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Abstract

Insurance products become increasingly more innovative in order to face competitive
pressures. Insurance policies today come with guarantees on the minimum rate of re-
turn, bonus provisions, and surrender options. These features make them attractive for
investors who seek not only insurance but also investment vehicles. However, new poli-
cies are much more complex to price and fund than traditional insurance products.
In this chapter we discuss the development of a scenario-based optimization model
for asset and liability management for the participating policies with guarantees and
bonus provisions offered by Italian insurers. The changing landscape of the financial
services in Italy sets the backdrop for the development of this system which was the
result of a multi-year collaborative effort between academic researchers, the research
staff at Prometeia in Bologna, and end-users from diverse Italian insurers. The model
is presented, its key features are discussed in detail, and several extensions are briefly
introduced. The resulting system allows the analysis of the tradeoffs facing an insurance
firm in structuring its policies as well as the choices in covering their cost. It is applied
to the analysis of policies offered by Italian insurance firms. While the optimized model
results are in general agreement with current industry practices, inefficiencies are still
identified and potential improvements are suggested. Extensive numerical experiments
provide significant insights on features of the participating guaranteed policies.

Keywords

risk management, asset-liability management, insurance products with guarantee

JEL classification: C61, G22, G32
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1. Introduction

The last decade brought about a phenomenal increase of consumer sophistication in
terms of the financial products they buy. This trend is universal among developed
economies, from the advanced and traditionally liberal economies of North America
to the increasingly deregulated economies of the European Union and pre-accession
States, and the post-Communist countries.

The numbers are telling: In the 1980s almost 40% of the US consumer financial
assets were in Bank deposits. By 1996 bank deposits accounted for less than 20% of
consumers’ financial assets with mutual funds and insurance/pension funds absorbing
the difference (Harker and Zenios, 2000, Ch. 1). Similar trends are observed in Italy. The
traded financial assets of Italian households more than doubled in the 5-year period from
1997, and the bulk of the increase was absorbed by mutual funds and asset management;
see Table 1.

The increase in traded financial assets comes with increased diversification of the
Italian household portfolio, similar to the one witnessed in the US a decade earlier.
Figure 1 shows a strong growth of mutual funds and equity shares at the expense of
liquid assets and bonds. Today one third of the total revenues of the Italian banking
industry is originated by asset management services.

These statistics reveal the outcome of a changing behavior on the part of con-
sumers. What are the changing characteristics of the consumers, however, that bring
about this new pattern of investment? The annual Household Savings Outlook car-
ried out by Prometeia—a Bologna based company established in 1981 to carry out
economic research and analysis, and provide consulting services to major financial
institutions and government agencies in Italy—in collaboration with Eurisko—a Mi-
lan based company conducting research on consumption, communications, and social
transformation—provides important insights. First, the traditional distinction between
delegation of asset management to a pension fund or an insurance firm by the major-
ity of consumers, and autonomy in the management of assets by wealthy investors, no

Table 1
Traded financial assets by Italian households during 1997–2002 in billions of ITL

1997 1998 1999 2000 2001 2002

Household total 944.853 1427.999 1781.996 2124.102 2488.154 2877.773
% of household’s assets 23.6 31.4 34.6 38.3 41.9 44.8
Mutual funds 368.432 720.823 920.304 1077.360 1237.964 1386.519
Asset management 375.465 542.205 673.500 781.300 880.450 956.970
Life and general insurance 165.000 202.300 257.400 329.600 433.400 574.000

Source: ISVAP, the board of regulators for Italian insurers.
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Fig. 1. The evolution of Italian household portfolios.

longer appears to be valid. Both attitudes are present in the behavioral patterns of private
savers.

Second, the trend in behavioral profiles is towards higher levels of autonomy, and
there is an increased propensity towards innovative instruments as manifested in the data
of Figure 1. The group of Italian households classified as “innovators” grew steadily
from 6.7% in 1991 to 22.6% by 2001. Each percentage point increase added a further
200,000 households to this category. Today this segment numbers 4.3 million Italian
households. Households in this category adopt a very professional approach to questions
of finance. They are able—or at least they feel so—to manage their financial affairs, and
they rely on integrated delivery channels for doing so, using on-line information and
conducting business by phone.

Third, an analysis of the influence of quantitative variables on the savings habits of
households shows that awareness of financial indicators, and in particular the perfor-
mance of managed asset returns, is influencing household behavior. Investors in older
age groups are more aware of such indicators than the younger generations. The survey
also reveals that the trend towards increased diversification of assets under management
will continue unabated during the next three years. The investors’ favorites are insur-
ance and portfolio management. (The survey was conducted just prior to the stalling
of the world-wide bull markets so the projection of a continued favor towards portfolio
management can be questioned.)

In this environment the Italian insurance industry has come under increasing pres-
sure. The statistics of Table 1 reveal that assets invested in life and general insurance
increased by 99% in the period of interest while assets in mutual funds increased by
190%, and those under asset management by 110%. Insurance companies trail the com-
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petition in claiming a share of the household’s wallet. The industry expects to reverse
this trend by 2002. By that time Italian households are expected to increase their traded
assets by 200%, with the insurance policies increasing their share by 250%, mutual
funds by 280%, and asset managers by 150%. The main competitive weapon in the ar-
senal of the insurance firms are innovative policies that offer both traditional insurance
and participation in the company’s profits. These policies combine features of traditional
insurance from actuarial risks and of investment vehicles such as mutual funds.

Insurance products with minimum guaranteed rate of return and bonus provisions
play today a key role in the insurers’ business portfolio. Such products were first of-
fered by insurance companies in the inflationary seventies. In order to compete with the
high yields of Treasury bonds of that time, insurance policies were enhanced with both
a minimum guaranteed rate of return and a bonus provision when asset fund returns
exceed the minimum guarantee. The right to surrender the product at any time before
maturity is also often given to policyholders. Such policies, known as unit-linked or
index-linked, are prevalent among continental European insurance companies, but they
are also encountered in the UK, United States and Canada. In the low-inflation 1990s
insurance companies still could not abandon these products due to the competitive pres-
sures outlined above.

With the historically low interest rates prevailing currently the management of such
policies is becoming more challenging. Reliance on fixed-income assets is unlikely to
yield the guaranteed rate of return. For instance, Italian guaranteed rates after 1998
are at 3%. The difference between the guaranteed rate and the ten-year yield is only
1%, which is inadequate for covering the firm’s costs. In Germany the guaranteed rates
after 1998 are at 3.5% differing from the ten-year yield only by 0.5%. Danish products
offered guarantees of 3% until 1999, which were reduced to 2% afterwards. In Japan
Nissan Mutual Life failed on a $2.56 billion liability arising from a 4.7% guaranteed
policy.

In response to the challenges facing Italian insurers, Prometeia developed an asset
and liability management system for participating insurance policies with guarantees
(Consiglio, Cocco and Zenios, 2000, 2001). The system utilizes recent advances in fi-
nancial engineering, with the use of scenario-based optimization models, to integrate
the insurer’s asset allocation problem with that of designing competitive policies. The
competing interests of shareholders, policyholders and regulators are cast in a com-
mon framework so that efficient tradeoffs can be reached. In this chapter we discuss
the model and illustrate its performance. In particular, it is shown that traditional meth-
ods are inadequate and innovative models are needed to address the complexities of
these products. The resulting model allows the insurer to address asset allocation is-
sues both locally and internationally in a way that is consistent with the offering of
competitive products and the shareholders’ interests, while satisfying the regulators.
Section 2 discusses the Italian insurance industry and describes the characteristics of
modern insurance products. Section 3 describes the model and Section 4 reports on
model performance from the perspective of the shareholders, the policyholders and the
regulators.
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2. The Italian insurance industry

The Italian insurance industry is regulated and supervised by ISVAP, Istituto per la Vigi-
lanza sulle Assicurazioni, established by law in 1982. The supervisory framework aims
at the stability of the market of insurance undertakings, and at the solvency and effi-
ciency of insurance market participants. ISVAP ensures that the technical, financial and
accounting management of institutions under its supervision complies with the laws,
regulations and administrative provisions in force.

In the performance of its duties ISVAP may require supervised undertakings to
disclose data, management practices and other related information. This supervision
monitors the undertaking’s financial position, with particular regard to the existence of
sufficient solvency margins and adequate technical provisions to ensure that adequate
assets are available to cover the entire business.

Progress of the Italian legal framework over the last twenty years—the ISVAP web
page lists 51 regulatory provisions—lead supervisors to devote increasing attention to
data processing and real-time analysis of data. With solid preventive supervision in place
ISVAP can intervene on a timely fashion in any risky situation. The availability of so-
phisticated safeguards, and the increased financial activity of the last decade driven by
the changing nature of the Italian consumer described above, brought the creation of nu-
merous and complex groups of insurance undertakings. These undertakings offer more
innovative products, in response to market pressures, and they also take a more active
role in the management of their assets and market risks in delivering quality products
to clients. The average composition of the portfolios for life insurance, for instance, has
been evolving towards more aggressive positions with increasing holdings in equity and
high-quality corporate bonds as shown in Table 2. During the same period the industry
has been promoting novel insurance policies with guarantees and participation in the
profits.

Table 2
The structure of portfolios of Italian life insurers in percentage of total assets held in the major asset cate-

gories

Year Titoli di Stato
(Govt. bonds)

Azioni
(stocks)

Obbligazioni
(bonds)

Titoli in valuta
(intnl. investment)

1995 65.2 7.8 14.8 11.4
1996 65.2 7.6 13.6 13.2
1997 60.2 9.1 14.7 15.0
1998 55.2 10.0 16.6 16.4

Source: ISVAP, the board of regulators for Italian insurers.
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2.1. Guaranteed products with bonus provisions

Financial products with guarantees on the minimum rate of return come in two distinct
flavors: maturity guarantees and multi-period guarantees. In the former case the guar-
antee applies only to maturity of the contract, and returns above the guarantee occurring
before maturity offset shortfalls at other periods. In the later case the time to maturity
is divided into subperiods—quarterly or biannually—and the guarantee applies at the
end of each period. Hence, excess returns in one sub-period cannot be used to finance
shortfalls in other sub-periods. Such guaranteed products appear in insurance policies,
guaranteed investment contracts, and some pension plans, see, e.g., Hansen and Mil-
tersen (?).

