable bandwidth model seems to provide a realistic and reliable
estimate of the observed seismic activity also for the spatial domain.
Indeed in case of low clustering, a constant smoothing value for all the observed region could
provide a valid description of the activity of that area; on the other hand, if events are
strongly clustered, the introduction of variable smoothing, accounting for the high production
of offspring, seems to be preferable.
It is also interesting to compare the two approaches, and the corresponding estimated intensity
functions, with a parametric estimate of ETAS model, obtained by using the method of
Zhuang et al. (2002) applied to Southern California data.
The weighted periodogram obtained with the ETAS model is plotted in fig. 3 and shows an
inadequate fitting in the temporal domain. Moreover the weighted fractal dimension in space
for the ETAS model is DW = 1.53, suggesting the inadequacy of the model for the description
of such earthquakes, characterized by strong clustered features, mostly in space.
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From the previously provided diagnostic results the variable kernel approach provides a more
realistic description of the seismic activity of the studied area both than the constant band-
width approach and the ETAS model. Indeed approach b seems to follow more adequately
the seismic activity of the observed area, characterized by highly variable changes both in
space and in time; because of its flexibility, it also provides a better fitting to local space-time
changes as suggested by data. Approach a, conversely, is characterized by global bandwidths
and generates an over-smooth rate, that is an estimated decreasing activity in the centers
of some clusters and an increasing activity in some regions around; as a consequence some
clusters of high activity may not be clearly identified.

The ETAS model seems inadequate to describe the observed seismicity. To improve its fitting
to data, more complex and parameterized models should be defined. Indeed, the ETAS model
imposes some restrictions on the observed seismic process, such as constant p-values of (3) in
space, that induce a too quick decay of the intensity function in correspondence of events that
are strongly clustered in time. Also the use of constant K-values of (3) may not be reasonable
when data are strongly clustered; indeed in this case higher value of K accounting for the
high production of offsprings may be worthwhile.

On the other hand, the nonparametric variable-bandwidth kernel density estimator does not
constrain the process to have predetermined properties and provides a reasonable character-
ization of the studied area that presents highly clustered seismicity identified by a complex
intensity function.

6. Conclusion

In this paper we compute two estimates of the space-time rate of the seismic activity of
Southern California by using both a global and a local smoothing estimation approach. The
fit is assessed using the proposed diagnostic approach for point processes and compared with a
parametric model. The diagnostic method is based on the definition of a transformed version
of some second-order statistics and it requires the estimate of the conditional intensity function
of the fitted model to offset the inhomogeneity of the process.

As suggested by the diagnostic approach, an inhomogeneous Poisson process, characterized by
a space-time intensity function estimated by a flexible variable-bandwidth kernel estimator,
reasonably describes the highly variable and clustered seismic activity of the observed area.

This estimation approach seems helpful in this context, since earthquakes occurrence is char-
acterized by inhomogeneous activity regions, that is by some areas with high clustered activity
and others characterized by uniform seismicity; therefore, a different degree of smoothness
seems to describe these features better. Moreover it does not constrain the generating process
to fit some predetermined properties and shows some computational advantages related to
easily interpretable results. In other words, kernel estimators approach provides a simple and
effective tool of finding structure in datasets without the imposition of a parametric model,
with the advantage of being very intuitive and relatively simple to analyze mathematically.
On the other hand, although nonparametric models fit usually better than parametric ones,
because their synthesis is founded on the observed data, a purely nonparametric approach
does not enable one to estimate and interpret parameters with physical meaning, on the
contrary of parametric models like the ETAS one.
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A. Appendix: The weighted process and its second-order characteristics

According to the scheme introduced, to define the residual measures, the definition of weighted
process is required. Therefore, let N be a point process defined on S ∈ Rd, d ≥ 1. For any
point s in S, let λ(s|F) be the conditional intensity function of the process with respect to
some filtration F on S, for simplicity denoted by λ(s), assumed positive and bounded away
from zero. For any set S, Nw is defined as a real-valued random measure such that:

Nw(S) =
∫

S

1
λ∗(s)

dN

with 1
λ∗(s)

= λmin
λ(s) , and assuming that the positive constant λmin ≤ inf{λ(s); s ∈ S} does exist.

Therefore second-order statistics of Nw are defined generalizing the definition of second-order
statistics for N and some theoretical properties of these statistics are proved on the basis of
the martingale property of Nw (Adelfio and Schoenberg 2009).
Some of the second-order statistics useful to describe observed point patterns are here listed.
The spectrum mainly used to describe point processes that exhibit long-range dependence in
time is reported in Section A.1, together with theoretical results developed. In Section A.2
the definition of the reduced second-order measure of a point process and fractal dimension
are given, being useful quantities in the description of attractive and repulsive features for
spatial point processes.

