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Abstract: A core task in analyzing randomized clinical trials based on lon-
gitudinal data is to find the best way to describe the change over time for
each treatment arm. We review the implementation and estimation of a
flexible piecewise Hierarchical Linear Model (HLM) to model change over
time. The flexible piecewise HLM consists of two phases with differing rates
of change. The breakpoints between these two phases, as well as the rates
of change per phase are allowed to vary between treatment groups as well
as individuals. While this approach may provide better model fit, how to
quantify treatment differences over the longitudinal period is not clear. In
this paper, we develop a procedure for summarizing the longitudinal data
for the flexible piecewise HLM on the lines of Cook et al. (2004). We fo-
cus on quantifying the overall treatment efficacy using the area under the
curve (AUC) of the individual flexible piecewise HLM models. Methods are
illustrated through data from a placebo-controlled trial in the treatment of
depression comparing psychotherapy and pharmacotherapy.
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1. Introduction

Randomized controlled trials (RCTs) have long focused on treatment effects
over time, that is, longitudinal data. Hierarchical linear models (HLM) provided
an important statistical advance in clinical trial methodology; however, the typ-
ical use of HLM assumes a linear trend across time for each person, which may
not be valid for modeling clinical change trajectories. Many extensions of the
HLM model to accommodate non-linear changes of time have been implemented
in recent years such as log-linear change (Gibbons et al., 1993), piecewise linear
models (Verbeke and Molenberghs, 2000), and quadratic change (Cook et al.,
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2004). Cudeck and Klebe (2002) and Cudeck and Harring (2007) presented a
multiphase mixed-effects model, which we refer to as a flexible HLM model be-
cause it consists of two phases with differing rates of change for each treatment
group. The breakpoints between these two phases, as well as the rates of change
per phase are allowed to vary between treatment groups as well as individuals.
Despite the complexity in modeling change over time in a multiple treatment arms
RCT, an aim of the RCT is to quantify how the treatment arms differ over the
longitudinal period. Contrasting the individual components of the flexible HLM
model will not answer this aim. The main objective of this paper is to summarize
treatment arm differences over the entire longitudinal data. The present article
extends the Area under the Curve (AUC) calculations of Cook et al. (2004) to
serve as an index to summarize change over the longitudinal period.

In the following sections, we present a detailed discussion of how to quantify
treatment effects with flexible piecewise models illustrating the implementation
using longitudinal data from a recent placebo controlled RCT comparing psy-
chotherapy (PSY) and pharmacotherapy (ADM) in the treatment of adults with
major depression (Dimidjian et al., 2006). We compare two active treatment
arms, psychotherapy (PSY) and pharmacotherapy (ADM), with pill-placebo con-
trols (PBO). Each patient completed multiple self report measures of depressive
severity (Beck Depression Index; BDI; Beck, Steer, and Brown, 1989). Repeated
measures consisted of two primary assessment points (pre-treatment, endpoint at
Week 8) and at each treatment session.

In Section 2, we discuss the advances offered by HLM and the limitations for
modeling longitudinal data in many clinical trials. We then discuss the implemen-
tation and estimation of a flexible piecewise HLM, consisting of two treatment
phases with differing rates of change for each treatment group: an early rapid
phase of change followed by a phase of reduced change, for which the breakpoint
between these two phases is allowed to vary across both treatment groups and
individuals (Section 3). In Section 4, we illustrate the application of the flexible
piecewise model to this recent RCT. In Section 5, we discuss strategies for as-
sessing treatment efficacy starting with a generic example followed by a specific
example of application to this recent RCT. Sensitivity analyses and assessment
of fit are in Section 6. Some concluding remarks, limitations, and discussion of
potential areas of future research are made in Section 7.

2. Standard HLM for Longitudinal Data Analysis

Longitudinal data are one type of correlated data, though data that have
a nested or hierarchical structure are common in a wide variety of disciplines
(e.g., students nested within classrooms, family members nested within families).
Similar models for the analysis of longitudinal data have been developed across
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disparate disciplines, under a variety of names: random coefficient models, hier-
archical linear models, and multilevel linear models (Goldstein, 1987; Bryk and
Raudenbush, 1996; Raudenbush and Bryk, 2002).

