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Abstract: With the advancement of internet technologies and multimedia applications, the spectrum
scarcity problem is becoming more acute. Thus, spectral-efficient schemes with minimal interference
for IoT networks are required. Device-to-device communication (D2D) technology has the potential
to solve the issue of spectrum scarcity in future wireless networks. Additionally, throughput is
considered a non-convex and NP-hard problem, and heuristic approaches are effective in these
scenarios. This paper presents two novel heuristic approaches for throughput optimization for
D2D users with quality of service (QoS)-aware wireless communication for mobile users (MU):
the modified whale colony optimization algorithm (MWOA) and modified non-domination sorted
genetic algorithm (MNSGA). The performance of the proposed algorithms is analyzed to show that the
proposed mode selection technique efficiently fulfills the QoS requirements. Simulation results show
the performance of the proposed heuristic algorithms compared to other understudied approaches.

Keywords: D2D communication; modified whale colony optimization; modified non-domination
sorted genetic algorithm; spectrum scarcity

1. Introduction

With the advent of advanced wireless technology, spectrum requirements have in-
creased, and as a result, spectrum scarcity occurs. A CR is a device that scans the wireless
spectrum and finds free spectrum spaces for both time and frequency. The CR devices
combine to make cognitive radio networks (CRNs). A CR is an intelligent device focusing
on channel utilization [1–4].

Spectrum sharing (SS) is the process of recognizing the spectrum used for data trans-
mission by granting permission from MUs to device users (DU) to use the desired spec-
trum [5]. MUs are not utilizing the available spectrum completely because there are white
spaces called “spectrum holes” that can be utilized by the DUs. The current usage of
the current radio spectrum can be handled by a CRN, which is a wireless system that is
intelligently used for allocating resources. Resource allocation and spectrum availability
are issues due to the increase in wireless and mobile devices. CRNs have emerged as an
excellent solution to this problem [6].

Non-orthogonal multiple-access (NOMA) device-to-device communication is a promis-
ing technology for providing high data rates and secure transmission in short-range com-
munication and improving the performance of fifth-generation (5G) wireless networks [7,8].
D2D communication enables direct connectivity among devices without support from the
core network, offloading the cellular network and increasing the network’s capacity [9].
Moreover, low latency, energy efficiency, and high data rate requirements can be achieved
by combining D2D with cellular networks [10].
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Cognitive radio re-allocates idle MU resources to DUs so that DUs can conveniently
communicate with MUs with the least amount of interference. With the increased demand
for mobile devices and other wireless devices, high-bandwidth radio frequencies are be-
coming increasingly congested [11,12]. It is generally possible to classify the paradigms
assumed by CR networks into three broad categories: underlay, overlay, and interweave,
which are all based on the ability of a DU to access an MU-licensed channel [13]. MU repre-
sents a licensed user in a given frequency band with high priority. On MU-approved bands,
a DU transmits opportunistically. The main goals of resource allocation are to optimize
network capacity (throughput), minimize energy usage, or maintain the quality of service
(QoS) for the users. In the resource-allocation literature on CRNs, including game theory,
bidding-based, and analytical algorithms, various approaches were investigated [14].

Evolutionary techniques (ETs) are used for the optimization of current resources
(throughput) because they provide highly optimized solutions for a wide variety of prob-
lems. These evolutionary techniques may be able to find a suitable optimization solution
that other current techniques may not be able to find. ETs are mostly bio-inspired techniques
drawing on Darwinian evolution that capture global solutions to difficult optimization
problems with powerful properties of robustness and adaptability [15–19].

Typically, ETs can be used to provide estimated relative remedies for complex prob-
lems that are difficult to solve with other methods. This work covers a broad range of
optimization concerns. Trying to find an accurate answer may take too much time, but a
close answer is often sufficient. In addition, ETs can provide solutions to problems that hu-
mans are unable to solve. Evolutionary techniques can develop solutions that are identical
or superior to the highest living organism’s efforts, free of any human prejudices or biases.

1.1. Contribution of the Article

To solve the above-mentioned issues, our main contribution of this paper includes
following aspects:

1. A resource allocation scheme for a cognitive radio-based non-orthogonal multiple-
access device-to-device network is proposed. Two heuristic algorithms, i.e., the
modified non-dominated sorting genetic algorithm (MNSGA) and the modified whale
optimization algorithm (MWOA) for throughput maximization. Previously, resources
were not utilized correctly because only MUs had licenses to use them, and DUs
caused interference due to a shortage of resources. In our case, the issue of resource
availability is solved by allocating free resources to DUs when they are not being
utilized by MUs by using cognitive radio for non-orthogonal multiple-access device-
to-device communication.

2. To find near-optimal solutions, evolutionary computing techniques called MNSGA
and MWOA are used in this paper. To contrast them, MNSGA has fast and efficient
convergence and searches for solutions across a wide range of dimensions. Further-
more, MNSGA is proficient at solving high-dimensional multi-objective problems,
whereas MWOA can avoid local optima and find optimal solutions.

3. The performances of the developed techniques are analyzed and compared with that
of state-of-the-art techniques. The proposed techniques in this paper perform better
in terms of maximizing system performance. Experimental results demonstrate the
effectiveness of the proposed techniques.

