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PTHrP is a polyhormone undergoing proteolytic processing into smaller bioactive forms, 
comprising an N-terminal peptide, which is the mediator of the “classical” PTH-like 
effect, as well as midregion and C-terminal peptides. The midregion PTHrP domain (38-
94)-amide was found to restrain growth and invasion in vitro of some breast cancer cell 
lines, causing striking toxicity and accelerating death; the most responsive being MDA-
MB231, whose tumorigenesis was also attenuated in vivo. In addition, midregion PTHrP 
appears to be imported in the nucleoplasm of cultured MDA-MB231 cells and in vitro, it 
can bind chromatin of metaphase spread preparations and also an isolated 20-mer 
oligonucleotide, thereby appearing endowed with a putative transcription factor–like 
DNA-binding ability. The object of this review is to discuss collectively and critically both 
precedent and more updated data obtained in the lab, the latter arising from assays on 
DNA status, and gene and protein expression patterns of treated cells, aiming to check 
whether the cytotoxicity of the peptide may result from a reprogramming of gene 
expression towards apoptotic death or, instead, it is to be ascribed to an unprogrammed 
perturbation of cell functions. 
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BREAST CANCER AND PTHrP 

The human breast is a modified sweat gland that originates from the epidermal mammary ridge, whose 

epithelial component in the postpubertal age consists of a monolayer of polarized luminal cells organized 

into branching ducts terminating in multiple acini. The epithelial and myoepithelial component of the 

gland, leaning onto the basal lamina, is embedded in an abundant interstitial stroma composed of fat 

tissue, fibrous and loose connective tissue, and blood vessels. It is generally acknowledged that cancer 

development by the breast luminal epithelium, apart from multistep genetic alterations, is strongly 

influenced by the network of interactions occurring between cancer cells and the novel microenvironment 

surrounding them. Within the original tissue structure, in fact, newly synthesized soluble factors, 

providing additional and different biological stimuli, and macromolecular polymers of the stromal matrix, 

exposed after the dissolution of the basal lamina, become available for epithelial cell attachment and 

signalization[e.g., 1,2,3,4].  
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Substantial evidence indicates that one of those microenvironmental factors strongly involved in 

breast tumor progression is parathyroid hormone–related protein (PTHrP), whose involvement in ductal 

branching morphogenesis of the developing breast and in the physiology of lactation has been widely 

documented[5,6,7,8,9,10]. PTHrP, classically regarded as the mediator of the humoral hypercalcemia of 

malignancy syndrome, is the product of a gene spanning more than 15 kb of genomic DNA and 

exhibiting a complex organization in humans, where it generates multiple mRNA variants through 

alternative splicing events and utilization of different transcriptional start sites. The initial translation 

products are three isoforms of either 139, 141, or 173 amino acids with distinct C-terminals, displaying 

sequence homology with PTH at the extreme N-terminus, which allows the binding to the same G 

protein–linked receptor PTH1R[11, for a review]. PTHrP is a polyhormone undergoing a proteolytic 

processing, possibly tissue-specific, by members of the subtilisin family of proteases (e.g., furin, PC1/3, 

PC2, PACE4, PC8; see [12] and references therein) into smaller bioactive forms, comprising an N-

terminal peptide, which is the mediator of the “classical” PTH-like effect, as well as midregion and C-

terminal peptides. It must be remembered that one of the original tumors from which PTHrP was purified 

and sequenced, because of the elevated concentration of its circulating form, was breast cancer[13,14]. 

Moreover, it is now well known that PTHrP is involved centrally in both the osteotropism of breast 

cancer and in the onset of the tumor-associated humoral hypercalcemic syndrome resulting from systemic 

overproduction of the protein and its local release at skeletal metastasis sites with the following activation 

of bone resorption[12,15]. Indeed, immunohistochemical and in situ hybridization studies indicated that 

PTHrP expression was higher and more frequent in breast tumor skeletal metastases than in the parental 

primary tumor[16,17,18]. Auto- and intracrine regulation of breast tumor cells by PTHrP has been 

supported by experimental data in both in vivo and in vitro model systems[e.g., 19,20,21,22,23,24]; in 

addition, breast stromal cells, both embryonic and neoplastic, and myoepithelial cells have also been 

proven to synthesize and secrete PTHrP, thus critically contributing to the maintenance of 

epithelial/mesenchymal signaling paracrine circuits in mammary tissue[25,26,27]. 