Within statistics, Laird and Ware (1982) and Sternio, Weisberg and Bryk
(1983), working independently, proposed essentially identical approaches to the
analysis of repeated measures data, both using the EM algorithm. In this ap-
proach, each person’s growth curve is characterized by a set of person-specific
parameters, i.e., random effects. For example, in a linear growth model, the
parameters are a mean and rate of growth. However, these parameters are them-
selves viewed as randomly sampled from a population of individuals. Hence, the
model may be viewed as having two levels: a within-person level, which is re-
ferred to as the level 1 portion of the model, and a between-person level, which is
referred to as the level 2 portion of the model. In the present paper, we refer to
these models as hierarchical linear models (HLMs; Raudenbush and Bryk, 2002).

One advantage of HLM is that it can incorporate imbalanced longitudinal
data and does not require assessments of outcome at common discrete points of
time. Even the most extreme case, in which all patients had unique assessment
times, can be accommodated with this framework. A critical issue in fitting HLM
to longitudinal data is to accurately quantify change as a function of time. The
starting point to quantify change usually begins by specifying the level 1 equation
that characterizes change over time:

yij = β0i + β1itij + eij , (1)

where eij ∼ N (0, σ2). In this equation yij represents the dependent variable
measured for individual i at the jth assessment point, β0i represents the intercept
or the dependent variable for individual i at time 0 (usually the pre-treatment
assessment), β1i represents the linear rate of growth for individual i across each
time point, tij represents the exact time for the jth assessment point of individual
i, and eij is the residual or error term indicating the deviation of each individual’s
score from their own modeled line. The level 1 parameters in HLM become
dependent variables in level 2 of the model. In this way the parameter estimates
related to “time” at level 1 are nested within the person at level 2. With RCT data
the typical focus is on the use of HLM in determining effects between treatment
conditions in rate of change over time. In our example, treatment condition would
refer to the ith patient’s randomization assignment to PSY, ADM, or PBO, which
we represent as TXi. The level 2 equations as a function of treatment condition,
represented as TX, are as follows:

β0i = γ00 + γ01(TXi) + u0i (2)

β1i = γ10 + γ11(TXi) + u1i (3)
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where [
u0i
u1i

]
∼ N

([
0
0

]
,

[
τ00 τ01
τ01 τ11

])
.

If one does not expect the outcome to change across time in a linear fashion,
or the data does not support such change, then a refinement of the model is
required. Linear time assumes the rate of change is constant across the entire
longitudinal period under investigation; however, much longitudinal change is not
constant over time. Our goal should be to model the data and not place the data
into standard models when the standard model does not apply. When change is
not linear, we must accommodate the data accordingly, which starts with flexibly
modeling change. At the same time, we must balance the goals of the analysis,
which in our case is contrasting the treatment effects, with the complexity of the
model. We must still be able to describe and interpret the results with respect
to our goals of the analysis, regardless of the model complexity.

3. Flexible Piecewise Model

It is quite common in an RCT to see an initial phase of substantial change
followed by a second phase with reduced change. Keller et al. (2000) in a 12 week
study found two phases of change over time with the distinct phases corresponding
to change from baseline to week 4 and change from week 4 to week 12. This type
of change over time structure is modeled as a piece-wise linear model, where rates
of change are allowed to differ between the two phases. In essence, two rates of
change connected at a point of change referred to as a breakpoint, are estimated
for each subject. The location of this breakpoint is at times determined by study
design features such as location of mid-point of the study, change in frequency of
assessment, change in medication regimen, or progressing from active treatment
phase to a follow-up phase. When we considered individual trajectories based on
the data from the Dimidjian et al. (2006) study, profiles showing this piecewise
structure become more apparent, as seen in Figure 1.

The four patients’ trajectories, with individual depression scores measured by
the Beck Depression Index; BDI (Beck, Steer, and Brown, 1989) on the y-axis
and week since randomization on the x-axis, illustrate the following: (a) piecewise
profile, (b) the early rate of change between the four patients is different, (c) the
later rate of change between the four patients is different, and (d) the location of
the break between early and late change is different for each in contrast to typical
piecewise linear models, which consider a common breakpoint for all treatments.
Outside of RCTs this dual-phase pattern of change appears common across many
areas of psychological research (Cudeck and Klebe, 2002; Cudeck and Harring,
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Figure 1: Individual piecewise linear change for four patients

2007). From a clinical perspective, this differential breakpoint implies that the
significant impact of a given treatment may be more effective in a smaller time
window compared to the other treatments.

