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Abstract  62 

Soil erosion is generally recognized as the dominant process of land degradation. The formation and 63 

expansion of gullies is often a highly significant process of soil erosion. However, our ability to assess 64 

and simulate gully erosion and its impacts remains very limited. This is especially so at regional to 65 

continental scales. As a result, gullying is often overlooked in policies and land and catchment 66 

management strategies. Nevertheless, significant progress has been made over the past decades. Based 67 

on a review of >590 scientific articles and policy documents, we provide a state-of-the-art on our 68 

ability to monitor, model and manage gully erosion at regional to continental scales. In this review we 69 

discuss the relevance and need of assessing gully erosion at regional to continental scales (section 1); 70 

current methods to monitor gully erosion as well as pitfalls and opportunities to apply them at larger 71 

scales (section 2); field-based gully erosion research conducted in Europe and European Russia 72 

(section 3); model approaches to simulate gully erosion and its contribution to catchment sediment 73 

yields at large scales (section 4); data products that can be used for such simulations (section 5); and 74 

currently existing policy tools and needs to address the problem of gully erosion (section 6). Section 7 75 

formulates a series of recommendations for further research and policy development, based on this 76 

review. While several of these sections have a strong focus on Europe, most of our findings and 77 

recommendations are of global significance. 78 
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1. Introduction  83 

1.1 The relevance of gully erosion 84 

Soil erosion is globally recognized as the most dominant process of land degradation (e.g. 85 

Montanarella et al. 2016; Pennock, 2019). Most efforts to understand and quantify soil erosion by 86 

water have focussed on sheet and rill erosion (e.g. Renard et al., 1997; Montgomery, 2007; Maetens et 87 

al., 2012a; de Vente et al., 2013; Borrelli et al., 2017a). Nonetheless, numerous studies have 88 

highlighted the fact that also gully erosion is a key concern in many regions worldwide (Poesen et al., 89 

2003; Valentin et al., 2005; Vanmaercke et al., 2011; García‐Ruiz et al., 2017; Sidle et al., 2019). 90 

Overall, gully erosion is the formation and subsequent expansion of erosional channels in the soil as a 91 

result of concentrated water flow (Poesen et al., 2003). Gully dimensions can vary over several orders 92 

of magnitudes (e.g. Vanmaercke et al. 2016; Dube et al. 2020). However, conventionally a gully is 93 

distinguished from a rill based on a critical cross-sectional area of at least one square foot, i.e. the size 94 

of a channel that can no longer be erased via normal tillage operations (Poesen et al., 2003). An upper 95 

limit for gully dimensions has not been clearly defined yet.  96 

Gullies are often associated with a wide range of on-site and off-site impacts. On-site impacts include 97 

the direct loss of land, trees and crops as well as reduced trafficability. These limit opportunities for 98 

agriculture and other land uses (e.g. Poesen et al., 2003; Valentin et al., 2005). Gullies can also cause 99 

significant damage to roads, buildings and other infrastructure. In severe cases, such destructions may 100 

claim significant numbers of casualties (e.g. Guerra et al., 2007; Makanzu Imwangana et al., 2015). In 101 

many regions, gully erosion contributes to significant soil losses and reduced soil quality (Poesen et 102 

al., 1996; 2003; Ionita, 2006; Haregeweyn et al., 2008; Xu et al., 2016; Hayas et al., 2017a), 103 

threatening the long-term sustainability of food production and other ecosystem services (e.g. 104 

Montgomery, 2007). Gullies can also significantly alter surface and subsurface hillslope hydrology. 105 

For example, their presence can lead to a more efficient water evacuation and, in some cases, lower 106 

water tables. In dry environments, this can result in significantly lower crop yields in areas bordering 107 

gullies (e.g. Frankl et al., 2016; Poesen, 2018) and reduced biomass production rates over larger 108 

spatial scales (e.g. Avni, 2005), contributing to desertification. In addition, gullies can initiate or 109 

aggravate other erosion processes, including soil piping (Bernatak-Jakiel & Poesen, 2018) and 110 

landsliding (e.g. Ionita et al., 2015a). As a result of such impacts, gully erosion can also become a 111 

significant driver of land use changes (e.g. Bakker et al., 2005; Valentin et al., 2005; Zgłobicki et al. 112 

2015a). In extreme cases, gully erosion can even transform productive land into badland areas 113 

(Cánovas et al., 2017; Torri et al., 2018a). 114 

Potential off-site impacts of gully erosion include changes in catchment hydrology, such as lower river 115 

baseflows and higher peak runoff discharges (e.g. Martineli Costa et al., 2007). Given their often high 116 

erosion rates, gullies can also be a major sediment source. Where they occur, gullies can easily 117 



account for 20-80% of the average catchment sediment yield (e.g. Poesen et al., 1996; 2003; 118 

Vanmaercke et al., 2012). Furthermore, gullies can indirectly contribute to sediment loads by 119 

increasing the runoff and sediment connectivity between upland areas, valley bottoms and river 120 

networks or lakes (Poesen et al., 2003). These higher sediment loads and increased connectivity can 121 

result in a plethora of problems, including (muddy) floods (e.g. Verstraeten & Poesen, 1999), reservoir 122 

capacity losses due to sediment deposition (e.g. Haregeweyn et al., 2006), channel aggradation (e.g. 123 

Benda et al., 2003) and reduced water quality (e.g. Owens et al., 2005). As such, gully erosion is a 124 

great concern in many regions worldwide (Valentin et al., 2005; Poesen, 2018). It is a key process of 125 

land degradation and desertification (Vanmaercke et al., 2011a), posing a significant threat to various 126 

ecosystems and ecosystem services (e.g. Kroon et al., 2012; 2016).  127 

Given these impacts and concerns, land use and catchment management strategies are needed that 128 

allow the prevention and mitigation of gully erosion and its impacts (e.g. Poesen et al. 2003; 2018). 129 

Nevertheless, controlling gully erosion is often complex and costly and typically requires a catchment-130 

wide approach (Golosov & Belyaev, 2013). Conventional erosion control measures aimed at reducing 131 

sheet and rill erosion on hillslopes are often insufficient and specific interventions, such as the 132 

installation of check dams or revegetation within the gully channel, are often required. Successfully 133 

implementing such measures is usually very challenging, due to their risk of failure, their need for 134 

maintenance, feedback mechanisms like the ‘clear water’ effect, but also their often high associated 135 

costs (e.g. Stokes et al., 2014; Frankl et al., 2016; Ayele et al., 2018; Lucas-Borja et al. 2018; Rey et 136 

al., 2019; Bartley et al., 2020; Frankl et al., 2021). 137 

Nevertheless, it is worth noting that gullies can sometimes also create interesting opportunities and 138 

positive outcomes. When well managed, they can become productive and biodiverse hotspots that play 139 

a key role as ecological corridors (Romero-Díaz et al., 2019). Likewise, gully channels can become 140 

significant sediment traps and fill-up over time, especially when they are well vegetated (e.g. 141 

Vanwalleghem et al., 2005c; Lanckriet al., 2015; Molina et al., 2009). Furthermore, they can be of 142 

significant geo-archeological value, providing important insight into (pre-)historic land use and human 143 

occupation (e.g. Dotterweich et al., 2003; 2012; Vanwalleghem et al., 2003; Torri et al., 2018a; 144 

Maerker et al., 2019). As such, they are generally seen by the scientific community as a key landform 145 

to understand the environmental change and soil erosion risks and they can play an important role in 146 

raising general awareness about these issues (e.g. Poesen et al. 2003; Frankl et al., 2011; Zgłobicki et 147 

al., 2015b; 2019). Given their great visibility they can also help in raising awareness on erosion 148 

problems (e.g. Bielders et al., 2003; Zegeye et al., 2010). Because of their often great esthetical value 149 

or spectacular nature, several gullied areas and badlands even have large potential as geoheritage sites 150 

(Zgłobickiet al., 2018).  151 

 152 



1.2. The challenge of assessing gully erosion at regional to continental scales 153 

Developing appropriate gully erosion prevention and remediation strategies requires a thorough 154 

understanding of its dynamics and controlling factors. Gully erosion has already received a lot of 155 

research attention over the past century (Castillo & Gomez, 2016). This led to valuable insights on the 156 

formation and expansion of gullies, their contribution to sediment loads and their potential 157 

remediation. This research also demonstrated the sensitivity of gully erosion to land use/land cover 158 

(e.g. Prosser & Slade, 1994; Poesen et al., 2003; Torri and Poesen, 2014) and rainfall intensity (e.g. 159 

Vanmaercke et al., 2016; Hayas et al., 2017b). Globally ongoing land use/land cover changes that have 160 

a significant effect on sheet and rill erosion (Borrelli et al., 2017a) therefore probably also strongly 161 

impact gully erosion rates. Likewise, climate change and in particular increases in rainfall intensities 162 

(e.g. Polade et al., 2014) are likely to further intensify gully erosion rates (e.g. Nearing et al., 2004; Li 163 

& Fang, 2016; Vanmaercke et al., 2016; Panagos et al., 2017). In order to address these challenges, 164 

there is a need for tools and models that can quantify the current rates and impacts of gully erosion and 165 

assess the effect of potential climate and land use change scenarios (e.g. Poesen, 2018; Pennock, 166 

2019). However, our ability to simulate gully erosion and its impacts remains currently limited (Jetten 167 

et al., 2003; Merrit et al., 2003; Poesen et al., 2011; Vanmaercke et al., 2016; Bennett & Wells, 2019; 168 

Sidle et al. 2019), particularly at regional to continental scales (e.g. de Vente et al., 2013; Poesen, 169 

2018). Insights at these scales are essential for the development of adequate and targeted land and 170 

catchment management strategies. 171 

These difficulties to simulate and quantify gully erosion at regional to continental scales arise from 172 

several causes. First, there is a wide variety of gully types and sizes (Figure 1). Examples include 173 

ephemeral gullies in cropland (e.g. Valcarcel et al., 2003), (pre-)historic gullies under forest (e.g. 174 

Dotterweich et al., 2003; Vanwalleghem et al., 2003), permanent gullies in rangeland (e.g. Gomez-175 

Gutiérrez et al., 2009a), valley bottom gullies in alluvial planes (e.g. Amare et al., 2019), bank gullies 176 

(i.e. gullies forming in earth banks such as river banks, agricultural terraces, lynchets or sunken lane 177 

banks; e.g. Vandekerckhove et al., 2000; Poesen et al., 2003), large gullies in urban environments (e.g. 178 

Guerra et al. 2007; Makanzu Imwangana et al., 2015), sunken lanes (or road gullies; e.g. De Geeter et 179 

al., 2020) and gullies in badland areas (e.g. Nadal-Romero et al., 2015). Furthermore, the formation 180 

and expansion of gullies typically involve a range of subprocesses, including the initial incision of a 181 

flow channel by concentrated runoff and the formation of a gully headcut (e.g. Oostwoud Wijdenes et 182 

al., 1999), gully headcut retreat (Vanmaercke et al., 2016), gully widening and deepening (e.g. Hayas 183 

et al., 2019), mass movements (e.g. Zegeye et al., 2020), fluting (Poesen et al., 2002), piping or tunnel 184 

erosion (Bernatak-Jakiel and Poesen, 2018), sediment transport and sediment deposition (e.g. 185 

Vanwalleghem et al., 2005c). The relative importance of these subprocesses depends on the type of 186 

gully, its environmental conditions, but also on the age of the gully (e.g. Oostwoud Wijdenes et al., 187 

1999; Sidorchuk et al., 2001; Poesen et al., 2006; Sidorchuk, 2006; Frankl et al. 2021). In addition, and 188 



as a result of these complexities, gully erosion is also characterized by an important degree of 189 

stochasticity (e.g. Montgomery & Dietrich, 1994; Prosser & Abernethy, 1996). While significant 190 

advancements have been made over the past decades, our understanding of these processes, their 191 

interactions and their numerous potential controlling factors remains limited (Poesen et al., 2011; de 192 

Vente et al., 2013; Vanmaercke et al., 2016).  193 

From the aforementioned points it also becomes clear that the simulation of gully erosion at larger 194 

scales requires significant amounts of data. These include input data on relevant environmental 195 

controlling factors (i.e. topography, soil characteristics, climate/weather conditions and land use/ 196 

cover/management) but also observations on gully occurrence, dimensions and erosion rates to 197 

calibrate and validate models. Although several studies have attempted to model gully erosion at local 198 

scales, applying these models over larger areas is mostly impossible due to data constraints (e.g. 199 

Poesen et al., 2011; de Vente et al., 2013; Poesen, 2018). Furthermore, the environmental factors that 200 

need to be considered can vary depending on the study area and gully type. For example, valley 201 

bottom gullies are often linked to the presence of dispersive soils or specific conditions in subsurface 202 

hydrology (Imeson & Kwaad, 1980; Brooks et al., 2009; Amare et al. 2019). In other areas, 203 

seismic/tectonic activity seems to exert an important control on gully erosion (e.g. Cox et al., 2010; 204 

Marden et al., 2018). Also farming practices like tillage or parcellation patterns can play a key role in 205 

the formation of gullies (Poesen et al. 1996; Gordon et al., 2008; Zgłobicki & Baran-Zgłobicka 2011). 206 

This large variation of controlling factors, subprocesses and their interactions further hampers the 207 

development and application of (process-based) gully erosion models at regional to continental scales. 208 

Finally, given its threshold-dependent nature, gully erosion is typically a highly erratic process, 209 

characterized by a very large temporal variability (e.g. Vandekerckhove et al. 2001b; Vanmaercke et 210 

al., 2016; Hayas et al., 2017b). Hence, identifying and constraining the key factors controlling gully 211 

erosion requires data on gully dynamics, land use, land management and weather conditions that are 212 

sufficiently detailed over long periods.  213 



 214 

Figure 1: Illustration of different gully types across the world. (a) Ephemeral gully formed in a bare potato field with ridges 215 

and furrows (Neuville en Condroz, Belgium, May 2018; Photo: J. Poesen). (b) Historic gully under forest (Neigembos, 216 

Belgium, August 2013; Photo: M. Vanmaercke). (c) Permanent gully under rangeland (Burdekin catchment, Queensland, 217 

Australia, July 2019; Photo: M. Vanmaercke). (d) Permanent gully under grassland (Guder, Ethiopia, August 2017; Photo: 218 

M. Vanmaercke). (e) Permanent gully in a valley bottom (Moldova Province, Romania, May 2011; Photo: J. Poesen). (f) 219 

Bank gully formed in a sunken lane bank (Landen, Belgium, April 2019; Photo: J. Poesen). (g) Urban mega-gully that 220 

destroyed multiple houses (Kinshasa, D.R. Congo, November 2019; Photo: M. Vanmaercke). (h) Gullies formed in a badland 221 

area (near Quazvin, Iran, October 2014; Photo: M. Vanmaercke). 222 

223 



1.3. Scope and overview of this review 224 

The previous subsections reveal that there is an important need for tools and models that allow 225 

quantifying and predicting gully erosion at regional (e.g. >10 000 km²), continental and even global 226 

scales. Presently, no approaches can do this. However, important advancements have been made in 227 

this regard. These include a better understanding of gully erosion processes, novel model approaches 228 

and mapping techniques and the development of new high-resolution datasets. The objective of this 229 

review is to provide a state of the art of our ability to monitor, model and manage gully erosion at 230 

regional to continental scales. From this we aim to identify key research and policy gaps, but also 231 

opportunities and pathways to address this problem. The main focus area of this paper is Europe. 232 

However, the scope and relevance of this paper extent to other continents as well.  233 