1.2. Organization of the Article

The rest of this paper is organized as follows: The related work is in Section 2. The
system model and problem formulation are discussed in Section 3. In Section 4, the modified
non-dominated sorting genetic algorithm and the modified whale optimization algorithm
are comprehensively explained. Experiments and results are provided in Section 5, and the
paper is concluded in Section 6.
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2. Related Work

In this section, a detailed overview of resource allocation techniques using CRNs
and NOMA-D2D communication systems is presented. The authors of [20] describe
the clustering algorithm, in which the node with the lowest ID is chosen as the leader.
Clustering has been used in combination with the divergence of the spectrum. This would
lead to a reduction in the size of the network and the overheads linked to the arrangement
of routing. In [21], the issue of spectrum access and assignment is discussed for CRNs
while focusing on interference with respect to both users.

In [22], the resource allocation problem is examined by examining spectrum sharing
and describing multi-dimensional spectrum utilization. In [23], the authors discuss channel
allocation in a CR by assigning a spectrum to both the PUs and the SUs. In [24], the
technique of relay selection and spectrum allocation is introduced. Relay selection has
been amplified and forwarded. A spectrum allocation-based technique depends on particle
swarm optimization. The author proposed a system for reducing interference with a GA in
order to make the most informed decision for switching and selecting spectra in CRNs for
a primary user (PU) [25].

A power mixture technique for the allocation of spectra, increasing the through-put to
a CRN and satisfying the interference constraints for both users is presented in [26]. The
authors of [27] discuss resource assignment in terms of spectrum utilization and net-work
throughput optimization. The whale optimization algorithm is used to solve resource
allocation issues in wireless networks. The combined issue of DUE mode selection, base
station selection, resource assignment, and power allocation is investigated in [28], which
considers situations with multiple BSs in D2D heterogeneous networks.

In [29], the invasive weed optimization algorithm is proposed for an increase in the
spectrum handoff efficiency, which reflects the balancing of load and reduces the handoff
delay. The problem is to raise the level of spectrum efficiency by assigning the DUs to the
accessible channel as proposed in [30] based on the chaotic biography-based algorithm.
In [31], the authors present a problem of spectrum mobility in radio electric environments
that directs the SU through the routes of maximum feeding optimization (MFO) using a
bio-inspired algorithm (BIA) that has less complexity and robustness. The authors of [32]
use the social spider algorithm to find the most efficient allocation.

The author of [33] created a scheme for spectrum allocation (SA) that focuses on the
strength of interference. A multi-objective GA was used to solve the spectrum-sharing
problem. A spectrum-sharing method that depends upon social language is proposed
for the prevention of the problem of scarcity and the under-utilization of the spectrum
in [34]. Resource allocation as a max–min optimization problem is presented in [35]. In [36],
spectrum resources are distributed fairly to smart grid users based on the standard grid
configuration (SGCN). In [37], a fuzzy-based support system is used for dealing with
channel selection and switching.

In [38], researchers presented spectrum-sharing techniques for cooperative CRNs.
Included in [39] is a study on spectrum allocation based on the characteristics of primary
and secondary sender destinations (S-D) with the objective of increasing the throughput
for secondary S-D. The authors looked upon CRNs that have multiple carriers and relay
selection (RS) energized remotely through power collected from the information emitted for
data transfer by the SUs [40]. In [41], the author presents 5G wireless networks for enhanced
CRNs, which rely both on spectrum sharing (SS) and spectrum aggregation. In [42], a
method is established to build sequences of channel hopping with the help of primitive
roots of a prime number. Three channel-hopping protocols, symmetric and asymmetric,
have been developed for synchronous and asynchronous CRN environments.

Wireless multiple-access channels have been used for PUs and optimization of the
energy efficiency (EE) problem present in cognitive systems for mathematical structure
computational purposes [43]. For the purpose of resolving the radio deficiency problem,
a model has been proposed, and parameters for spectrum sharing (SS) have been dis-
cussed [44]. The resource allocation issue is analyzed by combining CR innovation and
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D2D transmission in mobile networks in [45]. The authors present the radio frequency
energy-harvesting (RF-EH) mechanism to model in [46]. In [39], researchers introduced
an algorithm based on power control and the Lambert W function to improve the energy
efficiency of a single D2D set [47]. Quassia-convex algorithms and communication improve
overall system data rates while increasing accessibility, as discussed in [48].

3. Framework of Proposed Model

This section presents the proposed framework for resource optimization in CRNs. The
spectrum allocation for throughput maximization is addressed in cognitive radio-based
D2D communication systems (CR-D2D). Modified non-dominated sorting GA and whale
optimization algorithms have been proposed for maximizing throughput.

3.1. D2D CR Network

In the system model, a device-to-device-connected cognitive radio network (CRN)
consists of a mobile radio network. The mobile network is based on an MU, and the device
network is based on a DU. Figure 1 shows a representation of the system model.
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3.2. Proposed Model

As shown in Figure 2, the MU and DU have been initialized. By leveraging cognitive
radio, device-to-device communication (CR-D2D) channels are sensed, allocated to the
desired users, and reused. The users’ throughput is optimized by using the proposed
MNSGA and MWOA techniques to obtain better results [49,50].