An aspect of PTHrP that attracted the attention of several laboratories, including ours, is that its 

biological effects actually exerted the discrete fragments originating from its post-translational 

processing, which can also mediate opposing functions and whose properties have been investigated in 

different in vitro model system[28, for review]. Within this context, concerning breast cancer, we have 

previously demonstrated that (1) PTHrP expression was restricted to subpopulations of the heterogeneous 

8701-BC cell line, derived from a biopsy fragment of a primary neoplasm, endowed with a more 

“aggressive” phenotype[29], (2) its expression in parental 8701-BC cells could be drastically modulated 

by modifications of the in vitro microenvironment, such as cell seeding onto collagen films, or addition of 

growth factors, hormones, or chemicals to the media[30,31], and (3) (1-34), (67-86), and (107-138), but 

not (38-64), PTHrP domains actively controlled the proliferative and invasive behavior as well as the 

expression of genes encoding for stress response proteins and extracellular lytic enzymes in both the 

parental cell line and selected clonal lines[32,33,34]. 

Here, the findings obtained to date about the cytotoxic activity exerted on breast cancer cells by 

PTHrP (38-94)-amide, a fragment that has potentially important therapeutic implications for 

antineoplastic molecular modeling, will be discussed.  

PTHrP (38-94), THE AUTHENTIC MIDREGION PHYSIOLOGIC SECRETORY FORM, 
IS BIOLOGICALLY ACTIVE ON BREAST TUMOR CELLS 

Although a number of literature reports demonstrated the biological properties of different midregion 

PTHrP domains, such as (38-64) and (67-86), the collective data of Soifer et al.[35], Yang et al.[36], and 

Wu et al.[37] established unequivocally that the actual midregion physiologic secretory form of the 

polyhormone was PTHrP (38-94)-amide. The first experimental data on the effect exerted by this specific 

fragment were enclosed in the paper by Wu and coworkers[37], and were related to its ability to stimulate 

transients in cytosolic calcium in rat insulinoma RIN and human cervix carcinoma YCC cultured cells, 
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and transplacental calcium transport in vivo. Successive studies performed by Strid et al.[38] on PTHrP 

(38-94) and Ca
++

 fluxes demonstrated that the peptide was able to stimulate selectively the ATP-

dependent transport of the ion by syncytiotrophoblast basal membrane vesicles through the IP3-DAG-

PKC second messenger pathway. In 2001, a paper was published that explored the effect of PTHrP (38-

94)-amide on viability, proliferation, and invasiveness of six different breast cancer cell lines (Hs578T, 

MDA-MB231, T47-D, 8701-BC, and its clonal lines BC-3A and BC-61), representing the spectrum of 

breast tumors encountered in medical practice and spanning the range of histochemical subtypes, estrogen 

receptor status, vimentin expression, activity in chemotaxis and chemoinvasion assays, and invasive 

behavior in nude mice. It demonstrated that, different from the other PTHrP fragments tested, i.e., (1-34), 

(38-64), (67-86), and (107-138)[32,33,34], PTHrP (38-94)-amide, administered at 1-nM concentration, 

was able to restrain growth and invasion in vitro, as well as to cause striking toxicity and accelerate death 

of the panel of cells assayed; the most responsive being MDA-MB231, whose tumorigenesis in 

immunocompromised mice was further studied and appeared to be restrained markedly by daily 

intratumoral inoculation of the peptide[39].  

These results prompted a more detailed study on tumor cell-PTHrP interactions and the molecular 

pathway(s) through which this midregion peptide may accomplish its powerful effects on the phenotypic 

modulation of mammary carcinoma cells. 

