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Deposits with unusually high Mn contents sampled at Monte Mangart in the Julian Alps include organic-rich
marlstone and black shale with interbedded manganoan and siliceous limestone, which were deposited
during the early Toarcian Oceanic Anoxic Event. Mn enrichment during that period has been related to global
sea-level change coincident with increasing subsidence rate. The formation of Fe–Mn nodules, marking a
hardground at the base of the Monte Mangart section, seems to be triggered by release of Mn from remote
hydrothermal vents into a region of relatively elevated submarine topography where oxidizing conditions
prevailed. However, very high Mn contents in carbonate phases above the hardground imply an additional
diagenetic source of this element in the lower part of this section. The whole stratigraphic sequence (ca 30 m)
displays a transition from Mn-rich (up to 8.8%) sediments, in the lower part, to Mn-poor (less than 1.8%)
sediments in the middle and upper parts. The drastic decrease in Mn content's up-section is accompanied by a
clear decrease in the mean size of pyrite framboids, indicating more intense anoxia/euxinia in the water
column. In the presence of Mn2+, conditions of high alkalinity induced precipitation of Mn carbonates during
early diagenetic processes. Negative δ13Ccarb values coincident with highMn contents indicate involvement of
organic matter in the mineralization process. The striking similarity of Ce/Ce* and Mn profiles demonstrates
that, consistent with redox-chemistry of Mn and Ce under anoxic conditions, Ce3+ and Mn2+ were mobilized
and released into pore water where precipitation of Mn carbonates occurred.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Lower Toarcian strata of the western Tethys are characterized by
widespread occurrence of manganese-bearing deposits. Sediments in
anoxic marine environments are commonly depleted in manganese
because low Eh values favour the stability of Mn2+ ions in aqueous
solutions (Force and Cannon, 1988). However, Mn-rich (Mn2+)
carbonates stratigraphically associated with Jurassic black shales
have been recognized in basinal pelagic deposits from Austria,
Germany, Switzerland, Slovakia, Italy, and Hungary (Bellanca et al.,
1999; Corbin et al., 2000; Ebli et al., 1998; Jenkyns, 1988; Jenkyns
et al., 1991; Polgári et al., 1991, 2004; Rantitsch et al., 2003; Vetö et al.,
1997). Ferromanganese oxyhydroxide crusts and nodules (Mn4+)
formed on topographic highs (seamounts) in relatively shallow
waters are also characteristic of the Jurassic Tethys (Cronan et al.,
1991; Di Stefano et al., 2002; Jenkyns, 1970, 1971, 1977). Several
authors (i.e. Corbin et al., 2000; Jach and Dudek, 2005) linked the
elevated concentrations of Mn in Jurassic sediments of the western

Tethys to increasing submarine hydrothermal activity during pro-
gressive rifting of the Tethyan passive continental margin; in addition,
Jenkyns et al. (1991) suggested a possible continental derivation of
Mn transported through the oxygen minimum zone across the
Tethyan continental margin.

The Monte Mangart section discussed in this paper contains well
exposed organic-rich marlstone and black shale that are stratigraphi-
cally associated with both manganoan carbonates and ferromanga-
nese oxyhydroxide nodules. Based on radiolarian fauna, Goričan et al.
(2003) dated the studied interval as early to middle Toarcian in age.
Comparison of the organic carbon-isotope record from Monte
Mangart with records of coeval sections of the Tethyan and Boreal
realms confirmed that the black shale horizon can be ascribed to the
upper part of the Tethyan tenuicostatum Ammonite Zone or to the
lower part of the boreal falciferum ammonite Zone (Sabatino et al.,
2009).

This work presents a multi-proxy study of lower Toarcian strata
that includes new records of carbon and oxygen isotopes from bulk
carbonate sediments combined with mineralogical, petrographical
and geochemical data. The aim of the study was 1) to document
changes in abundance of Mn in response to the early Toarcian Oceanic
Anoxic Event (T-OAE) in the western Tethys and 2) to contribute to
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the understanding of Mn mineralization during early diagenetic
processes in dysaerobic to anoxic environments.

2. Geological setting

The Monte Mangart area is located in the Julian Alps along the
Italian–Slovenian border. The Julian Alps belong to the Julian Nappe,
which forms part of the Southern Alps together with the underlying
Tolmin Nappe (Placer, 1999). During the Jurassic, the Julian Alps
comprised part of the southern Tethyan passive continental margin
recording the Late Triassic–Early Jurassic rifting that led to the
development of two juxtaposed Jurassic palaeogeographic units: the
Julian High and the Slovenian Basin (Fig. 1). The Julian High
palaeogeographic unit was considered by Buser (1996) to have
formed from a carbonate platform that drowned in the Early Jurassic,
probably around Sinemurian/Pliensbachian boundary time. This unit
was characterized by irregular seafloor topography because the
drowned platform was dissected into differentially subsided blocks.
During the Jurassic, some of these blocks formed isolated seamounts
while other blocks became part of the deeper Slovenian Basin that
received gravity-displaced sediments from an adjacent shallow-water
carbonate platform, as was the case with Monte Mangart (Cousin,
1981; Šmuc and Goričan, 2005).

The studied section is well exposed along the Slovenian–Italian
border (Fig. 1) on the saddle between Travnik and Mali Mangart
(Šmuc and Goričan, 2005). Here, the stratigraphic succession has been
subdivided by Goričan et al. (2003) into four distinct lithostrati-
graphic units (Fig. 2B). At the base, Unit 1 consists of Hettangian–
Sinemurian platform carbonates that submerged near the time of the
Sinemurian/Pliensbachian boundary. Unit 2, which consists of
bioclastic wackestone and packstone with echinoderms, sponge
spicules and juvenile ammonites, was deposited in a deeper
environment than Unit 1, on top of the drowned platform, and is
capped by a hardground with ferromanganese nodules (Fig. 2C)
suggesting a reduced sedimentation rate (Jenkyns, 1970). The age of
this Unit is thought to correspond approximately to the time interval
that contains the Pliensbachian/Toarcian boundary (Šmuc and
Goričan, 2005). Unit 3, the subject of this study, is composed of
organic-rich layers that reflect the Toarcian Oceanic Anoxic Event in
the Julian Basin/Plateau (Jenkyns, 1988; Jenkyns and Clayton, 1986) as

suggested by the radiolarian ages of Goričan et al. (2003) and Šmuc
and Goričan (2005). By the early Toarcian, the Monte Mangart area
had ceased to be a topographic high and became an anoxic basin
trapping fine-grained sediment. In Unit 3, organic-rich bioturbated
marlstone and black shale with interbeddedmanganoan and siliceous
limestones (Fig. 2A) represent the lateral equivalent of the black
shales in the neighbouring Belluno Basin (Bellanca et al., 1999; Claps
et al., 1995; Jenkyns et al., 1985; Masetti and Bianchin, 1987). The
classic black shale facies characterized bymillimetre-scale lamination,
high TOC and low CaCO3 contents, never developed.

Thin-bedded recrystallized limestone at the top of Unit 3 reflects
slow sedimentation rates as evidenced by the presence of extensive
borings into a hard substrate. A stratigraphic hiatus, spanning the late
Toarcian, Aalenian and early Bajocian, separates Unit 3 from Unit 4.
Unit 4 is a deep-sea, Middle Jurassic oolitic turbidite fan supplied by
the surrounding carbonate platforms that also filled the Belluno Basin
(Bosellini et al., 1981).

3. Methods

A total of 171 samples were collected over a 29 m-thick interval of
Monte Mangart section in the Julian Alps: 162 of these were collected
throughout the succession recording the T-OAE with a sampling
interval varying from 10 to 30 cm. The mineralogy of bulk-rock
samples was determined by powder X-ray diffraction (XRD, Philips
PW14 1373) using Cu-Kα radiation filtered by a monochromator
crystal, with a scanning speed of 2° 2θ/min. Selected samples were
investigated for textural and petrographical features using a polariz-
ing lightmicroscope and the Scanning ElectronMicroscope (SEM) LEO
440with EDS systemOXFORD ISIS Link and Si (Li) PENTAFET detector.

A total of 171 bulk-rock samples from Monte Mangart were
analysed isotopically for δ13C and δ18O using a VG Isogas Prism II mass
spectrometer with an on-line VG Isocarb common acid bath pre-
paration system. Samples were cleaned with hydrogen peroxide
(H2O2) and acetone [(CH3)2CO] and dried at 60 °C for at least 30 min.
In the instrument, they were reacted with purified phosphoric acid
(H3PO4) at 90 °C. Calibration to PDB standard via NBS-19 was made
daily using the Oxford in-house (NOCZ) Carrara marble standard.
Reproducibility of replicated standards was typically better than 0.1‰
for both δ13C and δ18O.

Fig. 1. Map of the palaeotectonic elements in the Southern Alps during the Early Jurassic (modified from Winterer and Bosellini, 1981) showing the location of the Monte Mangart
section (star).
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Major-element concentrations were determined on 78 selected
bulk-rock samples from Monte Mangart by X-ray fluorescence
spectrometry (XRF) on pressed, boric-acid backed pellets, using a
RIGAKU ZSX PRIMUS spectrometer. Data reduction was achieved
using the method described by Franzini et al. (1975). Certified
reference materials were used to monitor data quality. Analytical
errors were below 3% for both Mn and Fe. Trace element and rare
earth element (REE) concentrations were determined using Induced
Coupled Plasma Mass Spectroscopy (ICP-MS). A 0.5 g sample was
digested with hydrofluoric acid, followed by a mixture of nitric and
perchloric acids; following this process, controlled heating cycles
were performed to bring samples to dryness. After dryness was
attained, samples were brought back into solution using hydrochloric
acid. Certified reference materials were used for quality control. The
ICP-MS used was a Perkin Elmer Elan 6000. Detection limits were:
0.1 ppm for Co and REE; 0.2 ppm for Cu; 0.5 ppm for Ni; 1 ppm for V.
Comparisons among the REE were facilitated by normalizing the
analytical value to an appropriate referencematerial such as the North
American, European and Russian shale composite (Haskin and Haskin,
1966; Piper, 1974) adopted in many previous studies (i.e. Murray
et al., 1991). Using the convention established by de Baar et al. (1985),
the variations of Ce can be quantified as Ce/Ce* calculated as (Cen)/(2/

3 Lan+1/3 Ndn) where the subscript ‘n’ refers to normalized values
with respect to average shale. Total carbonate contents (CaCO3%)
were measured by means of a classic gas-volumetric technique, as
describedbyHülsemann (1966). Theweight percentage of total sulphur
was determined by roasting samples at 1350 °C in a COULOMAT 702
ANALYSER. Precision is around 0.05%.