The signal-to-noise ratio (SINR) of a D2D pair can be expressed as follows [51]:

SINRs
p = am

p,n Psgs,p

am
q,n Pqgq,p + ∑ am

k,s Pkgk,p + N0
(1)

where in Equation (1), s is the number of channels, P is the D2D pairs, am
p,n and am

q,n are
channel assignment indicators, Ps is the power of D2D pairs, and Pk is the power of the
MU. The throughput for the MU (MU) is expressed as follows [51]:

Rs
q = Blog2(1 + SINRs

q) (2)

where Rs
q is the throughput for the MU in Equation (2), B is the bandwidth, and SINRs

q
is the signal-to-noise ratio of the MU channels. The throughput for the DU is stated as
follows [51]:

Rs
p = Blog2(1 + SINRs

p) (3)
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where Rs
p is the throughput for the DU in Equation (3) and SINRs

p is the signal-to-noise
ratio of the DU channels. The overall system throughput for all users is R = RMUs + RDUs,
where RMUs and RDus are the throughputs for the mobile users and DUs, respectively. The
optimization problem to maximize the throughput for the allocation problem is:

P1: = max R
{a, p}

C1: 0 ≤ Pm ≤ PMU ∀ m ∈M
C2: 0 ≤ Pd ≤ PDU ∀ d ∈ D
C3: RT ≤ Ri ∀ i ∈M ∪ D

C4: ∑i∈M al
i,n ≤ 1

C5: ∑ al
d,i + au

d ≤ 1

(4)

where al
i,n is used for the licensed channel mode and au

d for the unlicensed mode, and PMU
and PDU are the highest powers to transmit for pairs of mobile users and DUs, respectively.
RT is the throughput threshold for the mobile users and DUs.
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4. Modified Heuristic Algorithms

A genetic algorithm (GA) is a search heuristic based on Charles Darwin’s theory
of natural selection. The algorithm is based on natural selection, in which the strongest
individuals (chromosomes) are selected to produce the next generation’s children. Every
chromosome encodes a problem solution, and its fitness value is proportional to the
objective function value for that solution [52,53]. By moving beyond locally optimal
solutions, the search achieves its goal. After each generation, the population’s quality may
improve. A genetic algorithm takes into account the initial population of chromosomes,
denoted as Np.

A chromosome is built from an array of genes, and these genes can be represented as
binary or integer strings. The problem of M MUs and D DUs for every ith chromosome,
which is mentioned as a potential solution, is represented here as a binary string. Consider
the following scenario: There are two mobile networks and three D2D user pairs (M = 2,
D = 3), and each mobile network has four channels available for Dus. As there are three Dus,
there are three genes on ith chromosome. As soon as the number of genes on a chromosome
is determined, the next step is to encode the chromosome. Each gene represents one DU,
and each DU should be assigned to a network and a channel. Because there are two primary
networks and four channels in each network, we need two bits to represent the network
and two bits to represent the channel. Therefore, each gene will have four bits. As a result,
each chromosome will have 12 bits with three genes.

4.1. Modified Non-Dominated Sorting Genetic Algorithm (MNSGA)

MNSGA is used to optimize parameters in a variety of operations. MNSGA is a
well-known multi-objective genetic algorithm that sorts quickly and efficiently. Instead
of single-objective optimization, MNSGA maximizes each objective simultaneously by
preventing any other solution from dominating. MNSGA performs optimization on several
objectives with three distinct features: a quick non-dominated ranking methodology, a quick
crowded range estimation method, and an uncomplicated crowded comparison operator.

In general, the MNSGA method can be broken down into the following steps:

1. Initializing the population: Create a population that is based on the issues, distance,
and entities.

2. Ranking that is not dominated: Use a sorting procedure based on the population’s
non-dominance criteria.

3. Establishing a crowding distance: After the ranking is finished, a value for the crowd-
ing distance is allocated. Individuals in the population are chosen based on their rank
and the crowding distance.

4. Making selections: Entities are selected using binary tournament selection with the
comparison with the crowding operator. The fifth step is to use genetic operators.
Using simulated binary crossover and mutation, a real-coded MNSGA was created.
Recombination and selection are the sixth and final steps. Individuals from the
next generation are chosen from the offspring population and the current generation
population. Each front fills a new generation until the population size exceeds the
current population size.

Figure 3 illustrates the flow of the MNSGA, in which the initialization of the population
is carried out first. After that, the fitness of the chromosomes is calculated. Non-dominating
sorting based on the crowding distance and rank parameters is applied. Then, genetic
operators like crossover, mutation, and selection are used to generate a child. Then, the
evaluation of chromosomes is conducted, and the effect of elitism is applied to find the
Pareto solution.
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4.2. Modified Whale Optimization Algorithm (MWOA)

MWOA has gained attention in the research field as a fast way to solve a broad range
of optimization techniques. MWOA is simple to use and adapt by identifying objective
functions, quality measures, and constraints for the optimization of wireless systems.
The principles of MWOA, such as encircling prey, feeding in bubble nets, and killing
identification, are explained in the following subsections.

4.2.1. Encoding of Whales

The process starts with the initialization of the whale population, which is the first
step in the process. This study ultimately seeks to find a unique solution to this problem
by looking at every whale as a potential solution. It has been found that target prey is the
most effective search agent for MWOA. The same GA example used above is used here for
each ith whale to update its position based on prey.

