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Abstract. This paper presents a new solver for 3D acoustic problems called RABEM (Rapid Acoustic Boundary 

Element Method). The Adaptive Cross Approximation and a Hierarchical GMRES solver are used to generate 

both the system matrix and the right hand side vector by saving storage requirement, and to solve the system 

solution. The potential and the particle velocity values at selected internal points are evaluated using again the 

Adaptive Cross Approximation (ACA). A GMRES without preconditioner and with a block diagonal 

preconditioner are developed and tested for low and high frequency problems. Different boundary conditions (i.e. 

Dirichlet, Neumann and mixed Robin) are also implemented. Herein the problem of engine noise emanating from 

the Falcon aircraft is presented. The tests demonstrated that the new solver can achieve CPU times of almost O(N)

for low frequency and O(NlogN) for high frequency problems. 

Introduction

The need of faster solver for three dimension acoustic simulations is encouraged by required solution in higher 

frequency range, for large scale and more accurate geometries. 

One of the most general and efficient numerical technique for solving acoustic problems is the Boundary Element 

Method (BEM) [1]. The boundary element discretisation of the surface of the problem leads to a non-symmetric 

and fully populated system matrix. Both the memory storage and the setting up of the system matrices for a 

standard BEM formulation are of O(N2), where N denotes the degree of freedom. Moreover, direct solvers require 

O(N3) operations while iterative solvers O(kN2), where k is the number of iterations. 

The ACA is an effective method for solving non-symmetric and fully populated matrices and decreases the CPU 

time significantly [2] and has been applied to the Helmholtz equation by, for example, [3]. The solution of linear 

system of equations is accelerated by calculating only few entries of the original matrix. The whole matrix is 

divided into two rank (low and full rank) blocks based on size and distance between a group of collocation points 

and a group of boundary elements. The ACA algorithm has been applied to the low rank blocks achieving 

approximately O(N) for both storage and matrix-vector multiplication [4]. 

Herein a solver for 3D boundary element solution of Helmholtz problems that uses a new hierarchical adaptive 

cross approximation technique coupled with GMRES is presented. Implementing different types of boundary 

conditions (i.e. Dirichlet, Neumann and mixed Robin) into the ACA solution algorithm is widely considered. The 

constant elements are utilized to discretize the problem. The test carried out show that the new assembly and 

solution technique can achieve CPU times of almost O(N) for low frequency and O(N\log N) for high frequency 

problems. 

Hierarchical BEM for Acoustics 

The BEM system of equations was represented using the hierarchical matrices in conjunction with Krylov 

subspace methods by, for example [5, 6], and herein is extended to BEM acoustic problems with different 

boundary conditions. This technique speeds up the computation, whilst maintaining the required accuracy and 

saving on the memory storage. 
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Matrix Assembly using the Collocation Method. In a hierarchical representation the boundary element matrix is 

subdivided by a collection of two groups of blocks called low rank blocks, that have a compressed representation, 

and full rank blocks, that are represented in their entirety. The classification of the blocks is achieved subdividing 

the whole mesh into cluster of closed elements. A block populated by integrating over a cluster of elements whose 

distance, suitably defined, from the cluster of collocation nodes is above a certain threshold is called admissible 

and it can be represented in the low rank format. The remaining full rank blocks are generated and stored in their 

entirety.  

A preliminary hierarchical partition of the matrix index set is the basis of the process for the subdivision and 

classification of the blocks. Contiguous elements are detected on the basis of some computationally efficient 

geometrical criterion. The process starts from the complete set of indices I={1,2...n} where n denotes the number 

of collocation points. This initial set constitutes the root of the tree node. Each cluster in the tree is split into two 

subsets, called sons, on the basis of the longest extended dimension of the whole geometry or of the geometry of 

each cluster son (see Fig.1). 

Fig. 1: A schematic of the first two iterations of the cluster tree creation: 1) the whole geometry is 

divided 2) into two parts, each of which is then subdivided again 3) into two parts. 

The tree node that generates two sets of tree nodes is called the parent. The tree nodes that cannot be further split 

are called leaves of the tree. A leave of the tree is a tree node that cannot be further split because it contains a 

number of indices equal to or less than a minimum number nmin, called cardinality of the tree. This is a previously 

fixed value. This partition creates a binary tree of index subsets, or cluster tree, that constitutes the basis for the 

subsequent construction of the hierarchical block subdivision that will be stored in a quaternary block tree.

Fig. 2: A schematic presentation of the first three iterations that form the block tree. The light grey 

stands for low rank blocks, while the dark grey for full rank blocks. 
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The generation of the block tree is based on the previous found cluster tree and is created starting from the 

complete index I I  (both rows and columns) of the collocation matrix. The goal of this process is to split 

hierarchically the matrix into sub-blocks until that are classified as leaves of the tree (see Fig. 2). A low-rank 

block and a full-rank block are leaves that satisfy and not satisfy, respectively, an admissible criterion, based on a 

geometrical consideration related directly to the boundary mesh (see for example [7, 8]). 

The admissible criterion can be written as 

0 0
min( { }, { } ( , )x x x xdiam diam dist  (1) 

where
0x  and x  denote the cluster of the row and the column elements, respectively, and  is a positive 

parameter influencing the number of admissible blocks and the convergence speed of the adaptive approximation 

of low rank blocks. 

Let C be an m n  admissible block. It admits the low rank representation 
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where A is of order m k  and B is of order n k , with k being the rank of the new representation. Sometimes it 

is useful to represent the matrix using the alternative sum representation, where ai and bi are the i-th columns of A

and B, respectively. The approximate representation allows storage savings with respect to the full rank 

representation and speeds up the matrix-vector product [9]. 