PTHrP (38-94) IS A PUTATIVE TRANSCRIPTION FACTOR–LIKE MOLECULE 

It is known that PTHrP contains a nuclear localization sequence (NLS) mediating importin –driven 

nuclear import, and that nucleocytoplasmatic shuttling of the protein is cell cycle dependent[e.g., 40,41]; 

PTHrP NLS has been localized in the sequence spanning amino acids 87 to 106, with the preceding 

sequence, i.e., (71-82), likely required to guarantee a more stable importin binding. Being an NLS-

possessing peptide, midregion PTHrP, once it has gained access to the nucleoplasm, could play potential 

transcription factor–like roles. As a support to this hypothesis, the intracrine role for PTHrP in cell 

growth, adhesion, migration, invasion, and integrin expression regulation has been documented for MCF-

7 breast tumor cells overexpressing the wild-type vs. NLS-mutated protein[22,42]. Mobilization of 

intracellular calcium has also been observed in different breast cancer cell lines treated with PTHrP (67-

101), whose ability to translocate to the nucleus was reported by Kumari et al.[43]. In addition, intracrine 

effects of midregion PTHrP domains have been described in other experimental models[e.g., 44,45,46].  

One of the questions that remained unsolved was whether the interaction between PTHrP and nuclear 

chromatin would be direct, or if other nuclear components participating in the formation of putative 

supramolecular regulatory complexes would be necessary. To this purpose, living breast cancer MDA-

MB231 cells were treated with midregion PTHrP, demonstrating its accumulation in the cell nucleoplasm 

at interphase[47]. Moreover, although lacking in vivo counterparts so far, in vitro results were obtained 

that confirmed the direct chromatin binding by PTHrP (38-94)-amide, which was shown to “decorate” 

chromosomes of metaphase spread preparations from MDA-MB231 cells in a selective and stable 

manner, with a conspicuous number of evenly distributed, discrete and intense, fluorescent spots that 

display no accumulation at specific chromosomal sites. Interestingly, the “decoration” pattern appears to 

be cell type specific since, when preparations from immortalized, nonmalignant, mammary epithelial cells 

were used, a different number and localization of hybridization signals per genome was observed (Sirchia, 

Caradonna and Luparello, unpublished data). In the paper by Sirchia et al.[47], a DNA sequence 

recognized by the protein, i.e., 5’-GAGTAGAATTCTAATATCTC-3, was also identified; this sequence 

displayed identity with a number of human genomic DNA sequences, two of them located in 

chromosomes 8q23 and 21q22.3, as well as with a segment of mitochondrial DNA encoding for an rRNA. 

The specific requirements for optimal binding were also assessed, employing a combination of “whole 

genome”/conventional PCR, EMSA, and DNAse foot-printing techniques. In particular, the collective 

data indicated that the binding was selective, required double-stranded DNA, and was effectively 

competed by preincubation of midregion PTHrP with the anti-PTHrP (34-53) antibody. In addition, the 
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binding was undetectable when either PTHrP (38-64)-amide or (67-86)-amide were submitted to EMSAs 

in the place of the intact (38-94)-amide fragment, and DNA recognition by PTHrP critically needed the 

presence of the GA/GAG terminal motifs, albeit repetitive GA and GAG modules were insufficient to 

create binding sites, and therefore were in some way sequence context dependent. Interestingly, literature 

data also support the concept that this sequence is involved in protein recognition; in fact, PATCH 

software analysis (http://www.gene-regulation.com/cgi-bin/pub/programs/patch/bin/patch.cgi) indicated 

that portions of this 20-mer oligonucleotide were targets for transcriptional modulators of various species, 

including human GATA-1 and POU2F1. On the other hand, the existence of factors able to bind the GA-

rich sequences present in several gene promoters in a context-dependent way, i.e., under the selective 

control of local sequence characteristics, has been documented in various model systems[e.g., 48]. 

In light of observations that strongly suggest some nuclear activity for midregion PTHrP endowed 

with a likely transcription factor–like DNA-binding ability, DNA status, and gene and protein expression 

patterns in treated cells, were analyzed in order to check whether the cytotoxic activity of the peptide 

could be consequent to gene expression reprogramming towards apoptotic death or, instead, to an 

unprogrammed perturbation of cell physiology. 

