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Frank Höppner,4,§ Ondine Callan,5,¶ Heiko Hofer1,�

1University of Konstanz, 78457 Konstanz, Germany
2University of Palermo, Department of Electrical Engineering,
Viale delle Scienze 90128 Palermo, Italy
3Tripos, Inc., 1699 S. Hanley Road, St. Louis, MO 64133
4University of Applied Sciences, Emden, Department of Electrical
Engineering and Computer Science, Constantiaplatz 4,
D-26723 Emden, Germany
5VistaGen Therapeutics, Inc., 1450 Rollins Road, Burlingame, CA 94010

Often, it is desirable to represent a set of time series through typical shapes in order to detect
common patterns. The algorithm presented here compares pieces of a different time series in
order to find such similar shapes. The use of a fuzzy clustering technique based on fuzzy c-means
allows us to detect shapes that belong to a certain group of typical shapes with a degree of
membership. Modifications to the original algorithm also allow this matching to be invariant with
respect to a scaling of the time series. The algorithm is demonstrated on a widely known set of
data taken from the electrocardiogram (ECG) rhythm analysis experiments performed at the
Massachusetts Institute of Technology (MIT) laboratories and on data from protein mass
spectrography. © 2004 Wiley Periodicals, Inc.

1. INTRODUCTION

When processing large amounts of data, it is important to derive a compact
representation that still retains all relevant information. For instance, a large part of
the data might be grouped together into a few clusters, whereas the outliers should
be isolated, thus making it easier to point them out for further analysis. Also,
information gathered from experiments on real data often may be highly unreliable
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in quantitative terms and exhibit large amounts of noise. In the case of time series
or other types of sequential data streams, it often is desirable to represent common
groupings through typical shapes, representing a slice of the time window or a
subsequence, respectively. In some cases, one may try to find relevant shapes such
as peaks by using conventional peak-detection techniques. However, this may
prove ineffective, because some of the peaks may overlap and form head-shoulder
constellations. Such shapes generally are hard to identify as separate peaks and it
might make more sense to look at them from a more global point of view, trying
to recognize similarities instead of isolating peaks.

In this study, we present a method that finds areas in time series data that
exhibit informative clusters of related shapes. The use of a fuzzy clustering
technique based on fuzzy c-means allows us to assign overlapping degrees of
membership and assign each pattern to prototypical shapes with a certain degree of
membership. Because quantitative information is only marginally reliable in many
of these data sets, the matching needs to be invariant under certain transformations
of the time series, particularly scaling.

This article is organized as follows. Section 2 contains a short description of
the fuzzy c-means clustering technique; in Section 3 we present our approach,
introducing the use of a scale invariant objective function, and, after presenting
some results in Section 4 and summarizing our conclusions in Section 5, we
discuss some possible future developments in Section 6.

2. OBJECTIVE-FUNCTION–BASED FUZZY CLUSTERING

The general idea behind clustering is to partition a given data set into
homogeneous subsets. One popular approach finds a partition of the original space
and assigns each data element to one of the clusters by means of a similarity
function, which often is based on the Euclidean distance as a metric. Each cluster
then is represented by a prototype or cluster representative. The well-known fuzzy
c-means algorithm1 is an example of such a clustering algorithm, where, in
addition, one allows each data element to belong to all clusters simultaneously but
to different degrees. In formal terms, assuming we have a data set

X � �x1, . . . , x�X�� � Rn, n � N

the aim is to compute the prototypes P � {p1, . . . , p�P�} as a result of the
following optimization problem:

Jm�X; U, P� � �
j�1

�X� �
i�1

�P�

ui,j
mdi,j

2 (1)

using the constraints

@i � N��P� : �
j�1

�X�

ui,j � 0 (2)
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@j � N��X� : �
i�1

�P�

ui,j � 1 (3)

i.e., we want to minimize the sum of weighted (squared) distances between data
objects and cluster prototypes.

The membership degree of datum xi to cluster pi is denoted by ui, j � [0, 1].
The distance of datum xj and cluster prototype pi is denoted by di, j. The parameter
m � 1 influences the “fuzziness” of the obtained partition.

With m 3 1 the partition tends to be crisp (ui, j 3 {0, 1}); with m 3 �,
totally fuzzy (ui, j � 1/�P�), as will be evident considering the formula for
updating ui, j. Constraint in Equation 2 makes sure that none of the clusters is
empty and thus we really have a partition into �P� clusters. Constraint in Equation
3 assures that every datum has the same overall weight in the data set.