Similar to standard HLM models where subject-specific effects are introduced
to allow subject heterogeneity, flexible HLM introduces a random effect due to
the location of the breakpoint to allow subjects’ change of phase to deviate from
the overall average location for their treatment group. Following Cudeck and
Klebe (2002) the level 1 equation is:

yij = β0i + β1i min(tij , τ i) + β2i max(0, tij − τ i) + eij , (4)

where eij ∼ N (0, σ2). In this equation yij represents the dependent variable
measured for individual i at jth assessment acquired at time tij . Unknown pa-
rameters to be estimated are: β0i which represents the intercept or the dependent
variable for individual i at time 0; β1i which represents the linear rate of growth
for individual i across each time point of the early phase of change; β2i which
represents the additive component for the linear rate of growth for individual i
across each time point of the later phase of change; and τ i which represents the
subject-specific breakpoint between early and late phase of change. Equation (4)
is referred to as a connected piecewise linear model, where the last assessment
during the early phase of change serves as the starting point for the later phase
of change, with eij as the residual or error term indicating the deviation of each
individual’s score from their individual connected piecewise linear model. With τi
unknown, this equation is nonlinear due to the random breakpoint being included
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as a multiplicative term to the legs of the piecewise model. As in the standard
HLM, the level 1 parameters become dependent variables in level 2 of the model.
The level 2 equations as a function of treatment condition are as follows:

β0i = γ00 + γ01(TX)i + u0i (5)

β1i = γ10 + γ11(TX)i + u1i (6)

β2i = γ20 + γ21(TX)i + u2i (7)

τi = γ30 + γ31(TX)i + u3i (8)

where 
u0i
u1i
u2i
u3i

 ∼ N



0
0
0
0

 ,

τ00 τ01 τ02 τ03
τ01 τ11 τ12 τ13
τ02 τ12 τ22 τ23
τ03 τ13 τ23 τ33


 .

With regards to estimation of the parameter estimates, standard likelihood-
based inferences is complicated by the fact the breakpoint is random with the
log-likelihood being just piecewise differentiable at this breakpoint, resulting in a
situation where classical regularity conditions are not met (Feder, 1975; Kuchen-
hoff and Ulm, 1997; and Muggeo, 2003). Several methods have been proposed to
approximate parameter estimation: grid search, smoothing, a mixture approach,
or Bayesian methods.

Grid search estimation, as its name indicates, is performed by a grid search
over the parameter space, (Hawkins, 1976; Ertel and Foulkes, 1976; Ulm, 1991;
Rigby, 1992; Stastinopoulus and Rigby, 1992). In smoothing (Bacon and Watts,
1971; Seber and Wild, 1989; Morrell et al., 1995), the point of non-differentiability
at the breakpoint is smoothed through an arithmetic transformation in the vicin-
ity of the breakpoint. Common applied transformations are the hyperbolic tan-
gent function or a rational function smoothers as discussed by Dietz and Hadeler
(1988) for the minimum and maximum functions. EM algorithmic approach and
iterative procedures have been suggested by Scott et al. (2004) and Muggeo
(2003), respectively, which have shown to produce convergence with robust es-
timates. Dominicus et al. (2006, 2008) used Gibbs sampling under a Bayesian
perspective for parameter estimation.

We will proceed with the analytic approximation of the likelihood function.
The rational function smoother of Dietz and Hadeler (1988) was implemented to
correct the piecewise differentiability at the breakpoints in equation (4), hence
correcting the classical regularity conditions. Initial parameter estimation was
made using the first-order linear (FIRO) approximation method of Beal and
Sheiner (1982). Dominicus et al. (2006) showed slight bias with the FIRO
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method when compared to Bayesian estimation. With the random effects fol-
lowing a multivariate normal distribution, a more accurate numerical integration
of the likelihood function is achieved with Gauss-Hermite quadrature (Davidian
and Giltinan, 2003; Wang, 2007). Accuracy of the approximation was based on
increasing the number of quadrature points from 1 to 30 points.