MIDREGION PTHrP-TREATED MDA-MB231 BREAST CANCER CELLS DISPLAY A 
GENERALIZED PATTERN OF DNA FRAGMENTATION  

First, the plan was to employ a combination of electrophoretic and cytochemical assays to examine whether 

MDA-MB231 cells treated with 1-nM PTHrP (38-94)-amide, as reported by Luparello et al.[38], displayed 

oligonucleosomal DNA fragmentation, a generally acknowledged hallmark of apoptosis. The 

electrophoretic test was accomplished by extracting DNA from lysates of control and treated cells, and 

submitting the preparations to voltage gradient gel electophoresis (VGGE), as reported by Luparello et 

al.[49]. The cytochemical assay performed on control and treated cell cultures employed the ApopTag® 

Peroxidase In Situ Oligo Ligation kit (Serologicals Co.; Norcross, GA) as reported by Luparello and 

Sirchia[50]. This assay is based on in situ ligation in the presence of either biotinylated oligo A, which 

contains a 3’-dA overhang, or biotinylated oligo B, which is blunt ended; the first oligo being more selective 

for the detection of “classical” apoptosis than other types of cell death. Successful ligation is put in evidence 

by precipitation of diaminobenzidine substrate after reaction with streptavidin-horseradish peroxidise.  

As shown in Fig. 1, the DNA obtained from cells treated for 6 and 24 h appeared to be in an intact 

high-molecular-weight form, whereas the DNA extracted after 48 h of incubation with PTHrP displayed 

an electrophoretic smeared pattern, allegedly ascribable to the occurrence of random degradation events, 

characteristic of “nonapoptotic” death response (at least in a “conventional” conception). No “ladder-like” 

pattern of DNA fragmentation was evident in all the experiments performed. A similar result was 

obtained by cytochemical analysis. In fact, using the apoptosis-discriminating ApopTag technique, more 

cells stained positively using the “necrosis-related” oligo B vs. the “apoptosis-related” oligo A (Fig. 2).  

Thus, this first cumulative data suggested that the PTHrP (38-94)–driven cytotoxic effect on MDA-

MB231 breast cancer cells could not be attributed to activation of mechanisms of “classical” programmed 

cell death. On the other hand, comparison analysis of the PTHrP-binding DNA sequence, cited in the 

preceding paragraph, with nonhuman DNA sequences deposited in online data banks showed that this 

sequence was also contained in a 183-bp DNA fragment from Mus musculus (acc. nr. AJ403155), which 

is recognized by vimentin through specific Y and/or F amino acid residues of its N-terminal head domain. 

In light of this binding ability, vimentin is supposed to participate in the control of both chromatin 

architecture and DNA recombination/repair events[51,52]. In consideration that the interaction of 

vimentin with DNA elicits helix-destabilizing configurational changes that render the zone more 

accessible to the action of T7 endonuclease I[53], and in light of the data on extensive chromatin cleavage 

following cell incubation with midregion PTHrP, a fascinating hypothesis, still to be validated, could 

consider the PTHrP-binding sites detected on the different chromosomes as hypothetical selective starting 

points for chromatin degradation by some still-unidentified endonuclease.  

http://www.gene-regulation.com/cgi-bin/pub/programs/patch/bin/patch.cgi
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FIGURE 1. Representative VGGE of the DNA isolated from MDA-

MB231 cells, cultured in control conditions (A,C,E) and in the presence 
of 1-nM PTHrP (38-94)-amide (B,D,F) for 6 (A,B), 24 (C,D), and 48 h 

(E,F). M = size marker (100-bp ladder). 

 

FIGURE 2. Panel of micrographs showing ApopTag labeling of MDA-MB231 cells cultured in control 
conditions (A) and in the presence of 1-nM PTHrP (38-94)-amide (B,C), using oligo A (one-base dT overhang-

end detection; B) and oligo B (blunt-end detection; C). Massive positive reaction was obtained only in C. 