A.1. Spectrum and weighted spectrum

Consider a temporal point process {N(t), 0 < t < T}, such that N(t1), . . . , N(tp) denote the
number of events that occur in the intervals (0, t1], . . . , (0, tp].
Let N(dt1), . . . , N(dtp) denote the number of events that occur in the small intervals (t1, t1 +
dt1], . . . , (tp, tp + dtp]. Suppose N(t) be a stationary point process, such that the joint distri-
butions of the variables N(dt1), . . . , N(dtk) are unaffected by simple translations of t1, . . . , tk.
Suppose that the process is orderly, that is the probability that a small region contains more
than one point is very small.
Indicating with µN (t) = E[N(dt)] the mean measure of the process, we know that:

µN (t) = λ(t)dt = E[N(dt)] .= Pr[there is an event in(t, t + dt)]
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It follows that λ(t) is the intensity of the process N(t). Moreover, given s = t + h, with
h ∈ R+ define:

dC(h) dt = cov[N(ds), N(dt)]
.= Pr[there is an event of in (s, s + ds)

and an event of in (t, t + dt)]− λ(t)λ(s)dtds

When a function c(h) exists, with c(h) = dC(h)/dh, for h (= 0, then c(h) defines the autoco-
variance density.
The spectrum of a process is obtained applying the Fourier transform to the covariance
function. If lim|dt|→0

E[N(dt)]
|dt| = λ, such that the complete covariance density is c(c)(h) =

λδ(h)+c(h), with δ(τ) the Dirac delta function and c(h) continuous at the origin, the complete
spectral density function for N is given by:

fN (ω) =
1
2π

∫ ∞

−∞
e−ihωc(c)(h)dh =

1
2π

{
λ +

∫ ∞

−∞
e−ihωc(h)dh

}

Therefore, for a Poisson process with constant intensity function λ, c(h) = 0 and the power
spectrum reduces to:

fN (ω) =
1
2π

λ

Intuitively, the area bounded by the spectrum in −π and π is the variance of the process.
Considering a generic frequency ω in [−π, π], the quantity

∫ ω
−ω f(ω)dω is the portion of the

process variance explained by cycles with frequency less than ω.
A process with a high spectral density at small frequencies has the greater part of the variance
concentrated at low frequency cycles. In other words, the dependence of the process at short-
term is low while it is stronger at long-term.
The spectral density of the weighted process is here defined by:

fNw(ω) =
1
2π

∫ ∞

−∞
c(c)
w (h) exp(−iωh)dh (6)

where c(c)
w (h) = λminδ(h) + cw(h) is the complete covariance density of the process Nw, with

δ(·) the Dirac delta function and cw(h) continuous at the origin. Since cw(h) = 0 (Adelfio and
Schoenberg 2009) the spectral density of the weighted process (that is the spectral density
calculated on the weighted points by using the inverse of the conditional intensity function
multiplied by its minimum value) reduces to

fNw(ω) =
λmin

2π

that is the power spectrum of Poisson process with constant rate λmin.

A.2. The weighted correlation integral

Let N be a time point process defined on [0, T ] ∈ R, with Lebesgue measure T and let Iij(δ)
be the indicator variable I(|ti − tj | ≤ δ), with tk ∀k = 1, . . . , n points of the state space.
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The weighted correlation integral, for a time point process N with realizations t1, t2, . . . , tn
on [0, T ], can be written as:

ĈW (δ) =
1

(λminT )2

n∑

i

ωi

n∑

j &=i

ωjI(|ti − tj | ≤ δ)

with ωk = λmin
λ(tk) ,∀k and λ(t) the conditional intensity function of the process with respect to

some filtration Ht on [0, T ].
As shown in Adelfio and Schoenberg (2009), the weighted correlation integral is the equivalent
of the inhomogeneous or weighted K-function (Baddeley, Møller, and Waagepetersen 2000)
for temporal point process models.
The asymptotic normality of the usual correlation integral for the i.i.d. case and under
mixing conditions was proved in Denker and Keller (1986). In Adelfio and Schoenberg (2009)
a martingale approach has been used to prove the asymptotic normality of the weighted
version of the correlation integral and therefore its consistence with the one of a homogeneous
Poisson process; this result has been extended to spatial point processes too.
The weighted correlation dimension, denoted with Dw, is defined as the slope of the plot of
log ĈW (δ) versus log δ for sufficiently small δ.
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