4.2.2. Encircling Prey Methodology

Humpback whales can indeed detect the presence of prey and surround them. Cur-
rently, the most effective search agent is the target prey in the MWOA method. During the
iteration process, the humpback whales adjust their positioning toward the appropriate
search agent. A whale, on the other hand, cannot predict the location of the prey in advance.
If the current optimal position is that of the target prey, the other members of the group
will all move to that position.

4.2.3. Bubble-Net Attacking Methodology

Humpback whales employ both shrinking encircling and spiral updating methodolo-
gies to attack bubble nets simultaneously.
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4.2.4. Search for Prey

The prey search can be approached similarly to the shrinking encircling mechanism.
Humpback whales search randomly, based on their relative positions. This behavior can
also be accomplished by reducing a value. The envoy will reset the reference of the whale
such that the value of A is greater than 1 or less than −1. Unlike in the exploitation phase,
an envoy updates its position based on a randomly chosen search agent rather than the
current most effective search agent. The MWOA algorithm is able to perform a global
search using this method. The first initialization of the whale population is represented
in Figure 4. If the stopping criteria are reached, the optimal solution is determined by
adjusting the constraints of the search agents. If the probability is not less than 0.5, the
values are adjusted according to the spiral method. This is accomplished by updating the
search values according to the spiral method. However, if constraint A is greater than or
equal to 1, the model is updated to use the searching prey method. Finally, if a maximum
number of iterations is reached, the process is stopped, and the fitness value is saved for
the most optimal solution; otherwise, the process repeats until a solution is found.
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5. Experimental Results and Discussion

In this section, we will analyze the results obtained by the modified non-dominated
sorting genetic algorithm (MNSGA) and the modified whale optimization algorithm
(MWOA). In addition to the proposed experiments, different comparisons of through-
puts with the number of D2D pairs, distance between D2D pairs, and minimum required
rate were discussed using MNSGA and MWAO. The simulation parameters are tabulated
in the Table 1.
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Table 1. Simulation parameters.

Parameters Value

No. of Iterations 200

No. of MUs 08

No. of DUs 10

No. of Channels 20

Bandwidth 1 MHz

BS Coverage 500 m

Max Transmission Power 23 dBm

Parameters of MNSGA

Population Size 100

Crossover Rate 0.5

Mutation 0.03

Crossover Type Multiple Point

Parameters of MWOA

Spiral Update Probability 0.5

Shrinking Encircling 0.5

Random Search Ability 0.1

5.1. Convergence of MNSGA & MWOA

The convergence of MNSGA, MWOA, and the algorithm from [51] is compared to
test which algorithm performs best. The maximum distance between D2D pairs is 20
m, and the minimum required rate for each user is 250 kbps. The system throughput of
the algorithm from [51] increases for about 100 iterations before becoming stable for the
remaining iterations; the system throughput of MNSGA increases for about 140 iterations;
and the system throughput for MWOA increases for about 80 iterations, as shown in
Figure 5. The MNSGA method converges better than the algorithm from [51] and MWOA.
The modified whale optimization algorithm is listed as Algorithm 1.

Algorithm 1: Modified Whale Optimization Algorithm

1 Initialize

2 Population of Whales: Xi, i = 1, 2, 3, ..., n

3 Measure; Fitness for the search agents

4 while t ≤MaximumNo.o f Iterations do
5 Update Constraints for each Agent
6 if p < 0.5 and |A| < 1 then
7 end
8 Update: Position of Current Search Agent
9 if |A| ≥ 1 then end
10 Select Random Search Engine Xr
11 Update: Position of Current Search Agent
12 if p ≥ 0.5 then
13 end
14 Update: Location of Current Search Agent
15 Calculate Fitness Search Agent
16 Update Best Search Agent
17 end
18 return Best Position & Fitness Value
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5.2. Throughput Analysis for MU & DU

In Figure 6, the throughput for various D2D pairs is shown for MUs, DUs, and
overall users. According to this graph, system throughput increases as the number of D2D
pairs increases, but when the number of D2D pairs reaches the system’s capacity, system
throughput decreases. Figures 6–8 show that the proposed MNSGA scheme outperforms
MWOA, while MWOA outperforms the algorithm from [51]. In Figure 6, the system
throughputs of MNSGA and MWOA are compared to the number of D2D pairs for MUs. In
Figure 7, the system throughputs of the MNSGA and MWOA are compared to the number
of D2D pairs for DUs.
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5.3. Throughput Analysis for Various Distances

Throughput values for various distances between D2D pairs are shown in Figures 9–11
for MUs, DUs, and overall users. Once again, the proposed MNSGA scheme outperforms
the MWOA method. For all techniques, it is seen that the system throughput becomes
lower as the length between D2D pairs increases. This is due to the fact that as the space
in the middle of D2D pairs grows, the strength of the desired signal weakens, resulting
in a reduction in system throughput. In Figure 9, the system throughputs of MNSGA
and MWOA are compared with respect to the distance between D2D pairs for MUs. In
Figure 10, the system throughputs of MNSGA and MWOA are compared with respect to
the distance between D2D pairs for DUs.
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Figures 12–14 show the system throughputs for various minimum data rate re-

quirements of users for MUs, DUs, and overall users. When the minimum rate condi-
tion of entities is maximized, ranging from almost 500 kbps up to 3000 kbps, throughput 
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5.4. Throughput Analysis for Various Distances

