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ABSTRACT: The presence of singularity surfaces with reference to the displacement field is a characteristic of
a number of structural systems. Strong discontinuities are present in old masonry structures where dry joints
connect the blocks or the mortar ageing suggests to neglect the adhesion properties.
These structures cannot be considered a continuum but rather an assembly of blocks. These discontinuous
structures could be modelled as an assembly of blocks interacting trough frictional joints whose mechanical
behaviour is described by appropriate interface laws.
In the present work an interface model present in literature is adopted, the double asperity model, which has
been implemented in a standard finite element code with the principal aim to develop structural analysis of old
monumental masonry structures.
The interface model is briefly illustrated and the numerical implementation of the interface laws is described in
detail.
Numerical examples are presented to simulate the behaviour of a couple of greek temples of Agrigento Italy.
These old monumental structures, IV-VI sec. BC, are inserted in the world heritage list by Unesco.

1 INTRODUCTION
There is a wide interest in the research community
to develop mechanical models and numerical tools
capable to reproduce the structural behaviour of his-
torical monumental buildings. The presence of strong
discontinuities, typical of blocky structures where dry
joints connect the blocks, and the way in which the
deformation modes of the joints are modelled is the
crucial point in the choice of the analysis tool.

Different approaches could be found in literature.
In the Continuum approach the structure is modelled
as an anisotropic but homogenous continuum with
smeared characteristics, typical examples are noten-
sion material (Fuschi et al. 1995), Cosserat contin-
uum theory (Cerrolaza et al. 1995), nonsmooth mul-
tisurface plasticity (Mistler et al. 2006). All these ap-
proaches tries to incorporate the deformation modes
of the joints in the constitutive laws even though con-
sidering an homogenous system.

In the Discrete approach the structure is considered
as an assembly of blocks connected by contact joints.
In this way the deformation modes of the joints could
be modelled by apposite interface laws (Chuhan et al.
1997). In the present work the second approach is
followed using interface laws derived from the dou-
ble asperity interface model (Mróz and Giambanco

1996).
The remainder of the paper is organized as follows.

In Section 2, the simplified version of the interface
model is briefly illustrated. Section 3 describes the
local integration of the constitutive laws. In Section
4 numerical examples regarding a couple of famous
historical greek temples are presented.

2 INTERFACE MODEL
The model adopted to simulate the contact between
the masonry blocks is the double asperity model
(Mróz and Giambanco 1996).

Referring to figure 1 the classical interface model
assumes that the contact surface between two bodies
Ω1 and Ω2 could be assumed as a as a contact layer of
thickness h. In the double asperity model the planar
joint is characterized by spherical asperities of differ-
ent radius.

Considering a local reference system (O, e1, e2,
e3) with e1 and e2 on the middle plane π of the
contact layer and e3 oriented along the normal to π
and directed in to the body Ω1, the discontinuity dis-
placement vector at the contact layer is expressed by
the sliding displacement discontinuities [u1] and [u2],
along e1 and e2, respectively, and by the separation
displacement discontinuity [uN ], along e3:



Figure 1: Spherical asperity model.

[u] = [u1]e1 + [u2]e2 + [uN ]e3. (1)

Similarly the traction vector σ can be expressed as:

σ = τ1e1 + τ2e2 + σNe3. (2)

Following the formulation of the spherical asperity
model, (Mróz and Giambanco 1996), and simplify-
ing the problem by neglecting micro-slip effects, the
elastic displacement discontinuities are related to the
contact stresses by the constitutive law which takes
the form:

[σ] = βK[u]e; (3)

where β is the contact factor which provides a mea-
sure of the actual contact area with respect to the nom-
inal area within the plane π, defined as:

β =

(
−3 < [uN ] >

h

) p
3−p

, (4)

where < x >:=
(x+ |x|)

2
denotes the Mac Auly

brackets,
for the parameter p, introduced to account for com-

plex asperity interaction with initial gap distribution,
assumes the unit value only in the case of uniform
spherical asperities, like in the present work, figure 1.

The elastic stiffness matrix reported in equation (3),
is easily calculated from the elastic properties of the
material constituting the asperities:

K =
1

h
diag [ Et1 Et2 EN ] ; (5)

with:

Et1 = Et2 =
2G

2− ν
; EN =

2G

1− ν
; (6)

where G is the tangential elastic modulus and ν is the
Poisson’s coefficient of the material.

The sliding limit condition used is the classical
Mohr-Coulomb one, thus :

Φ(σ) = |τ |+ σN tanφ = 0, (7)

where φ is is the friction angle between the asperi-
ties surfaces. The anelastic part of the discontinuity
displacement can be obtained from the following non
associative flow rule:

[u̇]s = λ̇
∂Γ(σ)

∂σ
, (8)

where Γ(σ) is defined as:

Γ(σ) = |τ |; (9)

and λ̇ is the sliding multiplier which satisfies the fol-
lowing complementarity conditions:

F (σ) ≤ 0; λ̇ ≥ 0; λ̇F (σ) = 0. (10)

3 DISCRETE INTERFACE LAWS
The present section concerns with the evaluation of
the state variables obtained by integration of the in-
terface laws for a given sequence of total strain incre-
ment history and with assigned initial conditions.