Policyholders participate in the firm’s profits, receiving a bonus whenever the return
of the firm’s portfolio exceeds the guarantee, creating a surplus for the firm. Bonuses
may be distributed only at maturity, at multiple periods until maturity, or using a com-
bination of distribution plans. Another important distinction is made according to the
bonus distribution mechanism. In particular, some products distribute bonuses using a
smoothing formula such as the average portfolio value or portfolio return over some
time period, while others distribute a pre-specified fraction of the portfolio return or
portfolio value net any liabilities. The earlier unit-linked policies would pay a benefit—
upon death or maturity—which was the greater of the guaranteed amount and the value
of the insurer’s reference portfolio. These were simple maturity guarantees with bonus
paid at maturity as well. At the other extreme of complexity we have the modern UK
insurance policies. These policies declare at each subperiod a fraction of the surplus,
estimated using a smoothing function, as reversionary bonus which is then guaranteed.
The remaining surplus is managed as an investment reserve, and is returned to cus-
tomers as terminal bonus if it is positive at maturity or upon death; see Ross (1989) and
Chadburn (1997). These policies are multi-period guarantees with bonuses paid in part
at intermediate times and in part at maturity. Further discussion on the characteristics of
products with guarantees is found in Kat (2001) and the papers cited below.

The Prometeia model described here considers multi-period guarantees with bonuses
that are paid at each subperiod and are subsequently guaranteed. The bonus is contrac-
tually determined as a fraction of the portfolio excess return above the guaranteed rate
during each subperiod. The guaranteed rate is also contractually specified. To illustrate
the nature of this product, we graph in Figure 2 the growth of a liability that participates
by 85% in a given portfolio while it guarantees a return of at least 3% in each period.
The liability is lifted every time a bonus is paid and the minimum guarantee applies to
the increased liability: what is given cannot be taken away. This feature creates a com-
plex nonlinear interaction between the rate of return of the portfolio and the total return
of the liability.

2.2. Current asset and liability management practices

The shift from actuarial to financial pricing of insurance liabilities (Embrechts, 2000;
Babbel, 2001) and widely perceived problems (highlighted by the Nissan bankruptcy
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Fig. 2. Typical returns of the asset portfolio and a participating policy with a multi-period guaranteed return
of 3% and participation rate of 85%. The guarantee applies to a liability that is lifted every time a bonus is
paid as illustrated at period seven. The asset portfolio experienced substantial losses at period seven while the
liability grew at the 3% guaranteed rate. Subsequent superior returns of the assets allowed the firm to recover

its losses by the tenth period and achieve a positive net return at maturity.

case) brought about an interest in applying the theory of financial asset pricing to the
analysis of insurance policies with guarantees and bonus provisions; see, e.g., Giraldi
et al. (?). Single period guarantees have payoffs that resemble those of a European-type
option, as the policyholder receives at maturity the maximum between the guaranteed
amount and the value of the bonus. Multi-period guarantees may have features, such as
a surrender options, that makes their payoff identical to American type options. Hence,
option pricing could be applied to the pricing of these policies.

The pricing of the option embedded in the early products with guarantees was ad-
dressed in the seminal papers of Brennan and Schwartz (1976) and Boyle and Schwartz
(1977). They analyzed unit-linked maturity guarantee policies. Perhaps the most com-
plete analysis of modern life insurance contracts—complete in the sense that it prices
in an integrated framework several components of the policy—is due to Grosen and
Jørgensen (2000). They decompose the liability of modern participating policies with
guarantees into a risk-free bond (the minimum guarantee), a bonus option, and a surren-
der option. The first two taken together are a European contract and all three together
are an American contract, and the authors develop numerical techniques for pricing
both. Hansen and Miltersen (2002) extend this model to the pricing of contracts with
a smoothing surplus distribution mechanism of the form used by most Danish life-
insurance companies and pension plans. They use the model to study different methods
for funding these products, either by charging the customers directly or by keeping a

hfalm2 v.2006/12/06 Prn:25/01/2007; 9:35 F:hfalm2015.tex; VTEX/Jurgita p. 8
aid: 2015 pii: S1872-0978(06)02015-1 docsubty: REV



Ch. 15: The Prometeia Model for Managing Insurance Policies with Guarantees 671

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

share of the surplus. Similarly, Bacinello (2001) develops pricing models that permit
her to study the interplay between the volatility of the underlying asset portfolio, the
participation level for determining bonuses, and the guaranteed rate. Boyle and Hardy
(1997) take this line of inquiry in a different direction by analyzing alternative reserving
methods for satisfying the guarantee. More practical aspects of the problem are studied
by Giraldi et al. (?) and Siglienti (2000).

It is worth noting that current literature assumes the asset side is given a priori
as a well-diversified portfolio which evolves according to a given stochastic process.
For instance, Brennan–Schwartz, Grosen–Jørgensen and Bacinello assume a geomet-
ric Browning motion, while Miltersen and Persson (1999) rely on the Heath–Jarrow–
Morton framework and price multi-period guaranteed contracts linked either to a stock
investment or the short-term interest rate. There is nothing wrong with these approaches,
of course, except that part of the problem of the insurance companies is precisely to de-
termine the structure of the asset portfolio. Indeed, all of the above references carry out
simulations for different values of the volatility of the assets. Brennan and Schwartz
(1979) devote a section to the analysis of “misspecification of the stochastic process”.
Bacinello goes on to suggest that the insurance company should structure several ref-
erence portfolios according to their volatility and offer its customers choices among
different triplets of guaranteed rate, bonus provision, and asset portfolio volatility. To
this suggestion of endogenizing the asset decision we subscribe. It is a prime example
of integrated financial product management advocated by Holmer and Zenios (1995).

Independently of the literature that prices the option embedded in the liabilities we
have seen an interest in the use of portfolio optimization models for asset and liability
management for insurance companies. The most prominent example is for a Japanese
insurance firm—not too surprising given what has transpired in the Japanese financial
markets—the Yasuda Kasai model developed by the Frank Russel Company. This model
received coverage not only in the academic literature but also in the press, see Carinõ
and Ziemba (1998). Other successful examples include the Towers Perrin model of
Mulvey and Thorlacius (1998), the CALM model of Consigli and Dempster (1998)
and the Gjensidige Liv model of Høyland (1998). These models have been success-
ful in practical settings but their application does not cover participating policies with
guarantees. One reason is that insurance firms pursued integrated asset and liability
management strategies for those products they understood well. This has been the case
for policies that encompass mostly actuarial risk such as the fire and property insurance
of the Yasuda Kasai model. Another reason is that the technology of scenario optimiza-
tion through large-scale stochastic programming has only recently been developed into
computable models, see, e.g., Censor and Zenios (1997).

Finally, the combination of a guarantee with a bonus provision introduces nonlin-
earities which complicate the model. Traditional approaches such as the mean-variance
analysis are inadequate as they fails to capture some important characteristics of the
problem. There is nothing efficient about efficient portfolios when the nonlinearity of
the embedded options is properly accounted for. Novel models are needed to integrate
the asset management problem with the characteristics of liabilities with minimum guar-
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antee. Such a model was developed through a multi-year collaborative effort between
academic researchers, the research staff at Prometeia in Bologna, and end-users from
diverse Italian insurers. It is presented next.

3. The scenario optimization model

We develop in this section the model for asset and liability management for multi-period
participating policies with guarantees. It is a mathematical program that models sto-
chastic variables using discrete scenarios. All portfolio decisions are made at t = 0 in
anticipation of an uncertain future. At the end of the planning horizon the impact of
these portfolio decisions in different scenarios is evaluated and risk aversion is intro-
duced through a utility function. Portfolio decisions optimize the expected utility over
the specified horizon.

3.1. Features of the model

In the model we consider three accounts: (i) a liability account that grows according
to the contractual guaranteed rate and bonus provision, (ii) an asset account that grows
according to the portfolio returns, net any payments due to death or policy surrenders,
and (iii) a shortfall account that monitors lags of the portfolio return against the guar-
antee. In the base model shortfall is funded by equity but later we introduce alternative
reserving methods.

The multi-period dynamics of these accounts are conditioned on discrete scenarios of
realized asset returns and the composition of the asset portfolio. Within this framework
a regulatory constraint on leverage is imposed. At maturity the difference between the
asset and the liability accounts is the surplus realized by the firm after it has fulfilled
its contractual obligations. In the policies considered here this surplus remains with the
shareholders. This surplus is a random variable, and a utility function is introduced to
incorporate risk aversion.

3.2. Notation

We let Ω denote the index set of scenarios l = 1, 2, . . . , N , indicating realizations of
random variables, U the universe of available asset instruments, and t = 1, 2, . . . , T ,
discrete points in time from today (t = 0) until maturity T . The data of the problem are
as follows:

rl
it rate of return of asset i during the period t − 1 to t in scenario l.

rl
f t risk free rate during the period t − 1 to t in scenario l.

g minimum guaranteed rate of return.
β participation rate indicating the percentage of portfolio return paid to policyhold-

ers.
ρ regulatory equity to debt ratio.
Λl

t probability of abandon of the policy due to lapse or death at period t in scenario l.
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The variables of the model are defined as follows:

xi percentage of initial capital invested in the ith asset.

yl
At expenses due to lapse or death at time t in scenario l.

zl
t shortfall below the guaranteed rate at time t in scenario l.

Al
t asset value at time t in scenario l.

El
t total equity at time t in scenario l.

Ll
t liability value at time t in scenario l.

Rl
P t portfolio rate of return during the period t − 1 to t in scenario l.

y+l
t excess return over g at time t in scenario l.

y−l
t shortfall return under g at time t in scenario l.