Microscopic magnification: 20. 
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MIDREGION PTHrP-TREATED BREAST CANCER CELLS DISPLAY SELECTIVE 
CHANGES IN GENE EXPRESSION LEVELS  

Whether midregion PTHrP could actively control gene expression was then examined. In light of the results 

indicating the 20-mer sequence recognized by midregion PTHrP in vitro[47], in a first set of experiments, 

attention was on the genomic sites where it was localized, and appropriately selected the genes for 

evaluation of their expression levels in control and treated cell samples. In particular, PCP4/PEP19 was 

tested, since the sequence is located between two of its exons in the 21q22.3 cytogenetic band, and other 

genes involved in the control of cell life/death and carcinogenesis, mapping into 8q23 cytogenetic band 

(COX6C, OXR1, FZD6, RRM2B, EIF3S6, EBAG9); in addition, HOX7/MSX1 and WT1, whose promoters 

are rich in GA sequences, due to the documented midregion PTHrP affinity to GAG and GA motifs, were 

also included in the experiments. To further supplement the catalogue of midregion PTHrP-dependent 

genes, the technique of differential display (DD)-PCR was also applied to cDNA samples obtained from 

enriched mRNA preparations of both control and treated MDA-MB231 cells[54]. 

Through a combination of conventional and semiquantitative multiplex (SM)-PCR techniques, the 

midregion PTHrP-dependent down-regulation of four genes was demonstrated, i.e., OXR1 (i.e., Oxidation 

Resistance 1); FZD6 (i.e., Frizzled Homologue 6); COX6C (i.e., Cytochrome c Oxidase, subunit VIc), 

implicated in cell survival, mitochondrial respiration, and protection from injury; and HOX7/MSX1 (i.e., 

Homeobox 7/Muscle Segment Homeobox, Drosophila, Homolog 1), a homeotic gene involved in the 

control of complex intracellular networks. The decreased transcriptional activity of such genes might be 

potentially involved in PTHrP-mediated cytotoxic effect; on the other hand, although this result could be 

of further support to the hypothesis of the intrinsic transcriptional modulation capability of the PTHrP 

fragment, evidence that gene down-regulation is a result of the actual peptide binding to DNA is still 

lacking. Moreover, DD-PCR experiments identified other genes whose expression levels were affected by 

incubation with PTHrP (38-94)-amide and whose biological implications in the model system under study 

are still to be determined. In particular, A4 differentiation-dependent protein, also termed PLP2, was 

found to be up-regulated, whereas TMCO4 was underexpressed[54]. 

To expand the list of midregion PTHrP-dependent genes in MDA-MB231 cells, we tested whether 

modifications in the expression levels of genes coding for stress response proteins, and for factors and 

enzymes involved in the onset of apoptosis, could also occur following incubation of cells with the peptide  

Concerning stress response proteins, the data obtained are published herewith for the first time. The 

panel in Fig. 3, representative of three independent experiments, shows that in conventional PCR assays, 

a positive signal was found for all the cDNA tested and obtained from cell samples with or without 

exposition to PTHrP (38-94), indicating that the selected gene expressions are switched on in both 

experimental conditions. The cDNA preparations were then submitted to triplicate SM-PCR to compare 

the expression levels of the selected genes. As shown in the panels in Fig. 4, it was found that incubation 

of MDA-MB231 cells with PTHrP (38-94)-amide was able to modulate the expression levels of only 

hsc70 (+3.9 folds), hsp70 (+2 folds), and hsp90(-2.6 folds) among the stress protein genes. All the 

standard errors of the mean (s.e.m) were less than 0.05. The up-regulation of hsp70 and hsc70 may be 

interpreted as a typical stress response. Ciocca et al.[55] produced evidence that hsp70 overexpression in 

MDA-MB231 cells is associated with acquisition of resistance to the anticancer drug doxorubicin; it is 

also worth mentioning that Grzesiak et al.[56] recently reported interaction
 
between various PTHrP 

fragments, including midregion (37-86), and hsp70 expressed on the surface of cancer cells, thereby being 

somehow involved in the internalization
 
of extracellular PTHrP. On the other hand, up-regulation of 

hsc70 (i.e., cognate of hsp70), encoding for another cytosolic molecular chaperone involved in the folding 

of newly synthesized polypeptides, has been correlated to apoptosis resistance in ovarian cancer cells[57]. 