Section 2 reviews remote-sensing and field approaches to measure and monitor gully properties and 234 

their dynamics. We discuss the limitations and potential of these methods with a focus on their 235 

application over larger areas. Section 3 provides an overview of past field-based gully-erosion 236 

research in Europe and European Russia. This to provide an overview of available data and 237 

observations that may be useful for further model development, but also to identify current research 238 

focuses and knowledge gaps. In section 4, we discuss modelling approaches used to simulate various 239 

relevant aspects of gully erosion (gully occurrence, gully expansion and the contribution of gullies to 240 

catchment sediment yields). Also here, our focus lies on the applicability of these approaches at 241 

regional to continental scales. Section 5 complements this objective by providing an overview of 242 

currently available GIS datasets that may be used as input for such models. We concentrate on datasets 243 

that are available for Europe or have a global coverage. Section 6 discusses to what extent 244 

environmental management policies and frameworks already account for the challenges posed by 245 

gully erosion (with a focus on Europe). Section 7 synthesizes our key findings into a list of key 246 

recommendations with respect to the monitoring, modelling and managing of gully erosion at larger 247 

scales.  248 

 249 

2. Assessing gully erosion through monitoring 250 

Observations on the occurrence of gullies, their dimensions and their dynamics are essential to 251 

quantify gully erosion rates, to identify the factors that control them and to develop and evaluate 252 

predictive models (cf. Section 4). In addition, such measurements are indispensable to assess the 253 

effectiveness of gully control measures (e.g. Frankl et al., 2013; 2021; Bartley et al., 2020). Here we 254 

review and discuss different methods to monitor the presence gullies (cf. section 2.1), their properties 255 

(cf. section 2.2) and their dynamics (cf. section 2.3), in particular at regional to continental scales.  256 

 257 



2.1. Assessing the presence or absence of gullies 258 

Especially at larger scales, time and labour constraints often limit the accuracy and level of detail of 259 

gully inventories. Nonetheless, inventories that simply record the ‘presence’ or ‘absence’ of gullies 260 

rather than their precise outlines can already greatly help in identifying problem areas and guiding 261 

policy decisions. Such approach has been followed in various regions, including Portugal (Vandaele et 262 

al., 1997), Belgium (Nachtergaele & Poesen, 1999), Ethiopia (Frankl et al. 2011), the USA (e.g. 263 

Bernard et al., 2010), Spain (e.g. Selkimäki and González-Olabarria, 2017), the European Union 264 

(Orgiazzi et al., 2018) and Australia (e.g. Hughes and Prosser, 2012; Darr and Pringle, 2017). This 265 

presence or absence can be assessed based on field surveys, aerial/satellite photo interpretation and/or 266 

remote sensing analyses. For the latter, the presence of vegetation or snow can hamper successful 267 

detection (e.g. Marzolff & Poesen 2009). Likewise, given that gullies can disappear or fill in over 268 

time, such inventories can be strongly time-dependent. This is especially a concern for ephemeral 269 

gullies, which are often filled in by ploughing  shortly after the rain event that triggered them. 270 

Assessments based on infrequent surveys can thus severely underestimate the occurrence of ephemeral 271 

gullies (e.g. Nachtergaele & Poesen, 1999), and lead to high levels of error (Kuhnert et al., 2010). 272 

Furthermore, such inventories strongly depend on the size of the spatial units in which the presence or 273 

absence of gullies is recorded (e.g. parcels, catchments, grids of fixed dimensions).  274 

Creating detailed inventories of gully presence at high resolution can be very labour-intensive (e.g. 275 

one person-month for a 3,000 km2 area at a 100m pixel resolution; Darr and Pringle, 2017). Zhao et al. 276 

(2016) employed an alternative approach to estimate gully densities. Rather than systematically 277 

mapping entire areas, they assessed for a large number of random points whether or not the point was 278 

located inside a gully. The fraction of points located within a gully thus provides an estimate of the 279 

areal gully density. Such crude but fast proxy can be used for meaningful empirical analyses, e.g. to 280 

explore correlations between gully densities and catchment sediment yields (Zhao et al., 2016). 281 

Overall, complete assessments or random sampling procedures provide the advantage that mapping 282 

efforts are unbiased. In contrast, many existing gully occurrence studies focus on gully-prone areas 283 

and are therefore often unrepresentative at regional to continental scales. 284 

A specific type of gully presence/absence inventories are maps that indicate the position of individual 285 

gully heads (e.g. Vandekerckhove et al., 1998; 2000b; Torri and Poesen, 2014; Hayas et al. 2017b). 286 

Since gully initiation and expansion are strongly controlled by local topographic and environmental 287 

conditions, such inventories are very useful for modelling purposes (cf. section 4). However, since 288 

their construction is often labour-intensive, they typically remains limited to local study areas (Torri 289 

and Poesen, 2014). Nevertheless, the growing availability of high-resolution remote sensing imagery 290 

and digital elevation models (cf. section 5) in combination with the development of (semi-) automatic 291 

gully detection procedures will likely increase the availability of such inventories at regional to 292 

continental scales.  293 



 294 

2.2. Assessing gully properties 295 

For some regions, more detailed inventories of gullies and their characteristics are available over large 296 

areas. An overview of such inventories for Europe is given in section 3. Examples outside Europe 297 

include parts of Queensland (Australia; e.g. Brooks et al., 2009) and South Africa (e.g. Mararakanye 298 

& Le Roux, 2012). Most of these inventories represent gullies as either linear features (e.g. Rysin et 299 

al., 2017a;b) or as polygons (e.g. Saxton et al., 2012; Shellberg et al., 2016). They are mostly 300 

constructed by manually mapping gully extent from (historical) monoscopic/stereoscopic aerial 301 

photographs (e.g. Knight et al., 2007). More recent examples made use of high resolution DEMs 302 

and/or high resolution remote sensing images in combination with classification procedures that are 303 

increasingly automated, accurate and computationally efficient (e.g. Thommeret et al., 2010; Castillo 304 

et al., 2014a; Shruthi et al., 2014; Fiorucci et al., 2015; Shabibi et al., 2019; Walker et al., 2020). 305 

Evidently, such gully inventories allow for more detailed analyses. Characteristics like gully-head 306 

locations (cf. section 2.1) may be extracted from them relatively easily (e.g. Hayas et al., 2017b). They 307 

also allow more precise assessments of the areal and/or linear gully density. 308 

However, such inventories also come with limitations. Digitizing gullies from aerial photos or remote 309 

sensing products often involves significant uncertainties. For example, Maugnard et al. (2014) showed 310 

that mapping features of ephemeral gullies remains to a large extent subjective. Furthermore, their 311 

construction is generally very labour-intensive, resulting in important trade-offs between the size of 312 

the study area, the level of detail and the labour investment required (e.g. Mararakanye & Le Roux, 313 

2012; Golosov et al., 2018). Key elements in this are the image resolution and/or the mapping altitude 314 

(i.e. the difference between the altitude of the camera and the surface elevation) used but also whether 315 

gullies are mapped as linear features or polygons. (Semi-)automatic detection procedures offer 316 

promising perspectives here. They are typically based on high-resolution multi-spectral images (e.g. 317 

Shruthi et al., 2011) and/or high-resolution digital elevation models (e.g. Thommeret et al., 2010; 318 

Shabibi et al., 2019; Walker et al., 2020). Such imagery has become increasingly available at regional 319 

to continental scales. Nonetheless, most of the current applications remain limited to relatively small 320 

scales. The potential of these techniques needs to be further explored. Another promising option may 321 

be to optimize sampling protocols to manually inventorize gullies. This can be done, by stratifying 322 

areas in terms of ancillary information such as slope, land use or soil type (e.g. Minasny and 323 

McBratney, 2006) or by using a (semi-)random sampling procedure of smaller sites to be mapped (e.g. 324 

Vanmaercke et al., 2020). 325 

Also the widths, cross-sectional areas and, by extent, the total gully volumes are often of interest. 326 

Gully top-widths can typically be derived from aerial or satellite imagery (e.g. Nachtergaele et al., 327 

2002a; Hayas et al., 2017a). However, gully floor-widths are typically hard to measure from such 328 



imagery (Giménez et al., 2009). The top-widths may be significantly larger than the gully floor-329 

widths, especially for older gullies or gullies formed in soils with little cohesion (e.g. Hayas et al., 330 

2019). Nonetheless, gully floor-width and hydraulic radius are often of greater geomorphic relevance 331 

as they relate more directly to the maximum runoff discharges passing through the gully (e.g. 332 

Nachtergaele et al., 2002a; Vanwalleghem et al., 2005b).  333 

Also gully cross-sectional areas are difficult to quantify based on aerial photos or high resolution 334 

satellite images. Nonetheless, they are a key prerequisite to estimate the volumes of gully systems 335 

(Casalí et al., 2015; Castillo et al., 2019). Therefore they are often obtained through field 336 

measurements (e.g. Nachtergaele et al., 2001a;b). An uncertainty assessment by Castillo et al. (2012) 337 

showed that errors on individually measured cross-sections are overall relatively limited (3-15%). 338 

Extrapolating these cross-sectional areas to estimate gully volumes typically generates larger 339 

uncertainties. These depend on the gully length, its sinuosity and in particular the number of cross-340 

sections surveyed. Quantifying gully volumes with an acceptable degree of uncertainty (10-20%) 341 

typically requires ten or more cross-sections per gully (Castillo et al., 2012). This can pose challenges 342 

when aiming to quantify gully erosion volumes over larger areas. Fortunately, gully cross-sectional 343 

areas are typically strongly correlated to their top-width (e.g. Frankl et al., 2013; Vanmaercke et al., 344 

2016), which can be assessed via remote sensing. It is often feasible to develop robust empirical 345 

relationships between gully top-width and cross-sectional areas, based on a relatively limited amount 346 

of field surveys. These relationships can then be used to estimate gully volumes with acceptable 347 

uncertainties (e.g. Fiorucci et al., 2015; Hayas et al. 2017a). One concern with this approach is that the 348 

cross-sectional shapes evolve over time, e.g. from a rectangular to a more trapezoidal shape (e.g. 349 

Vanwalleghem et al. 2005b; Hayas et al., 2019). Hence, applying such a (time-specific) relationship to 350 

assess gully volumes over longer time periods may induce further uncertainties and biases. 351 

The challenge to estimate gully volumes from 2D imagery is partly rendered obsolete by new 352 

techniques. Airborne LIDAR instruments, for example, allow mapping the morphology and volume of 353 

gully systems (e.g. James et al., 2007; Eustace et al., 2009; Perroy et al., 2010; Goodwin et al., 2017). 354 

The method, albeit expensive (Castillo et al., 2012), is relatively fast and typically allows to construct 355 

digital terrain models of gully systems with an accuracy of some centimeters to decimeters. Recently 356 

developed Structure from Motion (SfM) techniques offer a promising and cheaper alternative, with 357 

accuracies and precisions that are similar to LIDAR or in some cases even superior (e.g. Castillo et al., 358 

2012; Gómez-Gutiérrez et al., 2014; Clapuyt et al., 2016; Koci et al., 2017). The photographic surveys 359 

required to construct a SfM-based digital terrain model can be conducted either from the ground or 360 

through drone flights. They can be made with standard photo cameras, while freely available software 361 

exists to process the photos into a 3D model (e.g. Koci et al., 2017). Nonetheless, vegetation cover can 362 

form a significant constraint for assessing gully properties via SfM. Also, as with LIDAR, data 363 

acquisition typically is labour-intensive and the computer resources required to construct such a 3D 364 



model currently remain considerable. Hence, most studies applying LIDAR or SfM to characterize 365 

gully systems cover only limited areas (e.g. Eustace et al., 2009; Perroy et al., 2010; Castillo et al., 366 

2012; Kropacek et al. 2016; Koci et al., 2017). Increases in computational power and more efficient 367 

algorithms may make it feasible to apply these techniques at regional to continental scales in the near 368 

future (Bennett and Wells, 2019). 369 

Apart from assessing gully dimensions, assessing whether gullies are stable or actively expanding is 370 

often of great relevance. While historic expansion of gullies is best assessed through repeated surveys 371 

(cf. section 2.3), this is not always possible. Furthermore, to target mitigation efforts, it is often 372 

required to identify the gullies that are currently active (e.g. Whitford et al., 2010). Some 373 

morphological characteristics can indicate whether a gully is likely active (Oostwoud Wijdenes et al., 374 

1999). For example, (recently) active gully heads typically have sharp edges, a plunge pool, tension 375 

cracks, recently deposited sediments and flow marks. Stabilized gullies typically have smoother or 376 

rounded edges and vegetation re-growth on the gully head wall and at its foot (Oostwoud Wijdenes et 377 

al., 2000). However, such distinctions are not always detectable on aerial/satellite imagery. Several 378 

studies therefore assessed gully stability based on the vegetation cover inside the gully (e.g. 379 

Vanwalleghem et al., 2005c; Makanzu Imwangana et al., 2015; Golosov et al., 2018). While such 380 

morphological or vegetation criteria can provide strong indications, it is important to note that they are 381 

not a guarantee for gully stability. Extreme weather events or significant land cover changes may 382 

reactivate gullies  that have been stable for many years (Vandekerckhove et al., 2001b).  383 

Likewise, classifying gullies into types (e.g. permanent, ephemeral, bank gully, valley-bottom and 384 

valley-side gully) is generally useful, as this may help understanding the causing mechanisms, 385 

potential erosion rates and optimal remediation strategies (e.g. Amare et al., 2019; Bartley et al., 386 

2020). Such classifications can be based on the dimensions, the landscape position and/or the land use 387 

type in which the gully occurs. However, while there is some agreement on different types of gullies 388 

(cf. section 3), no universal gully classification scheme currently exists. This limits the comparability 389 

of gully inventories and, by extent, gully erosion assessments at regional to continental scales. The 390 

development of systematic gully typologies, similar to those developed for landslides (e.g. Cruden and 391 

Varnes, 1996), may help address this issue. 392 

 393 

2.3. Assessing gully dynamics 394 

Various studies have assessed gully erosion rates through repeated field surveys or by determining the 395 

age of gullies through the analyses of tree roots, terrestrial photography, interviews, optical dating, 396 

sediment fingerprinting or other techniques (e.g. Vandekerckhove et al., 2001a; 2003; Martinez-397 

Casasnovas et al., 2004; Ionita, 2006; Nyssen et al., 2006; Marzolff et al., 2011; Frankl et al., 2012; 398 

Portenga et al., 2017; Bernatek-Jakiel & Wrońska-Wałach, 2018). While such research can provide 399 



key insights, they typically require intensive fieldwork and are therefore generally limited to specific 400 

gullies or small study areas. Efforts to understand gully erosion dynamics over larger areas therefore 401 

mainly rely on applying the techniques discussed above over different periods (e.g. Nachtergaele et al., 402 

2002b, Vandekerckhove et al., 2003; Vanwalleghem et al., 2005c; Marzolff and Poesen, 2009; Frankl 403 

et al., 2011; Yibeltal et al., 2019). 404 

Such analyses based on available imagery typically face important limitations. A first one is the length 405 

of the observation period. Given its threshold-dependent nature, gully erosion is often a highly erratic 406 

process (e.g. Vandekerckhove et al., 2001b; Martinez-Casasnovas et al., 2004). For example, Hayas et 407 

al., (2017a) showed average gully erosion rates may vary up to a factor 60 over short (< 5 years) 408 

observation periods. A global review of observed gully headcut retreat rates indicated similar ranges of 409 

variability (Vanmaercke et al., 2016). Hence, average gully erosion rates derived from short 410 

observation periods are often subject to very important uncertainties. While these uncertainties 411 

generally remain poorly quantified, they may easily dwarf the uncertainties related to assessing gully 412 

properties (cf. section 2.2). These uncertainties are often asymmetric: gully erosion rates derived from 413 

short periods are more likely to underestimate the long-term average, but may in some cases result in 414 

severe overestimations (Vandekerckhove et al., 2003; Hayas et al., 2017a; Vanmaercke et al., 2016). 415 

Apart from climatic variability, over- or underestimations strongly depend on the timing of the 416 

imagery. Permanent gullies often show the highest headcut retreat rates shortly after their formation, 417 

but then tend to stabilize over time (e.g. Nachtergaele et al., 2002b; Vanwalleghem et al., 2005; 418 

Sidorchuk, 2006; Whitford et al., 2010; Vanmaercke et al., 2016; Makanzu Imwangana et al., 2015; 419 

Rysin, 1998). When gullies are already present on the first image of a series, this poses large 420 

challenges in reconstructing the long-term average erosion rate (Vanmaercke et al., 2016). 421 

Furthermore, gullies can expand through widening and deepening (e.g. Martinez-Casasnovas et al., 422 

2004; Marzolff and Poesen, 2009). Research suggests that these processes become relatively more 423 

important in the later stages of gully development (e.g. Sidorchuk, 1999; Sidorchuk et al., 2003; 424 