4. Results

4.1. Sedimentological and petrographical features

4.1.1. Ferromanganese nodules
Ferromanganese nodules are present in a 15–30 cm thick interval

at the base of Unit 3 (Fig. 2C). The nodules are ellipsoidal (up to 3 cm
in maximum diameter) and commonly show a black core (size
ca 2 cm) and an outer rim, yellow–brown in colour, up to 1 cm thick.
Based on SEM/EDS observations the different colours are ascribed to
different mineralogy, the black core and the brown rim being
dominated by Mn oxides and Fe oxyhydroxides, respectively
(Fig. 3A). In the nodule core, Mn oxides are associated with dispersed
calcite, Mn calcite, quartz, and clayminerals. Quartz andMn carbonate
also fill numerous cracks in the nodules (Fig. 3B).

Fig. 2. (A) Lithological column of the Monte Mangart section (Unit and Age after Goričan et al., 2003). (B) Schematic stratigraphy of the studied section: 1=Lower Jurassic carbonate
platform (Unit 1); 2=Red limestone with Fe–Mn nodules (Unit 2); 3a=Lower ToarcianMn-rich sediments (lower part of Unit 3); 3b=Lower ToarcianMn-poor sediments (middle
and upper parts of Unit 3); 4=Middle Jurassic Vajont limestone (Unit 4). (C) Field view of the hardground layer with Fe–Mn nodules.
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4.1.2. Unit 3 sediments
The Toarcian organic carbon-rich deposits of Unit 3 are ca 27 m-

thick and can be subdivided into two parts. In the lower part (0.9 to
10 m), the prevalent lithology is dark marlstone, locally bioturbated,
with interbedded fine-grained manganoan limestone corresponding
to a higher carbonate flux that may have been supplied by a pelagic
source because nearby shallow-water coeval carbonate platforms are
not known from the geological record. The microfacies of the
marlstone is a wackestone showing a fauna composed dominantly
of radiolarians (Fig. 4A), which appear as well-preserved spherical
to elliptical tests generally filled with carbonate or fan-shaped
chalcedonic quartz (Fig. 4A and B). The matrix consists of micrite
with variable silt/clay ratios and organic matter (1% mean TOC;
Sabatino et al., 2009). Abundant pyrite occurs as scattered framboids
(Fig. 4C and D) or filling undetermined spherical shells (Fig. 4E), while
dolomite appears as rare single crystals within the rock matrix. The
CaCO3 content of the lower part of Unit 3 ranges predominantly from
20 to 40% with peaks (up to 51%; Table 1) that reflect manganoan
limestone. The limestone microfacies is a radiolarian packestone
(Fig. 4A) containing common phosphate debris and pyrite.

The relative high carbonate content in lower part of Unit 3 is
coupled with a high Mn content (up to 8.8%; Table 1). Radiolarian
tests from the stratigraphic interval between 1.5 and 10 m show
evidence of replacement by Mn calcite (Fig. 4A and F), which may be
related to dissolution of biogenic opal (opal-A) and precipitation of
Mn carbonates. Mn calcite, with various Ca/Mn ratios, occurs also as
cement and grain coatings (Fig. 4C and D). DRX investigations of bulk

samples showed a decrease in the d(104) basal reflection (up to 3.01 or
3.00 Å) relative to the calcite standard. Consistent with SEM-EDAX
analysis, this shift results from appreciable substitution of Mn for Ca in
the calcite. According to Krieger (1930), this decrease in basal
reflection would indicate up to 7–15% of the rhodocrosite end-
member, which would be classified as manganocalcite.

The middle part of Unit 3 is characterized by a decrease in both
CaCO3 and Mn contents (Mn from 0.1 to 1.8%; Table 1). The CaCO3 is
commonly lower than 20% and never higher than 30% (Table 1). The
prevalent rock types are pelagic and hemipelagic marlstones and
poorly laminated black shale. Thin turbidite beds interbedded with
these fine-grained sediments are mainly composed of radiolarian
shells filled with chalcedonic quartz (Fig. 4B) and record intra-basinal
reworking of pelagic material. In the upper part of the section, the
pelagic content of the turbidite beds is replaced by shallow-water
grains from the Friuli Platform that foreshadow the overlying Vajont
Limestone (Unit 4).

4.1.3. Pyrite size distribution
The morphology of sedimentary pyrite has been used to infer

the oxygenation state of the environment of formation, whether
within the water column or within the sediment during early
diagenesis (Butler and Rickard, 2000; Taylor and Macquaker, 2000;
Wilkin and Barnes, 1997; Wilkin et al., 1996). Essentially, the
size distribution of pyrite framboids can discriminate between
syngenetic pyrite formed in the water column of euxinic basins
containing free hydrogen sulphide and early diagenetic pyrite formed
within anoxic pore waters of sediments underlying dysoxic or oxic
water columns (Wilkin et al., 1996). Framboids of syngenetic pyrite
are on average smaller and less variable in size than early diagenetic
framboids.

The framboidal pyrite population from the 1.5 to 10 m section in
the lower part of Unit 3 is characterized by relatively large diameters
(mean diameter ca 6 μm; see Fig. 4C and D) and by a wide range of
size distribution. The points representative of selected samples
fall in the oxic–dysoxic field of the discriminant diagram (Fig. 5)
proposed by Wilkin et al. (1996). In contrast, the framboidal pyrite
population of samples from the middle and upper parts of Unit 3
exhibits smaller diameters (mean diameter ca 3.6 μm) and less
variability in size (Fig. 5), which would indicate precipitation in a
euxinic water column.

4.2. Geochemistry

4.2.1. Stable isotopes
The limestone from Unit 2 and at the base of Unit 3 (Table 2: 0 to

1.3 m; Fig. 6) shows a δ13Ccarb mean value of 0.88‰, which drops
sharply to −11.15‰ at 1.4 m of the studied succession. Negative
values (around −9.0‰) are sustained across the interval from 1.4 to
2.1 m. In the Mn-rich sediments from the lower part of Unit 3 (1.4 to
10 m), δ13Ccarb values generally fluctuate from −6.60 to −1.01‰
with some spikes down to −18.37‰. In rock types from the middle
and upper parts of the section (Mn-poor sediments and top
limestone; see Fig. 6), there is an overall gradual increase in δ13Ccarb,
from −3.53‰ at 10.1 m to 1.05‰ at the top of Unit 3 (28.8 m), with
rare negative spikes. As a whole, these values are relatively negative
compared with those of other Toarcian marine pelagic carbonates,
which range from about−1 to 4.5‰ (Jenkyns and Clayton, 1986) and
can be explained by the occurrence of diagenetic cement. Consistently
low δ13Ccarb values for the samples from the lower part of Unit 3 (1.4
to 10 m) match high manganese contents (r=−0.76; n=29; Fig. 6),
suggesting that more negative δ13Ccarb values correspond to higher
Mn carbonate contents. In comparison, the most negative δ13Ccarb
values observed for similar coeval lower Toarcian Mn carbonate
deposits from Úrkút (Hungary) are around −20‰ (Polgári et al.,
1991), whereas values around −8‰ are reported for the Jurassic

Fig. 3. SEM images. (A) Fe–Mn nodule showing concentric layers with different
mineralogy: Mn oxides in the core and Fe–Mn oxyhydroxides in the outer rim. (B) Cracks
in the nodule are filled with Mn carbonate and quartz.
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Molango deposits (Mexico) (Okita and Shanks, 1992; Okita et al.,
1988).

The δ18O values of whole-rock samples mostly range from −2.74
to −0.12‰, but they become strongly negative, falling to −11.04‰,
for samples with the negative δ13Ccarb spike (Table 2, Fig. 6). Similar
values are reported for coeval carbonates from Mochras Borehole
(Gwynedd) (Jenkyns and Clayton, 1997).

4.2.2. Trace elements and bottom-water redox conditions
The trace element proxy V/(V+Ni) has been widely used in

previous studies to evaluate palaeoredox conditions. Both Ni and V

occur in highly stable tetrapyrrole structures originally derived from
chlorophyll and preserved under anaerobic conditions (Breit and
Wanty, 1991; Lewan and Maynard, 1982). Under euxinic conditions,
the availability of H2S causes the formation of soluble NiS complexes,
whereas vanadyl or trivalent vanadium is produced (Lewan, 1984). In
the sediments from Unit 3, the V/(V+Ni) ratios are generally in the
range 0.57–0.76 which, according to Hatch and Leventhal (1992),
indicates deposition under anoxic bottom-water conditions. Along the
lower part of this unit, the ratios are highly variable, indicating wide
fluctuations from dysoxic/anoxic to anoxic/euxinic conditions (Fig. 6,
Table 1).

Fig. 4.Micrographs of rock types from Unit 3 in theMonteMangart section. (A) Limestone (8.5 m) showingwell-preserved radiolarian tests filled withMn calcite. Pyrite is present as
framboids; phosphate debris (arrow) is also observable (plane-polarized light). (B) Siliceous limestone (21.5 m) with radiolarians preserved as microquartz and chalcedonic quartz
(crossed polars). SEM images. (C) and (D) show Mn-rich samples respectively from 3 and 8.5 m of Unit 3 with calcite (intermediate grey) and Mn carbonate cements (lighter grey)
together with clay (dark grey) and pyrite framboids (brightest white areas). (E) and (F) show details of the last sample (8.5 m) with spherical tests replaced by massive pyrite and a
radiolarian test where biogenic opal is replaced by chalcedonic quartz (dark grey) and Mn carbonate (lighter grey).
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Table 1
Geochemical proxies for selected samples from Unit 2 and Unit 3 in the Monte Mangart section.