Of note, hsc70 is reported to be involved in the so-called “chaperone-mediated autophagy”, in that it 

stimulates an intracellular pathway
 
of proteolysis that is selective for particular cytosolic proteins that are 

bound and targeted to the lysosomes for destruction[e.g., 58]; thus, up-regulation of hsc70 could be 

seemingly related to the enhanced protein degradation identified by electrophoretic analysis in 

preparations from PTHrP (38-94)–treated breast cancer cells, as described elsewhere. Moreover, hsp90α  
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FIGURE 3. PCR analysis of 

expression of genes coding for 

stress response proteins by 

control (A) and midregion 

PTHrP-treated (B) MDA-
MB231 cells. 

expression level also appears to be correlated to cell growth behavior, since its decrease has been reported 

to determine the switching off of proliferation in osteoblasts[59], while its increase seems to be involved 

in the enhanced proliferation of pancreatic carcinomas[60]. 

Concerning apoptotic factors and enzymes, as reported by Luparello et al.[61], PTHrP appears 

capable to modulate the expression of Bcl-xS (+2.2 folds), Bad (+2.7 folds), and, more prominently, Rip-1 

(+4.26 folds), and to switch on the expression of caspase-2, -5, -6, -7, and -8 in MDA-MB231 breast 

cancer cells. Although the data obtained put in evidence a certain stability of the expression levels for 

most of the genes coding for apoptosis modulators, nonetheless, the cytotoxic effect triggered by 

midregion PTHrP on MDA-MB231 could see the involvement of some proapoptotic factors, such as Bad 

and Bcl-xS, whose up-regulation were found to promote cell death in different breast cancer cell lines, 

including MDA-MB231[50,62,63,64,65]. According to Tudor et al.[66], alteration of Bad transcription or 

mRNA stability is an early cellular response to stress or drug-induced injury, and a potentially critical 

regulation point of downstream steps, susceptible to restraint by survival mechanisms that cumulatively 

govern the ultimate predisposition to apoptosis.  

Particularly interesting is the observation that Rip-1, a gene encoding for a member of receptor-

interacting protein (Rip) family kinases that function as integrators of extracellular and intracellular 

stresses and crucial regulators of cell survival[67], is up-regulated. Rip-1 is the gene undergoing the most 

significant change of expression level among those tested, and its protein product has been reported to 

trigger prosurvival responses as well as opposite death-inducing mechanisms. Antisense oligonucleotide-

mediated down-regulation of Rip-1 in PTHrP-treated MDA-MB231 cells, although unable to modify cell 

proliferative behavior, determined the up-regulation of all caspase genes tested due, at least in part, to c-

Jun-N-terminal kinase (JNK) inactivation[61]. This represents a new example of factors involved in the 

transcriptional regulation of the apoptotic enzymes, whose molecular aspects are still to be elucidated. 

MIDREGION PTHrP-TREATED MDA-MB231 BREAST CANCER CELLS UNDERGO 
POTENTIAL MASSIVE PROTEIN DEGRADATION  

In a last set of experiments, still at the preliminary stage, the global electrophoretic protein pattern of 

preparations from control and PTHrP-treated MDA-MB231 cell cultures was checked. To this purpose,  

cells were directly lysed in flasks and lysates submitted to protein extraction according to Wang et al.[68];  
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FIGURE 4. (A) SM-PCR for stress response genes hsc70, hsp70, and hsp90. Representative plots of normalized data vs. cycle number fit with 

an exponential curve for control (●) and midregion PTHrP-treated (○) MDA-MB231 cells. (B) Histogram showing changes of gene expression 

levels in treated MDA-MB231 cells vs. controls, as resulted from SM-PCR assays. 

equivalent amounts of proteins from triplicate samples were submitted to SDS-PAGE in a sequencing gel 

apparatus and to silver stain, according to Luparello[69], in order to reveal the expanded 

monodimensional protein patterns in both experimental conditions of culture. Interestingly, as shown in 

Fig. 5, although starting with equivalent amounts of proteins, preparations from treated cells displayed a 

noticeable weakening of the staining of all electrophoretic bands with respect to control samples, except 

for two protein bands of apparent Mr of about 38 and 64 kDa, whose characterization remains to  

be determined. This result can be tentatively interpreted as a consequence of the augmentation of protein  
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FIGURE 5. Electrophoretic analysis of monodimensional protein pattern from lysates of control (A) and PTHrP-treated (B) MDA-MB231 cell 
preparations. 10% SDS-PAGE, silver stain. 