Sidorchuk, 2006; Hayas et al., 2017a). Nonetheless, few studies have focused on these processes. As a 425 

result, they remain poorly quantified and understood (Whitford et al., 2010; Hayas et al., 2019). 426 

Finally, also the timing and frequency of the imagery greatly affects the reliability. Long periods 427 

between images make it difficult to accurately assess the initiation of gullies and may lead to biases. 428 

This is especially a concern for ephemeral gullies in arable land. As many ephemeral gullies are 429 

ploughed away shortly after their formation, assessing their erosion rate based on infrequent imagery 430 

can strongly underestimate the actual rate (Nachtergaele & Poesen, 1999). Ideally, imagery should be 431 

acquired shortly after every significant rainstorm event. However, that is rarely possible and especially 432 

hard for large areas. The rise of satellite imagery products with high spatial, temporal and spectral 433 

resolutions in combination with (semi-)automatic detection procedures (e.g. Shruti et al., 2014) may 434 

help address this gap.  435 



In conclusion, assessing reliable gully erosion rates at regional to continental scales remains difficult, 436 

especially at high temporal resolutions. Methodological challenges in both the detection (cf. section 437 

2.1) and characterization (cf. section 2.2) of gullies may induce significant uncertainties. New remote 438 

sensing products and (semi-)automatic detection procedures offer promising perspectives here. 439 

Nevertheless, especially the large temporal variability that characterizes gully erosion remains a major 440 

source of uncertainty. Accurately quantifying gully erosion rates therefore requires frequent imagery 441 

over sufficiently long time periods (e.g. decades). Historic (aerial) photographs can be crucial assets in 442 

this (e.g. Nachtergaele and Poesen, 1999; Frankl et al. 2011; Golosov et al., 2018). Nonetheless, such 443 

photographs are rarely available over large areas, are often difficult to access for scientists and their 444 

processing often remains very labour-intensive (e.g. Guyassa et al., 2018). 445 

 446 

3. Measurements on gully erosion in Europe: an overview 447 

As discussed above, field-based research is important for defining the locations, morphological 448 

characteristics, erosion processes, dynamics and controlling factors of gullies. To gain insights into the 449 

geographic distribution of field-based gully related research in Europe and European Russia, we 450 

conducted a detailed literature review. This review concentrated on research results published in peer-451 

reviewed journals or in conference proceedings. Studies published in internal reports, MSc. or PhD. 452 

theses, or newspaper articles (i.e. grey literature) were not considered. As some research teams 453 

produced a large number of peer-reviewed papers about gullies in particular study areas, only the most 454 

relevant papers, considered to be representative for the study area, were selected. In total over 224 455 

research papers have been selected (Table 1). Figure 2 shows the spatial distribution of areas where 456 

permanent, ephemeral or bank gullies as well as gullies in badlands have been studied. Although a 457 

large number of papers report on various aspects of badlands, we only considered studies focusing on 458 

gully erosion in badlands.  459 

Overall, gully erosion mainly received significant field-based research attention in some particular 460 

countries, i.e. Belgium, Germany, Italy, Spain, Romania and the UK. Most studies investigated 461 

permanent gullies in forests or rangelands (including badlands; Figure 2a, Figure 2d). Relatively 462 

fewer studies report on ephemeral gullies, which are typically observed after erosive periods in 463 

cropland. As ephemeral gullies are filled in by tillage or land leveling operations shortly after their 464 

formation, these gullies are also more difficult to study. Although quite common in rural areas with a 465 

rolling or steep topography, bank gullies forming at river banks, agricultural terraces, lynchets or 466 

sunken lane banks (Poesen et al., 2003) have also received less attention (Figure 2c). 467 



Table 1: Overview of gully erosion research in Europe and European Russia. 468 

         
Country   Ephemeral Gullies   Permanent Gullies   Bank Gullies   Gullies in Badlands 

Austria   N.A.   Sass et al. (2012)  N.A.   N.A. 

         
Belgium   Govers & Poesen (1988); Vandaele & Poesen (1995); 

Poesen et al. (1996); Vandaele & Poesen (1996); 
Vandaele & Poesen (1997); Desmet et al. (1999); 
Nachtergaele & Poesen (1999); Takken et al. (1999); 
Steegen et al. (2000); Gyssels et al. (2002); Gyssels & 
Poesen (2003); Vanwalleghem et al. (2005a); Evrard 
et al. (2007); Knapen & Poesen (2010); Maugnard et 
al. (2014a); Maugnard et al. (2014b) 

  Arnould-De Bontridder & Paulis (1966); De Ploey 
(1977); Langohr & Sanders (1985); Gullentops 
(1992); Poesen et al. (2003); Vanwalleghem et al. 
(2003); Vanwalleghem et al. (2005a); Vanwalleghem 
et al. (2005b); Vanwalleghem et al. (2005c); 
Vanwalleghem et al. (2006); Schotmans et al. (2015) 

 Poesen (1989); Poesen et al. (1996); Poesen et al. 
(2003); Frankl et al. (2015) 

  Gullentops (1992); Vanwalleghem et al. (2003); 
Vanwalleghem et al. (2006) 

         
Bulgaria   N.A.   Malinov & Ilieva (2017)  N.A.   N.A. 

         
Croatia   N.A.   Faivre et al. (2011); Gulam et al. (2018); Domazetović 

et al. (2019); Domlija et al. (2019) 
 N.A.   Gulam et al. (2018); Domlija et al. (2019) 

         
Czech Republic   Báčová & Krása (2016); Dumbrovsky et al. (2019)    Tichavský et al. (2018)  N.A.   N.A. 

         
France   Auzet et al. (1993); Cerdan et al. (2002); Souchère et 

al. (2003); Frankl et al. (2018); Patault et al. (2019) 
  De Foucault et al. (1997); Mathys et al. (2003); Rey 

(2003); Rey (2009); Erktan & Rey (2013); Rey & 
Burylo (2014); Taborelli et al. (2016) 

 N.A.   Mathys et al. (2003); Rey (2009); Erktan & Rey 
(2013); Rey & Burylo (2014) 

         
Germany   N.A.   Bork & Rohdenburg (1979); Bork (1985); Bauer 

(1993); Semmel (1995); Bork et al. (1998); 
Dotterweich (2003); Dotterweich et al. (2003); Heine 
& Niller (2003); Schmidtchen & Bork (2003); 
Dreibrodt (2005); Stolz & Grunert (2006); Beyer 
(2008); Dotterweich (2008); Moldenhauer et al. 
(2010); Stolz (2011); Dotterweich et al. (2015) 

 N.A.   N.A. 

         
Greece   Karydas & Panagos (2020)   Vandekerckhove et al. (2000)  N.A.   N.A. 

         
Hungary   N.A.   Gabris et al. (2003); Jakab et al. (2011); Kertész & 

Gergely (2011); Kertész & Křeček (2019) 
 N.A.   N.A. 

         
Iceland   N.A.   Hartmann et al. (2003)  N.A.   N.A. 

         
Italy   Capra & Scicolone (2002); Poesen et al. (2003); Zucca 

et al. (2006); Conoscenti et al. (2013); Conoscenti et 
al. (2014); Fiorucci et al. (2015); Conoscenti et al. 
(2018); Conoscenti & Rotigliano (2020) 

  Battaglia et al. (2003); Strunk (2003); Clarke & 
Rendell (2006); Ciccacci et al. (2009); Buccolini & 
Coco (2010); Clarke & Rendell (2010); Battaglia et al. 
(2011); Cappadonia et al. (2011); Buccolini et al. 
(2013); Conoscenti et al. (2013); Pulice et al. (2013); 
Torri et al. (2013); Vergari et al. (2013a); Caraballo-
Arias et al. (2014); Caraballo-Arias et al. (2015); 
Cocco et al. (2015); Bianchini et al. (2016); Bollati et 
al. (2019) 

 N.A.   Battaglia et al. (2003); Clarke & Rendell (2006); 
Ciccacci et al. (2009); Buccolini & Coco (2010); 
Clarke & Rendell (2010); Battaglia et al. (2011); 
Cappadonia et al. (2011); Buccolini et al. (2013); 
Pulice et al. (2013); Torri et al. (2013); Vergari et al. 
(2013b); Caraballo-Arias et al. (2014); Caraballo-
Arias et al. (2015); Cocco et al. (2015); Bianchini et 
al. (2016); Bollati et al. (2019); Bosino et al. (2019); 
Maerker et al., 2020 

         



Latvia   N.A.   Zgłobicki et al. (2019)  N.A.   N.A. 

         
Norway   Øygarden (2003)   Sønstegaard & Mangerud (1977); Erikstad (1992); 

Bogen et al. (1994) 
 N.A.   Erikstad (1992) 

         
Poland   Maruszczak & Trembaczowski (1956); Teisseyre 

(1992); Janicki & Zgłobicki (1998); Janicki (2014) 
  Schmitt et al. (2006); Smolska (2007); Malik (2008); 

Rodzik et al. (2009); Schmidt & Heinrich (2011); 
Zgłobicki & Baran-Zgłobicka (2011); Dotterweich et 
al. (2012); Gawrysiak & Harasimiuk (2012); Superson 
et al. (2014); Zgłobicki et al. (2014); Kociuba et al. 
(2015); Zgłobicki et al. (2015a); Zgłobicki et al. 
(2015b); Bernatek-Jakiel & Wronska-Walach (2018) 

 N.A.   N.A. 

         
Portugal   Poesen et al. (1996); de Figueiredo & Fonseca (1997); 

Vandaele et al. (1997); Vandekerckhove et al. (1998); 
Vandekerckhove et al. (2000); Nachtergaele et al. 
(2001a); Poesen et al. (2003)  

  de Figueiredo & Fonseca (1997); Vieira et al. (2014); 
Bergonse & Reis (2016); Martins et al. (2017); 
Martins et al. (2020) 

 Fernandes et al. (2017)    N.A. 

         
Romania   N.A.   Motoc (1983); Motoc (1984); Ichim et al. (1990); 

Radoane et al. (1995); Ionita (2003); Ionita (2006); 
Mircea (2011) ; Niacsu & Ionita (2011); Boengiu et al. 
(2012); Ionita et al. (2015); Radoane & Radoane 
(2017); Nicu (2018) 

 N.A.   N.A. 

         
Russia (European)   Litvin et al. (2003); Belyaev et al. (2005b); Belyaev et 

al. (2008);  Platoncheva et al. (2020) 
  Bolysov (1987); Dedkov et al. (1990); Bolysov & 

Tarzaeva (1996); Rysin (1998); Litvin et al. (2003); 
Zorina (2003); Belyaev et al. (2004), Belyaev et al. 
(2005a); Yermolaev (2014); Vanmaercke et al. (2016); 
Rysin et al. (2017a); Rysin et al. (2017b); Gafurov et 
al. (2018); Golosov et al. (2018); Medvedeva et al. 
(2018); Rysin et al. (2018); Sharifullin et al. (2020) 

 Rysin (1998)   N.A. 

         
Serbia   N.A.   Ristić et al. (2012)  N.A.   N.A. 

         
Slovakia   Stankoviansky (2005); Stankoviansky & Ondrčka 

(2011)  
  Bučko & Mazúrova (1958); Stankoviansky (2003a); 

Stankoviansky (2003b); Papčo (2011); Stankoviansky 
(2003c); Dotterweich et al. (2013); Silhan et al. 
(2016); Mitusov et al. (2017); Nosko et al. (2019) 

 N.A.   Stankoviansky (2003a); Stankoviansky (2003b); 
Stankoviansky (2003c) 

         
Slovenia   Zorn (2009a)   Zorn (2009b)  N.A.   N.A. 

         



Spain   Vandekerckhove et al. (1998); Casali et al. (1999); 
Martinez-Casasnovas et al. (2002); Valcarcel et al. 
(2003); De Santisteban et al. 2006; Hayas et al. 
(2017a); Hayas et al. (2017b); Ollobarren Del Barrio 
et al. (2018); Hayas et al. (2019) 

  Donker & Damen (1984); Faulkner (1995); Poesen et 
al. (1996); Oostwoud Wijdenes et al. (1999); 
Nogueras et al. (2000); Oostwoud Wijdenes et al. 
(2000); Vandekerckhove et al. (2000); Canton et al. 
(2001); Vandekerckhove et al. (2001a); 
Vandekerckhove et al. (2001b); Martinez-Casasnovas 
et al. (2003); Ries & Marzolff (2003); 
Vandekerckhove et al. (2003); De Luna Armenteros et 
al. (2004); Faulkner et al. (2007); Lesschen et al. 
(2007); Menendez-Duarte et al. (2007); Gomez-
Gutierrez et al. (2009a); Dóniz et al. (2011); Lucia et 
al. (2011); Marzolff et al. (2011); Campo-Bescos et al. 
(2013); Martín-Moreno et al. (2014); Stöcker et al. 
(2015); Caraballo-Arias et al. (2016); Ballesteros 
Cánovas et al. (2017); Hayas et al. (2017a); Hayas et 
al. (2017b); Selkimäki & González‐Olabarria (2017); 
Castillo et al. (2018); Hayas et al. (2019) 

 Oostwoud Wijdenes et al. (2000); Vandekerckhove et 
al. (2000); Vandekerckhove et al. (2001a); 
Vandekerckhove et al. (2001b); Vandekerckhove et al. 
(2003) 

  Nogueras et al. (2000); Faulkner et al. (2007); Lucia et 
al. (2011); Martín-Moreno et al. (2014); Ballesteros 
Cánovas et al. (2017) 

         
Sweden   Alström & Åkerman (1992)   Nordström (1984)  N.A.   N.A. 

         
Ukraine   N.A.   Tsvetkova et al. (2015)  Tsvetkova et al. (2015)   N.A. 

         
United Kingdom   Morris (1942); Howe (1955); Evans & Nortcliff 

(1978); Reed (1979); Boardman (1983); Boardman 
(1988); Watson & Evans (1991); Boardman et al. 
(1996); Boardman (2001); Clark & Vetere Arellano 
(2004); Watson & Evans (2007); Boardman et al. 
(2009); Boardman (2012); Boardman (2013); 
Boardman et al. (2020); Evans (2013) 

  Chiverrell et al. (2007); Rothwell et al. (2007); Evans 
& Lindsay (2010); Clay et al. (2012) 

  N.A.   N.A. 