Height CaCO3 S Mn Fe V/(V+Ni) (Co+Ni+Cu) ΣREE Ce/Ce* Eu/Eu*
(m) (%) (%) (%) (%) (ppm) (ppm)

Top limestones
28.8 60 0 0.30 0.58 0.48 94.0 59.0 0.9 0.9
28.6 56 0 0.25 0.51 0.55 100.0 47.5 0.9 1.0

Mn-poor sediments
28.1 4 0.05 0.10 4.59 0.54 212.9 185.1 1.2 1.0
27.4 15 0.07 0.23 3.94 0.54 220.8 268.7 1.2 1.0
27 23 0.05 0.21 3.14 0.56 175.8 249.6 1.2 1.0
26.6 27 0 0.33 3.64 0.71 116.2 258.1 1.4 1.0
26.2 20 0.04 0.24 4.11 0.72 142.3 221.3 1.4 1.0
25.8 27 0.04 0.35 3.18 0.73 89.8 213.4 1.4 1.0
25.4 23 0 0.22 2.40 0.73 90.6 166.1 1.3 1.0
25 25 0.04 0.25 3.15 0.74 113.2 214.4 1.2 1.0
24.5 27 0.61 0.29 1.73 0.69 123.3 126.5 1.4 1.0
24.2 24 1.01 0.33 1.55 0.64 127.7 120.6 1.3 1.0
23.9 26 0.04 0.32 1.76 0.67 130.5 133.9 1.4 1.0
23.6 30 0.07 0.40 1.15 0.64 84.2 158.5 0.9 0.9
23.3 16 0.08 0.30 3.94 0.70 157.1 220.6 1.2 1.0
23 23 0.05 0.35 2.98 0.71 175.9 197.6 1.2 1.0
22.7 17 0.08 0.27 3.59 0.70 150.8 219.2 1.2 1.0
22.4 15 0.07 0.30 3.49 0.69 172.1 195.3 1.2 1.0
22.1 36 0.09 0.62 1.72 0.67 109.7 176.6 1.2 1.0
21.8 13 0.66 0.25 1.70 0.68 311.8 83.1 1.2 1.0
21.5 15 0.63 0.29 1.71 0.69 219.1 92.3 1.2 1.0
21.2 32 0.04 0.43 4.05 0.65 179.0 233.6 1.2 1.0
20.9 35 0.1 0.64 1.36 0.65 88.0 149.9 1.3 1.0
20.6 21 1.18 0.21 1.55 0.67 136.6 136.4 1.7 1.0
20.3 26 0.04 1.83 1.95 0.62 104.2 158.5 1.5 1.0
20 31 0.96 0.92 2.09 0.60 94.9 146.5 1.4 1.0
19.7 25 1.08 0.88 1.77 0.59 126.0 124.8 1.4 1.0
19.4 23 1.59 0.82 2.30 0.59 185.4 133.2 1.4 0.9
19.1 0 0.18 0.74 4.79 0.67 190.4 240.9 1.3 1.0
18.8 15 1.35 0.30 2.92 0.67 150.7 179.7 1.2 1.0
18.5 4 0.68 0.26 3.42 0.65 154.3 180.4 0.9 1.0
18.2 1 1.01 0.16 3.96 0.68 156.7 183.1 1.1 1.0
17.9 17 1.72 0.32 3.01 0.66 138.6 197.6 1.2 1.0
17.6 7 1.31 0.21 4.05 0.68 133.8 206.8 1.1 1.0
17.3 18 0.96 0.33 2.49 0.66 140.5 176.4 1.1 1.0
17 22 1 0.46 1.94 0.68 163.9 166.4 1.3 1.0
16.7 15 1.6 0.24 2.92 0.65 135.9 165.7 1.1 1.0
16.4 27 1.33 0.73 2.65 0.63 160.0 130.2 1.3 1.0
16.1 21 1.39 0.95 1.99 0.60 200.4 119.6 1.4 0.9
15.8 21 2.34 0.40 3.71 0.65 126.7 166.4 1.3 1.0
15.2 25 1.95 1.25 2.84 0.61 135.2 183.8 1.4 1.0
14.6 24 1.35 0.38 1.64 0.66 147.8 121.0 1.2 1.0
14.1 17 1.79 0.33 2.96 0.68 134.4 166.4 1.1 1.0
13.7 25 1.27 0.57 2.10 0.64 126.3 144.0 1.2 1.0
13.3 22 1.5 0.41 2.26 0.64 112.6 148.2 1.2 1.0
12.9 12 1.15 0.24 1.55 0.68 212.2 96.1 1.3 1.0
12.5 18 1.17 0.36 1.63 0.68 164.2 129.4 1.4 1.0
12.1 13 1.03 0.26 1.67 0.68 178.7 121.6 1.3 1.0
11.7 23 0.81 0.43 1.02 0.68 121.0 120.1 1.3 1.0
11.3 20 1.23 0.34 1.73 0.69 127.2 144.9 1.3 1.0
10.9 19 1.09 0.46 1.67 0.69 132.3 125.5 1.4 1.0
10.5 19 1.53 0.60 2.34 0.69 127.1 153.0 1.3 1.0
10.2 23 1.24 0.71 2.18 0.58 101.6 162.8 1.5 1.0

Mn-rich sediments
9.8 22 0.85 5.51 1.55 0.72 116.1 142.7 1.2 1.0
9.5 25 0.75 4.46 1.87 0.68 111.4 167.2 1.8 1.0
9.1 35 0.17 8.80 4.03 0.68 142.6 342.3 1.9 1.0
8.5 42 3.38 5.45 4.25 0.67 31.6 243.8 2.0 0.9
8.1 18 1.67 0.76 2.20 0.68 111.0 322.2 2.0 1.0
7.7 39 1.34 6.35 2.61 0.70 141.0 198.4 1.9 0.9
7.3 39 2.49 6.14 3.52 0.73 85.8 375.9 2.0 1.0
6.9 34 2.88 5.34 4.48 0.70 107.5 366.7 2.0 0.9
6.5 26 1.96 1.07 3.02 0.67 131.8 408.8 2.0 1.0
6.2 15 0.75 0.74 1.56 0.67 127.3 187.2 1.4 1.0
5.8 24 0.39 1.48 2.54 0.63 138.7 93.7 1.2 1.0
5.6 15 0.45 0.51 1.00 0.61 96.0 167.2 1.1 0.9
5.4 25 0.9 1.19 1.57 0.57 118.4 94.0 1.1 0.9
5 23 0.36 1.02 0.83 0.57 268.9 57.6 1.1 1.0
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The total sulphur contents range from 0.16 to 3.38% for Mn-rich
layers and from0.04 to 2.34% forMn-poor layers (Table 1). Consistently,
microscopic observations revealed that the main sulphur-containing
mineral is pyrite that occurs as framboidal aggregates (Fig. 4C and D)
showing a decrease in the average diameter (from ca 6 to ca 3.5 μm)
between the lower (1.4 to 10 m) and the middle-upper parts (10.1 to
28.1 m) of Unit 3 (Fig. 5).

In the Fe–S–C diagram (Arthur and Sageman, 1994; Dean and
Arthur, 1989), data points cluster along an area extending from the
Fe corner to the Corg–pyrite line (Fig. 7). Usually in euxinic sediments,
the limiting factor in pyrite formation is not Corg content but the
quantity of detrital reactive Fe present (Arthur and Sageman, 1994;
Raiswell and Berner, 1985). In the sediments from Unit 3 of the
Mangart section, sulphur fixation appears to have been controlled
and limited by the availability of labile organic matter that generally
was not sufficiently abundant to generate stable anoxic bottom-water
conditions.

4.2.3. REE distribution
Several studies have indicated that the REE patterns in sedimen-

tary systems are influenced by both depositional environment and

diagenetic processes (Milodowski and Zalasiewicz, 1991; Murray
et al., 1990, 1992). Limestones at the base and at the top of the Monte
Mangart section show total REE contents ranging from 47 to 59 ppm
(Table 1). Fe–Mn nodules at the base of Unit 3 show a mean REE
content of 58 ppm (Table 1). The sediments from Unit 3 contain up to
409 ppm total REE (Table 1).

Cerium has been considered as a sensitive tracer for palaeoceanic
redox conditions (Bellanca et al., 1997; German and Elderfield, 1990;
Liu et al., 1988; Schijf et al., 1995; Wright et al., 1987), although this
idea is controversial (de Baar et al., 1988; MacLeod and Irving, 1996).
The Ce/Ce* values throughout the studied section show wide
fluctuations (Fig. 6). The limestones at the base and the top of the
section show moderate to weak negative Ce anomaly (mean values
0.6 and 0.9, respectively), which may indicate oxygenated bottom
waters during deposition. Fe–Mn nodules show Ce/Ce* values close to
1 (Table 1). In the upper part of Unit 3 (above 10 m), the Ce/Ce* ratio
is on average slightly higher than 1, which represents a typical value
for average shale (Murray et al., 1991). Stratigraphically through the
lower part (1.4 to 10 m), Ce/Ce* values exhibit wider fluctuations
ranging from 1 to 2. Interestingly, the Ce/Ce* curve shows a striking
similarity with the Mn profile (see Fig. 6), which suggests that the Ce
anomaly is closely linked to conditions controlling the behaviour of
manganese.

5. Discussion

5.1. Mn fluctuations, sea-level variations and anoxia

Some studies relate sedimentary Mn fluctuations to variations in
sea-level (Accarie et al., 1989, 1993; Pratt et al., 1991; Renard and
Letolle, 1983). Fluctuations in Mn content have, for example, been
related to second-order eustatic sea-level variations (Corbin, 1994)
and found to correspond with the transgressive–regressive cycles of
the Jurassic Period, as defined by Hardenbol et al. (1998) and de
Graciansky et al. (1998).

The early Toarcian OAE is characterized by a significant rise of
eustatic sea-level that produced a marine transgression (Hallam,
1981, 1988; Haq et al., 1987). In the Monte Mangart section, higher
concentrations of Mn appear to be superimposed on the general trend
related to a hypothetical eustatic control (Fig. 8). In the stratigraphic
interval from 1.4 to 15 m, the abundant intercalations of limestone
rich in radiolarian tests could represent the transgression maximum
(Šmuc and Goričan, 2005). At the same stratigraphic interval, a peak

Fig. 5. Plot of the mean versus the standard deviation of pyrite framboid size
distributions in selected samples. The proposed boundary (dashed line) is from Wilkin
et al. (1996).