3.3. Variable dynamics and constraints

We invest the premium collected (L0) and the equity required by the regulators (E0 =
ρL0) in the asset portfolio. Our initial endowment A0 = L0(1+ρ) is allocated to assets
in proportion xi such that

∑
i∈U xi = 1, and the dynamics of the portfolio return are

given by

(1)Rl
P t =

∑
i∈U

xir
l
it , for t = 1, 2, . . . , T , and for all l ∈ Ω.

The investment variables are nonnegative so that short sales are not allowed.
We now turn to the modeling of the liability account. Liabilities will grow at a rate

which is at least equal to the guarantee. Excess returns over g are returned to the pol-
icyholders according to the participation rate β. The dynamics of the liability account
are given by

Ll
t = (

1 − Λl
t

)
Ll

t−1

(
1 + max

[
βRl

P t , g
])

,

(2)for t = 1, 2, . . . , T , and for all l ∈ Ω.

The max operator introduces a discontinuity in the model. To circumvent this diffi-
culty we introduce variables y+l

t and y−l
t to measure the portfolio excess return over the

guaranteed rate, and the shortfall below the guarantee, respectively. They satisfy

(3)βRl
P t − g = y+l

t − y−l
t , for t = 1, 2, . . . , T , and for all l ∈ Ω,

y+l
t � 0, y−l

t � 0, y+l
t y−l

t = 0,

(4)for t = 1, 2, . . . , T , and for all l ∈ Ω.

Only one of these variables can be nonzero at any given time and in a given scenario.
The dynamics for the value of the liability are rewritten as

(5)Ll
t = (

1 − Λl
t

)
Ll

t−1

(
1 + g + y+l

t

)
, for t = 1, 2, . . . , T , and for all l ∈ Ω.
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Liabilities grow at least at the rate of g. Any excess return is added to the liabilities and
the guarantee applies to the lifted liabilities.

At each period the insurance company makes payments due to policyholders aban-
doning their policies because of death or lapse. Payments are equal to the value of the
liability times the probability of abandonment, i.e.,

(6)yl
At = Λl

tL
l
t−1

(
1 + g + y+l

t

)
, for t = 1, 2, . . . , T , and for all l ∈ Ω.

Whenever the portfolio return is below the guaranteed rate we need to infuse cash into
the asset portfolio in order to meet the final liabilities. The shortfall account is modeled
by the dynamics

(7)zl
t = y−l

t Ll
t−1, for t = 1, 2, . . . , T , and for all l ∈ Ω.

In the base model shortfalls are funded through equity. We assume that equity is
reinvested at the risk-free rate and is returned to the shareholders at the end of the
planning horizon. (This is not all the shareholders get; they also receive dividends.) The
dynamics of the equity are given by

(8)El
t = El

t−1

(
1 + rl

f t

) + zl
t , for t = 1, 2, . . . , T , and for all l ∈ Ω.

By assuming the risk free rate as the alternative rate at which the shareholders could
invest their money, we analyze the excess return offered to shareholders by the partici-
pating contract modeled here, over the benchmark risk free investment. In principle, one
could use the firm’s internal rate of return as the alternative rate, and analyze the excess
return offered by the policy modeled here, over the firm’s other lines of business. In
this setting, however, the problem would not be to optimize the asset allocation to max-
imize shareholder value, since this would already be endogenous in the internal rate
of return calculations. Instead we could determine the most attractive features for the
policyholders—g and β—that will make the firm indifferent in offering the new policy
or maintaining its current line of business. This approach deserves further investigation.
For the purpose of optimizing alternative policies for the shareholders, while satisfying
the contractual obligations to the policyholders, the estimation of excess return over the
risk free rate is a reasonable benchmark. In Sections 4.3.1 and 4.3.3 we consider other
alternatives for funding the shortfalls through long-term debt or short-term borrowing.

We now have the components needed to model the asset dynamics, taking into ac-
count the cash infusion that funds shortfalls, zl

t , and the outflows due to actuarial events
yl
At , i.e.,

(9)Al
t = Al

t−1

(
1 + Rl

P t

) + zl
t − yl

At , for t = 1, 2, . . . , T , and for all l ∈ Ω.

In order to satisfy the regulatory constraint the ratio between the equity value and
liabilities must exceed ρ. That is,

(10)
V l

ET

Ll
T

� ρ, for all l ∈ Ω,
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where V l
ET is the value of equity at the end of the planning horizon T . If the company

sells only a single policy the value of its equity will be equal to the final asset value—
which includes the equity needed to fund shortfall—minus the final liability due to the
policyholders, and we have

(11)V l
ET = Al

T − Ll
T .

Having described the assets and liability accounts in a way that the key features of
the policy—guaranteed rate and bonus provisions—are accounted for, we turn to the
choice of an appropriate objective function. We model the goal of a for-profit institution
to maximize the return on its equity, and, more precisely in this case, to maximize any
excess return on equity after all liabilities are paid for. Since return on equity is scenario
dependent we maximize the expected value of the utility of excess return. This expected
value is converted into a certainty equivalent for easy reference. The objective function
of the model is to compute the maximal Certainty Equivalent Excess Return on Equity
(CEexROE) given by

(12)CEexROE
.= U−1

{
Max

x

1

N

∑
l∈Ω

U

{
Al

T − Ll
T

El
T

}}
,

where U{·} denotes the decision maker’s utility function and Al
T − Ll

T is the share-
holder’s reward in scenario l. We assume a power utility function with constant relative
risk aversion of the form U(V ) = 1

γ
V γ , where V � 0, and γ < 1. In the base model

we assume γ = 0 in which case the utility function is the logarithm corresponding to
growth-optimal policies for the firm. In Section 4.5.1 we study the effect of changing
the risk aversion parameter.

As a byproduct of our model we calculate the cost of funding the guaranteed product.
Every time the portfolio return drops below the guaranteed rate, we counterbalance the
erosion of our assets by infusing cash. This cost can be charged either to the policyhold-
ers, as soon as they enter the insurance contract, or covered through shareholder’s equity
or by issuing debt. These choices entail a tradeoff between the return to shareholders
and return to policyholders. We study in the next section this tradeoff.

The cost of the guarantee is the expected present value of reserves required to fund
shortfalls due to portfolio performances below the guarantee. The dynamic variable
El

t models precisely the total funds required up to time t , valued at the risk-free rate.
However, El

t also embeds the initial amount of equity required by the regulators. This
is not a cost and it must be deducted from El

t . Thus, the cost of the guarantee is given
as the expected present value of the final equity El

T adjusted by the regulatory equity,
that is,

(13)�OG = 1

N

N∑
l=1

(
El

T∏T
t=1(1 + rl

f t )
− ρL0

)
.

�OG is the expected present value of the reserves required to fund this product. This
can be interpreted as the cost to be paid by shareholders in order to benefit from the
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upside potential of the surplus. A more precise interpretation of �OG is as the expected
downside risk of the policy. This is not the risk-neutral price of the participating policies
with guarantees that would be obtained under an assumption of complete markets for
trading the liabilities arising from such contracts. This is the question addressed through
an options pricing approach in the literature cited above, Brennan–Schwartz, Boyle–
Schwartz, Bacinello, Grosen–Jørgensen, Hansen–Miltersen, Miltersen–Persson.

3.4. Linearly constrained optimization model

The model defined in the previous section is a nonlinearly constrained optimization
model and is computationally intractable for large scale applications. However, the non-
linear constraints (5)–(9) are definitional constraints which determine the value of the
respective variables at the end of the horizon. We solve these dynamic equations analyt-
ically (see Appendix A) to obtain end-of-horizon analytic expressions for Al

T , Ll
T , and

El
T . These expressions are substituted in the objective function to obtain the equivalent

linearly constrained nonlinear program below. The regulatory constraint (10), however,
cannot be linearized. For solution purposes the regulatory constraint is relaxed and its
validity is tested ex post. Empirical results later on demonstrate that the regulatory con-
straint is not binding for the policies considered here and for the generated scenarios of
asset returns. However, there is no assurance that this will always be the case, and we
may need to resort to nonlinearly constrained optimization for solving this model.

Maximize
x�0

1

N

∑
l∈Ω

U

{[
(1 + ρ)

T∏
t=1

(
1 + Rl

P t

) +
T∑

t=1

(
y−l
t − Λl

t

(
1 + g + y+l

t

))

×
T∏

τ=t+1

(
1 + Rl

Pτ

) t−1∏
τ=1

(
1 + g + y+l

τ

)(
1 − Λl

τ

)

−
T∏

t=1

(
1 − Λl

t

)(
1 + g + y+l

t

)]

(14)

/[
ρ

T∏
t=1

(
1 + rl

f t

) +
T∑

t=1

y−l
t φ(t, T )

t−1∏
τ=1

(
1 − Λl

τ

)(
1 + g + y+l

τ

)]}

(15)s.t.
∑
i∈U

xi = 1,

(16)βRl
P t − g = y+l

t − y−l
t , for t = 1, 2, . . . , T , and for all l ∈ Ω,

(17)Rl
P t =

∑
i∈U

xir
l
it , for t = 1, 2, . . . , T , and for all l ∈ Ω.

The inverse of the utility function, U−1, of the optimal objective value of this problem
is the CEexROE.
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3.5. Surrender option

The probability of abandon Λl
t is determined from both actuarial events (death) and

economic considerations (surrendering the policy). The actuarial component is readily
obtained from mortality tables. However, the lapse behavior of policyholders needs to be
modeled taking into account the economic incentive to surrender the policy and invest
into competing products. This dimension is modeled here.

Modeling the lapse behavior serves as a sensitivity analysis of the model for study-
ing errors introduced due to various sources of model risk. For instance, in recent years
many actuaries have pointed out that the aging of the population has introduced a model-
ing risk in the actuarial framework. The longevity risk affects the probability of survival
for sectors of the population in their retirement years. Pension fund managers will then
face higher liabilities than those planned. On the contrary, life insurance products ben-
efit from longevity risk since the payments due to death are reduced. The modeling of
lapse undertaken here is but one example of the additional sources of uncertainty that
could be incorporated in the model if data are available.