         

 469 



 470 

Figure 2: Overview of study areas in Europe and European Russia where field-based gully erosion research was conducted, 471 

sub-divided according to the investigated gully-type: (a) ephemeral gullies, (b) permanent gullies (inset shows the Canary 472 

Islands), (c) bank gullies, (d) gullies in badlands. References per country and gully type are listed in Table 1. Countries 473 

shaded in dark grey indicate the study area considered for this review. 474 

 475 

Most studies focused on a single gully channel or on a limited number of selected gullies in a 476 

particular study area. However, a few studies provide gully inventories for extensive areas (> 10 000 477 

km²) or even entire countries (Figure 3). More specifically, such studies exist for Slovakia (Bučko & 478 

Mazúrová, 1958), Poland (Józefaciuk & Józefaciuk, 1983), SE-Poland (Gawrysiak & Harasimiuk, 479 

2012), East Romania (Radoane et al., 1995), Northern France (De Foucault et al., 1997), the Middle 480 

Volga region (Russian Federation; Golosov et al., 2018) and Hungary (Kertész & Krecek, 2019). 481 

These inventories are largely based on aerial imagery interpretation. They are often already relatively 482 

old and focused on larger, permanent gullies. Therefore it is generally difficult to assess their accuracy 483 

and completeness. Nonetheless, such inventories may be indispensible for calibrating and validating 484 

gully occurrence models at larger scales (cf. section 4.1). 485 

It is beyond our scope to provide an in-depth review of all aspects of gully erosion that received 486 

research attention. Such thematic explorations have been conducted elsewhere (e.g. Poesen et al., 487 

2003; Castillo & Gomez, 2016). Nonetheless, several major themes of gully erosion research in 488 

Europe could be identified. These include: 489 



 Developing and testing gully measuring and monitoring techniques, such as high-altitude aerial 490 

photograph analysis (e.g. Nachtergaele & Poesen, 1999; Martınez-Casasnovas et al., 2002), 491 

analysis of high-resolution aerial photos taken by drones (e.g. Marzolff & Poesen, 2009; Stöcker 492 

et al., 2015), 3D-terrestrial image-based modelling (e.g. Frankl et al., 2015) and 493 

dendrogeomorphology (Vandekerckhove et al., 2001a; Malik 2008; Tichavsky et al., 2018). 494 

 Dating of (pre-)historic gullies (e.g. Sonstegaard and Mangerud, 1977; Bork, 1985; Dotterweich et 495 

al., 2003; 2012; 2013, Schmitt et al., 2006, Vanwalleghem et al., 2006) and investigating the 496 

environmental conditions that lead to their initation and development (e.g. Bork, 1985; Faulkner, 497 

1995; Dotterweich et al., 2003; Gabris et al., 2003; Nogueras et al., 2000; Stankoviansky, 2003a; 498 

2003b; 2003c; Vanwalleghem et al., 2005b; Martin Moreno et al., 2014; Ionita et al., 2015b; 499 

Ballesteros et al., 2017). 500 

 Investigating factors controlling the initiation and development of contemporary gullies, including 501 

soil profile characteristics (e.g. Vanwalleghem et al., 2005b), plant roots (e.g. Gyssels & Poesen, 502 

2003), topography and topographic thresholds (e.g. Vandekerckhove et al., 1998; Souchère et al., 503 

2003; Hayas et al. 2017a; 2017b; Torri et al., 2018b), snowmelt runoff (e.g. Oygarden, 2003; 504 

Ionita, 2006; Rodzik et al., 2009; Rysin et al., 2017a,b;  Golosov et al., 2018), rainfall conditions 505 

(Hayas et al. 2017a; 2017b) and the role of piping (Bernatek-Jakiel & Wronska-Walachn, 2018). 506 

 Exploring the conditions leading to the infilling of gullies (e.g. Erikstad, 1992; Vanwalleghem et 507 

al., 2005c). 508 

 Evaluating the effectiveness of gully erosion control techniques, including geomembranes (e.g. 509 

Poesen, 1989), check dams (e.g. Castillo et al., 2007), grassed waterways (e.g. Evrard et al., 2008) 510 

and bioengineering structures (e.g. Rey & Burylo, 2014). 511 

 Quantifying the contribution of gully erosion to catchment sediment yields (e.g. Bogen et al., 512 

1994; Poesen et al., 1996; 2003).  513 

This review also revealed some important research gaps with respect to understanding and quantifying 514 

gully erosion at regional to continental scales: 515 

1) Most studies are clustered in specific study areas, while many other areas remain poorly or not 516 

investigated (cf. Figure 2). While these patterns may be partly caused by the absence of gullies, 517 

many regions probably remain under-researched. 518 

2) Only few studies investigated gully occurrence on regional or country-wide scales (cf. Figure 3).  519 

3) Relatively few studies monitored the evolution of gullies over extensive time periods (e.g. > 20 520 

years). Given their potentially large temporal variability (e.g. Rysin, 1998; Nachtergaele et al., 521 

1999; Martinez-Casasnovas et al., 2004; Vanmaercke et al., 2016; Hayas et al., 2017a; Rysin et al, 522 



2017a,b; Rysin et al., 2018), this is critical to understand the long-term evolution and erosion rates 523 

of gully systems. 524 

4) Relatively few studies have focused on testing or developing models that simulate spatial patterns 525 

of gully erosion. This is particularly the case for larger areas.  526 

5) Evaluating the long-term effectiveness and efficiency of gully erosion control measures has 527 

received little attention, both at the scale of gully channels and catchments (Poesen et al., 2003; 528 

Bartley et al., 2020). Linked to that, our understanding of the conditions controlling the infilling of 529 

gullies is limited (Poesen et al. 2003). 530 

 531 

 532 

Figure 3: Regions and countries in Europe for which systematic gully inventories have been made. The mapped gully types, 533 

level of detail and completeness of these inventories may vary. 1: N-France (De Foucault et al., 1997), 2: Poland (Józefaciuk 534 

& Józefaciuk, 1983), 3: SE-Poland (Gawrysiak & Harasimiuk, 2012), 4: Slovakia (Bučko & Mazúrová, 1958), 5: Hungary 535 

(Kertész & Krecek, 2019), 6: E-Romania (Radoane et al., 1995), 7: the Middle Volga region (Russian Federation; Golosov et 536 

al., 2018). Countries shaded in dark grey indicate the study area considered for this review. 537 

 538 

4. Assessing gully erosion using models 539 

Predicting gully erosion rates and its impact on sediment loads encompasses several challenges. These 540 

include predicting: (i) where and why gullies occur, (ii) when and how these gullies expand, and (iii) 541 

to what extent these gullies contribute to catchment sediment yields. Numerous gully erosion models 542 

have been developed. However, no single model presently exists that addresses these three 543 



components. Furthermore, most modelling efforts have concentrated on individual gullies or local 544 

scales. Here we review and discuss different modelling strategies to simulate these different aspects of 545 

gully erosion. It is outside our scope to provide a comprehensive overview of all gully erosion models. 546 

Instead, we discuss which modelling strategies potentially can be applied at regional to continental 547 

scales, which future advancements may be expected and which research needs currently exist.  548 

 549 

4.1. Predicting gully occurrence and density 550 

Several modelling approaches exist to predict the occurrence of gullies in a landscape (e.g. Poesen et 551 

al., 2011). Overall, these can be characterized based on whether they aim to predict the initiation of 552 

gullies from process-based principles or whether they aim to predict their occurrence in a purely 553 

empirical or statistical way. Most of these involve a combination of both strategies.  554 

In general, process-based approaches rely on the principle that gully initiation is a threshold-dependent 555 

phenomenon. Gully heads typically initiate where the shear stress of concentrated runoff exceeds the 556 

resisting forces, which mainly depends on local soil and vegetation conditions (Istanbulluoglu et al., 557 

2003; Knapen et al., 2007; Knapen and Poesen, 2010). The most common approach to characterize 558 

these conditions is the topographic threshold concept. It builds upon the observation that gullies in a 559 

landscape typically form at locations where the upslope area (A) and local slope steepness (s) exceed a 560 

certain threshold (e.g. Begin and Schumm, 1979; Montgomery & Dietrich, 1994). Given that A 561 

provides a proxy of the potential flow discharge and s influences flow velocity, topographic thresholds 562 

directly relate to the critical flow shear stress principle. They are commonly expressed in the form:  563 

s=kAb (Eq. 1) 564 

where k and b are empirically fitted constants that depend on the environmental setting (Begin and 565 

Schumm 1979; Montgomery & Dietrich, 1994; Torri & Poesen, 2014). Such thresholds often allow 566 

fairly good identification of the positions of gully initiation within a study area and by extent their 567 

density (e.g. Desmet et al., 1999). However, their highly site-specific nature makes them unsuitable for 568 

applications at regional or continental scales. A meta-analysis by Torri and Poesen (2014) of 63 s-A 569 

relations for various areas worldwide indicated a very large variability in k- and b-values (cf. Eq. 1). 570 

Under the assumption that b-values are relatively constant, variations in k-values seem mainly 571 

attributable to differences in land cover. Nonetheless, generalizing these empirical constants remains 572 

difficult as also other environmental factors will play a role. For example, a main limitation of 573 

topographic thresholds is that they typically reflect the “integrated” result of different gully initiation 574 

episodes over time. Exact gully head initiation thresholds vary with rainfall intensity (e.g. Torri and 575 

Poesen 2014; Hayas et al., 2017b) and more specifically with the resulting peak flow discharge. Also 576 

spatial patterns of vegetation and soil characteristics within the contributing area can play a large role 577 

(e.g. Rossi et al., 2015a). Likewise, the upslope area can be modified by land management practices 578 



that are not resolved by DEMs, such as tillage furrows (Souchére et al. 2003), drainage ditches and 579 

stone bunds, all of which can affect the k-value (Monsieurs et al., 2015). Furthermore, gullies are not 580 

necessarily the sole result of (Hortonian) runoff. They can also form and expand as a result of 581 

saturation soil conditions and overland flow (e.g. Nachtergaele et al. 2001a; Tebebu et al., 2010; 582 

Amare et al., 2019).  583 

Alternative topographic indices have therefore been proposed to better reflect landscape positions 584 

where gullies may initiate. For example, Moore et al. (1988) proposed an index that accounts for 585 

saturation overland flow. Istanbulluoglu et al. (2008) incorporated a probabilistic approach in order to 586 

account for uncertainties associated with these kinds of topographic relations. The AnnAGNPS model 587 

uses the Compound Topographic Index (CTI) to determine the location of potential ephemeral gullies 588 

(Taguas et al., 2012; Momm et al., 2012; 2013). This index is also based on contributing area and 589 

slope steepness, but aims to better reflect the potential effect of soil wetness conditions on gully 590 

initiation (Momm et al., 2015). Dagupatti et al. (2013) compared models based on four different 591 

topographic indices, i.e. CTI, slope-area (SA), topographic wetness index (TWI), and slope area power 592 

(SAP). Results showed that a SA-based approach predicted ephemeral gully occurrence better than the 593 

other models tested. Nevertheless, they also showed that CTI has potential for predicting gully headcut 594 

location and total gully length. Conoscenti & Rotigliano (2020) also tested CTI, SA, TWI and 595 

modified versions of the latter two (named MSPI and MTWI) which incorporate an index to reflect 596 

flow convergence/divergence. MSPI outperformed the other topographic indices, revealing that a 597 

convergence index may help in detecting hollows where gullies are more likely to form. However, 598 

local calibration is required (Dagupatti et al., 2013). This currently limits regional applications. 599 

To account for factors other than topography (e.g. climate, land use/land cover, soil type) and their 600 

potential interactions, several process-oriented model approaches have been proposed. Overall, they 601 

aim to replace or complement the upslope contributing area (A) in Eq. 1 with better proxies of flow 602 

discharge, and by extent the flow shear stress, that can occur at a potential gully location. This could 603 

allow for more accurate and generalizable simulations of where and when gullies may form. Several 604 

approaches are based on the Curve Number (CN) method, a simple empirical model that allows 605 

estimating runoff based on rainfall, antecedent moisture, soil and land use conditions (e.g. Ponce & 606 

Hawkins, 1996). In principle, such approach allows making gully initiation conditions dynamic 607 

through time (e.g. Poesen and Torri 2014; Torri et al., 2018b). Likewise, combining a pixel-based CN 608 

approach with flow-routing algorithms makes it possible to account for the effect of spatial patterns of 609 

topography, soil conditions and land cover (Rossi et al., 2015a). An attractive element of the CN 610 

approach is that its simple nature enables its application at regional to global scales (e.g. Hong et al., 611 

2007). Nonetheless, this also involves uncertainties and the risk of over-extrapolation as the CN 612 

approach remains an empirical model that was developed and tested for a relatively limited set of 613 

environmental conditions. Furthermore, such approach does not yet account for all relevant 614 



mechanisms and possible interactions with other erosion processes. For example, also the amount of 615 

sediments transported by the runoff from upslope areas will determine whether incision or aggradation 616 

will take place (e.g. Poesen et al., 2003). 617 

Also several landscape evolution models are to some extent capable of simulating gully initiation, 618 

using a process-based approach (e.g. Tucker et al., 2001; Kirkby et al., 2003; Willgoose, 2005, 2018; 619 

Harmon et al., 2019). These typically define the threshold in terms of equilibrium between local 620 

sediment load or entrainment and sediment transport capacity; often conceptualized in terms of shear 621 

stress or stream power per unit flow width. Nevertheless, some empiricism remains. This mainly 622 

relates to the definition of critical flow shear stress and the long-term effects of temporal variations in 623 

environmental conditions. 624 

Overall, process-oriented approaches offer significant promise to predict gully initiation as they aim to 625 

account for the actual driving processes in a conceptually transparent way. This can make them highly 626 

suitable for the evaluation of gully erosion risks in the context of climate or land use changes (e.g. 627 

Hancock et al., 2000; Sidorchuk et al., 2001; Sidorchuk et al., 2003; Rossi et al., 2015a). Furthermore, 628 

these models may generally allow for a more straightforward and correct coupling between gully 629 

initiation and expansion (cf. section 4.2). Several process-oriented gully erosion models already 630 

account for both components, and perform acceptably over study sites with reasonably uniform 631 

properties (e.g. Willgoose, 2005; Hancock et al., 2015). Nonetheless, the application of most of these 632 

models remains limited to theoretical considerations or small study areas (e.g. Rossi et al., 2015a). In 633 

many cases, these models also remain poorly validated (Poesen et al., 2011). A major reason for this is 634 

the relatively large data requirements (e.g. Kirkby et al., 2003; de Vente et al., 2013). This includes 635 

detailed information on the controlling factors, but also observations on gully initiation (e.g. knowing 636 

which gully head was initiated and when exactly for a sufficiently long observation period). For the 637 

former, the availability of new GIS data layers and products opens promising perspectives (cf. section 638 

5). Nonetheless, the latter remains a critical point for applications at regional to continental scales (cf. 639 

sections 2 & 3). As with most geomorphic models, also error propagation is a critical concern. 640 

Accurate process descriptions of gully initiation typically require more input data. Errors and 641 

uncertainties on these input data can easily become more important than errors and uncertainties 642 

resulting from an inaccurate process description (e.g. Van Rompaey et al., 2002).  643 

Empirical approaches to simulate gully occurrence and densities can offer a major advantage in this 644 

regard: they typically result in more robust predictions and are often less demanding in terms of data 645 

requirements (e.g. de Vente et al., 2013). Overall, a wide range of empirical approaches exist. To some 646 

extent, they can be classified in bivariate methods, multivariate methods, and machine learning 647 

approaches. An (non-exhaustive) overview of example studies is given in Table 2. Most of these 648 

procedures aim to predict the presence or absence of a gully on a given location. Their successful 649 

application results in a gully erosion susceptibility map (GESM), from which proxies of gully density 650 



can be derived. However, some approaches try to directly predict the gully density within a catchment 651 

(Zhao et al., 2016) or pixel (Kheir et al., 2007; Vanmaercke et al., 2020). 652 

Bivariate statistical approaches (e.g. Conforti et al., 2011; Conoscenti et al., 2013) can be robust but  653 

reduce gully prediction to only one causal factor, typically leading to imprecise predictions. Except in 654 

simple situations or very data-poor regions, these approaches are therefore generally inferior to the 655 

other methods. Multivariate methods (e.g. Akgün and Türk, 2011; Lucà et al., 2011) analyse gully 656 

occurrence as a function of different causal factors and to some extent allow determining the relative 657 

contribution of each factor. Logistic regression (e.g. Vanwalleghem et al., 2008; Conoscenti et al., 658 

2014; Dewitte et al., 2015) is the most commonly used multivariate approach. Its computational 659 

simplicity and ability to deal with both continuous and categorical explanatory variables are important 660 

advantages. However, its ability to fully disentangle the potentially non-linear role of different factors 661 

and their interactions remains limited. In this regard, machine learning methods offer great potential 662 

and have been increasingly used over recent years (Table 2). Especially techniques like random 663 

forests (e.g. Gayen et al., 2019; Rahmati et al., 2017; Hosseinalizadeh et al., 2019) can, at least in 664 

principle, better account for the fact that the role of explanatory variables may vary between different 665 

subpopulations of gullies and over different scales. They can also be used to spatially assess 666 

uncertainties on model outputs, thus guiding interpretation and targeting further data collection (e.g. 667 

Kuhnert et al., 2010; Vanmaercke et al., 2020).  668 

Given their typically smaller data requirements as compared to process-oriented models, empirical 669 

approaches could be suitable to predict gully occurrence at regional to continental scales (e.g. Hughes 670 