All modeling operates under the philosophy of parsimony. While we are
proposing a flexible piecewise model, we must inspect whether there is truly
two different phases of change. Without two phases of change, the level 1 model
will be simplified to equation (1), by removing both the second leg of change and
the random breakpoint. The need for the two phases of change will be based
on the approach described by Piepho and Ogutu (2003), which assesses the need
of the breakpoint through the null hypothesis that the slope prior and post the
breakpoint are equal. This flexible piecewise model and the model diagnostics
can be fit through many software programs for non-linear mixed effects models.

4. Application to Treatment of Depression Study

To illustrate the flexible HLM methods proposed, we utilize data from a re-
cent placebo controlled RCT comparing psychotherapy (PSY), pharmacotherapy
(ADM), with pill-placebo controls (PBO) described in section 1. The analyses
consist of 124 patients who met criteria for moderate to high depression severity
at the start of the study. Of these patients, 48 were randomly assigned to PSY,
49 to ADM, and 27 to PBO (Dimidjian et al., 2006). The maximum number of
sessions allowed per protocol varied by treatment condition; thus, the potential
number of outcomes and time between repeated assessments varies by treatment.
Specifically, ADM patients were permitted up to 6 sessions; PBO patients were
permitted up to 6 sessions; and PSY patients were permitted up to 16 sessions.
Further details of the study can be found in Dimidjian et al. (2006).

We fit the flexible piecewise model per equations (4)-(8). Covariance structure
was based on comparison of the -2Log-Likelihood, Akaike information criterion
(AIC), and the Akaike information corrected criterion (AICC) of nested models
indicating the need for variance components for all subject-specific parameters,
covariance between two slope components, and covariance between the late slope
and the breakpoint. The need for breakpoints per group was verified through
the approach of Piepho and Ogutu (2003) and Kim et al. (2004). Statistical
tests were based on a t-distribution with degrees of freedom based on the sample
under analysis, which is 124 subjects, with a loss of 4 degrees of freedom based
on the subject-specific parameter per equation (4). Results indicated the need
for the breakpoint for each treatment: PSY (t(120) = 2.31, p = 0.02); ADM
(t(120) = 4.33, p < 0.0001; and PBO (t(120) = 4.64, p < 0.01). Parameter
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estimates are illustrated in Table 1.

Table 1: Parameter estimates for piecwise Model

Fixed Effects

PSY ADM PBO

Intercept 35.08 (0.99) 35.82(0.98) 34.19 (1.33)
Slope during leg 1 -2.62 (0.36) -3.61 (0.30) -3.47 (0.48)
Slope during leg 2 -1.48 (0.21) -1.44 (0.30) -0.12 (0.37)
Breakpoint 2.83 (0.26) 3.62 (0.41) 2.91 (0.40)

Random Effects

τ00 42.12 (5.87)
τ11 11.40 (1.87)
τ22 2.90 (0.53)
τ33 0.75 (0.24)
τ12 -3.92 (0.85)
τ23 0.63 (0.27)
σ2 17.93 (0.89)

Note: Standard error estimates are in parentheses.

As seen in table 1, ADM and PBO have a more rapid reduction in depressive
symptoms during the early phase of therapy compared to PSY. Although, per-
forming statistical contrasts indicates a statistically significant difference in the
rate of change during the first leg for ADM compared to PSY only: ADM com-
pared to PSY (t(120) = 2.49, p = 0.014); ADM compared to PBO (t(120) = 0.26,
p = 0.80) and PSY compared to PBO (t(120) = 1.57, p = 0.12). During the late
phase of treatment, PBO has the slowest rate of reduction in symptoms. Statis-
tical contrasts indicates the rate of change during the second leg is significantly
different for PSY compared to PBO (t(120) = 3.17, p = 0.002) and ADM com-
pared to PBO (t(120) = 2.85, p = 0.005). Focusing on the breakpoints, we see
ADM group on-average stays on their ”early phase of change” for half a week to
a week longer compared to both PBO and PSY. Statistical contrasts indicate no
statistically significant difference in breakpoints between the three groups. The
key question is how does each portion of the flexible HLM model contribute to
the overall treatment contrast during the longitudinal period?