Table 1 (continued)

Height CaCO3 S Mn Fe V/(V+Ni) (Co+Ni+Cu) ΣREE Ce/Ce* Eu/Eu*
(m) (%) (%) (%) (%) (ppm) (ppm)

Mn-rich sediments
4.6 24 0.84 1.62 2.31 0.59 126.3 144.3 1.4 0.9
4.2 28 2.03 2.51 3.69 0.58 161.9 191.4 1.4 0.9
3.8 22 1.34 5.96 3.21 0.65 127.3 240.0 1.5 0.9
3.4 23 0.38 5.91 2.36 0.63 116.6 208.8 1.4 0.9
3 24 0.25 5.79 1.81 0.62 112.4 202.3 1.4 0.9
2.7 21 0.26 5.59 1.93 0.65 97.6 178.9 1.5 0.9
2.3 51 0.16 6.78 1.18 0.65 49.0 130.8 1.4 0.9

Bottom limestones
1.2 78 0.07 1.92 0.56 0.52 48.2 57.7 0.8 0.9
0.9 63 0.04 0.87 0.80 0.71 59.8 58.4 0.7 0.9

Fe–Mn nodules
0.8 20 0 13.20 16.10 0.50 79.3 65.7 1.1 0.9
0.7 18 0 12.41 16.84 0.51 76.1 50.7 1.0 0.8

Bottom limestones
0.6 49 0 0.57 1.24 0.64 63.1 55.6 0.6 1.0
0.2 46 0 0.40 0.59 0.63 217.1 53.7 0.6 1.0

Unit 3: upper part from 28.8 to 20.1 m; middle part from 20 to 10.1 m; lower part from 10 to 0.9 m. Unit 2: from 0.8 to 0.2 m.
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in abundance of the radiolarian family Pantanelliidae was recorded,
indicating the maximum development of eutrophic conditions
(Goričan et al., 2003). Rise of eustatic sea level and enhanced global
oceanicMn flux could have characterized the early Toarcian as a result
of hydrothermal activity during rapid seafloor spreading (Corbin et al.,
2000). However, the high Mn contents measured in the lower part of
Monte Mangart section might not be justified solely by an increase in
hydrothermal inputs during the most active expansion phase of mid-
oceanic ridges.

HigherMn concentrations in theMonteMangart section are coeval
with negative δ13C shifts (Fig. 6). This relationship suggests that an

additional source of Mnmight be related to the events responsible for
the negative isotopic excursions characterizing the T-OAE (Hermoso
et al., 2009a; Jenkyns, 2003; Jenkyns and Clayton, 1986, 1997; Jenkyns
et al., 2002; Sabatino et al., 2009).

Although the T-OAE is characterized by an overarching positive
carbon-isotope excursion (Jenkyns, 1988; Jenkyns and Clayton, 1997),
as would be expected for an interval of globally significant organic
carbon burial, lower Toarcian black shales are everywhere typically
associated with a negative δ13 C excursion in bulk marine organic
matter, bulk and skeletal carbonate, and also in fossil wood (Al-
Suwaidi et al., 2010; Hermoso et al., 2009b; Hesselbo et al., 2000,

Table 2
Carbonate stable isotopes for samples from Unit 2 and Unit 3 in the Monte Mangart section.

Height δ13Ccarb δ18Οcarb Height δ13Ccarb δ18Οcarb Height δ13Ccarb δ18Οcarb

(m) (‰) (‰) (m) (‰) (‰) (m) (‰) (‰)

28.8 1.05 −1.56 13.5 −2.27 −1.41 6.3 −2.72 −1.51
28.6 0.96 −1.39 13.3 −1.37 −1.37 6.2 −2.49 −1.61
28.4 1.20 −0.73 13.1 −0.12 −0.85 6.1 −2.48 −1.49
28.1 0.10 −1.43 12.9 −2.02 −1.83 6.0 −1.33 −1.57
27.8 −0.20 −1.09 12.7 −1.58 −1.50 5.9 −1.78 −1.56
27.6 −0.37 −0.90 12.5 −2.06 −1.88 5.8 −2.22 −1.44
27.4 −0.07 −0.96 12.3 −2.02 −1.04 5.7 −3.33 −1.74
27.2 −0.23 −1.35 12.1 −1.90 −1.85 5.6 −4.10 −1.57
27.0 0.04 −1.32 11.9 −2.33 −1.76 5.5 −3.29 −2.38
26.8 −0.02 −1.17 11.7 −2.34 −2.08 5.4 −2.97 −1.42
26.6 −0.13 −0.89 11.5 −3.06 −1.85 5.3 −3.37 −1.70
26.4 −0.11 −1.16 11.3 −3.36 −1.51 5.1 −3.17 −1.34
26.2 −0.30 −0.65 11.1 −3.60 −1.67 5.0 −2.55 −2.04
26.0 −0.39 −1.27 10.9 −2.29 −1.53 4.9 −2.31 −1.48
25.8 −0.12 −1.23 10.7 −3.57 −1.49 4.8 −2.11 −1.84
25.6 −0.15 −1.74 10.6 −2.43 −1.78 4.7 −3.00 −1.53
25.4 −0.88 −1.33 10.5 −2.99 −1.49 4.6 −2.10 −1.22
25.2 −0.37 −1.31 10.4 −2.82 −1.52 4.5 −2.47 −1.65
25.0 −0.79 −1.37 10.3 −2.76 −1.61 4.4 −2.85 −1.91
24.8 −1.29 −1.52 10.2 −2.41 −1.70 4.3 −2.96 −1.73
24.5 −1.43 −1.61 10.1 −3.53 −1.66 4.2 −2.83 −1.50
24.2 −1.68 −1.55 10.0 −6.60 −2.79 4.1 −2.55 −1.00
23.9 −1.65 −1.88 9.9 −1.49 −1.35 4.0 −1.82 −1.77
23.6 −2.12 −1.79 9.8 −6.33 −1.59 3.9 −3.53 −1.70
23.3 −3.81 −1.40 9.7 −6.47 −1.76 3.8 −5.53 −1.33
23.0 −5.67 −3.18 9.6 −5.53 −0.96 3.7 −11.36 −0.35
22.7 −1.52 −1.60 9.5 −4.47 −1.34 3.6 −2.82 −2.53
22.4 −2.76 −2.63 9.4 −16.89 −9.69 3.5 −2.26 −2.41
22.1 −0.63 −1.26 9.3 −9.73 −3.65 3.4 −5.36 −1.20
21.8 −1.71 −1.62 9.2 −18.37 −11.04 3.3 −5.97 −1.33
21.5 −1.64 −1.60 9.1 −4.47 −2.15 3.2 −5.11 −1.09
21.2 −0.65 −1.17 9.0 −4.89 −1.10 3.1 −5.27 −1.24
20.9 −0.84 −0.92 8.9 −1.82 −2.62 3.0 −5.42 −1.23
20.6 −1.12 −1.58 8.8 −8.92 −1.87 2.9 −5.37 −1.26
20.3 −2.12 −1.06 8.7 −2.37 −4.42 2.8 −4.89 −1.10
20.0 −2.14 −1.15 8.5 −4.85 −1.75 2.7 −3.84 −1.16
19.7 −2.70 −1.26 8.4 −4.47 −1.74 2.6 −4.12 −0.91
19.4 −2.10 −1.64 8.3 −3.98 −1.82 2.5 −4.65 −1.09
19.1 −8.28 −4.81 8.2 −2.34 −1.45 2.4 −3.26 −0.67
18.8 −2.30 −1.54 8.1 −1.66 −1.32 2.3 −2.41 −0.12
18.2 −4.84 −0.61 8.0 −1.83 −1.95 2.2 −3.35 −0.28
17.9 −2.55 −1.11 7.9 −2.30 −1.70 2.1 −9.19 −0.76
17.6 −1.93 −1.76 7.8 −2.01 −1.81 2.0 −8.41 −0.41
17.3 −1.55 −1.35 7.7 −4.67 −1.96 1.9 −8.66 −0.31
17.0 −3.61 −1.55 7.6 −4.49 −2.06 1.8 −8.89 −1.12
16.7 −1.70 −1.06 7.5 −2.42 −1.73 1.7 −6.89 −5.26
16.4 −2.20 −1.60 7.4 −4.27 −1.85 1.6 −6.78 −3.89
16.1 −2.97 −1.46 7.3 −4.67 −1.66 1.5 −11.08 −7.06
15.8 −1.89 −1.18 7.2 −4.22 −1.73 1.4 −11.15 −5.93
15.5 −3.23 −2.75 7.1 −4.35 −1.65 1.3 −1.06 −0.72
15.2 −2.22 −1.46 7.0 −4.11 −1.70 1.2 0.42 −0.66
14.9 −3.24 −2.14 6.9 −3.87 −1.91 1.1 0.58 −0.82
14.6 −3.21 −2.60 6.8 −2.81 −3.56 0.9 0.65 −1.06
14.3 −2.21 −1.83 6.7 −14.29 −1.60 0.8 0.87 −1.58
14.1 −2.52 −1.66 6.6 −1.02 −2.26 0.6 1.03 −1.50
13.9 −1.80 −1.12 6.5 −2.17 −1.79 0.4 1.17 −1.43
13.7 −2.24 −1.68 6.4 2.39 −1.52 0.2 1.23 −1.57

Unit 3: upper part from 28.8 to 20.1 m; middle part from 20 to 10.1 m; lower part from 10 to 0.9 m. Unit 2: from 0.8 to 0.2 m.
Top limestone: from 28.8 to 28.2 m. Mn-poor sediment: from 28.1 to 10.1 m. Mn-rich sediment: from 10 to 1.4 m. Bottom limestone: from 1.3 to 0.2 m.
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2007; Jenkyns, 2010; Jenkyns et al., 2001; Kemp et al., 2005; Schouten
et al., 2000; Suan et al., 2008; Woodfine et al., 2008). These records
resulted from the rapid release to the ocean and atmosphere of
isotopically light carbon, possibly sourced from biogenic methane
(δ13 C=ca −60‰) by dissociation of methane hydrates in continental
margin sediments during periods of relatively warm climate and/or
tectonic instability (Beerling et al., 2002; Hesselbo et al., 2000; Hesselbo
et al., 2007; Jenkyns, 2003; Jenkyns et al., 2002; Kemp et al., 2005; Röhl
et al., 2001). Methane oxidation involves increased consumption of
oxygen and would have been one of the factors promoting anoxia.