& Prosser, 2012; de Vente et al., 2013). However, most empirical modelling studies focus on 671 

relatively small study areas (Table 2). Jurchescu and Grecu (2015) compared gully prediction 672 

performances with regression trees at different spatial scales. They report that predictions at the 673 

regional scale are affected by larger uncertainties as compared to predictions for smaller areas. A main 674 

limitation lies in the need for gully inventories at regional to continental scales in order to calibrate 675 

and validate such models. As discussed in sections 2 and 3, such inventories remain scarce as they are 676 

labour-intensive to compile. Another important constraint of such empirical models is that they 677 

generally remain ‘black box’ approaches. While they can provide some insight into the dominant 678 

factors controlling gully occurrence, the underlying mechanisms and interactions are generally less 679 

clear (e.g. Zhao et al., 2016). This may limit the potential of such empirical approaches for scenario 680 

analyses, especially in the case of machine learning techniques.  681 

Models aiming to predict gully initiation and densities at regional to continental scales in the context 682 

of future climate or land use changes should therefore seek to strike a balance between a relevant and 683 

conceptually sound process description and feasible calculation and input requirements. Several 684 

studies already apply a hybrid approach between empirical and process-based gully occurrence 685 

prediction. For example, Dewitte et al. (2015) implemented a two-step procedure. First, potentially 686 



gully-prone areas were delineated based on the slope-area threshold concept. Next, logistic regression 687 

was used for a more detailed prediction of gully locations within those areas. Recent conceptual 688 

advancements that replace the slope-area threshold concept with more detailed description of expected 689 

runoff discharges (e.g. based on the CN-model approach; see above), also offer promising perspectives 690 

in this regard. 691 

Table 2: Examples of empirical gully occurrence and gully density models 692 

Method Sub methoda Authors  Scale (km2) location 

Bivariate 
statistical 

Conditional analysis Conoscenti et al., 2013 250 Italy 

Index of entropy Zabihi et al., 2018; Arabameri et al., 2018b 15.44 - 416 Iran 

Information value Lucà et al., 2011; Conforti et al., 2011; Al-Abadi 
and Al-Ali, 2018 

26,74 - 30 Iran, Italy 

EBF Al-Abadi and Al-Ali, 2018 26,74 Iran 

Frequency ratio 

 

Al-Abadi and Al-Ali, 2018; Rahmati et al., 
2016; Zabihi et al., 2018; Arabameri et al., 
2018b 

15,44 – 2.595 Iran 

Weights of evidence Rahmati et al., 2016; Arabameri et al., 2018b; 
Zabihi et al., 2018 

15,44 – 2.595 Iran 

Multivariate 
statistical 

Logistic regression Akgün and Türk, 2011; Lucà et al., 2011; 
Conoscenti et al., 2014; Maerker et al., 2020 

9,5 - 424 Italy, Turkey 

Machine 
learning 

 

AHP Arabameri et al., 2018b 416 Iran 

ANN Pourghasemi et al., 2017 2595 Iran 

BRT Maerker et al., 2011, 2020; Angileri et al., 2016; 
Rahmati et al., 2017; Arabameri et al., 2018a 

245 - 848 Iran 

CRT Kheir et al., 2007; Geissen et al., 2007; Gomez-
Gutiérrez et al., 2009b; Märker et al., 2011 

26,4 - 3500 Spain, Turkey, 
Mexico, Italy 

FDA Gayen et al., 2019 709 India 

MARS 

 

Gomez-Gutiérrez et al., 2009b; Gomez-
Gutiérrez et al., 2009c; Gómez-Gutiérrez et al., 
2015; Arabameri et al., 2018a; Gayen et al., 
2019; ; Conoscenti et al., 2018; Conoscenti et 
al., 2020 

9,5 - 848 India, Spain, 
Iran, Italy 

Maximum entropy Zakerinejad & Maerker 2014; Pourghasemi et 
al., 2017; Maerker et al., 2020 

2595 Iran, Italy 

Random forest Kuhnert et al., 2010; Rahmati et al., 2017; 
Arabameri et al., 2018a; Gayen et al., 2019; Bui 
et al., subm.; Vanmaercke et al., 2020 

245 - 848 India, Iran, 
Australia, Horn 

of Africa 

SVM Rahmati et al., 2017; Pourghasemi et al., 2017; 
Gayen et al., 2019; 

245 – 2.595 India, Iran 



a EBF: Evidence belief function; AHP: Analytical hierarchy process; ANN: Artificial neural network; BRT: Boosted 693 

regression tree; CRT: Classification and regression tree; FDA: Flexible discriminant analysis; MARS: Multivariate 694 

adaptative regression spline; SVM: Support vector machine 695 

 696 

4.2. Predicting gully expansion 697 

Total gully erosion rates over an area not only depend on the occurrence of gullies (cf. section 4.1), but 698 

also on their expansion rates. Actively eroding gullies generally produce sediment through headcut 699 

retreat and channel widening/deepening (e.g. Martinez-Casanovas et al., 2004; Marzolff & Poesen, 700 

2009; Vanmaercke et al., 2016; Hayas et al. 2017a). In some contexts, piping can also contribute 701 

significantly to gully expansion (e.g. Valentin et al., 2005; Bernatek-Jakiel and Poesen, 2018). 702 

Table 3 shows a (non-exhaustive) overview of models that have been developed to predict gully 703 

expansion. Gully headcut retreat is generally the best-studied expansion process and several process-704 

oriented models have been developed to simulate this. Examples include CHILD for permanent gullies 705 

(Flores-Cervantes et al., 2006) or the module TIEGEM within AnnAGNPS for ephemeral gullies 706 

(Gordon et al., 2007). Both are based on a model simulating the hydraulics at the gully head by Alonso 707 

et al. (2002). While field validation of its predecessor, EGEM (Woodward et al., 1999), revealed 708 

important flaws, TIEGEM tends to show better model performances. Nonetheless, testing currently 709 

remains limited. Also evaluations of CHILD showed that it is capable of reproducing observed retreat 710 

rates relatively well, at least in some contexts (e.g. Campo-Bescós et al., 2013). However, its 711 

application requires several parameters that generally need to be obtained in the field (including the 712 

height of the headcut, the shape of the plunge pool and soil erodibility). This greatly limits its use at 713 

larger scales. This problem is not specific to the CHILD model, but affects most process-based gully 714 

headcut retreat models (e.g. Poesen et al., 2011). Another important limitation are the often high data 715 

requirements needed to accurately predict peak runoff discharges and flow velocities at the gully head. 716 

This is a common challenge for ungauged basins (Blöschl, 2006). More simplified approaches that 717 

predict headcut retreat based on (hydrological) model routines that require fewer and feasible 718 

parameters therefore show greater promise at larger scales but require further development and field 719 

validation (e.g. Dabney et al., 2015; Allen et al., 2018). 720 

As with gully occurrence (cf. section 4.1), empirical models based on statistical correlations between 721 

observed headcut rates and environmental variables may offer an alternative (Table 3). Several studies 722 

proposed empirical equations predicting gully headcut retreat rates for specific study sites (e.g. 723 

Vandekerckhove et al., 2003; Marzolff et al., 2011; Poesen et al., 2011; Frankl et al., 2012; Li et al., 724 

2015). These models differ strongly in terms of incorporated factors. However, a meta-analysis of 725 

>700 measured volumetric headcut retreat rates worldwide showed that the upslope contributing area 726 

(A) of the gully headcut and the rainfall intensity (expressed as the rainy day normal, i.e. the average 727 

annual rainfall depth divided by the average number of rainy days) are key factors (Vanmaercke et al., 728 



2016). Combined, these two variables explained nearly 70% of the observed global variation in 729 

headcut retreat rates. As such, this opens promising perspectives to predict gully headcut retreat at 730 

regional to continental scales. Nonetheless, several important challenges remain. For example, 731 

applying this model to local or regional contexts can result in significant uncertainties. More accurate 732 

predictions will likely require the incorporation of land use and other controlling factors (Vanmaercke 733 

et al., 2016). Furthermore, its application requires knowing A and, by extent, the position of each 734 

headcut. Therefore, successfully predicting gully erosion rates at regional to continental scales will 735 

likely need the coupling of a headcut retreat model component to a module that simulates where these 736 

headcuts occur. Hybrid approaches that combine a simple hydrological model with empirical 737 

components are promising in this regard (cf. section 4.1). 738 

Relatively fewer studies focussed on gully widening and deepening. Nonetheless, also they can 739 

contribute significantly to gully expansion (e.g. Martinez-Casasnovas and Poesen 2004; Hayas et al., 740 

2017a). Some process-oriented models for gully-widening and deepening have been proposed (e.g. 741 

Sidorchuk 1999, Sidorchuk et al. 2003; Table 3). However, as with gully initiation (cf. section 4.1) 742 

and headcut retreat, their application at regional or continental scales is severely impeded by high data 743 

requirements. For example, Istanbulluoglu et al. (2005) present a model to predict gully widening by 744 

slab failures, but this requires knowing the slab geometry beforehand. Nevertheless, more simplified 745 

approaches applicable at larger scales are likely possible. For example, Crouch (1987) indicated the 746 

potential of gully sidewall to assess relative differences in erosion rates. Martinez-Casasnovas et al. 747 

(2004) successfully used logistic regression to predict gully wall failures in the Penedes region 748 

(Spain). Likewise, based on the analyses of gully widening rates in SW Spain, Hayas et al. (2019) 749 

developed a simple empirical model that relates gully widening to the upslope contributing area (A) 750 

and daily rainfall depth thresholds. This model shows strong similarities with the above-discussed 751 

global empirical model for gully headcut retreat rates (Vanmaercke et al., 2016). This suggests that 752 

developing relatively simple, integrated models of gully expansion should be possible. However, more 753 

research on the factors controlling gully widening and deepening across contrasting environments, as 754 

well as their associated time scales, is needed (e.g. Graf, 1977).  755 

Also piping may contribute significantly to gully initiation and expansion, but no model currently 756 

exists that can predict the location and rate of this process, nor its contribution to gully erosion 757 

(Bernatek-Jakiel and Poesen, 2018). Furthermore, there is a large need for tools and models that can 758 

evaluate and predict how gully expansion rates will evolve in response to gully remediation and, by 759 

extent, assess the optimal spacing and dimensioning of such measures. This topic has received 760 

relatively little research attention (Bartley et al., 2020; Frankl et al., 2021). For example, some studies 761 

provide conceptual (e.g. Castillo et al., 2014b) or empirical (e.g. Pederson et al., 2006) strategies to 762 

determine the spacing of check dams. However, their applicability at regional to continental scales 763 

largely remains to be developed.  764 

765 



Table 3: Overview of process-oriented and empirical gully expansion models. 766 

Type Model name References 

Gully 

typea 

Process 

modelledb 

Main input 

parametersc Field observationsd 

Process-
Oriented 

DIMGUL, 
STABGUL 

Sidorchuk (1999); 
Sidorchuk et al. (2003) 

PG 
GHL, GW, 

GD 
Ac, S, Q, K 

Russia (n=1), Australia  
(n=1), Swaziland (n=1) 

EGEM 

Nachtergaele et al. 
(2001a,b); Capra et al. 
(2005); Tekwa et al. 

(2015) 

EG GHLf 
Aa, Ac, Pe, K, 

D 

Belgium (n=116); Spain 
& Portugal (n=86); Italy 
(n=92); Nigeria (n=12) 

AnnAGNPS-
TIEGEMe 

Gordon et al. (2007) EG GHLf Ac, M, Q, K, D US (n=4) 

CHILDe 
Flores-Cervantes et al. 

(2006); Campo-Bescós et 
al. (2013) 

PG GHL Ac, M, Q, K, D no; Spain (n=1) 

CHILD 
Istanbulluoglu et al. 

(2005) 
PG GW 

Aa, Ac, Pe, M, 
K, D 

no 

- 
Rengers and Tucker 

(2014) 
PG GHL 

Aa, Ac, Pe, M, 
K, D 

no 

LANDPLANER 
Rossi (2014); Rossi et al. 

(2015a); Rossi et al. 
(2015b) 

PG GH, GA 
Aa, Ac, S, Pe, 

Q, M 
Italy 

EphGEE 
Vieira et al. (2015); 

Dabney et al. (2015)  
EG GHL Q, K US (n=NA) 

SWAT-DEG Allen et al. (2018) EG GHLf Ac,Q, K, D US (n=3) 

Empirical 

regression Vanmaercke et al. (2016) 
PG, 
EG 

GHV Aa, Pa global (n=724) 

regression Li et al. (2015) PG GA Aa, Ac, S China (n=30) 

regression Frankl et al. (2012) PG GHV Aa Ehtiopia (n=18) 

regression Marzolff et al. (2011) PG GHV Aa, Pe Spain (n=9) 

regression 
Vandekerkhove et al. 

(2001, 2003) 
PG GHV Aa Spain (n=46, n = 12) 

regression 
Burkard and Kostaschuk 

(1997) 
PG GA Aa Canada (n=44) 

regression Radoane et al. (1995) PG GHL Aa, Ac, Gl Romania 

regression Stocking (1980, 1981) PG GHV Aa, D US (n=66) 

regression US SCS (1966) PG GHL Aa, Pe US (n=210) 

regression Seginer (1966) PG GHL Aa Israel 

regression Thompson (1964) PG GHL Aa, S, Pe, K US 
a PG: permanent gully, EG: ephemeral gully. 
b GHL: linear gully headcut retreat, GHV: volumetric gully headcut retreat, GW, gully widening, GD: gully deepening, GA = 
gully area. 
c Aa: catchment area, Ac: catchment characteristics (slope, length, CN, etc.), S: local slope at gully head, Pa: average rainfall 
data, Pe: event rainfall data, M: gully headcut morphology, Q: flow discharge,  K: soil data (e.g. critical shear stress, soil 
cohesion,…), D: (maximum) gully depth, Gl: gully length. 
d for process-oriented models n refers to the gully validation years (i.e. number of gullies times the period over which they 
were evaluated); for empirical models n refers to the number of data points used for establishing the regression equation. 
e based on Alonso et al. (2002) hydraulic "plunge-pool" model. 
f the model simulates gully headcut retreat, however gully widening and deepening are estimated through empirical formula 
based on flow discharge. 
 767 

4.3. Predicting the contribution of gullies to catchment sediment yield 768 



Several studies already attempted to account for the contribution of gully erosion to catchment 769 

sediment yields (SY) via an empirical approach. These studies mostly rely on directly correlating 770 

observed SY to proxies of average gully densities (e.g. Zhao et al., 2016) or, alternatively, a semi-771 

quantitative score describing the overall presence of gullies in the catchment in combination with other 772 

factors (e.g. de Vente et al., 2005; 2006; Haregeweyn et al., 2005). These approaches generally result 773 

in good model performances, while their relatively low data requirements make it feasible to apply 774 

them at larger scale. However, they also come with limitations. First, these are spatially lumped 775 

models that do not account for spatial patterns of gully densities. Second, they often depend on expert-776 

based judgments of the presence and importance of gullies (e.g. de Vente et al., 2005; 2006) and 777 

therefore may not always be perfectly reproducible and objective. Third, factors controlling gully 778 

formation typically also control other erosion processes and sediment yields (e.g. steeper topography, 779 

erodible soils, limited vegetation cover; Syvitski and Milliman, 2007; Pelletier, 2012; Vanmaercke et 780 

al., 2014). Hence, it is often hard to tell to what extent observed correlations between proxies of gully 781 

density and SY are indeed attributable to the gullies or to inter-correlations with other factors. On the 782 

other hand, factors known to drive gully erosion (e.g. rainfall intensity; Vanmaercke et al., 2016; 783 

Hayas et al., 2017b) are not always incorporated in these models because they did not reveal a 784 

statistically significant correlation (e.g. de Vente et al., 2005; Zhao et al., 2016). These limitations 785 

make such empirical approaches often unsuitable for land or climate change scenario analyses or for 786 

developing detailed catchment management strategies (de Vente et al., 2013). Nevertheless, such 787 

models may be useful for predicting SY at regional to continental scales. 788 

To address these shortcomings, several studies aimed to model the contribution of gully erosion in a 789 

more spatially explicit and process-oriented way. Some studies have adapted sediment yield models 790 

like SWAT or WATEM-SEDEM. They generally predict SY by estimating sheet and rill erosion rates 791 

and then accounting for sediment deposition between the hillslopes and river system (e.g. Van 792 

Rompaey et al., 2001; Vigiak et al., 2017). By changing some of the model assumptions or parameters, 793 

these models may partially account for gully erosion (e.g. Verstraeten et al., 2007; Easton et al., 2010). 794 

Nonetheless, such approaches remain difficult to parameterize and validate and are conceptually 795 

problematic, especially in the case of permanent gullies (e.g. de Vente et al., 2013). 796 

Other studies have attempted to directly account for gully erosion by incorporating spatially explicit 797 

estimates of gully-prone areas in combination with other factors describing erosion and sediment 798 

transfers (e.g. de Vente et al., 2008; Haregeweyn et al., 2017). Identifying gully-prone areas is 799 

typically based on the slope-area threshold concept (cf. section 4.1; Eq. 1), while their contribution to 800 