5. Quantifying Treatment Efficacy

Based on the parameter estimates of Table 1, the on-average trajectories for
average depression score, the y-axis, as measured by the BDI, versus weeks since
randomization, the x-axis, are illustrated in Figure 2.



AUC for Flexible HLM 229

WEEKWWWW
WWWWWWWW

EEEE
Weeks

Figure 2: On-average piecewise profiles for the Treatment of Depression Study

How patients change over time and the on-average behavior between groups
is different. With a linear model for time, the interaction between treatment and
time provides a single, accurate assessment of how the treatments differ. However,
with the flexible piecewise model just presented, there are a variety of treatment
effects possible. To compare treatment groups, contrasts between the early slopes
only indicate how the treatments differ during their early phase of treatment. As
we see in Figure 2, all treatments experience a rapid phase of reduction followed
by a period of reduced reduction. The amount of time on the early phase of
change varies between the treatments, and the magnitude of change per phase
varies between the treatments. It is unfair to contrast the treatments based on
slope for either leg of the piecewise model, since the amount of time on either leg,
directly linked to the breakpoint, is different between treatments. We need an
approach that simultaneously considers the entire trajectory, the starting point,
and the breakpoint, to derive an overall approach to contrast the groups, while
not focusing on specific portions of the flexible piecewise model.

Response feature analyses reduce complex longitudinal data to simple sum-
mary indices to allow for hypothesis testing and statistical contrasts (Everitt,
1995). To answer our hypotheses of differential treatment effect on depression
across the study, we compute the area the under the curve (AUC) per person
(Matthews et al., 1990). The AUC is a familiar index seen in logistic regression
model, which summarize the discrimination of a predictive model in the analysis
of a binary outcome. However, the present derivation of AUC is different than
this common application in logistic regression. We use the AUC to summarize an
individual’s trajectory, consisting of repeated measures on a continuous outcome.
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This derivation of AUC is seen quite often in the analysis of pharmacokinetic
data, which reflects the total exposure of an individual subject to the adminis-
tered medication during a set dosing period (Nguyen and Amaratunga, 2001). In
our setting, the AUC will represent the total depression severity over the active
treatment period. This AUC offers numerous advantages, including that it is eas-
ily derived, does not require balanced data, and allows us to compare the overall
difference between groups. The disadvantage of the AUC is we lose information
about the time process. With this summary index, which reduces the longitudi-
nal data to one summary measure, we can perform basic cross-sectional analyses
such as analysis of variance (ANOVA) or analysis of covariance (ANCOVA) to
contrast the treatment groups on their performance over the longitudinal period.
Thus, the combination of the flexible piecewise model coupled with the AUC con-
trast will provide a clear picture of how treatment groups change on-average over
time, hence no loss of information about the time process, while also providing a
means for assessing the treatment differences over the longitudinal period.

Focusing on equation (4), we derive the individual AUC to characterize the
total depression score through the 8 weeks of active treatment. This is defined as
the integral of the predicted depression curve over the 8 weeks of active treatment.
For the patient, the individual AUC is given by:

AUCi =

∫ 8

0
[β0i + β1i min(t, τi) + β2i max(t− τi, 0)] dt, (9)

where t is representing time in weeks. A similar approach was taken by Cook
et al. (2004) in their inspection of children’s blood pressure from ages 5 to 14,
which was described through a quadratic random-effects model over unequally
spaced repeated measures. The solution of the integral in equation (9) is:

AUCi = 8β0i + 8β1iτi +
(8− τi)2

2
β2i − β1i

τ2i
2
. (10)

With the summary individual AUC measure, which is derived based on the sub-
ject specific intercept, slope on the early phase of change, slope on the late phase
of change, the individual breakpoint, and the elapsed time of the treatment (8
weeks), we can contrast the groups. These estimates indicate deviations for each
patient from their respective treatment’s average effects. These estimates are
termed Best Linear Unbiased Prediction (BLUP) estimates. BLUP estimates
are: linear in the sense that they are linear functions of the data, unbiased in
the sense that the average value of the estimates is equal to the average value
of the quantity being estimated, best in the sense that they have the minimum
mean squared error within the class of linear unbiased estimators, and prediction
estimates to distinguish them from estimation of the random effects (Robinson,
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1991). Thus rather than consider these specific effects as nuisance parameters,
with a central focus on contrasts of treatments, these subject specific estimates
per equation (4) are used as the ”individual expected AUC” for a given patient.
We will test for differences by treatment using this summary measure as the pri-
mary outcome in a response feature analysis. Application of this approach on
our data is discussed in the next section.