Figures 12–14 show the system throughputs for various minimum data rate require-
ments of users for MUs, DUs, and overall users. When the minimum rate condition of
entities is maximized, ranging from almost 500 kbps up to 3000 kbps, throughput reduces
for all schemes, as shown in the figures. For maintaining the minimum required rate of
users, the proposed MNSGA scheme outperforms MWOA and the algorithm from [51];
MWOA outperforms the algorithm from [51]. In Figure 12, the system throughputs of the
MNSGA, MWOA, and [51] algorithms are compared in terms of the minimum required
rate for MUs. In Figure 13, the MNSGA, MWOA, and [51] algorithm system throughputs
are compared in terms of the minimum rate of DUs.
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In Figure 14, the system throughput of the MNSGA, MWOA, and [51] algorithms is
compared to the overall minimum required rate. MNSGA outperforms both the MWOA
and [51] algorithms and MWOA outperforms the algorithm from [51]. In the second
experiment, the MNSGA, MWOA, and [51] algorithms are compared in terms of distance
between D2D pairs vs. throughput, and MNSGA again performs better than both MWOA
and the algorithm from [51]; likewise, MWOA again performs better than the algorithm
from [51]. The MNSGA, MWOA, and [51] algorithms are compared again in the third
experiment in terms of minimum required rate vs. throughput; MNSGA outperforms both
the MWOA and [51] algorithms, and MWOA leaves [51] behind. MNSGA performs well in
all categories in terms of number of D2D pairs, distance between D2D pairs, and minimum
required rate for MUs, DUs, and overall users. MWAO, on the other hand, outperforms
the algorithm from [51] in all scenarios. Both proposed techniques, MNSGA and MWAO,
outperformed the algorithm from [51] by producing good results.

6. Conclusions

R3,1 R2,1 R1,1 In order to maximize 5G communication throughput, cognitive radio-
assisted device-to-device communication is a promising technology that accommodates
the highest data rate demands in a small area. Throughput optimization is performed
and maximized using evolutionary techniques. Throughput is compared with the number
of D2D pairs, the distance between D2D pairs, and the minimum required rate of users
for MUs, DUs, and overall users. To increase the throughput of existing algorithms, the
authors propose two algorithms, namely MNSGA and MWOA, as alternatives to existing
algorithms. Several experiments are conducted to evaluate which algorithm optimizes
the throughput. From the simulations, it is concluded that MNSGA techniques perform
well and are more effective than MWOA and existing algorithms. The experiments are
performed, and the results are extracted in a Python environment.

Author Contributions: Conceptualization, A.B; formal analysis, A.B., S.A.G. and O.-Y.S.; funding
acquisition, O.-Y.S.; investigation, A.B., S.L. and S.A.G.; methodology, A.B. and S.L.; project ad-
ministration, A.A.A.; resources, O.-Y.S., A.A.A. and T.K.; supervision, S.L. and S.A.G.; validation,
S.L., S.A.G. and O.-Y.S.; visualization, S.A.G., A.A.A. and T.K.; writing—original draft, A.B. and
S.L.; writing—review and editing, O.-Y.S., A.A.A. and T.K. All authors have read and agreed to the
published version of the manuscript.



Electronics 2023, 12, 973 14 of 16

Funding: This research was financially supported by the Ministry of Trade, Industry, and Energy
(MOTIE) and the Korea Institute for Advancement of Technology (KIAT) through the International
Cooperative RD program, (Project No. P0016038) an Institute of Information and Communications
Technology Planning Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2021-0-
01188, Non-face-to-face Companion Plant Sales Support System Providing Realistic Experience), and
the MSIT (Ministry of Science and ICT), Republic of Korea, under the ITRC (Information Technology
Research Center) support program (IITP-2022-RS-2022-00156354) supervised by the IITP (Institute for
Information Communications Technology Planning and Evaluation) and the faculty research fund of
Sejong University in 2022.

Acknowledgments: All authors contributed equally for the writing of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-based secure energy efficient beamforming in multibeam

satellite systems. IEEE Trans. Aerosp. Electron. Syst. 2022. [CrossRef]
2. Ghosh, U.; Tosh, D.; Qureshi, N.M.F.; Bashir, A.K.; Pathan, A.S.K.; Ning, Z. Cyber-Physical Systems: Prospects, Challenges and

Role in Software-Defined Networking and Blockchains. Future Internet 2022, 14, 382. [CrossRef]
3. Ali, A.; Abbas, L.; Shafiq, M.; Bashir, A.K.; Afzal, M.K.; Liaqat, H.B.; Siddiqi, M.H.; Kwak, K.S. Hybrid fuzzy logic scheme for

efficient channel utilization in cognitive radio networks. IEEE Access 2019, 7, 24463–24476. [CrossRef]
4. Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-aided hybrid satellite-terrestrial relay networks:

Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [CrossRef]
5. Zhang, X.; Zhang, X.; Han, L.; Xing, R. Utilization-oriented spectrum allocation in an underlay cognitive radio network. IEEE

Access 2018, 6, 12905–12912. [CrossRef]
6. Chuang, C.L.; Chiu, W.Y.; Chuang, Y.C. Dynamic multiobjective approach for power and spectrum allocation in cognitive radio

networks. IEEE Syst. J. 2021, 15, 5417–5428. [CrossRef]
7. Singh, W.N.; Marchang, N. Spectrum Allocation in Cognitive Radio Networks Using Gene Therapy-Based Evolutionary Algo-

rithms. Arab. J. Sci. Eng. 2022, 47, 10277–10293. [CrossRef]
8. An, K.; Lin, M.; Ouyang, J.; Zhu, W.P. Secure transmission in cognitive satellite terrestrial networks. IEEE J. Sel. Areas Commun.