SY is either based on an empirical estimate of typical gully erosion rates (Haregeweyn et al., 2017) or 801 

through model calibration with observed SY (de Vente et al., 2008). Apart from being spatially 802 

explicit, this may also avoid the problem of reproducibility mentioned above. Nonetheless, these 803 

approaches remain relatively rudimentary and scarcely applied. Wilkinson et al. (2009; 2014) 804 



developed a more elaborate strategy where detailed maps of existing gullies underpin estimates of the 805 

contribution of gully erosion to the sediment budget, based on the volumetric expansion rates of 806 

gullies over time. This approach incorporates ancillary information on the relative development stage 807 

of the gully networks and the fraction of soil textures likely to contribute to suspended sediment loads. 808 

However, the requirement for gully mapping limits easy applications at larger scales. One of the most 809 

complete models to date that allows accounting for the effect of gully erosion on SY is AnnGNPS 810 

(Momm et al., 2012). It can identify gully mouth locations semi-automatically with the APET tool. 811 

This could allow calculating the spatial contribution of gully erosion to SY and evaluating the effect of 812 

gully conservation measures at catchment scale. Nevertheless, its applicability over larger areas 813 

remains currently unknown. 814 

An additional challenge lies in the fact that gullies not only directly influence SY by contributing 815 

sediments, but also indirectly by altering the runoff and sediment connectivity between hillslopes and 816 

river systems (e.g. Poesen et al., 2003; Martineli Costa et al., 2007; de Vente et al., 2008). They can 817 

significantly increase sediment connectivity (e.g. Ionita et al., 2015a) but also temporally store 818 

sediments (e.g. Taylor et al., 2018). Especially vegetated gullies can function as significant runoff and 819 

sediment traps (e.g. Zierholz et al., 2001; Rey et al., 2007; Molina et al., 2009). The same holds for 820 

check dams built in gullies (e.g. Castillo et al., 2007; Frankl et al., 2013; Guyassa et al., 2017). In 821 

addition, high gully densities may lead to more direct rainfall-runoff responses (e.g. Martineli Costa et 822 

al., 2007) and therefore potentially higher floodplain deposition rates, as riverbank overtopping may 823 

occur more frequently.  While different modelling approaches for sediment connectivity already exist 824 

(e.g. Borselli et al., 2008, Vigiak et al., 2012), their suitability to deal with sediment transfers by 825 

gullies remains largely untested. Their application would also require information on the spatial extent 826 

of gully networks as well as on their vegetation cover and the presence of check dams or similar 827 

measures. As such, assessing both the direct and indirect contribution of gullies to catchment SY at 828 

large scales remains very difficult, in particular because the necessary data (e.g. inventories of gullies 829 

and gully control measures) remain mostly unavailable. 830 

 831 

5. Model input data at the continental scale  832 

Modelling gully erosion not only requires observations on gully occurrence and dynamics (cf. sections 833 

2 and 3). It also requires input data on the environmental factors controlling gully erosion, more 834 

specifically the (i) topography, (ii) vegetation cover, (iii) land cover, use and management, (iv) soils 835 

and lithology and (v) climate and weather conditions. The availability and quality of input data 836 

condition the type of model that can be used (cf. section 4). Input data for small study areas can be 837 

acquired with field-based methods. Gully erosion modelling at regional to continental scale generally 838 

needs to rely on Earth Observation (EO) data. The spatial resolutions, revisiting times and level of 839 



detail of such EO data have significantly increased over the past decades (e.g. Belward and Skoien, 840 

2015). Continental to global EO-derived datasets are also made increasingly publically available. 841 

Furthermore, an increasing number of cloud-based data processing platforms are developed in order to 842 

deal with the associated increasing demands for data storage and processing power. These include the 843 

Copernicus Data and Information Access Services (DIAS) launched by the European Commission in 844 

2018 and the Google Earth Engine platform. 845 

While datasets at the national level often provide higher resolutions and levels of detail, continental to 846 

global datasets have the great advantage of providing harmonized information. The use of national 847 

datasets for regional to global scale modelling is often hampered by their fragmentary availability, 848 

varying data acquisition and treatment methods and possibly limited data access (e.g. Höfle & 849 

Rutzinger, 2011; Lohani et al., 2018). Such lack of harmonization can introduce additional important 850 

uncertainties. 851 

Hence, this review section aims to provide an overview of currently available harmonized (and ideally 852 

free) datasets that can be used for gully erosion modelling at regional to continental scales. We focus 853 

on data products that are available at a European or global scale. Based on our understanding of the 854 

factors controlling gully erosion and expansion, we discuss datasets describing the (1) topography, (2) 855 

vegetation cover, (3) land cover, use and management, (4) soil properties and lithology, and (5) 856 

climate. The datasets presented and discussed below were selected based on their relevance, up-to-857 

datedness, accuracy, length of observation periods and frequency of updates. It is expected that with 858 

the increasing availability of EO data, additional datasets will become available in the near future. 859 

 860 

5.1. Topography 861 

Topographic variables play a key role in the prediction of both gully initiation and expansion. The 862 

most relevant factors are the local slope steepness and the topographic area draining to a specific point 863 

in the landscape (cf. sections 4.1, 4.2). Such information can be derived from digital elevation models 864 

(DEMs). Remotely-sensed DEMs for areas of limited spatial extent have been obtained from 865 

stereoscopic aerial image analysis or airborne LiDAR for decades. Numerous countries nowadays 866 

produce national DEMs based on airborne LiDAR surveys down to submeter pixel size (e.g. Lohani et 867 

al., 2018). Here we focus on DEMs having a (nearly) global or European coverage (Table 4). 868 

Among the first near-global DEM datasets derived from spaceborne observations were the SRTM-C 869 

DEM (first released in 2003; Rabus et al., 2003), the ASTER GDEM (released 2009) and the 870 

improved ASTER GDEM2 (released 2011; Tachikawa et al. 2011) and ASTER GDEM3 (released 871 

2019). While SRTM-C and the more recent TanDEM-X DEM (Krieger et al., 2007) are based on 872 

interferometric Synthetic Aperture Radar (SAR) image analysis, ASTER GDEMs and the ALOS 873 

DEMs (Tadono et al., 2014; Takaku et al., 2014) are derived from stereoscopic analysis of optical 874 



satellite images. All these global DEMs can be considered as Digital Surface Models (DSMs), i.e. the 875 

elevation values reflect the Earth’s surface including objects such as vegetation and buildings. 876 

Furthermore, most of these global DEMs are based on observations collected over longer time periods. 877 

Only the SRTM data collection was conducted over only eleven days (in February 2000) and thus 878 

reflects the surface elevation at a fairly specific moment (Rabus et al., 2003). 879 

As the data source documentation and various comparison studies indicate (see e.g. review by Alganci 880 

et al., 2018), the vertical accuracies of these DEMs strongly depend on the terrain characteristics. 881 

Among the publically available global DEMs with finer spatial-resolution (≤30m grid spacing), 882 

Purinton & Bookhagen (2017) found that STRM-C, ALOS World 3D and TanDEM-X provide the 883 

highest vertical accuracies (below 3.5m). This estimate was based on a large number of GPS reference 884 

measurements across a wide range of terrain types and elevations. Apart from freely available datasets, 885 

some commercial global DEMs have also been recently released (e.g. TanDEM-X, ALOS World 3D; 886 

Table 4). These generally have higher spatial resolutions. Based on the same GPS reference dataset, 887 

vertical accuracies of both datasets were assessed to be below 2m (Purinton & Bookhagen, 2017). 888 

Several authors have also assessed the suitability of these global DEMs for geomorphological and 889 

hydrological analyses in different landscapes (see e.g. Purinton and Bookhagen, 2017; Boulten & 890 

Stokes, 2018; Mondal et al., 2017). 891 

Despite their lower spatial resolution and accuracies as compared to airborne LiDAR DEMS, these 892 

global satellite-derived DEMs (Table 4) remain the only consistent, harmonized datasets at regional to 893 

continental scales in almost all regions of the world. Among them, the TanDEM-X and the ALOS 894 

World 3D (AW3D5) are the best available products. However, their high cost and the computing 895 

resources required to use them may pose limitations to continental or global modelling efforts.  896 



Table 4: Overview of global and European Digital Elevation Models and their key characteristics 897 

                
Dataset/ product Spatial extent Satellite data 

acquisition 

period 

Satellite sensor, 

type of DEM 

generation 

Pixel 

spacing 

Source Data download Reference  

SRTM-C global (60°N to 
56°S) 

11-22 February 
2000 

SRTM, single-pass 
C-band 
interferometry 

30 m NASA, public https://earthexplorer.usgs.gov/  Rabus et al. 
(2003) 

ASTER GDEM global (83°N to 
83°S) 

2000 to 2010 ASTER, stereo-
correlation of 
optical images 

30 m METI and NASA, 
public 

https://asterweb.jpl.nasa.gov/gdem.asp Tachikawa et al. 
(2011) 

ALOS World 3D 
(AW3D5 and 
AW3D30) 

global (82°N to 
82°S, void-filled 
within 60°N to 
60°S) 

2006 to 2011 ALOS PRISM, 
stereo-correlation 
of optical images 

5 m and 30 
m 

JAXA, 5 m product 
commercial, 30 m 
product public 

AW3D30 (login required): 
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm  

Tadono et al. 
(2014); Takaku 
et al. (2014) 

EU-DEM  Europe 2000 to 2010 Hybrid product 
based on SRTM 
and ASTER GDEM 
data 

25 m European Environment 
Agency (EEA) under 
the framework of the 
Copernicus programme, 
public 

https://land.copernicus.eu/pan-european/satellite-derived-
products/eu-dem 

Gonzalez (2015) 

TanDEM-X DEM global (pole-to-
pole) 

2010 to 2015 TanDEM-X, 
bistatic X-band 
interferometric 
SAR 

12 m and 
30 m 

12 m commercial 
product available from 
Airbus Defence and 
Space as WorldDEM™; 
12/30 m products 
available by research 
agreement from DLR 

http://www.intelligence-airbusds.com/elevation-
models/#worldem; products available by research agreement 
from DLR: https://tandemx-science.dlr.de/ 

Krieger et al. 
(2007) 

                



5.2. Vegetation cover 898 

Also vegetation is generally considered as a key controlling factor of gully erosion and its impacts on 899 

SY (cf. section 4). Overall, a negative relation between vegetation cover and gully density/erosion can 900 

be expected as (i) plant material at the surface can slow down flow velocities and reduce runoff shear 901 

stresses; (ii) below-ground biomass (in particular plant roots) can increase the soil cohesion; and (iii) 902 

vegetation can affect the soil structure and soil hydrological balance, leading to lower runoff 903 

production rates (e.g. Gyssels & Poesen, 2003; Knapen et al., 2007; Vannoppen et al., 2015).  904 

Various indices exist to map patterns of vegetation cover from satellite imagery and several publically 905 

available, ready-to-use, datasets exist (Table 5). The most commonly used proxy for vegetation cover 906 

is the Normalized Difference Vegetation Index (NDVI). Various studies successfully used NDVI as a 907 

predictor for gully densities (e.g. Zhao et al., 2016; Vanmaercke et al., 2020). Nonetheless, also other 908 

indices may be useful for gully erosion modelling, e.g. the Soil-Adjusted Vegetation Index (SAVI) 909 

and the Modified SAVI. Bennari et al. (1995) and Barati et al. (2011) provide reviews of these 910 

different indices. While such indices provide proxies for plant biomass and productivity, biophysical 911 

variables like the leaf area index (LAI), the fraction of absorbed photosynthetically active radiation 912 

(FAPAR) and the fraction of green vegetation cover (Fcover or FVC) provide more physically-based 913 

descriptions of the vegetation cover. The latter is particularly relevant in the context of soil erosion 914 

susceptibility (Panagos et al., 2015; Borrelli et al., 2017b). It corresponds to the fraction of green 915 

vegetation, covering the ground as seen from the nadir direction. Similarly, Vegetation Continuous 916 

Fields (VCF) provides estimates of vegetation cover as the percentage of tree cover, percentage of 917 

non-tree vegetation, and percentage of non-vegetated area (e.g. Sexton et al., 2013). An important 918 

limitation of these EO-derived indices is that they only relate to the above-ground vegetation. 919 

Currently, information on below-ground biomass can only be indirectly estimated (e.g. based on 920 

above-ground vegetation characteristics, in-situ data and expert knowledge). Nevertheless, important 921 

progress has recently been made in this regard. For example, based on empirical modelling, Fan et al. 922 

(2017) provide estimates of maximum rooting depth at a global scale. 923 

Table 5 lists a selection of publically available global NDVI and FCover datasets. They were selected 924 

because they are free, have a high spatial resolution (1 km or finer), are based on a sufficiently long 925 

observation period (at least several years) and can be considered representative for the current 926 

vegetation cover (i.e. their observation period includes recent years). Several of these datasets are 927 

regularly updated. Most of these selected datasets are derived from the analysis of MODIS, Proba-V, 928 

Spot Vegetation, and Landsat satellite imagery. They provide temporal coverages ranging from 8-day 929 

composites to annual composites. However, some of these series (especially monthly and sub-monthly 930 

Landsat composites) contain gaps due to cloud or snow cover. Datasets based on Landsat imagery 931 

currently provide the highest spatial detail, with 30 m grid spacing for continental to global products.  932 



Table 5: Selection of global vegetation cover datasets (focusing on NDVI and FCover) 933 

Dataset/ 

product 

Spatial 

extent 
Sensor 

Satellite data 

acquisition 

period 

Spatial 

resolution 

Temporal 

resolution 
Source Data download Reference 

Fcover 
Copernicus 
Land 
Monitoring 

global, 
75°N to 
60°S 

Proba V, SPOT-
VGT/ PROBA V 

01/2014 to 
present, 1999 to 
present 

300 m, 1 
km  

10 days 
composite 

ESA, 
public 

http://land.copernicus.eu/global/products/fcover  

Smets et al. (2017); Smets et al. 
(2018) 

MODV1 
FCover 

global MODIS 2000-2016 1 km 
monthly 
composite 

ISPRA, 
public 

Available upon request from the author Filipponi et al. (2018) 

MOD44B 
Vegetation 
Continuous 
Fields 

global MODIS 2000 to present 250 m 
annual 
composite 

NASA, 
public 

https://lpdaac.usgs.gov/products/mod44bv006/ Dimiceli et al. (2015) 

MOD13Q1 
NDVI  

global MODIS 2000 to present 250 m 
16-day 
composite 

NASA, 
public 

https://lpdaac.usgs.gov/products/mod13q1v006/ Didan (2015) 

Copernicus 
Land 
Monitoring 
NDVI 

global 
PROBA-V, 
SPOT-
VGT/PROBA-V  

02/2016 to 
present, 04/1998 
to present  

300 m, 1 
km 

10 days 
composite 

ESA, 
public 

http://land.copernicus.eu/global/products/ndvi 

Smets et al. (2016); Smets et al. 
(2018) 

GEE NDVI  global Landsat 1984 to present 30 m 

8-day 
composite, 
32-day 
composite, 
annual 
composite 

USGS/ 
Google 
Earth 
Engine, 
public 

https://earthengine.google.com/datasets/ Gorelick et al. (2017) 

WELD NDVI  global Landsat 1984-2001 30 m 

monthly 
composite, 
annual 
composite 

USGS/ 
WELD, 
public 

https://lpdaac.usgs.gov/products/gweldmov031/ 
https://lpdaac.usgs.gov/products/gweldyrv031/ 

Roy et al. (2010) 

 934 



5.3. Land cover, use and management 935 

While vegetation cover refers to the quantity of above-ground biomass (see section 5.2), land use and 936 

land cover (LULC) datasets classify the land surface in categories describing how the land is used. 937 

Many of the currently existing modelling tools (e.g. CN-based approaches, cf. section 4) rely on 938 

LULC classes, rather than indices of vegetation cover. As such, LULC dataset can be an important 939 

asset for gully erosion modelling. Furthermore land cover, use and management encompass several 940 

other relevant elements that are not necessarily reflected by vegetation indexes. Examples include the 941 

shapes and sizes of parcels, parcel boundary characteristics, cropping cycles and tillage practices (e.g. 942 