6. Application of the AUC to the Treatment of Depression Study

From Figure 2, we see comparable rates of change for ADM and PBO during
the early phase and comparable rates of change for PSY and ADM during the
late phase, but the key question we wish to answer is how do the treatment
specific piecewise trajectories contribute to the overall treatment contrast during
the entire longitudinal period, where we’re most interested in seeing superiority
to the control group, PBO. To answer this we proceed with the individual AUC
derivation per equation (10).

We have AUC estimates of 204.58 for PSY, 192.95 for ADM, and 222.20 for
PBO. So over the 8 week placebo control period, on-average we have lower symp-
toms for ADM and PSY relative to PBO, which were statistically contrasted
using ANCOVA. The ANCOVA model adjusted for baseline severity, for, as seen
in table 1, the intercepts vary by group. While the difference at baseline is not
statistically significant, which is attributable to the integrity of the treatment ran-
domization, we still need to adjust the individual AUC analysis for the observed
pre-treatment difference. In addition, we included gender as a covariate. As dis-
cussed in Dimidjian et al. (2006), the psychotherapy group had fewer women.
The overall treatment contrast of group AUCs resulted in a marginally significant
treatment effect (F (2, 119) = 2.94, p = 0.057). The specific treatment contrast
with the placebo control group are t(119) = 1.39, p = 0.17 for PSY compared to
PBO and t(119) = 2.41, p = 0.02 for ADM compared to PBO. We see a significant
effect for ADM compared to PBO; therefore, during the 8-week placebo-control
period, ADM results in patients with less severity on-average compared to PBO,
whereas, based on the available data, we do not have sufficient evidence indicating
on-average superiority of PSY compared to PBO.

7. Sensitivity Analyses

We see from Table 1 that each group goes from a period of rapid reduction to a
period of less reduction, one concern is whether the flexible piecewise model truly
fits the data best. Focusing on the treatment average breakpoint per Table 1, we
see breakpoint ranges within one week of each other. To examine the overall fit
of the flexible piecewise HLM to the data, it was contrasted with five alternative
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models (level-1 equations):

yij = β0i + β1itij + eij

yij = β0i + β1itij + β2it
2
ij + eij

yij = β0i + β1itij + β2it
2
ij + β3it

3
ij + eij (11)

yij = β0i + β1i min(tij , 4) + β2i max(tij − 4, 0) + eij

yij = β0i + β1i log(tij + 1) + eij .

In equation (11), we consider a series of different functions of time in our level
1 model: linear, quadratic, cubic, piecewise linear model with a common break-
point at the midpoint (i.e., week 4, paralleling the approach of Keller et al., 2000),
and shifted logarithmic model paralleling Gibbons et al. (1993). Fit of the data
for each model, as well as our proposed flexible piecewise model per equation (4),
is summarized in Table 2 based on -2 Log-likelihood functions, the Akaike infor-
mation criterion (AIC), and the Akaike corrected information criterion (AICC).

Table 2: Comparison to alternative models

-2 Log-Likelihood AIC AICC

Linear 7777.0 7785.0 7785.1
Piecewise Linear common breakpoint 7602.4 7630.4 7630.8
Quadratic 7625.3 7639.3 7639.4
Cubic 7634.9 7648.9 7649.0
Shifted Logarithmic of time 7734.0 7756.0 7787.0
Flexible model per equation (4) 7583.0 7617.0 7617.6

As we see in Table 2, the flexible model proposed in equation (4) yields the
best fit indicated by the lower values of each index. Even compared to the
piecewise model with a common breakpoint, the addition of the random break
is warranted. This is based on the difference of the -2 Log-Likelihood is 19.4,
which is significantly different based on a chi-square distribution with 4 degrees
of freedom, corresponding to an estimates for each treatment and even a chi-
square distribution with 8 degrees of freedom, corresponding to the estimate for
each treatment, variance component for the random breakpoint, and covariance
estimates for each of the other three components: random intercept, random first
slope, and random second slope.

