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Abstract. All those structures that are constituted by heterogeneous materials exhibit a complex
anisotropic behaviour strictly related to the static and kinematic phenomena occurring in each
constituent and at their interfaces. The overall macroscopic approach may be not appropriate
to describe the elastic and post-elastic response of the structures. A more rigorous approach is
the meso-modelling approach. In literature, usually the thin joints of the structure are simulated
by applying the so-called ’zero-thickness interface’, whose behaviour is expressed in terms of
contact tractions and displacement discontinuities. However, because of the real thickness of
the joint, the response depends also on internal stresses and strains within the bulk material. In
this direction the enhancement of the zero-thickness interface is represented by the interphase
model where strain and stresses are separated into internal and contact components.

1 INTRODUCTION

Two main approaches have been used in literature to analyze structures made up of hetero-
geneous materials: the macroscopic approach and the mesoscopic approach.
The overall macroscopic approach ([1]) considers the structure as an homogeneous anisotropic
continuum, so it consists in formulating phenomenologicalconstitutive laws expressed in terms
of macroscopic stress and average strain.
The meso-modelling approach takes the materials’ and interfaces’ properties separately. In
composite structures it is also possible to distinguish units and joints. The joints in most cases
represent the weakness areas of the heterogeneous materialwhere fractures appear and prop-
agate. In literature, a common way to simulate the joint is byapplying the so-called ’zero-
thickness interface’, where the joint collapses to its middle surface that is in consequence con-
sidered as a simple contact layer between units ([2]-[4]).
For practical applications the mesoscopic approach may be in some cases not appropriate to
describe the elastic and post-elastic response of the structures since it requires the introduction
of strong simplifications. In fact, most of the nonlinearities of the overall response depend on
local phenomena occurring in weaker joints such as debonding, sliding and dilatancy. On the
other side, depending on the real thickness of the joint, themeso-modelling approach, based
only on contact static and kinematic quantities, may not catch particular failure mechanisms. A
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typical example is the squeezing effect of a mortar joint interposed between two rigid blocks
and subjected to a compression load. This phenomenon can be captured only if the response
includes internal stresses and strains within the weaker material.
In this work we present the enhancement of the zero-thickness interface, represented by the
’interphase model’ ([5]). By employing the term interphase,we shall mean a layer separated
by two interfaces from the bulk material or a multilayer structure with varying properties and
several interfaces. The constitutive laws of the new mesoscale interphase model are written in
terms of internal state of stresses and contact tractions and related kinematic variables. The
model is implemented in a research oriented finite element code. Numerical simulations are
provided to show the main features of the model and noveltiesintroduced with respect to the
common interface model.

2 THE INTERPHASE FINITE ELEMENT

With regards to the general formulation showed by [5], in this work the theory has been
recasted to face 2D problems in plane stress conditions. In this particular case, the mean values
of the stress and strain components are:σ̂ =

[

σx σz τxz

]

, ε̂ =
[

εx εy εz γxz

]

.
The equilibrium equations are represented by:

t
+ = σ̂ · I3 −

h

2
divσ̂ on Σ; t

− = −σ̂ · I3 −
h

2
divσ̂ on Σ, (1)

m · σ̂ = 0 on δΣ. (2)

wheret
+ and t

− are the traction components generated by the interaction ofthe interphase
element with the upper and lower materials,h is the interphase thickness,I3 = {δi3}, andΣ is
the interphase middle plane.
The finite element is characterized by 4-node rectangular shaped. The displacement at each
point of the finite element is obtained as a function of the nodal displacements. If we define the
vectoru collecting all the nodal displacements as:

u =
[

u1 u2 u3 u4

]

, (3)

the total strain at the Gauss point is given by:

ε = BU (4)

where

B =







N ′

1/L 0 N ′

2/L 0 N ′

1/L 0 N ′

2/L 0
0 −N1/h 0 −N2/h 0 N1/h 0 N2/h

−N1/h N ′

1/L −N2/h N ′

2/L N1/h N ′

1/L N2/h N ′

2/L





 . (5)

In Eq. 5L is the interphase’s length, whileN1 andN2 are the two shape functions given by:

N1,2 (ξ) =
1

2
(1 ∓ ξ) ; ξ ∈

[

−1, 1
]

. (6)

By introducingN1 andN2 into Eq. 5 and 4 the compatibility matrix can be decomposed inthe
following form:

B = B0 + B1ξ (7)

2



A. Spada, G. Fileccia Scimemi and G. Giambanco

with

B0 =
1

2h







−η 0 η 0 −η 0 η 0
0 −1 0 −1 0 1 0 1
−1 −η −1 η 1 −η 1 η





 , η =
h

L
(8)

and

B1 =
1

2h







0 0 0 0 0 0 0 0
0 1 0 −1 0 −1 0 1
1 0 −1 0 −1 0 1 0






. (9)

Finally, by using two Gauss points, the stiffness matrix canbe exactly integrated as:

K = b h
L

2

1
∫

−1

B
T
EBdξ = b h L

(

B
T
0 EB0 +

1

3
B

T
1 EB1

)

(10)

3 ELEMENT PERFORMANCES

To assess the element goodness a simple patch test has been faced. The model considered is
that one showed in Figure 1.

Different behaviours could be found in dependence on the relative elastic moduli between

Figure 1: The patch test.

bricks and mortar. In particular, when the mortar is stifferthan bricks a two Gauss point inte-
gration leads to oscillations for internal and tangential stresses (Figure 2).

These stress oscillations have been observed, using conventional Gauss-quadrature scheme,
in zero-thickness interface elements. In that case the remedy is to locate the sampling points
at the nodes (Lobatto quadrature). In the case of the interphase element, instead, because of
volumetric and tangential locking, two methods have been used as remedies: 1) the Reduced or
Selective Integration method (RSI), which provides the necessary singularity of the constraint
part of the stiffness matrix which avoids locking; 2) the Enhanced Assumed Strain method
(EAS), where the strain field is enlarged and the element shows extra deformation modes. For
example, by using the Selective Reduced Integration method with one and two Gauss points
for the integration along the tangential and normal direction respectively, the results showed in
Figure 3 are obtained. It can be observed that the previous oscillations disappear. The same
results can be obtained by applying the Enhanced Assumed Strain.
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Figure 2:Em = 30Eb and two Gauss point integration: (a) internal, (b) normal and (c) tangential stresses.

Figure 3:Em = 30Eb and Selective Reduced Integration: (a) internal, (b) normal and (c) tangential stresses.

4 CONCLUSIONS

The interphase model represents the enhancement of the zero-thickness interface model. The
numerical implementation using standard Gauss quadratureshows stress oscillations that can
be solved making use of the RSI or of the EAS. The RSI approach is preferred because no
additional variables are required and the stiffness matrixis not modified which is important in
non linear applications.
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