Poesen et al., 2003; Valentin et al., 2005; Piccarreta et al., 2012). Also soil conservation measures 943 

often have a significant impact on runoff and sediment production (e.g. Maetens et al. 2012a, b). The 944 

effects of erosion-preventing or -reducing measures on gully erosion rates and sediment production 945 

can be large (for  detailed reviews, see Bartley et al., 2020 and Frankl et al. 2021).  946 

Several studies (e.g. Tsendbazar et al., 2015; Grekousis et al., 2015) provide comprehensive 947 

comparisons of available regional to global LULC datasets regarding their spatial and temporal 948 

resolution, accuracy and thematic coverage. Overall, the opening of the Landsat satellite image archive 949 

in 2008 and the launch of the Sentinel-2 satellites at 10 to 20 m spatial resolution in 2015 and 2017 lay 950 

the foundations for a new generation of high resolution global land cover products. The GlobeLand30 951 

dataset was the first open-access global land cover map at 30 m spatial resolution (Chen et al., 2017). 952 

It comprises ten types of land cover for the years 2000 and 2010, extracted from more than 20,000 953 

Landsat and HJ-1 satellite images.  954 

Table 6 lists a selection of global and European LULC datasets. Similar to Table 5, datasets in this 955 

selection are freely available, based on sufficiently long observation periods, relatively recent and/or 956 

regularly updated. Overall accuracies of these products vary between 64 and 80% (Grekousis et al., 957 

2015). Of this selection, CORINE Land Cover provides the longest temporal coverage (1990, 2000, 958 

2006, 2012, 2018) and highest classification detail (44 land cover classes) at pan-European scale 959 

(Büttner et al., 2014). The S2GLC product based on the analysis of Sentinel-2 imagery currently 960 

provides the finest spatial detail at pan-European scale with a pixel size of 10 m. It distinguishes 13 961 

land cover classes with an overall accuracy of 83% (Lewiński et al., 2019).  962 

At global scale, the land cover product recently released by the Copernicus Global Land Service 963 

currently overall provides the highest level of detail. Besides a discrete classification with 22 land 964 

cover classes, this product contains fraction cover layers for ten base land cover classes (Buchhorn et 965 

al., 2019). It is worth mentioning, that the generation of a global land cover product by the ESA 966 

WorldCover initiative is in progress, aiming at a 10 m global land cover map with a minimum of 10 967 

land cover classes and a minimum overall accuracy of 75 % (to be released in 2021). 968 



Yet detailed information on land management practices and the implementation of gully control or 969 

other soil and water conservation measures remains largely lacking at (sub)continental scales. We 970 

believe this is a highly important research gap. It not only impedes the accurate prediction of gully 971 

erosion, but also the evaluation of prevention and mitigation measures at larger scales. Nonetheless, 972 

for Europe, several datasets were developed over recent years that can help assessing these aspects. 973 

Examples include the Copernicus Pan-European dataset on Small Woody Features (EEA, 2015) and 974 

the EU-wide assessments of the Crop Management factor of the Universal Soil Loss Equation (EU 975 

JRC, 2015). Also estimates of the effect of support practices (i.e. the P-factor in the Universal Soil 976 

Loss Equation) have become available at the EU level, based on extensive field surveys (e.g. Panagos 977 

et al., 2015e). However, these estimates remain subject to important uncertainties and relate to sheet 978 

and rill erosion rather than to gully erosion. 979 



Table 6: Selection of global and European Land Use/Land Cover datasets 980 

Dataset/ 

product name 

Spatial 

coverage 

Temporal 

coverage 
Sensor 

Spatial 

resolution 

Classification 

scheme / no of 

classes 

Source Data download Reference/ report 

MODIS Land 
Cover Type/ 
MCD12Q1  

global 
2001-2018 
(annual) 

MODIS 500 m 
IGBP scheme, 
17 classes 

NASA, public 
 
https://lpdaac.usgs.gov/products/mcd12c1v006/ 

Friedl et al. (2010) 

GlobCover  
  

MERIS 300 m 
FAO LCCS 22 
classes 

ESA, public http://due.esrin.esa.int/page_globcover.php 
Bicheron et al. (2008); 
Bontemps et al. (2011)  

GlobCover2005  global 2004 - 2006 
GlobCover2009   2009 
GlobeLand30 

global 

  
Landsat, HJ-
1 

30 m 10 classes 

UN/ National 
Geomatics Centre 
of China (NGCC), 
public 

http://www.globallandcover.com 
Chen et al. (2015); 
Chen et al. (2017) 

2000 2000 

2010 2010 

FROM-GLC  global 2010, 2015 Landsat  30 m 9 classes 
Tsinghua 
University, public 

http://data.ess.tsinghua.edu.cn/ Gong et al. (2013) 

CCI-LC 

global 

  

MERIS, 
SPOT VGT 

300 m 
FAO LCCS 22 
classes 

ESA, public http://maps.elie.ucl.ac.be/CCI/viewer/index.php ESA (2017) 
2000 1998-2002 
2005 2003-2007 
2010 2008-2012 
CORINE 

Land Cover 

(CLC) 

Europe 

  

Landsat, 
SPOT, IRS, 
Rapid Eye, 
Sentinel-2 

100 m and 250 
m (rasterized 
vector 
product,minim
um mapping 
unit/width 25 
ha/ 100 m) 

44 classes 

European 
Environment 
Agency (EEA), 
public 

https://land.copernicus.eu/pan-european/corine-land-cover Büttner et al. (2014) 
CLC1990 1986-1998 
CLC2000 1999-2001 
CLC2006 2005-2007 
CLC2012 
CLC2018 

2011-2012 
2017-2018 

Land cover 

100m global 2015 PROBA-V 100 m 
FAO LCCS 22 
classes ESA, public https://land.copernicus.eu/global/products/lc Buchhorn et al. (2019) 

S2GLC Europe 2017 Sentinel-2 10 m 13 classes ESA, public http://s2glc.cbk.waw.pl/ Lewiński et al. (2019) 



5.4. Soil properties and lithology  981 

The formation and expansion of gullies is commonly influenced by particular soil characteristics and 982 

behaviour. However, the role of soil properties in explaining patterns of gully erosion remains 983 

relatively poorly understood (e.g. Torri & Poesen, 2014; Vanmaercke et al., 2016; 2020). One reason 984 

for this is that soil properties affect both the hydrological functioning of soils but also their erosion 985 

resistance during concentrated flow shear stresses (e.g. Knapen et al. 2007; cf. section 4). These 986 

effects may counteract each other in ways that currently remain hard to quantify. For example, clayey 987 

soils often have high runoff coefficients but can also be very cohesive. Furthermore, accurately 988 

quantifying soil properties is generally labour-intensive and therefore remains a big challenge at larger 989 

scales. This also impedes our understanding of their influence on gully erosion. 990 

Nonetheless, there are several soil properties that are known to potentially influence gully erosion and 991 

are therefore worthwhile considering. Most of these can affect both the erodibility and hydrological 992 

functioning of soils. The most relevant properties are likely soil texture characteristics (e.g. percentage 993 

of sand, silt and clay), soil organic carbon content, the content and cover of coarse fragments (e.g. 994 

Poesen et al. 1999; Torri et al., 1997; Rieke-Zapp et al. 2007; Panagos et al., 2014; Borrelli et al., 995 

subm.). Also the water holding capacity, soil depth, bulk density and underlying lithology (or parent 996 

material) can play an important role in determining the occurrence and dimensions of gullies (e.g. 997 

Kheir et al., 2008; Hopp & McDonnell, 2009). Likewise, the presence of faults and joints can 998 

influence gully occurrence, as they are often associated with higher degrees of weathering. Finally, 999 

gully occurrence and dynamics can be affected by the presence of specific soil horizons, dispersivity 1000 

(e.g. sodic properties), susceptibility to soil piping, etc. (e.g. Rienks et al., 2000; Nachtergaele & 1001 

Poesen, 2002; Bernatek-Jakiel & Poesen, 2018; Bernatek-Jakiel & Wrońska-Wałach, 2018). Many of 1002 

these properties remain difficult to assess in detail at (sub)continental scales. Nevertheless, qualitative 1003 

soil maps can be very helpful when aiming to account for such context-specific aspects. 1004 

Table 7 provides an overview of relevant databases at European and global scales. The European Soil 1005 

Database provides 73 attributes at 1:1 million scale or as a raster format with a 1 km resolution 1006 

(Panagos et al., 2012). The dataset is mostly qualitative and mainly based on national soil data and 1007 

maps from the period 1960-1990. Potentially relevant attributes include: the dominant and secondary 1008 

parent material, depth to bedrock, soil structure, soil crusting and water holding capacity. Furthermore, 1009 

the European Commission amended the LUCAS (Land Use/Cover) surveys of 2009/2012, 2015 and 1010 

2018 by including a topsoil survey to collect around 20,000 soil samples from all EU countries 1011 

(Orgiazzi et al., 2018). The resulting LUCAS topsoil database includes measured data for soil physical 1012 

and chemical properties. Based on a geostatistical processing of these data, a number of soil property 1013 

spatial datasets were developed at a 500m resolution. These include soil texture (sand, silt, clay), 1014 

coarse fragment content and available water capacity (Ballabio et al., 2016). Also datasets on chemical 1015 

properties (pH, CEC, P, N, K) were also made available at 500m resolution for the EU (Ballabio et al., 1016 



2019). Likewise, building on the LUCAS database, the EU Joint Research Centre (JRC) developed 1017 

high resolution soil erodibility datasets (Borrelli et al., 2014; Panagos et al., 2014). The latter are based 1018 

on physical soil properties, taking into account the impact of stone cover. Other suitable sources for 1019 

pan-European studies may be the 1:5 million Geological Map of Europe, which includes various 1020 

lithological and geological attributes (Asch, 2005), or the Geo-LiM geo-lithological map for Central 1021 

Europe (Donnini et al., 2019). 1022 

At global scale, the most comprehensive soil property datasets are the Harmonised World Soil 1023 

Database v 1.2 (FAO, 2012) and SoilGrids (Hengl et al., 2017). The first provides a 30 arc-second 1024 

raster database with over 15,000 different soil mapping units. SoilGrids is a collection of soil 1025 

properties and classes. It is based on an automated soil mapping procedure using global soil profile 1026 

data and various (EO) covariates. A ten-fold cross-validation of SoilGrids at 250m resolution indicated 1027 

that the automated algorithms explain 61% of the overall variation. However, this performance varies 1028 

strongly depending on the property considered (e.g. 56% for coarse fragments, 83% for pH; Hengl et 1029 

al., 2017). With respect to underlying lithology, the GLiM (Global Lithology Map) by Hartmann & 1030 

Moosdorf (2012) is currently one of the most detailed globally consistent products.  1031 



Table 7: Selection of global and European soil and geological/lithological datasets 1032 

Dataset/ product 

name 

Spatial 

extent 

Data 

acquisition 

period 

Spatial 

resolution 
Source Data download Reference 

Harmonized world 
soil database v1.2 

global, 
continental, 
regional 

1971-2012  30 arc seconds FAO/ UNESCO, public 
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-
databases/harmonized-world-soil-database-v12/en/ 

FAO (2012) 

LUCAS 2009 
Topsoil physical 
properties for Europe 

Europe 2009 500m 
European Commission/ JRC, 
public 

https://esdac.jrc.ec.europa.eu/content/topsoil-physical-
properties-europe-based-lucas-topsoil-data 

Ballabio et al. (2016) 

LUCAS 2009 
Chemical properties 

Europe 2009 500m 
European Commission/ JRC, 
public 

https://esdac.jrc.ec.europa.eu/content/chemical-properties-
european-scale-based-lucas-topsoil-data 

Ballabio et al. (2019) 

SoilGrids global 2013-2017 250-1000m ISRIC, public https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vec
tor=1 

Ribeiro et al. (2015); 
Hegl et al. (2017) 

European Soil 
Database 

Europe 
(and 
Eurasia) 

1960-1990 1km 
European Commission/ JRC, 
public 

https://esdac.jrc.ec.europa.eu/content/european-soil-
database-v2-raster-library-1kmx1km 

Panagos et al. (2012) 

Soil erodibility 
dataset 

Europe 2014 500m 
European Commission/ JRC, 
public 

https://esdac.jrc.ec.europa.eu/content/soil-erodibility-k-
factor-high-resolution-dataset-europe 

Panagos et al. (2014) 

1: 5 million 
Geological Map of 
Europe (IGME 5000) 

Europe and 
adjacent 
areas 

1990-2000 1: 5million 
BGR, national geological 
surveys, public 

https://www.bgr.bund.de/EN/Themen/Sammlungen-
Grundlagen/GG_geol_Info/Karten/International/Europa/IG
ME5000/IGME_Project/IGME_Projectinfo.html 

Asch (2005) 

Geo-lithological map 
for Central Europe 
(Geo-LiM) 

Central 
Europe 

1990-2010 1:1 million CNR IRPI, public https://zenodo.org/record/3530257 
Donnini et al. (2020) 

Global Lithology 
Map 

global unknown 
1: 3750 000 
(average) 

University of Hamburg, 
(partly) public 

https://doi.pangaea.de/10.1594/PANGAEA.788537 
Hartmann & Moosdorf 
(2012) 
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5.5. Climate and weather conditions 1034 

Climate and weather conditions, and especially rainfall, are key drivers of gully erosion (cf. section 4). 1035 

Rainfall can have short (i.e. triggering) and long term (i.e. conditioning) effects. On the short term, 1036 

rainfall intensities and amounts are generally key parameters, as they will determine the runoff volume 1037 

and hence shear stress exerted by the water. Numerous studies have demonstrated significant 1038 

correlations between rainfall intensity and gully head initiation (e.g. Hayas et al., 2017b), headcut 1039 

retreat (e.g. Vanmaercke et al., 2016) and gully widening (e.g. Hayas et al., 2019). Conversely, 1040 

characterizing the effect of rainfall over long periods is more complicate. For example, rainfall 1041 

controls the soil moisture, which may further condition the runoff response but also the soil resistance 1042 

against erosion (e.g. Capra et al., 2009). Furthermore, climate over longer timescales can have 1043 

significant indirect effects, e.g. through its influence on vegetation development and soil mechanical 1044 

properties (e.g. Dunne et al., 1991; Sanchis et al., 2008; Fan et al., 2017). Complex relations exist 1045 

among these different effects, making it difficult to define rainfall-related variables that accurately 1046 

account for all relevant mechanisms. In some contexts, also snowmelt may be a key driver of gully 1047 

erosion (e.g. Ionita, 2006; Golosov et al., 2018). While snowmelt runoff can already be modelled and 1048 

monitored to some extent, its effects on gully erosion remain relatively understudied, especially at 1049 

(sub)continental scales (e.g. Maltsev & Yermolaev, 2019).  1050 

Hence, the type and spatio-temporal resolution of precipitation data required will vary depending on 1051 

the study region, but also in function of the purpose. Modelling exercises at short time scales (e.g. 1052 

daily, event-based) require data of similar temporal resolutions. When aiming to understand mean 1053 

tendencies and spatial variations, coarser data are already useful. For example, long-term average 1054 

proxies like the rainy day normal can already serve as a useful predictor for average trends (e.g. 1055 

Vanmaercke et al., 2016; Hayas et al., 2017b).  1056 

Table 8 provides a selection of available global and European rainfall datasets, building on an earlier 1057 

overview presented by Sun et al. (2018). These gridded datasets are based on a variety of methods. 1058 

Several are derived from rain gauge data, using different regionalization methods (e.g. Rudolf et al., 1059 

2009; Schamm et al., 2014). The accuracy of such datasets can be expected to depend on the gauge 1060 

network density which may be limited, especially in Global South countries (e.g. Schneider et al., 1061 

2014). Despite their generally shorter time series, RADAR-derived products can provide an important 1062 

alternative (e.g. Ashouri et al., 2015). RADAR-based rainfall observation networks are implemented 1063 

in many countries. They measure rainfall rates, based on the analysis of the echoes generated by the 1064 

interaction between active microwave signals and rain drops (Sauvageot, 1994; Wexler & Atlas, 1065 