We discuss here two assumptions about policy lapse which can be embedded into the
model.
Fixed lapse: Under this assumption the probability of surrendering the policy (Λt ) is

constant throughout the life of the contract. This assumption is quite realistic. For
instance, an analysis of a panel of British households shows that the percentage of
lapse is constant over the period 1994–1997 and it averages to 1.4% (see the Personal
Investment Authority report, 1999). An estimate from rough data available to us for
Italian households indicate a modest lapse rate of the order of 2%.

Variable lapse: Under this assumption the policyholders’ decision to surrender their
policy is affected by economic factors. For instance, in the analysis of mortgage
backed securities (see Kang and Zenios, ?) prepayment models are calibrated to
describe household attitude towards market factors, such as the prevailing mortgage
refinancing rates, and social factors such as age of the household and demographics.
Similarly we can link the dynamics of Λl

t to economic variables. If we assume that
lapse is driven by the minimum guarantee level g, then the lapse probability is a
function of the spread between g and the rate on other investments offered in the
capital markets

(18)Λl
t = f

(
rl
I t − g

)
,

where rl
I t is a suitable benchmark of the return offered by competing products; this

can be, for instance, the return on the 10-year Government bond index. The surrender
probability is now indexed by scenario as it depends on the competitors’ rate rl

I t . We
expect policyholders to surrender their policies when alternative investments provide
a return higher than the guarantee g.

Perhaps the most significant factor affecting lapse is the bonus policy followed
by the company. Evidence to this is provided for some similar products—single
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premium deferred annuities—by Asay, Bouyoucos and Marciano (1993). If the in-
surance company’s crediting rate is significantly lower than that of the competition
then lapse rates will be high. In participating policies the credit rate is determined by
the performance of the portfolio. Thus, an integrative asset and liability management
approach is essential in accurately capturing the lapse rates of these products.

Assuming that the competitors offer rates equal to the relevant market benchmark,
we express lapse rates in the form

(19)Λl
t = f

(
rl
I t − (

g + ε+l
t

))
.

(Recall that g+ε+l
t is the rate credited to policyholders and it reflects both the guarantee

and the bonus policy.) This formula embodies the complex games facing the insurer:
large minimum guarantees subdue the effects of the competition but come at a large
cost or low CEexROE. This will also be demonstrated in Section 4 where the model is
validated.

A convenient general form for function f (·) governing the surrender behavior has
been studied by Asay, Bouyoucos and Marciano (1993). In this study the lapse proba-
bility is given by

(20)Λl
t = a + b tan−1[m(

rl
I t − ilt − y

) − n
]
.

The variable ilt is the company’s credit rate which can be modeled as a constant
(Eq. (18)) or as a variable determined by policy and market performance (Eq. (19)),
rl
I t is the rate offered by the competitors, and y is a measure of policyholders’ inertia

in exercising the surrender option. The parameters a, b, m, n are chosen to give lapse
rates that fit historically observed data. For instance, the model should fit the lowest and
highest lapse rates that have been observed under extremely favorable and unfavorable
conditions, and the lapse rates observed when the insurance product was offering the
same credit rates as the benchmark.

Figure 3 shows different lapse curves when varying the parameter to fit maximum
and minimum values and different average lapse rates. Lapse rates will be, on the aver-
age, lower when there are large penalties for early surrender of the policy. The different
curves shown in the figure could fit, for instance, the historically observed lapse rates
of policies with different surrender charges. We observe that lapse rates may differ sub-
stantially when the company is offering a credit rate which is less than the competitors’
rate. This situation occurs when assets perform poorly with respect to the rest of the in-
dustry. Careful modeling of the lapse behavior is needed in these cases to avoid igniting
a vicious circle which could lead to bankruptcy.

3.6. Model extensions

We point out possible extensions of this model. Periodic premia can readily be incorpo-
rated into Eq. (9). Bonus policies based on averaging portfolio performance can also be
included in the model. The liability equation (2) must be modified to include average
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Fig. 3. Typical lapse functions with average lapse rates ranging from 7 to 12%.

portfolio performance over the history of interest (say the last th periods) as follows

(21)Ll
t = (

1 − Λl
t

)
Ll

t−1

(
1 + max

[
β

t∑
τ=t−th

Rl
P τ , g

])
,

for t = 1, 2, . . . , T , and for all l ∈ Ω .
Guaranteed rates and bonus rates that are exogenously given functions of time, gt

and βt , are easy to incorporate. Similarly, we can incorporate liabilities due to lapse,
although a lapse model must first be built and calibrated as discussed above. Incorpo-
rating participation rates that are functions of the asset returns—as is the case with the
UK insurance policies—complicates the model since the participation rate βt is a vari-
able; see, e.g., Consiglio, Saunders and Zenios (2003, 2006). The split of bonus into
reversionary bonus, which is guaranteed, and an investment reserve which is returned
as a bonus at maturity, if nonnegative, introduces significant modifications to the model.
These issues are discussed in Section 3.7.

The base model developed here funds shortfalls through equity. Extensions to deal
with the funding of shortfalls through long- or short-term debt are given in Sec-
tions 4.3.1 and 4.3.3, respectively. Furthermore, unlimited access to equity for fund-
ing shortfalls is assumed in the base model. We could do away with this assumption
by imposing additional constraints, but this would complicate the model rendering it
computationally intractable. The probability of insolvency is analyzed through post-
optimality analysis in Section 4.3.2, and is used to guide the debt structure in funding
shortfalls using a combination of equity and debt.
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3.7. Reversionary and terminal bonuses

Some policies use a smoothing mechanism to estimate bonuses, disbursing higher
bonuses when market conditions are favorable, and decreasing bonuses when the in-
surer’s portfolio is under-performing. Changes are autoregressive so that big swings are
avoided, as those are viewed unfavorably by policyholders. The policies offered in the
UK are the best known example with these characteristics. The bonus philosophy of the
UK insurers is based on regulatory requirements that bonus distribution should accord
with the policyholders’ reasonable expectations of the company’s behavior (Ross, 1989;
Chadburn, 1997).

To satisfy the policyholders’ expectations UK insurers offer reversionary bonuses
that, once announced, are subsequently guaranteed. In addition, they deliver a terminal
bonus, that is, a function of the excess asset value upon maturity. In general, the rever-
sionary bonus and the guaranteed rates of the UK insurers are lower than those offered
by their Italian colleagues. However, policyholders receive the lion’s share of any excess
asset value, while in the Italian case the insurer’s shareholders benefit from the terminal
excess asset value. Italian insurers offer a big bird at hand, but nothing in the bush; UK
insurers offer a small bird at hand, and ten in the bush.

To model these policies we introduce variable RBl
t to denote the reversionary bonus

disbursed at period t in scenario l. This variable evolves according to the autoregressive
equation

(22)RBl
t = 0.5RBl

t−1 + ΔBl
t ,

where the constant 0.5 ensures that policyholders are not too unpleasantly surprised by
downward swings of their bonuses, and ΔBl

t is the change in the bonus. This may be
positive or negative and is computed as follows

(23)ΔBl
t = 0.5 max

[
rl
I t − g

1 + g
, 0

]
− 0.25 max

[
Ll

t − Al
t

Al
t

, 0

]
.

The first term on the right of this equation is positive whenever some benchmark return
rl
I t exceeds the guarantee, otherwise it is zero. The benchmark return is taken in the

UK to be the yield on long risk free securities. The second term is positive whenever
the asset value is less than the liability value, otherwise it is zero. With this formula the
bonus rate is increased whenever the market rates increase, but it is decreased whenever
the insurer faces the prospect of insolvency.

The variable dynamics and constraints of policies with smoothed reversionary and
terminal bonuses can now be formulated, building on the base model of Section 3.3.

The dynamics of the liability account are given by

(24)Ll
t = (

1 − Λl
t

)
Ll

t−1(1 + g)
(
1 + max

[
RBl

t−1, 0
])

,

for t = 1, 2, . . . , T , and for all l ∈ Ω .
Liability payments are exactly as in the base model

(25)yl
At = Λl

tL
l
t−1

(
1 + g + y+l

t

)
, for t = 1, 2, . . . , T , and for all l ∈ Ω.
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The asset dynamics take into account outflows due to actuarial events but, unlike the
base model, there is no cash infusion. The asset value is allowed to go below the liability
value and this will have an effect on the reversionary bonus.

(26)Al
t = Al

t−1

(
1 + Rl

P t

) − yl
At , for t = 1, 2, . . . , T , and for all l ∈ Ω.

The equity equation from the base model (8) is split into two equations: One that
models the dynamics of the shareholder equity growing at the risk free rate, and one
that models shortfalls so that the total shortfall (if any) at maturity can be assessed. The
shareholder equity follows the dynamics

(27)El
t = El

t−1

(
1 + rl

f t

)
, for t = 1, 2, . . . , T , and for all l ∈ Ω.

The lag of assets against the liabilities is given by

(28)E′l
t = max

[
(1 + ρ)Ll

t − Al
t , 0

]
,

and whenever the lag increases the total shortfall, zl
t , increases according to the dynam-

ics

(29)zl
t = zl

t−1

(
1 + rl

f t

) + max
[(

E′l
t − E′l

t−1

)
, 0

]
,

for t = 1, 2, . . . , T , and for all l ∈ Ω .
With these dynamics the terminal bonus paid to policyholders at maturity T is given

by

(30)TBl
T = γ max

[
Al

T − Ll
T , 0

]
,

and the return on equity to shareholders is given by

(31)ROEl = Al
T − Ll

T − TBl
T

El
T

.

4. Model testing and validation

We now turn to the testing of the model. We start first with the application of the tradi-
tional portfolio diversification approach based on the mean-variance optimization. We
show that the standard application of the mean-variance optimization fails to capture
some important characteristics of the problem. There is nothing efficient about efficient
portfolios when the nonlinearity of the embedded options is properly accounted for. We
show that the novel model based on scenario optimization adds value to the risk man-
agement process for these complex insurance products. The value of integrated financial
product management is extensively argued in practice, see, e.g., Stulz (?) but case stud-
ies showing that an integrative perspective adds value are scant; see Holmer and Zenios
(1995) for some examples.