Boundary Conditions and Right Hand Side Setting The actual setting of the final system for a problem where 

different boundary conditions are specified requires some additional considerations when ACA is applied. 

Different types of boundary conditions are here considered in such a way that rigid, soft and absorbing surfaces 

can all be studied in order to simulate a real situation and to perform an eventual parametric analysis. 

The ACA algorithm is applied to one or both of the matrices G and H depending upon the boundary conditions 

that are predominant for each block matrix. Particular care must be taken when not pure Dirichlet, Neumann or 

mixed Robin conditions are applied. There may be four different cases that require different approaches [10]: 

BCs mainly in terms of flux (or potential) except for the kth value expressed in terms of potential (or flux); 

BCs mainly in terms of flux except for the kth value expressed in terms of impedance; 

BCs mainly in terms of potential except for the kth value expressed in terms of impedance; 

BCs mainly in terms of impedance except for the kth value expressed in terms of potential (or flux). 

Additional considerations for the setting up of the right hand side vector are now explained. When the ACA 

algorithm is applied, the routine that calculates the ith row of one of the block matrices G or H also calculates the 

ith row of the other block matrix. Thus, the right hand side contribution of that row for the block matrix analyzed 

is directly calculated. Now, there are two main cases to analyze. 

1. BCs mainly in terms of flux (or potential).  

The ACA algorithm is applied again on the matrix G (or H). A frequent occurrence is when all the 

boundary conditions are zero. In this case there is no need to calculate the contribution of the block 

matrix to the final right hand side and another block matrix can be analyzed. Moreover, owing to the 

fact that the number of entries needed for the ACA is, in most the cases, equal for both the block 

matrix G or H, may be convenient to calculate the contribution to the right hand side with a standard 

procedure.

2. BCs mainly in terms of admittance.  

Once the ACA as been applied to the block matrix H, the possible contribution to the right hand side 

vector F, due to the presence of the kth value of the boundary conditions expressed in terms of 

potential, is easily calculated by multiplying each column of the ACA to the kth value of each row 

with opposite sign. Finally, if the ACA algorithm applied to the block matrix G is also successful 

reached, the contribution to the right hand side of the eventual presence of the boundary condition 

expressed in terms of flux is clearly calculated. 
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System Solution The solution of the system can be computed through iterative solvers with or without 

preconditioners, once the system matrix has been represented in the hierarchical form.  

In this study the value of the parameter  is 10 and the cardinality is set to 22. These values are chosen because 

they give the best performances. Being more specific, the value of the cardinality is quite restricted. As this value 

decreases, many blocks that satisfy the admissible criterion need, in fact, a bigger storage memory than if the 

same block is considered to be full rank. A direct consequence of it is a higher value of the CPU time. 

Nevertheless, the value of the parameter  can be modified between 1 and 1000 without loss of accuracy and 

resulting in a 5% CPU time acceleration. Furthermore, the optimum value of this parameter depends upon the 

geometry and the elements of the mesh.  

Fig (3) shows the block-wise storage requirements of the collocation matrix generated by the ACA algorithm for 

four different values of  (1, 2, 4 and 10).  The tone of grey is proportional to the ratio between the memory 

required for the low rank representation and the memory required for a standard format. Hence black blocks stand 

for the full rank block matrix, while almost white blocks are those for which the ACA compression works better. 

Fig. 3: Block-wise representation of the ACA generated matrix for =1, =2, =4 and =10.

Results

The simulation of a 53,074 elements mesh (see Fig. 4) of a model representing the Dassault Falcon airplane is 

presented.
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Fig. 3: Block-wise representation of the ACA generated matrix for =1, =2, =4 and =10.

The total length of the aircraft is 18.5m and the wing extension is 22.46m. The highest frequency applied was 100 

Hz. The sizes of the smallest and the largest triangles are 8.73E-03 and 0.19 millimeter, respectively, so the 

maximum frequency that can be applied is around 250 Hz. In the simulation performed all the surfaces has been 

set as hard and two monopole sources with unit complex potential amplitude have been inserted where the two 

engines are generally located in this airplane. The CPU time ratio, obtained by dividing the CPU time for different 

frequencies and preconditioners with the frequency of 25Hz for the unpreconditioned GMRES, is shown in Fig. 5 

for three frequencies (25, 50 and 100 Hz). Finally, Fig. 6 shows the Sound Pressure Level (SPL) at 100Hz. It is 

important to point out that a standard BEM code cannot solve such a simulation because the storage required is 

around 45 Gb whereas the limit for a medium desktop is 2Gb. Moreover, the speed up ratio, defined as the ratio 

between the CPU time of the standard code and the CPU time of the RABEM code, would be more than 350! 

Fig. 4: Comparison between the unpreconditioned and block diagonal preconditioned 

GMRES for a Dassault Falcon meshed with 53,074 triangular elements. 

Fig. 4: Sound Pressure Level for a Falcon geometry with two monopoles at 100 Hz. 

Conclusion

A new Rapid Acoustic BEM solver (RABEM) for 3D numerical simulation using the ACA algorithm in 

conjunction with GMRES has been herein presented. This study demonstrates that the new approach reduces 

Advances in Boundary Element Techniques X 41



significantly the storage and the solution time. Moreover, the simulation shown that the new solver can achieve 

CPU times of almost O( N ) for low frequency and O( logN N ) for high frequency problems. 
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