2016, 34, 3025–3037. [CrossRef]
9. Li, X.; Chen, G.; Wu, G.; Sun, Z.; Chen, G. Research on Multi-Agent D2D Communication Resource Allocation Algorithm Based

on A2C. Electronics 2023, 12, 360. [CrossRef]
10. Laguidi, A.; Hachad, T.; Hachad, L. Mobile network connectivity analysis for device to device communication in 5G network. Int.

J. Elect. Comput. Eng. (2088-8708) 2023, 13. [CrossRef]
11. Salahdine, F.; Han, T.; Zhang, N. 5G, 6G, and Beyond: Recent advances and future challenges. Ann. Telecommun. 2023, 1–25.

[CrossRef]
12. Kuang, Z.; Li, G.; Zhang, L.; Zhou, H.; Li, C.; Liu, A. Energy efficient mode selection, base station selection and resource allocation

algorithm in D2D heterogeneous networks. Peer-Peer Netw. Appl. 2020, 13, 1814–1829. [CrossRef]
13. Liao, J.; Yu, H.; Jiang, W.; Lin, R.; Wang, J. Optimal resource allocation method for energy harvesting based underlay Cognitive

Radio networks. PLoS ONE 2023, 18, e0279886. [CrossRef]
14. Tegou, T.I.; Tsiflikiotis, A.; Vergados, D.D.; Siakavara, K.; Nikolaidis, S.; Goudos, S.K.; Sarigiannidis, P.; Obaidat, M. Spectrum

allocation in cognitive radio networks using chaotic biogeography-based optimisation. IET Netw. 2018, 7, 328–335. [CrossRef]
15. Hussain, A.; Sohail, M.; Alam, S.; Ghauri, S.A.; Qureshi, I.M. Classification of M-QAM and M-PSK signals using genetic

programming (GP). Neural Comput. Appl. 2019, 31, 6141–6149. [CrossRef]
16. Sarfraz, M.; Sohail, M.F.; Alam, S.; ur Rehman, M.J.; Ghauri, S.A.; Rabie, K.; Abbas, H.; Ansari, S. Capacity Optimization of

Next-Generation UAV Communication Involving Non-Orthogonal Multiple Access. Drones 2022, 6, 234. [CrossRef]
17. Hamdi, M.; Zaied, M. Resource allocation based on hybrid genetic algorithm and particle swarm optimization for D2D multicast

communications. Appl. Soft Comput. 2019, 83, 105605. [CrossRef]
18. AlJubayrin, S.; Sarfraz, M.; Ghauri, S.A.; Amirzada, M.R.; Kebedew, T.M. Research Article Artificial Bee Colony Based Gabor

Parameters Optimizer (ABC-GPO) for Modulation Classification. Comput. Intell. Neurosci. 2022, 2022. [CrossRef] [PubMed]
19. Shah, S.I.H.; Coronato, A.; Ghauri, S.A.; Alam, S.; Sarfraz, M. CSA-Assisted Gabor Features for Automatic Modulation Classifica-

tion. Circuits Syst. Signal Process. 2022, 41, 1660–1682. [CrossRef]
20. Arun, J.; Karthikeyan, M. Optimized cognitive radio network (CRN) using genetic algorithm and artificial bee colony algorithm.

Clust. Comput. 2019, 22, 3801–3810. [CrossRef]
21. Alhussien, N.; Gulliver, T.A. Joint Resource and Power Allocation for Clustered Cognitive M2M Communications Underlaying

Cellular Networks. IEEE Trans. Veh. Technol. 2022, 71, 8548–8560. [CrossRef]
22. Bhardwaj, P.; Panwar, A.; Ozdemir, O.; Masazade, E.; Kasperovich, I.; Drozd, A.L.; Mohan, C.K.; Varshney, P.K. Enhanced

dynamic spectrum access in multiband cognitive radio networks via optimized resource allocation. IEEE Trans. Wirel. Commun.
2016, 15, 8093–8106. [CrossRef]

http://doi.org/10.1109/TAES.2022.3190238
http://doi.org/10.3390/fi14120382
http://doi.org/10.1109/ACCESS.2019.2900233
http://doi.org/10.1109/TAES.2022.3155711
http://doi.org/10.1109/ACCESS.2018.2808473
http://doi.org/10.1109/JSYST.2021.3061670
http://doi.org/10.1007/s13369-021-06543-1
http://doi.org/10.1109/JSAC.2016.2615261
http://doi.org/10.3390/electronics12020360
http://doi.org/10.11591/ijece.v13i1.pp680-687
http://doi.org/10.1007/s12243-022-00938-3
http://doi.org/10.1007/s12083-020-00915-4
http://doi.org/10.1371/journal.pone.0279886
http://doi.org/10.1049/iet-net.2017.0264
http://doi.org/10.1007/s00521-018-3433-1
http://doi.org/10.3390/drones6090234
http://doi.org/10.1016/j.asoc.2019.105605
http://doi.org/10.1155/2022/9464633
http://www.ncbi.nlm.nih.gov/pubmed/36210980
http://doi.org/10.1007/s00034-021-01854-y
http://doi.org/10.1007/s10586-018-2350-5
http://doi.org/10.1109/TVT.2022.3172905
http://doi.org/10.1109/TWC.2016.2612627