These considerations argue for conditions favourable to the
development, during the early Toarcian, of an oxygen minimum

layer along the Tethyan continental margin (Jenkyns et al., 1991)
where fluctuations of the redox front into the water column or within
the sediment could have induced Mn oxide reduction. Dissolving Mn
oxides are a significant source for Mn2+ that can be incorporated into
the lattice of early diagenetic carbonates. The development of an
oxygen minimum zone across the Tethyan continental margin,
variably enriched in dissolved Mn2+, could explain the origin of
central European Mn-rich deposits with a strong difference in the
degree of enrichment between the Hungarian (high enrichment) and
Italian (moderate enrichment) deposits (Jenkyns et al., 1991). In
Greece (Ionian Zone) and in the Umbria–Marche Basin, black shale
records of the T-OAE are present, but Mn mineralization is absent.

5.2. Origin of Fe–Mn nodules

The Julian Basin was part of the southern continental margin of the
Tethys Ocean during the Mesozoic. The Early Jurassic rifting produced
a complex pattern of structural highs and lows (seamounts and
basins) developing distinct palaeoenvironments (Bernoulli and
Jenkyns, 1974, 2009). On submarine topographic highs, long periods
of exposure of the sea floor to oxygenated seawater favoured metal
precipitation in form of Mn and Fe (hydr) oxides on any available
substrate, potentially promoting conditions conducive to formation of
a hardground with Fe–Mn nodules (Jenkyns, 1970; Di Stefano and
Mindszenty, 2000; Di Stefano et al., 2002), as seen at the base of the
Monte Mangart section (Fig. 2C).

Fe–Mn nodules from Monte Mangart are defined by low contents
of Co+Ni+Cu (mean value 77.7 ppm, Table 1) that resemble the
composition of hydrothermal manganese deposits formed by low-
temperature hydrothermal fluids (Glasby et al., 1997). The dominant
controls on element concentrations in the nodules include element
concentrations in seawater, colloid surface charge, degree of oxida-
tion, types of complexing agents, physical properties, and growth
rates (e.g. Li, 1981). During the growth of the Fe–Mn oxide, its

Fig. 6. Carbon- and oxygen-isotope stratigraphy with Mn, Ce/Ce* and V/(V+Ni) depth profiles from the Monte Mangart section. Key for lithology as in Fig. 2.

Fig. 7. Distribution of Monte Mangart data in the Fe–S–C ternary diagram. Total Organic
Carbon (TOC) data from Sabatino et al. (2009). The normal marine line (S/C=0.4) and
pyrite line are shown. Symbols as in Fig. 6.
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exposed surface is progressively buried and this process controls the
Co, Ni, and Cu enrichments (Manceau et al., 1997; Takematsu et al.,
1989). Although it is well known that trivalent Co is strictly associated
with Mn oxides (Takahashi et al., 2007) and its abundance decreases
on average from hydrogenetic to diagenetic to hydrothermal oxide
deposits (Usui et al., 1997), it has been suggested that its enrichment
is controlled by the growth rate of the ferromanganese oxide, a fast
growth resulting in limited uptake of Co (and Ni and Cu) from
seawater (Hein et al., 1997; Takahashi et al., 2007; Usui et al., 1997).
On this basis, the low metal concentration of Fe–Mn nodules from
Monte Mangart could indicate a hydrothermal origin in part, but
alternatively a rapid growth of hydrogenous or diagenetic nodules
cannot be ruled out. SEM/EDS analyses indicate that the nodules have
a black core dominated by Mn oxides, which is consistent with a
hydrothermal input, given that such precipitates are general markedly
enriched in Mn and depleted in Fe, as compared with hydrogenetic or
diagenetic deposits (Usui et al., 1997).

The low REE contents (mean value ΣREE=58 ppm, Table 1) of Fe–
Mn nodules from theMangart section are similar to those reported for
micronodules in the Trans-Atlantic Geotraverse hydrothermal fields
(Dekov et al., 2003; Rona et al., 1986). However, the REE distribution
patterns of the nodules do not indicate unequivocally a hydrothermal
origin. Common features of REE distribution in hydrothermal
manganese deposits from mid-ocean ridge are the negative Ce
anomaly and a large positive Eu anomaly (Danielson et al., 1992;
Michard and Albarède, 1986). The reasons for these characteristics are
that (i) fluids of submarine hydrothermal systems are enriched in Eu
and depleted in Ce (Douville et al., 1999;Michard and Albarède, 1986)
and (ii) hydrothermal Fe–Mn oxides inherit the negative Ce anomaly
of seawater, the dominant fluid in hydrothermal Mn mineralization.
Additional Ce adsorption on the surface of Fe–Mn oxides is kinetically
hindered in fast-growing hydrothermal ferromanganese oxides (e.g.
Takahashi et al., 2007). Conversely, the studied nodules do not display
Ce anomalies (Ce/Ce* ca 1, Table 1) and have a weak negative Eu
anomaly (Eu/Eu*=0.8). The lack of a pronounced positive Eu
anomaly may be related to a relatively remote hydrothermal source
and/or high dilution by seawater (Lottermoser, 1992; Michard, 1989).
Also, Usui et al. (1997) ascribed negative Eu anomalies of Central
Pacific Mn oxide deposits to formation from low-temperature
hydrothermal fluids. According to the model of Dubinin (2004), Fe–
Mnhydrothermal nodules in hydrothermal–sedimentary deposits can

change their REE composition through diagenesis and/or in relation to
increased hydrogenetic particulate flux, mainly Fe–Mn oxyhydroxide
particulates, which are known to accumulate Ce in oxidizing
environments. This model could explain the lack of a distinct negative
Ce anomaly in ferromanganese nodules from the base of Unit 3 in the
Monte Mangart section.

Although trace-metal and REE distribution patterns in the nodules
do not indicate unequivocally their origin, it is plausible that the
formation of the studied nodules was triggered by release of Mn from
hydrothermal vents into a region of relatively elevated submarine
topography (seamount) where oxidizing conditions prevailed. Evi-
dence of a hydrothermal source for Mn is largely indirect, although
Toarcian volcanicity is known from parts of the Tethyan region and
Germann (1972) recorded a tuff interbedded with manganese
deposits in the northern Calcareous Alps of Austro-Germany. The
nodules show a black core dominated by Mn oxides and a Fe-rich
brown shell. This variation in the nodule chemistry/mineralogy could
be an expression of changes in bottom-water redox conditions in the
Julian Basin. During the initial stage of high bottom-water oxygen-
ation, large amounts of Mn oxides precipitated from thewater column
to the sediment. Then, continous oxide accumulation after the
particles have settled on the seafloor and Ce uptake by oxidative
scavenging took place leading to Ce/Ce* ratios close to 1. In the initial
stage of the early Toarcian Oceanic Anoxic Event, variation of
oxidation state resulted into moderately reducing bottom-water
conditions that favoured precipitation of iron oxide phases in the
nodules, Mn being much more soluble in oxygen-deficient settings.

5.3. Depositional environment of Mn-rich deposits from Monte Mangart

Above the hardground, Unit 3 displays a transition from Mn-rich
(up to 8.80%) sediments, at the base (below 10 m), to Mn-poor (less
than 1.83%) sediments through the middle and upper parts of the unit
(Table 1 and Fig. 6). The drastic decrease in Mn concentration is
consistent with a decrease in size of pyrite framboids (mean diameter
from ca 6 to ca 3.6 μm, Fig. 5) which, in accordance with Wilkin et al.
(1996), indicates a change from an oxic–dysoxic to an anoxic–euxinic
water column.

With respect to the lower part of Monte Mangart section, wide
fluctuations in the V/(V+Ni) record (Fig. 6) indicate variations in the
dissolved oxygen contents in the bottom waters. Higher V/(V+Ni)

Fig. 8. Transgressive (T)–regressive (R) cycles for the Early Jurassic (e=Early, m=Middle, l=Late) (simplified from de Graciansky et al., 1998) compared with the Mn depth profile
for the Monte Mangart section and the global eustatic sea-level curves: (A) Hallam (1988), (B) Haq et al. (1987).
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ratios, roughly coincident with higher Mn concentrations, support the
idea that Mn enrichments can be related to manganese accumulation
driven by fluctuating redox conditions at the sediment–water
interface (Heiser et al., 2001; Huckriede andMeischner, 1996; Jenkyns
et al., 1991) during the early Toarcian. Higher Mn percentages and
higher V/(V+Ni) ratios are also coincident with strongly positive
values of the Ce anomaly (Ce/Ce* up to 1.89, Fig. 6). The positive Ce
anomaly appears related to Mn carbonate precipitation during early
diagenesis from anoxic pore waters. Ce is bound to Mn (Fig. 6) due to
processes of combined oxidation expressed by the reaction:

Fe–O–Mn–ðOHÞ3 þ Ce
3þ
ðsÞ þ O2 þ H2O ¼ Fe–O–Mn–ðOHÞ2–O–Ce–ðOHÞ3

on which basis if Mn is reduced, Ce is also reduced to the trivalent
state. In anoxic environments, Ce4+ sorbed onto Mn oxyhydroxides is
reduced to Ce3+, mobilized and then released into the water column
or to pore water where precipitation of authigenic phases (such as Mn
carbonate) may occur (Dolenec et al., 2001; German and Elderfield,
1990, Holser, 1997; Rantitsch et al., 2003).

Mn carbonate precipitation in the lower part of Unit 3 may have
taken place as a product of bacterially mediated degradation of
organic matter. At the sediment/water interface, and in the top few
decimetres of sediment, redox reactions related to the decay of
organic matter play an important role in early diagenetic processes
(Froelich et al., 1979). As dissolved oxygen becomes depleted, organic
matter decomposes by using O2 from secondary oxidant sources (such
as MnO2), thus releasing Mn2+ in interstitial solutions (suboxic
diagenesis) according to the reactions:

SO
2−
4 þ 2CH2O ¼ HS

− þ 2HCO
−
3 þ H

þ

2MnO2ðsÞ þ CH2O þ 3H
þ ¼ 2Mn

2þ þ HCO
−
3 þ 2H2O

The rate of these reactions may depend on the supply of organic
matter. Manganese sequestration within the sediment can occur by co-
precipitation within the calcite lattice and this process depends on the
pH, Eh, O2,Mn and (HCO3)− contents of porewaters (Frakes and Bolton,
1984; Stumm and Morgan, 1981). Although opaline tests may dissolve
in interstitial waters undersaturated with respect SiO2, calcitized
radiolarian shells in Mn-rich samples from the Mangart section (see
Fig. 4A and F) may indicate high pore water alkalinity, under which
the tests could also have been dissolved. High alkalinity resulting
from intense bacterial sulphate reduction (Berner, 1970), and from
manganese reduction coupled with oxidation of organic matter, could
have favoured early diagenetic Mn carbonate precipitation.