Fuzzy clustering under constraints in Equations 2 and 3 often is called
“probabilistic clustering.” Other fuzzy clustering techniques, using a relaxed con-
straint in Equation 3, are noise clustering2 and possibilistic clustering.3 The latter
approaches are especially useful when dealing with very noisy data.

The most popular fuzzy clustering algorithm is the fuzzy c-means algorithm.
It uses the Euclidean distance between data vector xj and prototype pi as distance
measures. This model searches for spherical clusters of approximately the same
size.

Most of the objective-function–based fuzzy clustering algorithms minimize
Equation 1 by alternatingly optimizing the membership degrees and cluster shapes.
From the membership model (e.g., “probabilistic”) and the cluster shape model
(e.g., “point-like”) one can develop necessary conditions for a local minimizer of
J from �J/�U � 0 and �J/�P � 0. Of course, for each model, we obtain different
update equations. Ideally, we have in both cases closed-form update equations,
which makes the algorithms much faster and more robust when compared with
variants that use additional numerical techniques like the Newton-Raphson
method. In the case of the fuzzy c-means algorithm, we obtain for the probabilistic
membership model the update equation

ui,j �
1

¥k�1
�P� � di,j

2

dk,j
2 � 1/��P��1� (4)

and for the point-like shape model the update equation

pi �
¥j�1

�X� ui,j
m xj

¥j�1
�X� ui,j

m (5)

Besides the point-like clusters, hyperellipsoidal shapes,4 linear shapes,1 and
many others are known in the literature. We refer to Ref. 5 for a thorough
overview.
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3. SCALE INVARIANT APPROACH

For our purposes, every data object represents (part of) a time series and the
aim is to cluster them according to their similarity.

Figure 1 shows an example in which a scale invariant approach may be
effective. Computing similarity using the usual Euclidean distance as a metric
series ts1 and ts2 are closer to each other than to ts3. However, if one is interested
in similar shapes, it would be preferable to have ts1 and ts3 in the same cluster.
After scaling, it is obvious that series ts1 and ts3, indeed, can be traced back to a
common prototype, whereas ts2 always will show up as “different.”

Given a time series (ti)i�N we define the associated data object x to consist
of n consecutive observations: xj � (t0, t1, t2, . . . , tn�1). Analogously, every
cluster is represented by a prototype, which is an n-dimensional vector that can be
interpreted as (part of) a time series.

In addition, we are interested in a partition that takes into account that we are
uncertain about the scale of each time series. Hence, we introduce variable scaling
parameters and, unlike the original algorithm, measure the Euclidean distance of
the scaled data object to the prototypes. Obviously, for different prototypes,
different scaling factors minimize the Euclidean distance; therefore, we use si, j to
denote the scaling factor for data object xj to match prototype pi.

This approach is more flexible than the standard fuzzy c-means because the
requirement for each object to match exactly a prototype is softened. Moreover, it
takes into account the whole (scaled) object and its overall shape rather than, e.g.,
trying to identify the present of peaks, which often is impractical depending on the
nature of the data set.

Finally, it also is more effective than simply having a fixed scaling factor
common for all the objects, as would be the case, for instance, when normalizing
all the time series a priori and applying the standard fuzzy c-means algorithm.

Figure 1. Three time series showing the advantage of a scale invariant approach. On the left,
the three unscaled samples are displayed; in the middle, the same samples after scaling are
shown; and on the right the scaling factors used are shown.
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This leads to a modified objective function:

Jm�X; U, P� � �
j�1

�X� �
i�1

�P�

ui,j
m�si,jxj � pi�2 (6)

now, we need to place an additional constraint on Equation 6 in order to avoid the
trivial solution of {pi 	 0, si, j � 0}. Every prototype pi might be scaled by an
arbitrary factor without changing anything in the value of the objective function if
we consider the same factor for the scaling factors si, j. Therefore, we choose a
fixed scale for the prototypes, requiring

@i : �pi� � 1 (7)

Skipping the derivation of the necessary conditions for the parameter updates,
an alternating optimization clustering algorithm minimizing Equation 6 under the
constraint in Equation 7 is given in Figure 2.

Note that it is not necessary to store the scale and membership matrix
completely if the prototypes pi are updated incrementally.

4. EXPERIMENTAL RESULTS

The algorithm was tested using two different data sets; the former contained
electrocardiogram (ECG) signals, and for the latter, the signal consisted of protein
mass spectrograms. In the first case, the signals were not particularly noisy and
required little preprocessing, whereas in the second case, many interesting shapes
would fall unnoticed to a conventional peak detection algorithm. However, in both
cases, similar conclusions may be drawn from the experiments as outlined in
Section 4.3.