Second, we show that the model quantifies the tradeoffs between the different targets
of the insurance firm: providing the best products for its policyholders, providing the
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highest excess return to its shareholders, satisfying the guarantee at the lowest possible
cost and with high probability. Some interesting insights are obtained on the structure
of the optimal portfolios as the tradeoffs vary across the spectrum.

Third, we analyze alternative debt structures whereby the cost of the guarantee is
funded through equity or through debt with either long or short maturities.

Fourth, we study some additional features of the model: the effects of the choice of a
utility function, the effects of using international asset classes and corporate bonds and
the effects of policy surrender options (lapse).

Finally, we will see from the empirical results that the Italian insurance industry
operates at levels which are close to optimal but not quite so. There is room for im-
provement either by offering more competitive products or by generating higher excess
returns for the benefit of the shareholders. How are the improvements possible? The
answer is found in the comparison of the optimal portfolios generated by our model
with benchmark portfolios. We will see that the benchmark portfolios generate trade-
offs in the space of cost of guarantee vs. net excess return on equity that are inefficient.
The optimized portfolios lead to policies with the same cost but higher excess return on
equity.

The basic asset classes considered in our study are 23 stock indexes of the Milano
Stock Exchange, and three Salomon Brother indexes of Italian Government bonds (Ap-
pendix B). Italian insurers are also allowed to invest up to 10% of the value of their
portfolio in international assets. We report results with the inclusion of international
asset classes: the Morgan Stanley stock indices for USA, UK and Japan and the J.P. Mor-
gan Government bond indices for the same countries.

We employ a simple approach for generating scenarios using only the available data
without any mathematical modeling, by bootstrapping a set of historical records. Each
scenario is a sample of returns of the assets obtained by sampling returns that were ob-
served in the past. Dates from the available historical records are selected randomly, and
for each date in the sample we read the returns of all assets classes realized during the
previous month. These samples are scenarios of monthly returns. To generate scenarios
of returns for a long horizon—say 10 years—we sample 120 monthly returns from dif-
ferent points in time. The compounded return of the sampled series is one scenario of
the 10-year return. The process is repeated to generate the desired number of scenar-
ios for the 10-year period. With this approach the correlations among asset classes are
preserved.

Additional scenarios could also be included, although methods for generating them
should be specified. Model-based scenario generation methods for asset returns are pop-
ular in the insurance industry—e.g., the Wilkie (1995) model or the Towers Perrin model
(Mulvey and Thorlacius, 1998)—and could be readily incorporated into the scenario op-
timization model. Alternatively, one could use expert opinion or “scenario proxies” as
discussed in Dembo et al. (2000).

For the numerical experiments we bootstrap monthly records from the ten year period
January 1990 to February 2000. The monthly returns are compounded to yearly returns.
For each asset class we generate 500 scenarios of returns during a 10 year horizon (T =
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120 months). We consider an initial liability L0 = 1 for a contract with participation
rate β = 85% and equity to liability ratio ρ = 4%. The model is tested for guarantees
ranging from 1 to 15%.

In our experiments we set lapse probabilities to zero and the probability that a policy-
holder abandons the policy is the mortality rate which we obtain from the Italian mor-
tality tables. For each model run we determine the net annualized after-tax CEexROE

(32)
( T
√

CEexROE − 1
)
(1 − κ),

where κ is the tax rate set at 51%.

4.1. The value of integrative asset and liability management

In this section we compare the scenario optimization asset and liability management
model with traditional asset allocation using the mean-variance analysis. We demon-
strate that the integrative approach adds value to the asset and liability management
process.

4.1.1. Traditional approach using mean-variance asset allocation

Diversified portfolios of stocks and bonds for an Italian insurance firm are built using the
mean-variance optimization. Using the asset classes of the Italian stock and bond mar-
kets, we obtain the efficient frontier of expected return vs. standard deviation illustrated
in Figure 4. Should an insurance firm offering a minimum guarantee product choose
portfolios—based on its appetite for risk—from the set of efficient portfolios? On the
same figure we plot each one of the efficient portfolios in the space of shareholder’s
reward (CEexROE) versus the firm’s risk (cost of the guarantee). There is nothing ef-
ficient about efficient portfolios when the liability created by the minimum guarantee
policy is accounted for. Portfolios from A to G are on the mean-variance frontier that
lies below the capital market line. It is not surprising that they are not efficient in the
CEexROE vs. cost-of-guarantee space. However, the tangent portfolio G is also ineffi-
cient. A more aggressive portfolio strategy is needed in order to achieve the minimum
guaranteed return and deliver excess return to shareholder. And still this increasing ap-
petite for higher but risky returns is not monotonic. As we move away from portfolio G
towards the most risky portfolio B, we see at first the cost of the guarantee declining
and CEexROE improving. But as we approach B the shareholder’s value erodes, just as
Siglienti found out from his simulations. For these very volatile portfolios the embed-
ded option is deep in-the-money, and shareholders’ money are used to compensate for
the shortfalls without realizing any excess returns.

This first step of our analysis has shown that it is important to take an integrative
view of the asset allocation problem of firms issuing products with guarantees. Properly
accounting for the cost of the guarantee is important, if the firm is to avoid unnecessary
risk exposures and destroy the shareholder’s value.
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Fig. 4. Mean-variance efficient portfolios of Italian stocks and bonds and the capital market line (top) and
the corresponding certainty equivalent excess return of equity (CEexROE) to shareholders vs. cost of the

minimum guarantee for each portfolio (bottom).

In a nutshell the management of minimum guarantee products is a balancing act. Too
much reliance on bonds and the guarantee is not met. Excessive reliance on stocks and
shareholder’s value is destroyed.

Is it possible to incorporate the random liability in a mean-variance model, and de-
velop efficient portfolios in the CEexROE vs. cost-of-guarantee space? Unfortunately,
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the return of the liability depends on the return of the asset portfolio and this is not
known without determining simultaneously the structure of the asset portfolio. The re-
turn of the liability is endogenous to the portfolio selection model. Furthermore, the
liability return has a floor—the minimum guarantee. This creates nonlinearities in the
model, and highly asymmetric returns that are not conducive to mean-variance type
of modeling. While semi-variance or other risk measures could be used to handle the
asymmetric returns, the problem that the return of the liability is endogenous to the
portfolio selection model remains. The integrative model developed earlier is essential.

4.1.2. Integrative asset and liability modeling

The results in Figure 5 show the tradeoff between upside potential versus the downside
risk achieved when using the models of this paper. Each point on this figure corresponds
to an optimal asset portfolio for each level of minimum guarantee. On the same figure
we plot the tradeoff between CEexROE and cost of the guarantee from the portfolios
of Figure 4. We see that even portfolio H is dominated by the portfolios obtained by
an integrative model. The traditional approach of portfolio diversification—Figure 4
(top)—followed by a post optimality analysis to incorporate the minimum guarantee
liability and its cost—Figure 4 (bottom)—yields suboptimal results. The integrative ap-
proach adds value. The analysis carried out here with market data for a real policy shows
that the added value can be substantial.

Fig. 5. Certainty equivalent excess return of equity (CEexROE) to shareholders vs. cost of the minimum
guarantee for the integrated portfolios at different levels of minimum guarantee, and for the mean-variance

efficient portfolios (insert).
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4.2. Analysis of the tradeoffs

We now turn to the analysis of the tradeoffs between the guaranteed rate of return of-
fered to policyholders and the net CEexROE on shareholders’ equity. This is shown
in Figure 6, where the optimal asset allocation among the broad classes of bonds and
stocks is also shown for the different guaranteed returns.

Fig. 6. Net CEexROE (annualized) for different levels of the guarantee (top) and the corresponding broad
asset allocations (bottom).
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At first glance the portfolio structures appear puzzling. One expects that as the guar-
antee increases the amount of stock holdings should grow. However, we observe that for
low guarantees (less than 7% for the market sectors we consider) the holdings in stock
increase with lower guarantees. For low g the embedded option is far out of the money,
even when the asset portfolio is mostly equity and very volatile. The asset allocation
strategy maximizes CEexROE by taking higher risks in the equities market. A marginal
increase of the shortfall cost allows higher CEexROE. This is further clarified in Fig-
ure 5, showing the tradeoff between cost of the guarantee and net annualized CEexROE.
At values of g less than 7% the option embedded in the liability is out-of-the-money
and any excess return is passed on to the shareholders thus improving CEexROE. As
the guarantee increases above 7%, the option goes deeper into the money, the cost of
the guarantee increases significantly and CEexROE erodes. Note from Figure 6 that
higher values of the guarantee must be backed by aggressive portfolios with high equity
content, but in this case the portfolio volatility is not translated into high CEexROE for
the shareholders but into higher returns for the policyholders. This is consistent with the
conclusion of Siglienti (2000) that excessive investments in equity destroy shareholder’s
value. However, for the guaranteed rates of 3 to 4% offered by Italian insurers it appears
that the optimal portfolios consist of 20 to 25% in equities, as opposed to 15% that was
obtained by Siglienti using simulations. This discrepancy could be, in part, due to the
data of scenario returns used in his study and ours. However, it may also be due to the
fact that with the scenario model developed here the portfolio composition is optimized.

4.3. Analysis of alternative debt structures

So far we have assumed that the cost of the guarantee is covered by shareholders. It
is possible, however, that such costs are charged to policyholders or funded by issu-
ing debt. (Note that for mutual insurance firms the policyholders are the shareholders
so the point of who pays for the cost is mute. However, the issue of raising debt re-
mains.) In either case there are advantages and disadvantages. In particular, if we let
the policyholder assume the total cost, we run the risk of not being competitive, loose
market share, and experience increased lapse. If we issue debt, we are liable for inter-
est payments at the end of the planning horizon which could reduce our final return.
Furthermore, companies face leverage restrictions. It may not be possible to cover all
the cost of the guarantee by issuing debt because it will increase the leverage of the
company beyond what is allowed by the regulators or accepted by the market.

Another important point in pursuing this question concerns the maturity of the issued
debt. We start by considering long-term debt.