An involvement of organic matter in the mineralization process is
supported by the coincidence of high Mn contents with negative
δ13Ccarb values (down to −18.37‰) (Fig. 6) and low hydrogen index
(80 mg HC/g TOC, Sabatino et al., 2009) that indicate highly degraded
planktonic organic matter. The negative δ13C values measured in the
Mn-rich sediments of the lower part of Unit 3 may be the result of
mixing of two carbon reservoirs: i) isotopically light, organic matter-
derived CO2 with a composition of about −30‰, as measured by
Sabatino et al. (2009), and ii) HCO3

− with δ13 C close to 0‰ derived
from seawater, as assumed from δ13C carbonate values (near−2‰) of
unmineralized samples from the middle and upper part of Unit 3.
From a simple mass balance, it can be estimated that up to 60% of the
carbon involved in Mn carbonate precipitation originated from CO2

produced during degradation of organic matter. Also the negative
δ18Ocarb values of the Mn-rich layers (Fig. 6) may reflect precipitation
from pore water altered by diagenetic reactions, which is con-
sistent with the supposed origin of the carbonate cements from
decomposition of organic matter in an oxygen-depleted environment
(Krajewski et al., 2001). According to Sass et al. (1991), carbonates
precipitated in the sulphate reduction zone are enriched with 16O and
it is possible that organic matter itself can be a source of 16O.

The mineralization process of precipitation of Mn carbonate,
observed in the lower part of Unit 3, was manifestly interrupted
during periods of more oxygenated conditions in the water column, as
highlighted by low values of the V/(V+Ni) ratio and Ce/Ce* in
coincidence with low concentrations of Mn. The Mn-rich deposits of
Monte Mangart could be an analogue of the recent sapropelic
sediments of the central Baltic Sea, where Ca-rich rhodochrosite
formation has been related to the periodic renewal of deep water
(Neumann et al., 2002).

6. Conclusion

The origin of the Mn enrichment in the Monte Mangart section is
related to the early Toarcian OAE that occurred during a marine
transgression. The high Mn concentrations are not consistent solely
with a hydrothermal source, even though the early Toarcian was a
time of active expansion of mid-oceanic ridges. Rather, an additional
source of sedimentary or early diagenetic Mn is required.

On the basis of petrographic and geochemical observations,
different stages can be distinguished in the deposition of the studied
section. During the first stage, the deposition of Fe–Mn nodules at the
base of the Monte Mangart section was triggered by release of Mn
from remote hydrothermal vents into a region of relatively elevated
submarine topography. In the second stage, sediment deposition
occurred under conditions of increasing productivity and flux of
organic matter. During the early Toarcian, the basin was invaded by
oxygen-depletedwaters, and the development of a fluctuating oxygen
minimumzone led to diffusion ofMn2+ from the dissolution of Fe–Mn
oxyhydroxides. The Mn enrichment in the lower part of Unit 3 may
have been related to sulphate reduction that resulted in increased pH
of interstitial waters in sediments just below the sea floor: high
alkalinity in combination with high Mn2+ concentrations induced
precipitation of authigenic Mn carbonate. During the third stage,
anoxic/euxinic conditions became dominant with the deposition of
pelagic marlstones and black shales containing small-diameter pyrite
framboids and low concentrations of Mn, in the middle and upper
parts of Unit 3.

Acknowledgements

The authors would like to thank Dr. N. Charnley (Earth Sciences
Department) for isotope analyses performed during a visit of NS to
Oxford University. Anonymous reviewers critically read the manu-
script and made helpful suggestions. Acknowledgement is due to the
International Association of Sedimentologists (IAS) for awarding a
research grant to NS. This work is based on part of NS's PhD research
that was supported by the European Social Fund. Additional financial
support is from CoRI and MIUR grants to RN.

References

Accarie, H., Renard, M., Deconinck, J.F., Beaudoin, B., Fleury, J.J., 1989. Géochimie des
carbonates (Mn, Sr) et minéralogie des argiles de calcaires pélagiques sénoniens.
Relations avec les variations eustatiques (massif de la Maiella, Abruzzes, Italie). C.R.
Acad. Sci., Paris 309, 1679–1685.

Accarie, H., Renard, M., Jorgensen, N.O., 1993. Le manganèse dans les carbonates
pélagiques: un outil d'intérêt stratigraphique et paléogéographique (le Sénonien
d'Italie, de Tunisie et du Danemark). C.R. Acad. Sci., Paris 316, 1–8.

Al-Suwaidi, A.H., Angelozzi, G.N., Baudin, F., Damborenea, S.E., Hesselbo, S.P., Jenkyns,
H.C., Mañcenido, M.O., Riccardi, A.C., 2010. First record of the Early Toarcian
Oceanic Anoxic Event from the Southern Hemisphere, Neuquén Basin, Argentina. J.
Geol. Soc. London 167, 633–636.

Arthur, M.A., Sageman, B.B., 1994. Marine black shales: a review of depositional
mechanisms and significance of ancient deposits. Ann. Rev. Earth Planet. Sci. 22,
499–551.

Beerling, D.J., Lomas, M.R., Gröcke, D.R., 2002. On the nature of methane gas–hydrate
dissociation during the Toarcian and Aptian oceanic anoxic event. Am. J. Sci. 302,
28–49.

Bellanca, A., Masetti, D., Neri, R., 1997. Rare earth elements in limestone/marlstone
couplets from the Albian–Cenomanian Cismon section (Venetian region, northern
Italy): assessing REE sensitivity to environmental changes. Chem. Geol. 141, 141–152.

107N. Sabatino et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 299 (2011) 97–109



Author's personal copy

Bellanca, A., Masetti, D., Neri, R., Venezia, F., 1999. Geochemical and sedimentological
evidence of productivity cycles recorded in Toarcian black shales from the Belluno
Basin, Southern Alps, Northern Italy. J. Sed. Res. 69, 466–476.

Berner, R.A., 1970. Sedimentary pyrite formation. Am. J. Sci. 268, 1–23.
Bernoulli, D., Jenkyns, H.C., 1974. Alpine, Mediterranean and Central Atlantic Mesozoic

facies in relation to the early evolution of the Tethys. In: Dott, R.H., Shaver, R.H.
(Eds.), Modern and Ancient Geosynclinal Sedimentation, a Symposium: Spec. Publ.
Soc. Econ. Paleont. Miner., 19, pp. 129–160.

Bernoulli, D., Jenkyns, H.C., 2009. Ancient oceans and continental margins of the
Alpine–Mediterranean Tethys: deciphering clues fromMesozoic pelagic sediments
and ophiolites. Sedimentology 56, 149–190.

Bosellini, A., Masetti, D., Sarti, M., 1981. A Jurassic ‘Tongue of the Ocean’ infilled with
oolitic sands: the Belluno Trough, Venetian Alps, Italy. Mar. Geol. 44, 59–95.

Breit, G.N., Wanty, R.B., 1991. Vanadium accumulation in carbonaceous rocks: a
review of geochemical controls during deposition and diagenesis. Chem. Geol. 91,
83–97.

Buser, S., 1996. Geology of western Slovenia and its paleogeographic evolution. In:
Drobne, K., Goričan, Š., Kotnik, B. (Eds.), The role of Impact Processes in the
Geological and Biological Evolution of Planet Earth, pp. 111–123. International
Workshop, ZRC SAZU, Ljubljana.

Butler, I.B., Rickard, D., 2000. Framboidal pyrite formation via the oxidation of iron (II)
monosulfide by hydrogen sulphide. Geochim. Cosmochim. Acta 64, 2665–2672.

Claps, M., Erba, E., Masetti, D., Melchiorri, F., 1995. Milankovitch-type cycles recorded in
Toarcian black shales from the Belluno Trough (Southern Alps Italy). Mem. Sci.
Geol. Padova 47, 179–188.

Corbin, J.C., 1994. Evolution géochimique du Jurassique du Sud-Est de la France:
influence des variations du niveaumarin et de la tectonique: Mém. Sc. Terre Univ. P.
et M. Curie, Paris, 94–12, p. 177.

Corbin, J.C., Person, A., Iatzoura, A., Ferré, B., Renard, M., 2000. Manganese in pelagic
carbonates: indication of major Tectonic events during the geodynamic evolution
of a passive continental margin (the Jurassic European margin of the Tethys–
Ligurian Sea). Palaeogeogr. Palaeoclimatol. Palaeoecol. 156, 123–138.

Cousin, M., 1981. Les rapports Alpes–Dinarides: les confines de l'Italie et de la
Yougoslavie. Soc. Géol. du Nord Publ. 5, 1042.

Cronan, D.S., Galácz, A., Mindszenty, A., Moorby, A., Polgári, M., 1991. Tethyan
ferromanganese oxides deposits from Jurassic rocks in Hungary. J. Geol. Soc.
London 148, 655–668.

Danielson, A., Möller, P., Dulski, P., 1992. The europium anomalies in banded iron
formations and the thermal history of the oceanic crust. Chem. Geol. 97, 89–100.

de Baar, H.J.W., Bacon, M.P., Brewer, P.G., Bruland, K.W., 1985. Rare earth elements in
the Pacific and Atlantic oceans. Geochim. Cosmochim. Acta 49, 2561–2571.

de Baar, H.J.W., German, C.R., Elderfield, H., van Gaans, P., 1988. Rare earth element
distribution in anoxic waters of the Carioca Trench. Geochim. Cosmochim. Acta 52,
1203–1219.

de Graciansky, P.C., Jacquin, T., Hesselbo, S.P., 1998. The Ligurian cycle: an overview of
Lower Jurassic 2nd-order transgressive/regressive facies cycles inwestern Europe. In:
de Graciansky, P.C., Hardenbol, J., Jacquin, T., Vail, P.R. (Eds.), Mesozoic and Cenozoic
Sequence Stratigraphy of European Basins: SEPM Spec. Publ., 60, pp. 467–479.