Let [0, T ] ⊂ R be the time interval of interest and
assume that the state variables at time t ∈ [0, T ] or:

{[u]k, [u]sk} (11)

are known given data at time tk.
The elastic displacement discontinuities [u]ek, the

contact factor βk+1, and the contact tractions σk can
be regarded as dependent variables that can be evalu-
ated from equation (3)-(6) and (7)-(10).

Let us consider a subsequent time tk+1 ∈ [0, T ] and
let denote with ∆[u]k the respective incremental dis-
placement discontinuity field which is assumed to be
given. The basic problem is to update the field vari-
ables at tk+1 in a manner consistent with the interface
constitutive equations presented in the previous sec-
tions. Equation 8 define a rate non linear evolution
problem with initial conditions (11). This rate prob-
lem can be transformed into a discrete one by apply-
ing an implicit backward-Euler difference integration
scheme:

[u]k+1 = [u]k +∆[u]k; (12)

[u]sk+1 = [u]sk +Rt∂G

σ
∆λk; (13)

σk+1 =
1

h
βk+1R

TER([u]k+1 − [u]sk+1); (14)



βk+1 =

√
3
< −[uN ]

∗,e
k+1 >

h
. (15)

The above reported discrete equations may be re-
garded in the context of a two-step-algorithm, split-
ting the previous problem, in additive manner, in an
trial elastic predictor stage and in a plastic corrector
stage. In the time step [tk, tk+1] the elastic predictor
stage leads to the following:

predictor
∥∥ [u]s,trialk+1 = [u]sk. (16)

The dependent variables assume the values:

[u]e,trialk+1 = [u]k+1 − [u]s,trialk+1 , (17)

σk+1 =
1

h
βk+1R

T
kKRk([u]k+1 − [u]sk+1). (18)

If f(σ∗,trial
k+1 ) ≤ 0 the process is elastic in the step

and no corrector stage is further required. Otherwise
the corrector stage is performed:

∥∥∥∥∥∥∥
∆γs =Rγ

(
γ∗e,trial + [uN ]

∗En

Et
tanφγ̂∗e,trial

)
[uN ]

∗ = cos(α)[uN ]
e,trial − sin(α) ˆγsTγe,trial

γ∗e,trial = [uN ]
e,trialγ̂s sin(α) +Rγγe,trial.

(19)
Equations (19) represent a non-linear equation sys-

tem in the unknowns ∆γs, that can be solved with a
local Newton Rhapson procedure.

The interface laws presented in this section was
implemented in an open source finite element code
OOFEM (Patzák and Bittnar 2001).

4 NUMERICAL EXAMPLES
The numerical applications regard the analysis of a
couple of greek temples of Agrigento in Italy. The
temples of Giunone Lacinia and Concordia are old
monumental structures that belong to the ancient
greek city of Akragas, examples of extraordinary
monumental complex of Valle dei Templi di Agrigento
inserted in the world heritage list by Unesco from
1997.

The material used for the temples is a sandstone
rock typical of the zone called calcarenite. Mainly
formed by erosion and re-deposition of other rocks
contains elevate amount of shell fragments, near 50%,
cemented by calcium carbonate.

The blocks of calcarenite are modelled by brick el-
ements and are considered elastic. The planes of con-
tact between block are modelled by interface elements
and are considered the source of all nonlinearities of
the behaviour.

Figure 2: Temple of Giunone Lacinia. Trilite finite el-
ement model mesh.

For the temple of Giunone Lacinia it was mod-
elled a structural element composed by two columns
and the architrave, trilite. In Figure 2 the finite ele-
ment mesh for the trilite is reported, with 2648 bricks,
632 interface elements at the interface plans and 4244
nodes in total.

Six different planes of contact have been dis-
cretized: one plane at the base, three planes between
the blocks of the columns, one plane between the
columns and the capital, and one between the capital
and the architrave, figure 3.

The trilite was subjected to dynamic analysis and
a time-history of acceleration, obtained by a response
spectrum defined according to European Standard EC
8, applied to the interface plan at the base where the
nodes are fixed.

In figure 4 the finite element model response is
showed in terms of normal discontinuities (opening-
closing of the joint) at various interface plans. The
maximum values are obtained for interface plan 2 be-
tween the first and the second block of the column
south and not for the interface plan 1 as for mono-
litical structure could be expected. Due to the lack of
space the results for column north are not reported but
the behaviour is similar to south column.

For the temple of Concordia the complete west
front, composed by six columns, the architrave and
the timpano was modelled. In this case the structure
was subjected to a pseudo-static analysis with increas-



Figure 3: Doric column dimensions and interface
plans.

Figure 4: Map of normal discontinuities, column
south, at various interface plans.

Figure 5: Temple of Concordia, West front. Displace-
ments at incoming collapse.

ing horizontal forces till the collapse. In figure 5 the
deformed finite element model at the collapse, ob-
tained from this analysis, is showed.

5 CONCLUSIONS
The paper presents a procedure for analyze the seis-
mic behaviour of historical blocky structures.

The structure is suitably modelled as an assembly
of blocks interacting through frictional joints whose
nonlinear mechanical behaviour is described by ap-
propriate interface laws.

The pratical and efficient application of the proce-
dure is showed by the seismic analysis of a couple of
old monumental masonry structures.
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