4.3.1. Long-term financing of shortfalls

To issue long-term debt we determine the amount of cash that we need to borrow in
order to cover, with a certain probability, future expenditures due to shortfalls over all
scenarios. If we indicate by α a confidence level we are searching for the α-percentile,
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Oα
G, such that the cost of the guarantee Ol

G in scenario l satisfies

(33)P
(
Ol

G � Oα
G | l ∈ Ω

) = α.

The cost of the guarantee in scenario l is given by Eq. (13) as

(34)Ol
G = El

T∏T
t=1(1 + rl

f t )
− ρL0.

Note that Oα
G need not to be raised through the issue of debt only. It is just the re-

serves needed to fund shortfalls. Strategic considerations will subdivide Oα
G among

policyholder charges, CG, issue of debt or direct borrowing from money markets, DG,
and/or equity supplement, ES . Thus, we have

(35)Oα
G = CG + DG + ES.

Given the debt structure implied in (35) we determine the final income I l
T , for each

scenario l ∈ Ω , as

(36)I l
T = Al

T − Ll
T − DG(1 + rf + δ)T + (CG − JS)

T∏
t=1

(
1 + rl

f t

)
,

where JS are the fixed costs (in percentage of the initial liability) and δ is a spread over
the risk free rate so that rf +δ is the borrowing interest rate. Debt structures for which at
I l
T < 0 for some scenario l ∈ Ω should be discarded as leading the firm into insolvency,

even if the probability of such events is very low.
The net Return-on-Equity (ROE) corresponding to a given debt structure in each

scenario is given by

(37)ROEl = I l
T (1 − κ)

ρL0 + ES

.

This is not the ex ante excess return on equity optimized with the base model, but the
ex post realized total return on equity achieved when the structure of debt has also been
specified. This measure can be used to analyze the probability of insolvency when the
cost of the guarantee is funded by shareholders instead of being charged, at least in part,
to policyholders.

We report some results with the analysis described here. Tables are generated to
study the tradeoffs between leverage, policyholder charges, and shareholder returns.
Table 3 summarizes data that assist the decision maker to take a position according to
her strategic views and constraints. If no entries are displayed these choices cannot be
implemented, either because some I l

T are negative (this occurs when charges to poli-
cyholders are very low and high debt levels yield a negative final income), or because
the amount of money necessary to cover shortfalls is fully covered by the policyholder
charges. This implies a negative debt level at maturity of the product.

For example, by choosing a leverage level equal to 0.5, the highest yearly net CEROE
is 0.183. Note that, if the firm wishes to achieve higher performance level, the leverage
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Table 3
Net CEROE for different combinations of leverage and policyholder charges. The table is built for a guarantee g = 4% at a confidence level α = 1%

Leverage
levels

Policyholder charges

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.121125 0.124595 0.128295 0.132256 0.136515 0.141118 0.146123 0.151602 0.15765 0.164391
0.125 0.123946 0.127684 0.131656 0.135891 0.14043 0.145317 0.150612 0.156387 0.16274 0.169795
0.25 0.126654 0.13064 0.13486 0.139346 0.144137 0.14928 0.154834 0.160873 0.167495 0.174827
0.375 0.12926 0.133474 0.137923 0.142638 0.147659 0.153033 0.158821 0.165097 0.17196 0.179538
0.5 0.13177 0.136197 0.140857 0.145783 0.151014 0.156599 0.162599 0.169089 0.176169 0.183968
0.625 0.134193 0.138817 0.143673 0.148794 0.154219 0.159997 0.16619 0.172875 0.180151 0.188151
0.75 0.136533 0.141343 0.146381 0.151682 0.157285 0.163242 0.169612 0.176475 0.183932 0.192114
0.875 0.138798 0.143781 0.148989 0.154458 0.160227 0.166348 0.172882 0.179909 0.18753 0.195879
1 0.140991 0.146137 0.151505 0.15713 0.163053 0.169327 0.176013 0.183191 0.190964 0.199468
1.125 0.143118 0.148417 0.153935 0.159706 0.165774 0.172189 0.179016 0.186335 0.19425 0.202896
1.25 0.145182 0.150626 0.156285 0.162194 0.168396 0.174944 0.181903 0.189353 0.197399 0.206177
1.375 0.147188 0.152769 0.15856 0.164599 0.170928 0.177601 0.184682 0.192255 0.200423
1.5 0.149138 0.154849 0.160766 0.166927 0.173375 0.180165 0.187362 0.19505 0.203333
1.625 0.151037 0.156871 0.162907 0.169183 0.175744 0.182644 0.18995 0.197745
1.75 0.152886 0.158837 0.164986 0.171371 0.178039 0.185044 0.192452 0.200349
1.875 0.154688 0.160751 0.167007 0.173497 0.180265 0.187369 0.194875
2 0.156446 0.162616 0.168974 0.175562 0.182427 0.189624 0.197222
2.125 0.164433 0.17089 0.177572 0.184528 0.191814
2.25 0.166207 0.172757 0.179529 0.186571 0.193942
2.375 0.167938 0.174577 0.181435 0.188561
2.5 0.16963 0.176354 0.183294 0.190499
2.625 0.178089 0.185108
2.75 0.179785 0.186879
2.875 0.181443
3 0.183064
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3.375
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Table 4
The relation between net CEROE, policyholder charges and guarantee

Policyholder
charges

Minimum guarantee

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0 0.144564 0.139163 0.135832 0.13177 0.130433 0.120909 0.110348 0.099402
0.01 0.148057 0.142648 0.139726 0.136197 0.136011 0.126397 0.115193 0.102442
0.02 0.151703 0.146281 0.143803 0.140857 0.141965 0.132226 0.120278 0.105562
0.03 0.155517 0.150077 0.148086 0.145783 0.148361 0.138457 0.125641 0.10877
0.04 0.15952 0.154056 0.152599 0.151014 0.155289 0.145166 0.131326 0.112075
0.05 0.163732 0.158239 0.157375 0.156599 0.162863 0.152453 0.13739 0.115487
0.06 0.168182 0.162651 0.162452 0.162599 0.171238 0.16045 0.143903 0.119017
0.07 0.1729 0.167323 0.167876 0.169089 0.180626 0.169337 0.150957 0.122676
0.08 0.177925 0.172291 0.173703 0.176169 0.191338 0.17937 0.15867 0.126479
0.09 0.183304 0.177599 0.180007 0.183968 0.190924 0.167202 0.130443
0.1 0.189093 0.183304 0.18688 0.192664 0.176778 0.134586

The table is built with confidence level α = 1% and leverage (debt-to-equity ratio) equal to 0.5.

should also increase. Also, observe the inverse relation between leverage and policy-
holder charges. The greater the amount we charge to the policyholder, the lower is the
leverage required to achieve a given annualized net CEROE.

The model can generate similar tables to study the many interactions of endowment
with guarantee. For example, we could be interested in investigating the effect of differ-
ent guarantee levels to the policyholder charges and yearly returns. We first estimate, at
a given confidence level α, the cost of the guarantee Oα

G, and then apportion this cost to
policyholders (CG in Eq. (35)) and fund the rest through debt or equity surcharge. De-
pending on CG we observe a change in the CEROE to shareholders. Table 4 shows this
relationship. We observe the same behavior we had seen between �OG and net CEexROE
in Figure 5. The model chooses more aggressive strategies for low g because it is then
possible to achieve higher levels of CEexROE at little cost. Recall that we are working
with percentiles and the impact of aggressive strategies is much more evident on the
tails. When the guarantee is low at g = 0.01 we need higher policyholder charges to
reach the highest return, while for g = 0.05 lower charges are required.

The results in Table 3 should be examined taking into account a measure of risk as-
sociated with the CEROE of every combination of policyholder charges and leverage
level. The probability that excess value per share, P −

EVS, will become negative is a mea-
sure of risk of the CEROE, and these probabilities corresponding to Table 3 are shown
in Table 5. Observe that the upper-left entry has a P −

EVS equal to 0.58. This means that
there is a 58% chance that the present value of the final equity is less than the amount
invested today by the shareholders, even though the net CEROE is acceptable (12%).
This position is risky. The reason why this position is quite risky is due to the fact that
we are asking our shareholders to fund the total α-percentile cost of the guarantee. No
charges are passed on to policyholders.
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Table 5
Relationship between P−

EVS—the probability that excess value per share will fall below zero—leverage and
policyholder charges

Leverage
levels

Policyholder charges

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.58 0.522 0.462 0.4 0.344 0.278 0.208 0.148 0.096 0.042
0.125 0.534 0.478 0.416 0.366 0.302 0.242 0.172 0.112 0.072 0.02
0.25 0.508 0.444 0.394 0.338 0.274 0.212 0.15 0.1 0.06 0.012
0.375 0.476 0.416 0.368 0.306 0.252 0.188 0.134 0.092 0.042 0.012
0.5 0.444 0.396 0.346 0.284 0.226 0.162 0.118 0.076 0.032 0.006
0.625 0.418 0.374 0.322 0.266 0.212 0.152 0.106 0.068 0.022 0.004
0.75 0.404 0.366 0.304 0.258 0.198 0.144 0.098 0.056 0.016 0.002
0.875 0.4 0.354 0.286 0.234 0.184 0.136 0.092 0.05 0.012 0.002
1 0.378 0.33 0.28 0.224 0.162 0.124 0.088 0.04 0.012 0.002
1.125 0.37 0.318 0.266 0.216 0.156 0.114 0.078 0.036 0.008 0.002
1.25 0.364 0.31 0.264 0.208 0.146 0.108 0.074 0.032 0.008 0.002
1.375 0.356 0.296 0.254 0.2 0.146 0.104 0.07 0.026 0.004
1.5 0.35 0.286 0.24 0.196 0.142 0.098 0.062 0.026 0.004
1.625 0.332 0.282 0.234 0.188 0.136 0.096 0.06 0.02
1.75 0.322 0.276 0.224 0.178 0.132 0.094 0.054 0.016
1.875 0.316 0.266 0.22 0.162 0.126 0.092 0.052
2 0.314 0.266 0.214 0.156 0.122 0.086 0.05
2.125 0.264 0.214 0.15 0.118 0.084
2.25 0.264 0.208 0.148 0.116 0.08
2.375 0.26 0.202 0.146 0.112
2.5 0.244 0.202 0.146 0.11
2.625 0.198 0.146
2.75 0.196 0.144
2.875 0.196
3 0.19
3.125
3.25
3.375

The table is built for a guarantee g = 4% and confidence level α = 1%.