To take the model diagnostic to the patient observed data, we compared
the predicted estimates of the flexible piecewise model per equation (4), the
predicted estimates of the shifted logarithmic model per equation (11) and the
observed BDI scores. The reason we focus on the shifted logarithmic model
per equation (11) is because this approach has received applications in many
psychological setting, with the most recognized example discussed in Gibbons
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et al. (1993). Within each subject, we derived the correlation of the observed
data versus the subject-specific estimates in the two models. Therefore, for each
subject we have a measure quantifying how well the observed data associated
with the predicted estimates relate. Across all 124 patients in our sample, for the
flexible piecewise model we had a median correlation of 0.861 with an interquartile
range of 0.683-0.936. Therefore, we see for 50% of the sample or more we have a
strong correlation of the predicted estimate with the observed data per subject
with correlations of 0.683 or larger. For the shifted logarithmic model, we have
a median correlation of 0.782, with an interquartile range of 0.553 - 0.912. For
the shifted logarithmic model, the correlation is not as strong, with correlations
of 0.553 or larger for 50% of the sample. Hence, the stronger association of the
observed data compared to the estimated data per the flexible model in equation
(4) provides evidence of the better fit of the model to the data.

We next extended the goodness of fit approach, to our index of quantifying
the treatment effect, the AUC. To do this we derive an observed AUC score per
person. Refer to Figure 3.

Figure 3: Observed individual AUC

To derive this observed AUC score, we recognize the shape of the profile between
sequential points, per Figure 3, is a trapezoid, with the week axis serving as
the height, and the previous and current assessment serving as the two bases.
The area for each trapezoid is the product of the average base times the height.
Derivation of the observed AUC per person is as follows:

ObsAUCi =

ni∑
k=1

(
yi(k−1) + yik

2

)
×∆k (12)
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where for the ith person, there are ni data points, with yik as the outcome at the
kth assessment, and ∆k is the elapsed time between the kth assessment and the
previous assessment. The value yi0 is the outcome at time 0, the baseline value.
While the elapsed duration of treatment was scheduled for 8 weeks, completion
deviates from the targeted date at week 8. Therefore, AUC scores per person
are pro-rated for 8 weeks. Observed AUC scores per treatment are derived and
compared to the individual AUC scores as illustrated in Figure 4.
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Figure 4: Observed and individual on-average AUC estimates

As illustrated in Figure 4, the model based estimates are all close to the observed
estimate.

Thus, these diagnostic approaches all point to the goodness of fit of the model
described in equation (4). We therefore have an adequately fitting model to
describe the change over time, plus a summary measure, the AUC, to allow us
to contrast the overall treatment effect.

8. Conclusion

Software algorithms have provided us much flexibility in deriving sophisti-
cated models to mirror the observed data; however, the difficulty in interpreting
the overall treatment effect becomes a challenge as the complexity of the model in-
creases. The reported analysis from this depression study, based on the endpoint
assessment point, which examined for treatment differences based on an Analysis
of Covariance (ANCOVA) covarying baseline found a marginally significant effect
for treatment over the 8 weeks (F (2, 119) = 3.00, p = 0.054) (Dimidjian et al.,
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2006)., where it is seen that the ADM patients on-average had marginally more
rapid reduction compared to PBO patients (t(119) = −1.84, p = 0.07). The
additional data used in the flexible HLM analysis, provides a more descriptive
change profile over the 8 week placebo-control period, while the AUC index anal-
ysis produces results in similar directions, yet a more powerful result compared
to the cross-sectional ANCOVA analysis. Besides being able to summarize the
total depression severity over the 8 weeks, we see similar to Cook et al. (2004)
application, the AUC used all available data per individual and can accommodate
unbalanced repeated measurements, while providing a single summary measure
per person to perform a response feature analysis to examine the treatment effect
over the longitudinal period.