Figure 2. Scale invariant clustering algorithm.
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4.1. Heartbeat Data

For our preliminary experiments, we used a data set consisting of ECG signals
extracted from the Massachusetts Institute of Technology–Beth Israel Hospital
(MIT-BIH) Arrhythmia Database,6 which is a set of recordings analyzed and
labeled by human experts. Both the signals and the cardiologists’ annotations are
freely available.

From a medical point of view, our data represent a range of common clinical
phenomena such as normal beats (the majority), paced beats, premature ventricular
contractions, right bundle branch block beat, and atrial premature beat. Only the
ones that result in peculiar shapes lend themselves to be recognized by our
algorithm (e.g., paced beats usually differ from normal beats only in magnitude,
thus being intrinsically indistinguishable for us).

Figure 3 shows a typical scenario. The time series representing three recorded
heartbeats were shifted to have zero mean but not normalized. Note how the two
normal heartbeats (Numbers 1 and 3) have similar shapes but different scales.
Heartbeat 2 clearly is different but still has a smaller Euclidean distance to
Heartbeat 1 than Heartbeat 3. A purely distance-based clustering algorithm would
incorrectly assign Heartbeats 1 and 2 to one cluster and Heartbeat 3 to a second
cluster.

Figure 3. Heartbeats from three different series. Data is shifted to have zero mean but not
scaled. Heartbeats 1 and 3, although with different scales, show roughly the same shape, whereas
Heartbeat 2 is different. Note, however, that the (unscaled) Euclidean distance between Heart-
beats 1 and 2 is smaller than the distance between Heartbeats 1 and 3.
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Previous work to characterize different types of heartbeats mostly has focused
on a set of parameters that were extracted automatically, such as width and height
of certain, characteristic features. Using these parameters is not straightforward and
methods to determine the influence of these measures have been proposed as well.7

However, most experts do not rely on such summaries, because they intu-
itively tend to analyze the overall shape of a time series to determine its category.
On the other hand, our approach allows us to find clusters of similar shapes as well,
which mimics the human expert more closely than going through an intermediate
process of translating the time series into a set of parameters.

Even though the data is not particularly noisy, some preliminary cleaning was
conducted, namely, the subtraction of the mean and an alignment of the signals in
order to have all of the time series represent exactly one heartbeat.

Several experiments have been performed to test how the algorithm works in
a real case. Figure 4 is an example of a typical output, where one of the time series
presents an anomalous behavior (spec3, which shows a premature ventricular
contraction). In the example shown, 10 samples are grouped using 3 clusters; the
first row shows the 3-cluster representatives, and the time series (already scaled)

Figure 4. Ten time series are grouped using three clusters. The upper bar in each cell of the
table shows the degree of membership of each time series to the relative cluster and the lower
one is the resulting scaling factor. Note that the time series shown already are scaled accordingly.
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are shown in the first column. The upper bar in each cell of the table shows the
degree of membership of each time series to the relative cluster and the lower one
is the resulting scaling factor. The relatively small values for the scaling factor
stem from the fact that we require the prototypes to be normalized to one and that
the spectra’s norm is much larger than one.

The algorithm produces three rather well-separated groups; one of them
contains spec3 alone, and the remaining samples are clustered into two groups,
with the more populated one containing the time series with a more common
behavior.

4.2. Protein Mass Spectra

The results on heartbeat data were confirmed by further experiments con-
ducted on protein mass spectrograms.

In Figure 5, the basic operation of protein mass spectrography is sketched.
Charged proteins are accelerated in a vacuum and the charge over time-of-flight
plot can be used to draw conclusions about the concentrations of proteins of
specific mass. In reality, however, the resulting information is highly unreliable in
quantitative terms and also exhibits large amounts of noise. Figure 6 shows an
example of mass-over-charge diagrams derived from a real protein mass spectrog-
raphy instrument. Note how although both plots were derived from the same
sample, the quantitative information, i.e., the peak heights, vary. In addition, a
heavy baseline offset and a substantial amount of noise is visible. The enlarged
sections show areas where it is hard to identify all peaks using conventional
peak-detection techniques, because some of them overlap and form head-shoulder
constellations. Such shapes generally are hard to identify as separate peaks.

A typical approach to find features in those kinds of signals requires detecting
individual peaks and somehow assigning quantitative information to each peak.
This requires some sort of normalization and a reliable peak-detection algorithm,
as opposed to the more intuitive approach of the algorithm presented here.