4.3.2. Insolvency risks

So far we analyzed alternative decisions based only on the net CEexROE and market
constraints (policyholder charges, leverage, etc.). Our analysis is missing a measure of
risk of the ROE. It is not yet clear how alternative guarantees and debt allocations ac-
cording to Eq. (35) affect the risk of ROE in Eq. (37). One could argue that the risk
aversion of the decision maker is embedded in the utility function of the optimization
model. This is true, but the utility function was used only to guide decisions on the asset
side, and the estimation of net total CEROE from (37) does not incorporate risk aversion
when choosing a debt structure. Furthermore, the utility function ensures the solvency
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of the fund by covering shortfalls with infusion of equity. However, under certain con-
ditions no external sources of equity will be available. The analysis we carry out here
compensates for these omissions. It considers the risk of insolvency when structuring
the issue of debt, thus incorporating risk aversion in structuring the debt in addition to
structuring the asset portfolio.

Define �RI as the expected excess return over the risk free rate for this line of business
and r̄f as the expected risk free rate. The rate at which we must discount the final
income I l

G is given by Rμ = r̄f + �RI . For our shareholders I l
G represents the value of

the equity at the end of the planning period and they are willing to stay in this business
if the discounted value of this equity is not less than the initial capital invested. The
shareholders will keep their shares if the Excess Value per Share (EVS) is greater than
zero with a high probability. Recalling that the initial amount of equity is ρL0 + ES

(ES could be equal to zero) the EVS in each scenario is given by

(38)EVSl = I l
G (1 − κ)

(1 + Rμ)T
− (ρL0 + ES).

The risk related to a specific debt allocation is given by the probability that EVS is
less than zero, i.e., P −

EVS = P(EVSl < 0 | l ∈ Ω). This is the probability of insolvency
and can be determined by calculating the EVSl for each l ∈ Ω , order from the lowest to
the highest, and look for the rank of the first EVSl that is negative, i.e.,

(39)P −
EVS = rank(EVSl < 0)

N
.

The EVS can be used to determine the amount of policyholder charges required
to make P −

EVS equal to a given confidence level. Recall that I l
G, and consequently

EVSl , is a function of CG, ES , and DG. If we fix EG then IG is a function of CG

(DG is determined from Eq. (35)). Through a linesearch we can determine C∗
G such

that

(40)P
[
EVS(C∗

G) < 0
] = α.

In our experiments we set �RI = 6% and the probability of insolvency α = 1%.
Figure 7 shows the results of the linesearch which solves Eq. (40) for different values
of equity supplement ES . We observe that for guarantees higher than 6% the CEROE
increases. How is it possible that higher guarantees can yield higher returns? The puzzle
is resolved if we note that the increase in returns is accompanied by a significant increase
of policyholder charges. The increases in the policyholder charges fund the guarantee
and preserve equity from falling below its present value.

In practice significant increase in policyholder charges would be unacceptable, and
would lead to increased lapses. Our analysis can be used as a demarcation criterion
between “good” and “bad” levels of the guarantee. For instance, the Italian insurance
industry offers products with guarantees in the range 3 to 4%. Our analysis shows that
they could consider increasing the guarantee up to 6% without significant increase of
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Fig. 7. The levels of policyholder charge, debt and net CEROE such that the probability of insolvency is
P [EVS(C∗

G
) < 0] = 1%, for equity supplement ES = 0 (top) and ES = 0.02 (bottom).

charges to policyholders or reduction of CEROE. (One may justify the difference from
the operating guarantee of 4% to the peak optimized value of 6% as the cost of running
the business. If so this cost is high.) For guarantees above 6% we note a substantial in-
crease to policyholder charges at a marginal improvement in CEROE, and this is clearly
unacceptable to both policyholders and shareholders.

hfalm2 v.2006/12/06 Prn:25/01/2007; 9:35 F:hfalm2015.tex; VTEX/Jurgita p. 31
aid: 2015 pii: S1872-0978(06)02015-1 docsubty: REV



694 A. Consiglio et al.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

4.3.3. Short term financing of shortfalls

To this point the analysis has determined the cost of the shortfalls Oα
G and funded it

through a combination of debt DG, charges to policyholders CG, and equity ES . Now,
let us fix policyholder charges and equity and let the debt fluctuate according to the
shortfall Ol

G realized in each scenario. Thus we consider funding part of the shortfall
through short-term financing. Instead of issuing a bond for a notional equal to DG and
maturity T , we will borrow money when a shortfall occurs. The debt for each scenario
is given by

(41)Dl
G = Ol

G − CG − ES.

We assume that it is possible to borrow money at a spread δ over the risk-free rate. The
definition of the final income becomes

(42)I l
T = Al

T − Ll
T − Dl

G

T∏
t=1

(
1 + rl

f t + δ
) + (CG − JS)

T∏
t=1

(
1 + rl

f t

)
.

We can apply the analysis of the previous section to determine policyholder charges
CG, and estimate the distribution of Dl

G. We solve Eq. (40) and display in Figure 8 the
C∗

G for different levels of the guarantee and for δ = 2%. Note that policyholder charges
C∗

G are substantially lower than those obtained by solving (40) in the previous section
as reported in Figure 7. This is expected as short-term financing of the cost in a dynamic
strategy, as opposed to the fixed strategy of issuing long-term debt. These findings are

Fig. 8. The levels of policyholder charges and net CEROE for different guarantee such that
P [EVS(C∗

G
) < 0] = 1%.
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Fig. 9. Distribution of equity-to-liability ratio at the end of the planning horizon for a guarantee of 5%.

consistent with the comparison of the two reserving methods in Boyle–Hardy. Since Dl
G

is scenario-dependent, it compensates for those scenarios with high shortfalls, while it
is low (or null) for those scenarios with low shortfalls.

4.4. The view from the regulator’s desk

We show in Figure 9 the distribution of the equity to liability ratio (cf. Eq. (10)) for a
guarantee of 5%. Similar figures were obtained for guarantees ranging from 1 to 10%.
This figure shows that for different values of the guarantee the minimum ratio of equity
to liability is greater than the regulatory requirement. For the type of policies analyzed
here using a logarithmic utility function, and for the scenarios sampled from the past
ten bullish years, the regulatory constraint is satisfied without explicitly including it in
the model.

4.5. Additional model features

We study now some additional features of the model, namely the effects of the choice of
a utility function, the effects of international diversification and investments in corporate
bonds, and the effects of the policy surrender option.

4.5.1. Choice of utility function

The decision maker’s risk aversion specifies unique asset portfolio to back each guar-
anteed policy. Clearly increased risk aversion will lead to more conservative portfolios
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Fig. 10. Tradeoff of CEexROE against cost of the guarantee with varying risk aversion for target guarantees
8 (left), 11, 12 and 15% (right).

with higher contents of fixed income. The result will be a simultaneous reduction in
both the CEexROE to shareholders and the cost of shortfalls required to fund the policy.
Figure 10 illustrates the tradeoff as the risk aversion parameter γ varies from 0 (base
case) to −2 (increased risk aversion) for five different target guarantees.

For low target guarantees we note that an increased appetite for risk results in higher
CEexROE, with only a marginal increase in cost of the guarantee. For higher target
guarantees (e.g., 15%) we note a substantial increase in the cost of the guarantee as
the embedded option goes deep in the money when we increase the risk tolerance and
invest into volatile assets. These results confirm our expectations on model performance
and are consistent with the results of Figure 5. The model allows users to generate
efficient tradeoffs that are consistent with the contractual obligations and the firm’s risk
tolerance.

4.5.2. International diversification and credit risk exposures

We extended the analysis to incorporate other assets permitted by regulations such as
corporate bonds and international sovereign debt. Italian insurers are allowed to invest
up to 10% of the value of their portfolio in international assets. We run the base model
for a guarantee of 4%, and allowing investments in the Morgan Stanley stock indices
for USA, UK and Japan and the J.P. Morgan Government bond indices for the same
countries. Figure 11 illustrates the tradeoff of CEexROE against cost of the guarantee
for international portfolios and portfolios with credit risky securities. The internationally
diversified portfolio achieves CEexROE of 0.14 at a cost of the guarantee of 0.02. By
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Fig. 11. Tradeoff of CEexROE against cost of the guarantee for internationally diversified portfolios and
portfolios with exposure to the corporate bond markets.

contrast, we note that domestic investments in the Italian markets fund the guarantee
at the same cost but yield a CEexROE of only 0.11. Similarly, investments in the US
Corporate bond market improve further the CEexROE to 0.16, but at an increase of the
cost to 0.033.

4.5.3. Impact of the surrender option

In our testing so far we took into account only the actuarial risk of the liabilities. Using
the various assumptions on lapse behavior discussed in Section 3.5 we study the effect
of the surrender option on the cost of the guarantee.

Figure 12 (top) illustrates the effect of lapse on the cost of the guarantee for different
levels of the minimum guarantee. It is worth noting that the difference between no lapse
at all and fixed lapse is significant for high levels of the minimum guarantee (g � 7%).
This difference is less evident when lapse is modeled as in Eq. (20).

Figure 12 (bottom) illustrates effects of lapse on the net CEexROE. Again, differences
are more evident when we switch from no lapse to fixed lapse. It is worth commenting
on the effect of lapse rates on the cost of the guarantee and the net CEexROE, over a
range of minimum guarantees. Differences in the net CEexROE are observed for low
minimum guarantees, say g � 6%. On the contrary, the alternative lapse assumptions
yield substantially different costs for the guarantee for g > 6%. This effect can be
explained in view of the option embedded in the policy (see Grosen and Jørgensen,
2000). For low levels of the minimum guarantee the option is almost always out of
the money and fixed lapse will depress the net CEexROE through a constant surrender
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Fig. 12. The effect of lapse on cost of the minimum guarantee (top). The effect of lapse on net CEexROE
(bottom).

of policies (see Eq. (6)). For larger values of the minimum guarantee, the insurance
company will benefit from lapses since shortfalls are more likely and any lapsed policies
relieve the company, in part, from shortfall.