Dean, W.E., Arthur, M.A., 1989. Iron–sulfur–carbon relationships in organic-carbon-rich
sequences: Cretaceous Western Interior Seaway. Am. J. Sci. 289, 708–743.

Dekov, V.M., Marchig, V., Rajta, I., Uzonyi, I., 2003. Fe–Mn micronodules born in the
metalliferous sediments of two spreading centres: the East Pacific Rise and Mid-
Atlantic Ridge. Mar. Geol. 199, 101–121.

Di Stefano, P., Mindszenty, A., 2000. Fe–Mn-encrusted “Kamenitza” and associated
features in the Jurassic of Monte Kumeta (Sicily): subaerial and/or submarine
dissolution? Sed. Geol. 132, 37–68.

Di Stefano, P., Galacz, A., Mallarino, G., Mindszenty, A., Vörös, A., 2002. Birth and early
evolution of a Jurassic escarpment:Monte Kumeta,western Sicily. Facies 46, 273–298.

Dolenec, T., Lojen, S., Ramovš, A., 2001. The Permian–Triassic boundary in Western
Slovenia (Idrijca Valley section): magnetostratigraphy, stable isotopes, and
elemental variations. Chem. Geol. 175, 175–190.

Douville, E., Bienvenu, P., Charlou, J.L., Donval, J.P., Fouquet, Y., Appriou, P., Gamo, T.,
1999. Yttrium and rare earth elements in fluids from deep-sea hydrothermal
systems. Geochim. Cosmochim. Acta 63 (5), 627–643.

Dubinin, A.V., 2004. Geochemistry of rare earth elements in the ocean. Lithol. Miner.
Resour. 39 (4), 289–307.

Ebli, O., Vetö, I., Lobitzer, H., Sajgò, C., Demény, A., Hetényi, M., 1998. Primary
productivity and early diagenesis in the Toarcian Tethys on the example of the Mn-
rich black shales of the Sachrang Formation, Northern Calcareous Alps. Org.
Geochem. 29, 1635–1647.

Force, E.R., Cannon, W.F., 1988. Depositional model for shallow-marine manganese
deposits around black shale basins. Econ. Geol. 83, 93–117.

Frakes, L.A., Bolton, B.R., 1984. Origin of manganese giants: sea level change and
anoxic–oxic history. Geology 12, 83–86.

Franzini, M., Leoni, L., Saitta, M., 1975. Revisione di una metodologia analitica per
fluorescenza X basata sulla correzione completa degli effetti di matrice. Rend. Soc.
Ital. Mineral. Petrol. 21, 99–108.

Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N., Heath, G.R., Cullen, D.,
Dauphin, P., Hammond, P., Hartman, B., Maynard, V., 1979. Early oxidation of
organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic
diagenesis. Geochim. Cosmochim. Acta 43 (7), 1075–1090.

German, C.R., Elderfield, H., 1990. Application of the Ce anomaly as a paleoredox
indicator: the ground rules. Paleoceanography 5, 823–833.

Germann, K., 1972. Verbreitung und Entstehung manganreicher Gesteine im Jura der
Nördlichen Kalkalpen. Tschermaks Min. Pet. Mitt 17, 123–150.

Glasby, G.P., Stüben, D., Jeschke, G., Stoffers, P., Garbe-Schönberg, C.D., 1997. A model
for the formation of hydrothermal manganese crusts from the Pitcairn Island
hotspot. Geochim. Cosmochim. Acta 61, 4583–4597.

Goričan, Š., Šmuc, A., Baumgartner, P.O., 2003. Toarcian Radiolaria from Mt. Mangart
(Slovenian–Italian border) and their paleoecological implications. Mar. Micro-
paleontol. 49, 275–301.

Hallam, A., 1981. A revised sea-level curve for the Early Jurassic. J. Geol. Soc. London
138, 735–741.

Hallam, A., 1998. A re-evaluation of Jurassic eustasy in the light of new data and the
revised Exxon curve. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., Van Wagoner,
J., Ross, C.A., Kendall, G.St.C (Eds.), Sea-level change: an integrated approach: SEPM
Spec. Publ., 42, pp. 261–273.

Haq, B.U., Hardenbol, J., Vail, P., 1987. Chronology of fluctuating sea levels since the
Triassic. Science 235, 1156–1167.

Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P.C., Vail, P.R., 1998.
Mesozoic and Cenozoic sequence chronostratigraphic framework in European basins.
In: de Graciansky, P.C., Hardenbol, J., Jacquin, T., Vail, P.R. (Eds.), Mesozoic and
Cenozoic Sequence Stratigraphy of European Basins: SEPM Spec. Publ., 60, pp. 3–13.

Haskin, M.A., Haskin, L.A., 1966. Rare earths in European shales: a redetermination.
Science 154, 507–509.

Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the
depositional environment and geochemistry of the Upper Pennsylvanian (Mis-
sourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas,
U.S.A. Chem. Geol. 99, 65–82.

Hein, J.R., Koschinsky, A., Halbach, P., Manheim, F.T., Bau, M., Kang, J.K., Lubick, N., 1997.
Iron and manganese oxide mineralization in the Pacific. In: Nicholson, K., Hein, J.R.,
Bühn, B., Desgupta, S. (Eds.), Manganese Mineralization: Geochemistry and
Mineralogy of Terrestrial and Marine Deposits: Geol. Soc. London Spec. Publ.,
119, pp. 123–138.

Heiser, U., Neumann, T., Scholten, J., Stüben, D., 2001. Recycling of manganese from
anoxic sediments in stagnant basins by seawater inflow: a study of surface
sediments from the Gotland Basin, Baltic Sea. Mar. Geol. 177, 151–166.

Hermoso, M., Minoletti, F., Le Callonnec, L., Jenkyns, H.C., Hesselbo, S.P., Rickaby, R.E.M.,
Renard, M., de Rafelis, M., Emmanuel, L., 2009a. Global and local forcing of Early
Toarcian seawater chemistry: a comparative study of different paleoceanographic
settings (Paris and Lusitanian basins). Paleoceanography 24, PA4208. doi:10.1029/
2009PA001764.

Hermoso, M., Renard, M., Hesselbo, S.P., 2009b. Expression of the Early Toarcian
negative carbon-isotope excursion in separated carbonate microfractions (Jurassic,
Paris Basin). Earth Planet. Sci. Lett. 277, 194–203.

Hesselbo, S.P., Gröcke, D.R., Jenkyns, H.C., Bjerrum, C.J., Farrimond, P., Morgans Bell, H.S.,
Green, O.R., 2000. Massive dissociation of gas hydrate during a Jurassic oceanic
anoxic event. Nature 406, 392–395.

Hesselbo, S.P., Jenkyns, H.C., Duarte, L.V., Oliveira, L.C.V., 2007. Carbon-isotope record
of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and
marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253,
455–470.

Holser, W.T., 1997. Evaluation of the application of rare earth elements to
paleoceanography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132, 309–323.

Huckriede, H., Meischner, D., 1996. Origin and environment of manganese-rich
sediments within black-shale basin. Geochim. Cosmochim. Acta 60, 1399–1413.

Hülsemann, J., 1966. On the routine analysis of carbonates in unconsolidated
sediments. J. Sediment. Petrol. 36, 622–625.

Jach, R., Dudek, T., 2005. Origin of a Toarcianmanganese carbonate/silicate deposit from
the Krížna unit, Tatra Mountains, Poland. Chem. Geol. 224, 136–152.

Jenkyns, H.C., 1970. Fossil manganese nodules from the west Sicilian Jurassic. Eclog.
Geol. Helv. 63, 741–774.

Jenkyns, H.C., 1971. The genesis of condensed sequences in the Tethyan Jurassic. Lethaia
4, 327–352.

Jenkyns, H.C., 1977. Fossil nodules. In: Glasby, G.P. (Ed.), Marine Manganese Deposits.
Elsevier, Amsterdam, pp. 87–108.

Jenkyns, H.C., 1988. The the Early Toarcian (Jurassic) anoxic event: stratigraphic,
sedimentary and geochemical evidence. Am. J. Sci. 288, 101–151.

Jenkyns, H.C., 2003. Evidence for rapid climate change in the Mesozoic–Paleogene
greenhouse world. Philos. Trans. R. Soc. London, A 361, 1885–1916.

Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. Geochem. Geophys.
Geosyst. 11, Q03004. doi:10.1029/2009GC002788.

Jenkyns, H.C., Clayton, C.J., 1986. Black shales and carbon isotopes in pelagic sediments
from the Tethyan Lower Jurassic. Sedimentology 33, 87–106.

Jenkyns, H.C., Clayton, C.J., 1997. Lower Jurassic epicontinental carbonates and
mudstones from England and Wales: chemostratigraphic signals and the early
Toarcian anoxic event. Sedimentology 44, 687–706.

Jenkyns, H.C., Sarti, M., Masetti, D., Howarth, M.K., 1985. Ammonites and stratigraphy of
Lower Jurassic black shales and pelagic limestones from the Belluno Trough,
Southern Alps, Italy. Eclog. Geol. Helv. 78, 299–311.

Jenkyns, H.C., Géczy, B., Marshall, J.D., 1991. Jurassic manganese carbonates of central
Europe and the Early Toarcian anoxic event. J. Geol. 99, 137–149.

Jenkyns, H.C., Gröcke, D.R., Hesselbo, S.P., 2001. Nitrogen isotope evidence for water
mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event.
Paleoceanography 16, 593–603.

Jenkyns, H.C., Jones, C.E., Gröcke, D.R., Hesselbo, S.P., Parkinson, D.N., 2002. Chemo-
stratigraphy of the Jurassic System: applications, limitations and implications for
palaeoceanography. J. Geol. Soc. London 159, 351–378.

Kemp, D.B., Coe, A.L., Cohen, A.S., Schwark, L., 2005. Astronomical pacing of methane
release in the early Jurassic period. Nature 437, 396–399.