Electronics 2023, 12, 973 15 of 16

23. Elhachmi, J.; Guennoun, Z. Cognitive radio spectrum allocation using genetic algorithm. EURASIP J. Wirel. Commun. Netw. 2016,
2016, 133. [CrossRef]

24. Ruby, D.; Vijayalakshmi, M.; Kannan, A. Intelligent relay selection and spectrum sharing techniques for cognitive radio networks.
Clust. Comput. 2019, 22, 10537–10548. [CrossRef]

25. Darney, P.E.; Jacob, I.J. Performance enhancements of cognitive radio networks using the improved fuzzy logic. J. Soft Comput.
Paradig. 2019, 1, 57–68. [CrossRef]

26. Anumandla, K.K.; Sabat, S.L.; Peesapati, R.; AV, P.; Dabbakuti, J.K.; Rout, R. Optimal spectrum and power allocation using
evolutionary algorithms for cognitive radio networks. Internet Technol. Lett. 2021, 4, e207. [CrossRef]

27. Han, R.; Gao, Y.; Wu, C.; Lu, D. An effective multi-objective optimization algorithm for spectrum allocations in the cognitive-
radio-based Internet of Things. IEEE Access 2018, 6, 12858–12867. [CrossRef]

28. Pham, Q.V.; Mirjalili, S.; Kumar, N.; Alazab, M.; Hwang, W.J. Whale optimization algorithm with applications to resource
allocation in wireless networks. IEEE Trans. Veh. Technol. 2020, 69, 4285–4297. [CrossRef]

29. Sumathi, D.; Manivannan, S. Stochastic approach for channel selection in cognitive radio networks using optimization techniques.
Telecommun. Syst. 2021, 76, 167–186. [CrossRef]

30. Tuberquia-David, M.; Hernández, C.; Martínez, F. Spectrum handoff reduction in cognitive radio networks using evolutionary
algorithms. J. Intell. Fuzzy Syst. 2019, 36, 6049–6058. [CrossRef]

31. Dang, B.T.; Vo, M.C.; Truong, T.K. Social spider algorithm-based spectrum allocation optimization for cognitive radio networks.
Int. J. Appl. Eng. Res. 2017, 12, 3879–3887.

32. Wu, R.Z.; Gao, L.Y.; Tang, L.R.; Zhu, J.J. Optimal Spectrum Allocation of Cognitive Radio Network Under Underlay Model. Wirel.
Pers. Commun. 2017, 97, 469–481. [CrossRef]

33. Dong, X.; Cheng, L.; Zheng, G.; Wang, T. Multi-objective optimization method for spectrum allocation in cognitive heterogeneous
wireless networks. Aip Adv. 2019, 9, 045130. [CrossRef]

34. Hasan, N.U.; Ejaz, W.; Ejaz, N.; Kim, H.S.; Anpalagan, A.; Jo, M. Network selection and channel allocation for spectrum sharing
in 5G heterogeneous networks. IEEE Access 2016, 4, 980–992. [CrossRef]

35. Alam, S.; Sarfraz, M.; Usman, M.; Ahmad, M.; Iftikhar, S. Dynamic resource allocation for cognitive radio based smart grid
communication networks. Int. J. Adv. Appl. Sci. 2017, 4, 76–83. [CrossRef]

36. Kaur, A.; Kumar, K. Energy-efficient resource allocation in cognitive radio networks under cooperative multi-agent model-free
reinforcement learning schemes. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1337–1348. [CrossRef]

37. Giupponi, L.; Pérez-Neira, A.I. Fuzzy-based spectrum handoff in cognitive radio networks. In Proceedings of the 2008 3rd
International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom 2008), Singapore,
15–17 May 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–6.

38. Hawa, M.; AlAmmouri, A.; Alhiary, A.; Alhamad, N. Distributed opportunistic spectrum sharing in cognitive radio networks.
Int. J. Commun. Syst. 2017, 30, e3147. [CrossRef]

39. Uma, V.; Hyrunnisha, N. Maximum utilization of spectrum through cognitive radio system using fuzzy logic system. Int. J.
Comput. Sci. Trends Technol. (IJCST) 2017, 5.