4.6. Benchmarks of Italian insurance policies

In order to assess the effectiveness of the model in practice we compare the optimal
portfolios with industry benchmarks. We take as benchmark a set of portfolios with a
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Fig. 13. Performance of benchmark portfolios (diamonds) against the optimized portfolio (square) for
g = 4%. Asset allocation for the benchmark portfolios is set to 90/10 (bonds/stocks), 80/20, and 70/30,

respectively, from top to bottom.
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fixed broad asset allocation between bonds and stocks, and random allocation among
specific assets. In order to be consistent with the usual fixed-mix strategies followed
by the Italian industry, we set the broad asset allocation between bonds and stocks to
90/10, 80/20, and 70/30. The results of this experiment are reported in Figure 13.
Note that the optimized portfolios always dominate the benchmark portfolios in the
space of cost-of-guarantee vs. CEexROE. These results justify further the integrative
approach taken in this paper, whereby the insurance policy is analyzed jointly with the
asset allocation decision instead of being analyzed for an a priori fixed asset portfolio.
Further improvements are possible with an internationally diversified portfolio and with
some exposure to credit risky securities, as analyzed in Section 4.5.2.

The results of this section are in general agreement with the current practices of
Italian insurers. However, the optimized results suggest that improved policies and as-
sociated asset strategies are still possible. In particular, the findings show that the Italian
insurers could increase the equity exposure of their portfolio from 20%, which is the
current practice, up to 25% to 30%—see the optimal asset allocation corresponding to
minimum guaranteed return g = 3% in Figure 5. This is also evident from Figure 13
where we observe that some random portfolios from the 70/30 asset allocation are
closer to the optimized portfolios.

5. Conclusions

This chapter has, first-most, demonstrated that an integrative approach to the manage-
ment of assets and liabilities for insurance products with guarantees and bonuses adds
value. Asset structures generated with an integrative approach for specific insurance
policies are efficient, as opposed to asset strategies developed in a non-integrated model.

Several interesting conclusions can be drawn from the use of the model on data from
the Italian insurance industry. First, we have quantified the tradeoffs between the dif-
ferent targets of the insurance firm: providing the best products for its policyholders,
providing the highest excess return to its shareholders, satisfying the guarantee at the
lowest possible cost and with high probability. Some interesting insights are obtained on
the structure of the optimal portfolios. In particular, we observe that too little equity in
the portfolio and the insurer cannot meet the guarantee, while too much equity destroys
shareholder value.

Second, we have analyzed different debt structures whereby the cost of the guarantee
is funded through equity or through debt with either long or short maturities. The effects
of these choices on the cost of the guarantee and on the probability of insolvency can
be quantified, thus providing guidance to management for the selection of policies.

Third, we have seen from the empirical analysis that Italian insurers operate at levels
which are close to optimal but not quite so. There is room for improvement either by
offering more competitive products or by generating higher excess returns for the benefit
of the shareholders and/or the policyholders.
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As a caveat we add that the increase in the equity exposure suggested from the use
of this model should come with an increased sophistication in the technology used to
manage these assets vis-à-vis the liabilities. In particular, the asset portfolios must be
carefully fine tuned with models such as the one presented here. Further analysis is
needed in developing the scenarios of asset returns to be in agreement with future ex-
pectations, and to rely less on historical performance.

A significant extension for the long time horizons of the products considered would
be to a multi-stage model where decisions are revised at time instances after t = 0
until maturity. Such dynamic stochastic programs with recourse have been developed
for asset and liability management by the references given in the introduction. How-
ever, for the highly nonlinear problem we are addressing here such models are difficult
to develop. The linearization of the single-stage model developed in Appendix A does
not apply directly to multistage formulations. Specialized algorithms for geometric pro-
gramming must be employed for the solution of multistage extensions of this model.
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Appendix A. Solving the nonlinear dynamic equations

In this section we show how to solve the nonlinear equations (5)–(9) in order to obtain
the objective function (12). At time t = 0, the liability is the pure premium L0. At t = 1
(to simplify the notation we drop the scenario superscript) we have

(A.1)L1 = L0(1 − Λ1)
(
1 + g + y+

1

)
.

At t = 2 we use the value of L1 from (A.1) to obtain

L2 = L1(1 − Λ2)
(
1 + g + y+

2

)
(A.2)= L0(1 − Λ2)(1 − Λ1)

(
1 + g + y+

1

)(
1 + g + y+

2

)
.

Applying this process recursively for each t we obtain the final liability as

(A.3)LT = L0

T∏
t=1

(1 − Λt)
(
1 + g + y+

t

)
.

For the equity dynamics we have that E0 = ρL0. At t = 1

(A.4)E1 = ρL0(1 + rf 1) + y−
1 L0.
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At t = 2 and substituting for E1 and L1 from (A.4) and (A.1) we obtain

E2 = E1(1 + rf 2) + y−
2 L1

(A.5)

= ρL0(1 + rf 1)(1 + rf 2) + L0y
−
1 (1 + rf 2) + L0y

−
2 (1 − Λ1)

(
1 + g + y+

1

)
.

At t = 3 we have

E3 = E2(1 + rf 3) + y−
3 L2

= ρL0(1 + rf 1)(1 + rf 2)(1 + rf 3) + L0y
−
3 (1 + rf 2)(1 + rf 3)

+ L0y
−
3 (1 + rf 3)(1 − Λ1)

(
1 + g + y−

1

)
(A.6)+ L0y

−
3 (1 − Λ2)(1 − Λ1)

(
1 + g + y+

1

)(
1 + g + y+

2

)
.

Applying this process recursively for each t we obtain after some simple algebra

(A.7)

ET = L0

[
ρ

T∏
t=1

(1 + rf t ) +
T∑

t=1

(
y−
t φ(t, T )

t−1∏
τ=1

(1 − Λτ )
(
1 + g + y+

τ

))]
,

where φ(t, T ) = ∏T
τ=t+1(1+rf τ ) is the cumulative return of the short rate from t to T .

With the same arguments it is possible to show that

(A.8)yAt = L0Λt

(
1 + g + y+

t

) t−1∏
τ=1

(1 − Λτ )
(
1 + g + y+

τ

)
.

For the asset dynamics we have that A0 = L0(1 + ρ). At t = 1

A1 = A0(1 + RP 1) + y−
1 L0 − yA1

(A.9)= L0(1 + ρ)(1 + RP 1) + y−
1 L0 − yA1.

At t = 2 substituting L1 from (A.1) we obtain

A2 = A1(1 + RP 2) + y−
2 L1 − yA2

= L0(1 + ρ)(1 + RP 1)(1 + RP 2) + y−
1 L0(1 + RP 2)

(A.10)− yA1(1 + RP 2) + y−
2 L1 − yA2.

The value of the assets at maturity is given by

AT = L0(1 + ρ)

T∏
t=1

(1 + RPt )L0

T∑
t=1

y−
t

T∏
τ=t+1

(1 + RPτ )

t−1∏
τ=1

(
1 + g + y+

τ

)

(A.11)×
t−1∏
τ=1

(1 − Λτ ) −
T∑

t=1

yAt

T∏
τ=t+1

(1 + RPτ ).
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By substituting yAt with the expression in (A.8), we obtain

AT = L0(1 + ρ)

T∏
t=1

(1 + RPt )

+ L0

T∑
t=1

y−
t

T∏
τ=t+1

(1 + RPτ )

t−1∏
τ=1

(
1 + g + y+

τ

)
(1 − Λτ )

(A.12)

− L0

T∑
t=1

Λt

(
1 + g + y+

t

) T∏
τ=t+1

(1 + RPτ )

t−1∏
τ=1

(
1 + g + y+

τ

)
(1 − Λτ ).

Collecting terms we obtain

AT = L0(1 + ρ)

T∏
t=1

(1 + RPt )

+ L0

T∑
t=1

(
y−
t − Λt(1 + g + y+

t )
) T∏

τ=t+1

(1 + RPτ )

(A.13)×
t−1∏
τ=1

(
1 + g + y+

τ

)
(1 − Λτ ).

Appendix B. Asset classes

The asset classes used in testing the base model are given in Table 6. They consist of
bond indices for short-, medium-, and long-term debt of the Italian government, and
stock indices of the major industrial sectors traded in the Milano stock exchange.

Table 6
Asset classes used in testing the base model

Code Description

SBGVNIT.1-3 Salomon Brother Italian Government Bond 1–3 years
SBGVNIT.3-7 Salomon Brother Italian Government Bond 3–7 years
SBGVNIT.7-10 Salomon Brother Italian Government Bond 7–10 years
ITMSBNK Milan Mib Historic Banks
ITMSAUT Milan Mib Historic Cars
ITMSCEM Milan Mib Historic Chemicals
ITMSCST Milan Mib Historic Construction
ITMSDST Milan Mib Historic Distribution
ITMSELT Milan Mib Historic Electronics

(continued on next page)
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Table 6
(continued)

Code Description

ITMSFIN Milan Mib Historic Finance
ITMSFPA Milan Mib Historic Finance Holdings
ITMSFMS Milan Mib Historic Finance Misc
ITMSFNS Milan Mib Historic Finance Services
ITMSFOD Milan Mib Historic Food
ITMSIND Milan Mib Historic Industrials
ITMSINM Milan Mib Historic Industrials Misc
ITMSINS Milan Mib Historic Insurance
ITMSPUB Milan Mib Historic Media
ITMSMAM Milan Mib Historic MineralsMetals
ITMSPAP Milan Mib Historic Paper
ITMSMAC Milan Mib Historic Plants & Machine
ITMSPSU Milan Mib Historic Pub. Util. Serv.
ITMSRES Milan Mib Historic Real Estate
ITMSSER Milan Mib Historic Services
ITMSTEX Milan Mib Historic TextileClothing
ITMST&T Milan Mib Historic Transportation & Tourism
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