108 N. Sabatino et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 299 (2011) 97–109



Author's personal copy

Krajewski, K.P., Lefeld, J., Łącka, B., 2001. Early diagenetic processes in the formation of
carbonate-hosted Mn ore deposit (Lower Jurassic, Tatra Mountains) as indicated
from its carbon isotopic record. Bull. Pol. Acad. Sci. Earth Sci. 49, 13–29.

Krieger, P., 1930. Note on an X-ray diffraction study of the series calcite-rhodochrosite.
Am. Mineral. 15, 23–29.

Lewan, M.D., 1984. Factors controlling the proportionality of vanadium to nickel in
crude oils. Geochim. Cosmochim. Acta 48, 2231–2238.

Lewan, M.D., Maynard, J.B., 1982. Factors controlling enrichment of vanadium and
nickel in the bitumen of organic sedimentary rocks. Geochim. Cosmochim. Acta 46,
2547–2560.

Li, Y.H., 1981. Ultimate removal mechanisms of elements from the ocean. Geochim.
Cosmochim. Acta 45, 1659–1664.

Liu, Y.G., Miah, M.R.U., Schmitt, R.A., 1988. Cerium: a chemical tracer for paleo-oceanic
redox conditions. Geochim. Cosmochim. Acta 52, 1361–1371.

Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation
processes. Ore Geol. Rev. 7, 25–41.

MacLeod, K.G., Irving, A.J., 1996. Correlation of cerium anomalies with indicators of
paleoenvironment. J. Sediment. Res. 66, 948–988.

Manceau, A., Drits, V.A., Silverster, E., Bartoli, C., Lanson, B., 1997. Structural mechanism
of Co2+ oxidation by the phyllomanganate buserite. Am. Mineral. 82, 1150–1175.

Masetti, D., Bianchin, G., 1987. Geologia del Gruppo della Schiara (Dolomiti Bellunesi).
Suo inquadramento nella evoluzione giurassica del margine orientale della
Piattaforma di Trento. Mem. Sci. Geol. Padova 34, 187–212.

Michard, A., 1989. Rare earth element systematics in hydrothermal fluids. Geochim.
Cosmochim. Acta 53, 745–750.

Michard, A., Albarède, F., 1986. The REE content of some hydrothermal fluids. Chem.
Geol. 55, 51–60.

Milodowski, A.E., Zalasiewicz, J.A., 1991. Redistribution of rare earth elements during
diagenesis of turbidite/hemipelagite mudrock sequences of Llandovery age from
central Wales. In: Morton, A.C., Todd, S.P., Haughton, P.D.W. (Eds.), Developments
in Sedimentary Provenance. Geol. Soc. London Spec. Publ. 57, 101–124.

Murray, R.W., Buchholtz ten Brink, M.R., Jones, D.L., Gerlach, D.C., Russ III, G.P, 1990.
Rare earth elements as indicators of different marine depositional environments in
chert and shale. Geology 18, 268–271.

Murray, R.W., Buchholtz ten Brink, M.R., Gerlach, D.C., Russ III, G.P., Jones, D.L., 1991.
Rare earth, major, and trace elements in chert from the Franciscan Complex and
Monterey Group, California: assessing REE sources to fine-grained marine
sediments. Geochim. Cosmochim. Acta 55, 1875–1895.

Murray, R.W., Buchholtz ten Brink, M.R., Gerlach, D.C., Russ III, G.P., Jones, D.L., 1992.
Interoceanic variation in the rare earth, major, and trace element depositional
chemistry of chert: perspectives gained from the DSDP and ODP record. Geochim.
Cosmochim. Acta 56, 1897–1913.

Neumann, T., Heiser, U., Leosson, M.A., Kersten, M., 2002. Early diagenetic processes
during Mn-carbonate formation: evidence from the isotopic composition of
authigenic Ca-rhodochrosites of the Baltic Sea. Geochim. Cosmochim. Acta 66,
867–879.

Okita, P.M., Shanks III, W.C., 1992. Origin of stratiform sediment-hosted manganese
carbonate ore deposits: example from Molango, Mexico, and TaoJiang, China.
Chem. Geol. 99, 139–164.

Okita, P.M., Maynard, J.B., Spiker, E.C., Force, E.R., 1988. Isotopic evidence for organic
matter oxidation by manganese reduction in the formation of stratiform
manganese carbonate ore. Geochim. Cosmochim. Acta 52, 2679–2685.

Piper, D.Z., 1974. Rare earth elements in the sedimentary cycle: a summary. Chem. Geol.
14, 285–304.

Placer, L., 1999. Contribution to the macrotectonic subdivision of the border region
between Southern Alps and External Dinarides. Geologija 41, 223–255.

Polgári, M., Okita, P.M., Hein, J.R., 1991. Stable isotope evidence for the origin of the
Úrkút manganese ore deposit, Hungary. J. Sed. Petrol. 61, 384–393.

Polgári, M., Szabó-Drubina, M., Szabó, Z., 2004. Theoretical model for Jurassic manganese
mineralization in Central Europe, Úrkút, Hungary. Bull. Geosci. 79, 53–61.

Pratt, L.M., Force, E.R., Pomerol, B., 1991. Coupled manganese and carbon-isotopic
events in marine carbonates at the Cenomanian–Turonian boundary. J. Sed. Petrol.
61 (3), 370–383.

Raiswell, R., Berner, R.A., 1985. Pyrite formation in euxinic and semi-euxinic sediments.
Am. J. Sci. 285, 710–724.

Rantitsch, G., Melcher, F., Meisel, T., Rainer, T., 2003. Rare earth, major and trace
elements in Jurassic manganese shales of the Northern Calcareous Alps: hydro-
thermal versus hydrogenous origin of stratiform manganese deposits. Mineral.
Petrol. 77, 109–127.

Renard, M., Letolle, R., 1983. Essai d'interprétation du rôle de la profondeur de dépôt
dans la répartition des teneurs en manganèse et dans l'évolution du rapport
isotopique du carbone des carbonates pélagiques: influence de l'oxygénation du
milieu. C.R. Acad. Sci., Paris 296, 1737–1740.

Röhl, H.J., Schmid-Röhl, A., Oschmann,W., Frimmel, A., Schwark, L., 2001. The Posidonia
Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem con-
trolled by sea level and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol.
165, 27–52.

Rona, P.A., Klinkhammer, G., Nelsen, T.A., Trefry, J.H., Elderfield, H., 1986. Black smokers,
massive sulfides, and vent biota at the Mid-Atlantic Ridge. Nature 321, 33–37.

Sabatino, N., Neri, R., Bellanca, A., Jenkyns, H.C., Baudin, F., Parisi, G., Masetti, D., 2009.
Carbon-isotope records of the Early Jurassic (Toarcian) Oceanic Anoxic Event from
the Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps)
sections: palaeoceanographic and stratigraphic implications. Sedimentology 56,
1307–1328.

Sass, E., Bein, A., Almogi-Labin, A., 1991. Oxygen-isotope composition of diagenetic
calcite in organic-rich rocks: evidence for 18O depletion in marine anaerobic pore
water. Geology 19, 839–842.

Schijf, J., de Baar, H.J.W., Millero, F.J., 1995. Vertical distributions and speciation of
dissolved rare earth elements in the anoxic brines of Bannock Basin, eastern
Mediterranean Sea. Geochim. Cosmochim. Acta 59, 3285–3299.

Schouten, S., van Kaam-Peters, H.M.E., Rijpstra, W.I.C., Schoell, M., Damsté, J.S.S., 2000.
Effects of an oceanic anoxic event on the stable carbon isotopic composition of Early
Toarcian carbon. Am. J. Sci. 300, 1–22.

Šmuc, A., Goričan, Š., 2005. Jurassic sedimentary evolution of a carbonate platform into
a deep-water basin, Mt. Mangart (Slovenian–Italian border). Riv. Ital. Paleont.
Stratigr. 111, 45–70.

Stumm, W., Morgan, J.J., 1981. Aquatic Chemistry, 2nd edn. Wiley, New York.
Suan, G., Mattioli, E., Pittet, B., Mailliot, S., Lécuyer, C., 2008. Evidence for major

environmental perturbation prior to and during the Toarcian (Early Jurassic)
Oceanic Anoxic Event from the Lustanian Basin, Portugal. Paleoceanography 23,
PA1202. doi:10.1029/2007PA001459.

Takahashi, Y., Manceau, A., Geoffroy, N., Marcus, M.A., Usui, A., 2007. Chemical and
structural control of the partitioning of Co, Ce and Pb in marine ferromanganese
oxides. Geochim. Cosmochim. Acta 71, 984–1008.

Takematsu, N., Sato, Y., Okabe, S., 1989. Factors controlling the chemical composition of
marine manganese nodules and crusts: a review and synthesis. Mar. Chem. 26,
41–56.

Taylor, K.G., Macquaker, J.H.S., 2000. Early diagenetic pyrite morphology in a
mudstone-dominated succession: the Lower Jurassic Cleveland Ironstone Forma-
tion, eastern England. Sediment. Geol. 131, 77–86.

Usui, A., Bau, M., Yamazaki, T., 1997. Manganese microchimneys buried in the Central
Pacific pelagic sediments: evidence of intraplate water circulation? Mar. Geol. 141,
269–285.

Vetö, I., Demény, A., Hertelendi, E., Hetényi, M., 1997. Estimation of primary productivity
in the Toarcian Tethys. A novel approach based on TOC, reduced sulphur and
manganese contents. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132, 355–371.

Wilkin, R.T., Barnes, H.L., 1997. Formation processes of framboidal pyrite. Geochim.
Cosmochim. Acta 61, 323–339.

Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996. The size distribution of framboidal pyrite
in modern sediments: an indicator of redox conditions. Geochim. Cosmochim. Acta
60, 3897–3912.

Winterer, E.L., Bosellini, A., 1981. Subsidence and sedimentation on Jurassic Passive
Continental Margin, Southern Alps, Italy. AAPG Bull. 65, 394–421.

Woodfine, R.G., Jenkyns, H.C., Sarti, M., Baroncini, F., Violante, C., 2008. The response of
two Tethyan carbonate platforms to the early Toarcian oceanic anoxic event:
environmental change and differential subsidence. Sedimentology 55, 1011–1028.

Wright, J., Schrader, H., Holser, W.T., 1987. Paleoredox variations in ancient oceans
recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta 51,
631–644.

109N. Sabatino et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 299 (2011) 97–109