One limitation of the analytical approach is to the sensitivity of HLM struc-
tures to the assumption of random effects (Heagerty and Zeger, 2000). With the
derivation of the AUC based on the subject-specific estimates from the random
terms (random intercept, random first slope, random second slope, and random
breakpoint), the assumptions of normality of the random effects must be met to
adhere to the warning of Heagerty and Zeger (2000). Based on our data, we saw
no deviations of normality for any of the random effects.

Lee and Thompson (2008) discuss relaxing the normality of random effect
distributions in the HLM structures, citing that normality assumption can be
extremely restrictive. Their work incorporates random effects with distributions
from a skew extension of the normal and t-distributions, which may provide bet-
ter model fit. With the random breakpoint, in this setting, representing time,
consideration of alternative distributions for the random term may provide a
worthwhile area of future research. We know time, in our application, is non-
negative. Therefore consideration of distributions which have non-negative sup-
port sets may be appropriate for the random breakpoint. Muggeo et al. (under
review) has taken this further and has considered no distribution on the random
breakpoint, treating it non-parametrically.

For repeated assessments, missing data are inevitable, especially with at-
trition, but the key issue is whether the inferences are impacted by the pres-
ence/absence of the data. As discussed one of the advantages of the AUC is
the flexibility in handling unbalanced data. From a statistical inference perspec-
tive, the HLM models, which assume that data are missing at random (MAR),
are especially robust compared to other longitudinal data analysis procedures
such as Generalized Estimating Equations (GEE), which makes a more restric-
tive assumption, i.e., data missing completely at random (MCAR; Diggle, Liang,
and Zeger, 1994; Little, 1994; Hedeker and Gibbons, 1997). MAR means the
missing data process is independent of the value of the outcome variable (e.g.,
depression scores) but can depend on some other observed variable in the study
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(e.g., race, gender, and treatment condition). Spritzler et al. (2008) discuss im-
pact of missing data to AUC estimation. As far as approaches to accommodate
when the data is not MAR is a current limitation of this analytical approach
and a possible additional area of future research. Two additional limitations of
this application focus on limitations of the BLUP estimates. Distribution theory
associated with BLUP estimates is not nearly as well-understood as it is with
conventional estimable functions (Littell et al., 1995). The variance of the BLUP
estimates may experience shrinkage, since the observed data are shrunk towards
the overall average since the prior means of the random effects is zero (Verbeke
and Molenberghs, 2000).

As with most algorithms the initial estimates are important in achieving max-
imization of the likelihood (Powell, 1970). Despite computer speeds, numeri-
cal quadrature is computationally burdensome. As illustrated Gauss-Hermite
quadrature method coupled with using initial parameter estimates based on the
first-order linearization of Beal and Sheiner (1982), we are able to derive param-
eter estimates. The advantage is that this ”approximate likelihood” is available
in a closed form and standard errors are obtained from the information matrix
(Davidian and Giltinan, 2003). Consistency of parameter estimates was based
on increasing the number of quadrature points from 1 to 30, where 1 quadrature
point corresponds to a Laplacian method. Laplacian methods are considered
a highly accurate method for approximating parameter estimates for nonlinear
mixed effects model (Wang, 2007). The accuracy of the approximation increases
as the number of quadrature points increases (Davidian and Giltinan, 2007). Our
model diagnostics provide evidence of goodness-of-fit. Although in our applica-
tion we did not fit an unstructured covariance matrix for the random effect. Our
examination of nested models with more complex covariance structures compared
to more simplistic structures, provided evidence that some covariance terms were
going to 0. Therefore, there was no appreciable loss of model fit with the more
simplistic covariance structure.

We have presented an application of flexible mixed effects model for estimation
of depression severity measured over 8 weeks of active placebo-control treatment
period. The attractive feature of the flexible mixed effects model is it describes
the different facets of treatment within each group. While the flexible mixed
effects model summarized the individual change over time, we derived individual
AUC estimates based of the flexible mixed effects model. We saw similar values
for the model-based individual AUC estimates and the observed AUC estimates.
The AUC index served as the outcome measure in our response feature analysis
for contrasting the treatment groups.
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