degradation events in PTHrP-treated cells, leading to loss of small protein fragments during the 

electrophoretic run. As discussed before, a role in this “protein loss” might be potentially ascribed to the 

up-regulation of hsc70; in fact, involvement of its protein product in chaperone-mediated autophagy, with 

an hsc70-induced increase of substrate uptake by the lysosomes and subsequent degradation, has been 

described[70]. This hypothesis is also supported by the absence of oligonucleosomal degradation of DNA 

in PTHrP-treated MDA-MB231 cells, as elsewhere reported. However, additional experiments are 

required to assess if PTHrP (38-94) is an actual stimulator of intracellular proteolytic activity, and which 

is the mechanism switched on by incubation of breast cancer cells with 1-nM midregion PTHrP. 

CONCLUSIONS 

In the present review, more updated data on PTHrP (38-94)–mediated regulation of the breast cancer cell 

phenotype, obtained on the MDA-MB231 cell line chosen as the model system, have been summarized. 

Although future work is needed to define the precise nature of molecular events underlying PTHrP 

cytotoxicity and to expand the list of neoplastic cytotypes tested, the data so far obtained allow the 

following considerations. 

Clear indications have been produced that PTHrP (38-94)-amide gains access inside MDA-MB231 

cells and is imported into the nucleus where it is likely to bind chromatin in accordance with the ability 

demonstrated in vitro. Parallel data strongly suggest that the peptide actively controls gene expression, 
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since exposition of cells to midregion PTHrP induces modifications in the expression level of different 

genes, including some of those encoding for stress response and apoptotic factors. Thus, new sets of 

experiments will be designed with the aim to supplement even further the catalogue of midregion PTHrP-

responsive genes in MDA-MB231 cells, in order to better characterize the molecular basis of the putative 

“anti–breast cancer” effect of the peptide; on the other hand, to check its transcriptional factor–like role, it 

will be of interest to perform reporter gene studies to confirm in vivo the effect of midregion PTHrP on 

the modulation of gene expression. 

From the preliminary data obtained, the lethal effect exerted by the peptide shows aspects amenable 

to both apoptosis and necrosis type of death; it is therefore conceivable that midregion PTHrP activates 

one of those alternative pathways of apoptosis, such as necrosis-like programmed cell death, which 

display mixed characteristics[e.g., 71]. Within this context, a particular interest will be devoted to the 

observed up-regulation of Rip-1 and its biological significance; in fact, its protein product, whose key role 

in life/death cellular decisions has been cited before, was also proven to have properties of both apoptosis 

and necrosis factor. In particular, Holler et al.[72] reported that activation of Rip-1 kinase was responsible 

for the onset of cell necrosis due to accumulation of reactive oxygen species (ROS); moreover, Lewis et 

al.[73] and Vanden Berghe et al.[74] also demonstrated that hsp90, whose underexpression was observed 

in the model system for the  isotype, associates with Rip-1, thereby regulating its stability and activity. 

Thus, future investigation will be designed to check whether (1) mitochondrial respiration levels and 

intracellular redox state may be involved in PTHrP-mediated lethal effect and (2) hsp90 may play a role 

in the Rip-1–controlled cellular events in the model system. Lastly, the activation of extensive 

intracellular proteolysis by incubation with the peptide will be evaluated more in detail and the involved 

enzymes identified.  

In conclusion, these studies provide evidence that PTHrP, in addition to its ability to activate 

endocrine, paracrine, and autocrine receptor-mediated processes, also likely possesses an intrinsic DNA 

binding and transcriptional modulation capability, which would appear to account, at least in part, for the 

well-documented nuclear localization of PTHrP and for the altered function of NTS-deleted forms of 

PTHrP. Moreover, these studies further support the concept that the physiology of PTHrP in normal 

breast development and function might include forms of PTHrP beyond those that have been studied most 

extensively to date, i.e., PTHrP (1-36) and full-length PTHrP[e.g., 12,21]. Based on the current 

observations, midregion PTHrP may seemingly play physiologic roles in mammary ductular 

development, fat pad invasion, branching morphogenesis, and/or lactation. Characterization of these 

possibilities will require further analysis. 
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