In this case, it is not desirable to present the entire time series to the algorithm
as one spectra. Therefore, we chose a sliding window approach, where we used
overlapping slices in time as input to subsequent runs of the algorithm as shown in
Figure 6.

Figure 5. The principle behind protein mass spectrography is based on accelerated charged
proteins in vacuum. Based on voltage and distance, the observed charge over time-of-flight plot
can be used to identify concentrations of proteins at a certain mass.
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Assuming the time series are aligned, each run of the algorithm selects
different parts of them and produces the respective cluster representatives.

Not all of the cluster representatives will be necessarily significant, but they
are good candidates for a cluster validity assessment algorithm that can select the
most promising ones.

The final result is a set of prototypes that represent characteristic shapes
occurring in (parts of) the time series.

Figure 7 shows two examples of running the presented algorithm on a set of
192 mass spectrograms (the precise nature of the underlying sample is not of prime
interest for this example). Two screen shots are shown, which display a series of
mass spectrograms on the left, together with a label indicating the categories
repx/39y-repx/tcy. The number x following “rep” indicates an individual experi-
ment using eight different samples (39, 40, 41, 42, 46, 47, rc, and tc) and y � ‘a’
� ‘h’ denotes duplicate experiments using the same sample.

In this case, the cells display only a bar showing the degree of membership of
each sample to each of the clusters, which are displayed on the top row together
with the samples from which they were derived. It is interesting to see how the
method finds clusters that group samples of classes 39–42 and 46–tc together on
the left side. A clustering in a different region, shown on the right, nicely separates
the sixth repetition from the remaining five (rep6 versus rep1–5), an indication that
the sixth experiment ran into problems.

4.3. Discussion

Besides the discussed results, some observations arise from both sets of
experiments. First, it is important to note that because the number of clusters is

Figure 6. Two examples of real mass-over-charge plots from a protein mass spectrography
instrument. Repeated runs of the algorithm on different parts of the time series help to point out
characteristic shapes.
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chosen a priori, the analysis of a range where none of the samples showed any
particular discriminative shape was bound to produce more clusters than necessary.
Nevertheless, when a certain phenomenon (i.e., an area with a peculiar shape) was
present, the algorithm usually was able to detect it as an outlier, assigning it to a
cluster of its own.

When the number of clusters is chosen too large, a high fuzziness index
results in the memberships being almost equally spread, which is not particularly
meaningful. On the other hand, with fewer clusters, the fuzziness, together with the
scaling factor, produces a better clustering. The usual situation is that some clusters
are reserved for the outliers, if present, with the rest of the samples showing very
low memberships on those clusters; at the same time, they will group together in
the remaining clusters according to the respective similarities (but the difference in
the memberships is not so evident).

We also compared the algorithm with a standard fuzzy c-means (i.e., without
scaling factor). As expected, because the similarity measure is basically the same,
the latter is bound to come up with worse results; with the same number of clusters
and fuzziness, the results tend to be “sharper,” because even small differences in
the time series that appear similar but at different scales are enhanced. Because the

Figure 7. Two examples of clusters for a certain range of time-of-flight values.
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number of prototypes is not determined by the algorithm, it will try to assign each
spectrum to one of the clusters, even if this may result in “bad” values for the
memberships, i.e., memberships equally spread along the possible prototypes. The
introduction of a validity assessment function would provide a quantitative mea-
sure of the goodness of the scaling invariant algorithm with respect to the original
one.

5. CONCLUSIONS

The test on real data sets has shown that our algorithm is capable of generating
meaningful clusters taking into account shape similarities, and it succeeded in
separating common shapes from unusual ones. The procedure is similar to that of
a human expert, which naturally rejects differences in scale but focuses on
particular shapes. As expected, carefully choosing the fuzziness degree as well as
the number of clusters is important and including the scaling factor into the
objective function to be minimized has proved to be successful.

The fact that outliers usually are isolated can certainly be useful in some
application and help to further refine the analysis. Even though these preliminary
experiments were encouraging and basically confirmed theoretical results, they
also gave us some hints on how to further improve the algorithm as outlined in the
next section.

6. FUTURE WORK

It is clear that having a fixed number of clusters is not the best solution. This
constraint is caused by the class of algorithms that the fuzzy c-means belong to. We
hope that we can overcome this limitation at least partially. Using cluster validity
assessment techniques8,9 is a first step in this direction. In addition, leaving the
scaling factors completely unconstrained usually is not desirable as well. In some
instances, noise was artificially blown out of proportion to match a certain proto-
type in cases where this was clearly nonsensical. Defining valid ranges for the
scaling factors would have helped to avoid these effects.
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