40. Zhang, W.; Sun, Y.; Deng, L.; Yeo, C.K.; Yang, L. Dynamic spectrum allocation for heterogeneous cognitive radio networks with
multiple channels. IEEE Syst. J. 2018, 13, 53–64. [CrossRef]

41. Zhang, W.; Wang, C.X.; Ge, X.; Chen, Y. Enhanced 5G cognitive radio networks based on spectrum sharing and spectrum
aggregation. IEEE Trans. Commun. 2018, 66, 6304–6316. [CrossRef]

42. Sahoo, P.K.; Sahoo, D. Sequence-based channel hopping algorithms for dynamic spectrum sharing in cognitive radio networks.
IEEE J. Sel. Areas Commun. 2016, 34, 2814–2828. [CrossRef]

43. Ostovar, A.; Zikria, Y.B.; Kim, H.S.; Ali, R. Optimization of resource allocation model with energy-efficient cooperative sensing in
green cognitive radio networks. IEEE Access 2020, 8, 141594–141610. [CrossRef]

44. Mahmood, Z.S.; Coran, A.N.N.; Kamal, A.E. Dynamic approach for spectrum sharing in cognitive radio. Int. J. Eng. Technol. 2018,
7, 5408–5411.

45. Sultana, A.; Zhao, L.; Fernando, X. Efficient resource allocation in device-to-device communication using cognitive radio
technology. IEEE Trans. Veh. Technol. 2017, 66, 10024–10034. [CrossRef]

46. Waqas, M.; Aslam, S.; Ali, Z.; Sidhu, G.A.S.; Xin, Q.; Jang, J.W. Resource optimization for cognitive radio based device to device
communication under an energy harvesting scenario. IEEE Access 2020, 8, 24862–24872. [CrossRef]

47. Liu, S.; Wu, Y.; Li, L.; Liu, X.; Xu, W. A two-stage energy-efficient approach for joint power control and channel allocation in D2D
communication. IEEE Access 2019, 7, 16940–16951. [CrossRef]

48. Li, J.; Lei, G.; Manogaran, G.; Mastorakis, G.; Mavromoustakis, C.X. D2D communication mode selection and resource optimiza-
tion algorithm with optimal throughput in 5G network. IEEE Access 2019, 7, 25263–25273. [CrossRef]

49. Latif, S.; Akraam, S.; Karamat, T.; Khan, M.A.; Altrjman, C.; Mey, S.; Nam, Y. An efficient pareto optimal resource allocation
scheme in cognitive radio-based internet of things networks. Sensors 2022, 22, 451. [CrossRef]

50. Alam, S.; Sohail, M.F.; Ghauri, S.A.; Qureshi, I.; Aqdas, N. Cognitive radio based smart grid communication network. Renew.
Sustain. Energy Rev. 2017, 72, 535–548. [CrossRef]

51. Girmay, G.G.; Pham, Q.V.; Hwang, W.J. Joint channel and power allocation for device-to-device communication on licensed and
unlicensed band. IEEE Access 2019, 7, 22196–22205. [CrossRef]

http://doi.org/10.1186/s13638-016-0620-6
http://doi.org/10.1007/s10586-017-1102-2
http://doi.org/10.36548/jscp.2019.2.001
http://doi.org/10.1002/itl2.207
http://doi.org/10.1109/ACCESS.2017.2789198
http://doi.org/10.1109/TVT.2020.2973294
http://doi.org/10.1007/s11235-020-00705-6
http://doi.org/10.3233/JIFS-181856
http://doi.org/10.1007/s11277-017-4514-7
http://doi.org/10.1063/1.5092211
http://doi.org/10.1109/ACCESS.2016.2533394
http://doi.org/10.21833/ijaas.2017.010.012
http://doi.org/10.1109/TNSM.2020.3000274
http://doi.org/10.1002/dac.3147
http://doi.org/10.1109/JSYST.2018.2822309
http://doi.org/10.1109/TCOMM.2018.2863385
http://doi.org/10.1109/JSAC.2016.2615258
http://doi.org/10.1109/ACCESS.2020.3013034
http://doi.org/10.1109/TVT.2017.2743058
http://doi.org/10.1109/ACCESS.2020.2970464
http://doi.org/10.1109/ACCESS.2019.2894003
http://doi.org/10.1109/ACCESS.2019.2900422
http://doi.org/10.3390/s22020451
http://doi.org/10.1016/j.rser.2017.01.086
http://doi.org/10.1109/ACCESS.2019.2898645


Electronics 2023, 12, 973 16 of 16

52. Shah, S.I.H.; Alam, S.; Ghauri, S.A.; Hussain, A.; Ansari, F.A. A novel hybrid cuckoo search extreme learning machine approach
for modulation classification. IEEE Access 2019, 7, 90525–90537. [CrossRef]

53. Sohail, M.; Alam, S.; Hussain, A.; Ghauri, S.A.; Sarfraz, M.; Ahmed, M. Multiuser detection: Comparative analysis of heuristic
approach. Int. J. Adv. Appl. Sci. 2017, 4, 115–120.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2019.2926615

	Introduction 
	Contribution of the Article 
	Organization of the Article 

	Related Work 
	Framework of Proposed Model 
	D2D CR Network 
	Proposed Model 

	Modified Heuristic Algorithms 
	Modified Non-Dominated Sorting Genetic Algorithm (MNSGA) 
	Modified Whale Optimization Algorithm (MWOA) 
	Encoding of Whales 
	Encircling Prey Methodology 
	Bubble-Net Attacking Methodology 
	Search for Prey 


	Experimental Results and Discussion 
	Convergence of MNSGA & MWOA 
	Throughput Analysis for MU & DU 
	Throughput Analysis for Various Distances 
	Throughput Analysis for Various Distances 

	Conclusions 
	References