1963). RADAR rainfall estimates are indirect and represent measures of rainfall far from the surface, 1066 

which may be a limitation. However, their high spatio-temporal level of detail (e.g. estimates every 10 1067 

minutes at a 5×5 km resolution) allows measuring local, short and intense rainfall events. Overall, data 1068 

from regional RADAR networks (and in particular historical RADAR data series) remain scarcely 1069 



accessible and underused. Other gridded rainfall products are derived from satellite observations. In 1070 

general, they are based on algorithms that combine passive microwave and infrared measurements 1071 

from geostationary and low earth orbit satellites. Despite their often limited spatio-temporal 1072 

resolutions, their main advantages are their global coverage and their easy accessibility. Hence, they 1073 

offer great potential for gully erosion modelling at larger scales, especially in countries where other 1074 

rainfall data are scarce. Nonetheless, also these satellite products generally rely to some extent on 1075 

gauging station observations and can be subject to uncertainties (e.g. Monsieur et al., 2018). Finally, 1076 

several datasets have been produced through reanalysis, in which meteorological modelling results are 1077 

combined with rainfall observations (Gelaro et al., 2017). These products have diverse spatial and 1078 

temporal resolutions that cover extended periods (Table 8).  1079 

At European scale, another relevant proxy worth mentioning is the rainfall erosivity dataset, which 1080 

was produced with 30-minutes precipitation data from 1675 stations in the EU (Panagos et al., 2015). 1081 

While this proxy was originally developed for simulating sheet and rill erosion rates, it may also be 1082 

useful for gully erosion modelling. 1083 
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Table 8: Selection of global and European rainfall datasets (based on Sun et al., 2018).  1085 

Dataset/ 

product 

Spatial 

coverage 

Spatial 

resolution 

Temporal 

resolution 

Period Sensor and type of 

retrieval 

Source Data download Reference 

E-OBS Europe 0.55°/0.50°/0.22° 
rotated/0.44° rot 

Daily 1950-present Gridded rain gauge ECA&D https://www.ecad.eu/download/ensembles/download.php#datafi
les 

Haylock et al. (2008); Cornes 
et al. (2018) 

CRU Global land 0.5° × 0.5°  Monthly 1901 -2016 Gridded rain gauge CRU of the University of East 
Anglia  

http://www.cru.uea.ac.uk/data Harris et al. (2014); New et al. 
(2000) 

GHCN-M Global land 5° × 5° Monthly 1900-present Gridded rain gauge National Climatic Data Center https://www.ncdc.noaa.gov/ghcnm/v2.php Peterson & Vose (1997) 

GPCC-
monthly 

Global land 0.25° × 0.25°, 
0.5° × 0.5°, 1.0° 
× 1.0°, 2.5° × 
2.5° 

Monthly 1891–2016 Gridded rain gauge Global Precipitation 
Climatology Centre 

https://opendata.dwd.de/climate_environment/GPCC/html/fulld
ata-monthly_v2018_doi_download.html 

Schneider et al. (2014) 

GPCC-daily Global land 1.0° × 1.0° Daily 1982-2013 Gridded rain gauge Global Precipitation 
Climatology Centre 

https://opendata.dwd.de/climate_environment/GPCC/html/fulld
ata-daily_v2018_doi_download.html 

Schamm et al. (2014) 

PREC/L Global land 0.5° × 0.5°, 1.0° 
× 1.0°, 2.5° × 
2.5° 

Monthly 1948–2020 Gridded rain gauge NCEP/NOAA https://www.esrl.noaa.gov/psd/data/gridded/data.precl.html Chen et al. (2002) 

UDEL Global land 0.5° × 0.5° Monthly 1900–2017 Gridded rain gauge University of Delaware https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Pr
ecip.html 

Willmott & Matsuura (1995) 

CPC Global land 0.5° × 0.5° Daily 1979–
present 

Gridded rain gauge CPC https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprec
ip.html 

Xie et al. (2010) 

GPCP Global 2.5° Monthly 1979–
present 

Satellite + rain 
gauge 

NOAA/OAR/ESRL PSD https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html Adler et al. (2003) 

GPCP 1dd Global 1.0°  Daily 1996–
present 

Satellite + rain 
gauge 

NASA https://rda.ucar.edu/datasets/ds728.3/ Huffman & Bolvin (2013) 

GPCP_PEN_
v2.2 

Global 2.5° Pentad 1979–
present 

Satellite + rain 
gauge 

NASA https://data.nodc.noaa.gov/cgi-
bin/iso?id=gov.noaa.ncdc:C00933 

Xie et al. (2003; 2011) 

CMAP Global 2.5° Monthly, 
Pentad 

1979-2016, 
1979–
present 

Satellite + rain 
gauge 

NCEP–NCAR https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html Xie et al. (2003); Xie & Arkin 
(1997) 

TRMM 
3B43 

Global (50°S–
50°N) 

0.25° 3 h/Daily 1998–
present 

Satellite NASA https://pmm.nasa.gov/data-access/downloads/trmm Huffman et al. (2007) 

GSMaP Global (60°S–
60°N) 

0.1° 1 h/daily 2000–2014 Satellite JAXA http://sharaku.eorc.jaxa.jp/GSMaP_crest/  Ushio et al. (2009) 

PERSIANN-
CCS 

Global (60°S–
60°N) 

0.04° 30 min/3, 
6 

2003–
present 

Satellite Center for Hydrometeorology 
and Remote Sensing (CHRS) 
at the University of California 

http://chrsdata.eng.uci.edu/ Sorooshian et al. (2000); 
Nguyen et al. (2019) 



PERSIANN-
CDR 

Global (60°S–
60°N) 

0.25° Daily/mon
thly/yearly 

1983–
present 

Satellite + rain 
gauge 

Center for Hydrometeorology 
and Remote Sensing (CHRS) 
at the University of California 

http://chrsdata.eng.uci.edu/ Ashouri et al. (2015); Nguyen 
et al. (2019) 

CMORPH Global (60°S–
60°N) 

0.25° 30 min/3 
h/daily 

2002–2017 Satellite Climate Prediction Center https://climatedataguide.ucar.edu/climate-data/cmorph-cpc-
morphing-technique-high-resolution-precipitation-60s-60n 

Joyce et al. (2004) 

GPM Global (60°S–
60°N) 

0.1° 30 min/3 
h/daily 

2000–
present 

Satellite NASA https://pmm.nasa.gov/data-access/downloads/gpm Hou et al. (2008); Hou et al. 
(2014); Huffman et al. (2015) 

MSWEP Global 0.1°/0.5° 3 h/daily 1979–
present 

Satellite + rain 
gauge 

Princeton University http://www.gloh2o.org/  Beck et al. (2017) 

NCEP1 Global 2.5° × 2.5 Monthly/
Daily/6 
hourly 

1948–
present 

Reanalysis NCEP/NCAR https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysi
s.surface.html 

Kalnay et al. (1996) 

NCEP2 Global 2.5° × 2.5° Monthly/6 
hourly 

1979–
present 

Reanalysis NCEP/NCAR https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysi
s2.surface.html 

Kanamitsu et al. (2002) 

ERA 40 Global 2.5° × 
2.5°/1.125° × 
1.125° 

Monthly/6 
hourly 

1957–2002 Reanalysis ECMWF http://apps.ecmwf.int/datasets/data/era40-daily/levtype=sfc/ Uppala et al. (2005) 

ERA Interim Global 1.5° × 1.5°/ 0.75° 
× 0.75° 

Monthly/6 
hourly 

1979–
present 

Reanalysis ECMWF http://apps.ecmwf.int/datasets/data/interim-full-
daily/levtype=sfc/  

Dee et al. (2011) 

20CRv2 Global 2.0° × 2.0° Dailyaily/
6 hourly 

1851–2014 Reanalysis NOAA https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV
2c.pressure.html 

Compo et al. (2011) 

JRA-55 Global 60 km Monthly/3 
hourly/6 
hourly 

1958–
present 

Reanalysis Japanese Meteorological 
Agency 

http://jra.kishou.go.jp/JRA-55/index_en.html Ebita et al. (2011) 

MERRA Global 0.5° × 0.67° Daily 1979–
present 

Reanalysis NASA https://gmao.gsfc.nasa.gov/reanalysis/MERRA/  Rienecker et al. (2011) 

MERRA 
Land 

Global 0.5° × 0.67° Monthly/
Daily/1ho
urly 

1980–
present 

Reanalysis NASA https://gmao.gsfc.nasa.gov/reanalysis/MERRA-Land/ Reichle et al. (2011) 

MERRA2 Global 0.5° × 0.67° Daily 1980–
present 

Reanalysis NASA https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ Gelaro et al. (2017) 

CFSR 38 Global 38 km hourly 1979–2011 Reanalysis NOAA https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESD
IS/NCDC/Geoportal/iso/xml/C00765.xml&view=getDataView
&header=none 

Saha et al. (2010) 

MSG CPP Europe 3 × 3 km 15 minutes 2005-2011 Satellite Koninklijk Nederlands 
Meteorologisch Instituut 
(KNMI) 

http://msgcpp.knmi.nl/mediawiki/index.php/MSG_Cloud_Physi
cal_Properties_%28CPP%29 

Roebeling et al. (2009) 
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6. Policies relevant to gully erosion: frameworks and current needs  1087 

At the global level, the issue of soil erosion receives significant attention (e.g. Montanarella et al., 1088 

2016). For example, the United Nations Convention to Combat Desertification (UNCCD, 2018) and 1089 

the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES; 1090 

Scholes et al., 2018) both stress the importance of human-induced soil erosion as a key driver of land 1091 

degradation and expresses concerns about the potential impacts of climate change on soil erosion rates. 1092 

Also several of the UN Sustainable Development Goals (SDGs) clearly identify soil resources as being 1093 

of crucial importance. More specifically, Goal 1 (No Poverty), Goal 2 (Zero Hunger), Goal 3 (Good 1094 

Health and Well-being), Goal 6 (Clean Water and Sanitation), Goal 13 (Climate Action) and Goal 15 1095 

(Life on Land) strongly link to the need to preserve soil resources in order to achieve these goals by 1096 

2030 (Keesstra et al., 2016; Bouma, 2019; Panagos & Katsoyiannis, 2019; Albaladejo et al., 2021). 1097 

The Food Agriculture Organization has published Guidelines for Sustainable Soil Management (FAO, 1098 

2016), aiming to support countries in implementing actions for soil protection.  1099 

The European Union is a front-runner in attaining the SDGs and has committed to play an active role 1100 

towards their realization. With respect to SDG 15 ‘Life on Land’, the EU identifies 3 sub-themes: 1101 

ecosystem status, biodiversity and land degradation (Panagos & Katsoyiannis, 2019). One of the 1102 

indicators used to assess progress with respect to land degradation is soil erosion by water (Panagos et 1103 

al., 2015a; 2015b). Overall, soil protection is not subject to a single, coherent legislation within the 1104 

EU. Although a Soil Thematic Strategy (COM 2006.231) was proposed, the Commission withdrew 1105 

this proposal to develop a Soil Framework Directive in 2014. Nevertheless, there is a strong 1106 

commitment of the EU and its member states to conserve soil resources and several measures exist 1107 

across different policies.  1108 

In the EU agricultural sector, the main active policy instrument to promote agro-environmental 1109 

friendly agriculture is the Cross Compliance mechanism, which was introduced in the Common 1110 

Agricultural Policy (CAP) in 2003. In 2009, the standards of Good Agricultural and Environmental 1111 

Conditions (GAEC) were introduced in the CAP legislation framework (Common Agricultural Policy 1112 

(CAP), 73/2009). One of the requirements in the GAEC is to limit soil loss by water erosion and to 1113 

maintain soil organic carbon (Borrelli et al., 2016). For this, the GAEC standards include a set of 1114 

practices, such as reduced tillage, crop residues management, cover crops, maintaining terraces, grass 1115 

margins next to watercourses, contour farming and crop rotation. While most of these practices may 1116 

have a beneficial effect on preventing gully erosion, the GAEC makes no explicit reference to the 1117 

mitigation of existing permanent gullies, nor to the management of ephemeral gullies. Nonetheless, 1118 

specific measures can be taken by individual member states to tackle (gully) erosion, using funds from 1119 

the European Agricultural Fund for Rural Development (EAFRD), under the Council Regulation EU 1120 

1305/2013. For example, in the Spanish region of Andalucia, gully control measures were subsidized 1121 



under this programme in 2009-2010. However, despite some initial successes, this programme was 1122 

discontinued because of a shift in regional priorities. In Flanders (Belgium) municipalities can request 1123 

subsidies for developing local erosion control plans and implementing small-scale erosion control 1124 

measures like check dams or sediment control basins. 1125 

Also the new legislative proposal of the European Commission for the post-2020 Common 1126 

Agricultural Policy (CAP 2021-27, COM(2018) 392) includes measures for soil conservation (e.g. 1127 

cover crops) and maintaining soil organic carbon. Post-2020, soil protection will gain more 1128 

importance through Eco-schemes as an integral part of the new Green Architecture design. In fact, 1129 

effective soil management is one of the nine key objectives of the new CAP. While the post-2020 CAP 1130 

is still being defined and will likely only come into force in 2023, it is clear that  Member States will 1131 

have greater flexibility in deciding on policy measures through the CAP national strategic plans. This 1132 

may create opportunities to target gully erosion more specifically and to tailor the implementation of 1133 

measures to particular farming contexts. However, apart from agriculture, also land use changes such 1134 

as reforestation can have significant impacts on gully erosion. Presently, the European Union does not 1135 

have a common forestry policy making it still primarily a national matter. Nonetheless, the CAP is the 1136 

main funding source for forestry, with conversions of agricultural land to forest being supported by 1137 

Rural Development funds. 1138 

In the area of European water policy, the Water Framework Directive (WFD, Directive 2000/60/EC) 1139 

and the Nitrate Directive (91/676/EEC) set environmental targets that promote soil conservation 1140 

actions. Under the WFD, EU Member States need to establish Programmes of Measures (PoMs) to 1141 

achieve good ecological and chemical statuses of water bodies. Diffuse pollution from soil erosion in 1142 

cropland is identified as a key pressure on water quality in many River Basin Management Plans 1143 

across the EU (e.g. Heininger et al., 2015), thus erosion control measures should be adopted in PoMs 1144 

to curb agricultural impacts on water bodies. Similarly, the Nitrate Directive requires implementation 1145 

of good agricultural practices in nitrate vulnerable zones to reduce runoff, erosion, and nitrate losses. 1146 

However, the WFD and the Nitrate Directive do not mention soil (or gully) erosion and its control 1147 

explicitely. 1148 

Recently, the European Commission introduced the European Green Deal (EU COM(2019) 640) with 1149 

the ambition to make EU the first climate-neutral continent by 2050. The EU Green Deal sets 1150 

ambitious targets such as protecting 30% of the EU’s land area, bringing back at least 10% of the 1151 

agricultural area under high-diversity landscape features and plant more than three billion trees by 1152 

2030 (Montanarella and Panagos, 2021). Although those targets have not yet been translated in 1153 

specific policy measures, it is clear that implementing the EU Green Deal will contribute to 1154 

sustainable soil management, introducing more soil conservation measures, reducing land degradation 1155 

and mitigating soil losses due to erosion. 1156 



In practice, a wide range of gully control practices exists and have been implemented in numerous 1157 

areas (e.g. Evrard et al. 2008; Castillo & Gomez, 2016; Figure 4). The overall effectiveness of such 1158 

measures has been recently reviewed (e.g. Bartley et al., 2020; Frankl et al., 2020). The most common 1159 

conservation practices include increasing the soil erosion resistance in concentrated flow zones, 1160 

protecting the headcut, diverting overland flows away from gullies as well as creating terraces, grassed 1161 

waterways, check dams and water and sediment control basins (Casali et al., 1999; Poesen et al. 2003, 1162 

Valentin et al., 2005). Also in the EU, such measures have been implemented. Nevertheless, measures 1163 

that directly address gully erosion are not yet compulsory in EU policies. Also soil conservation 1164 

measures such as reduced tillage are applied at a more limited scale in the EU (4% no till and 22% 1165 

reduced tillage; EU Agricultural census, 2010; Panagos et al., 2015b) as compared to for example the 1166 

USA (35% no till and 27% reduced tillage; Census of Agriculture, 2012). In terms of land 1167 

management, this makes European arable land potentially more vulnerable to ephemeral gully erosion. 1168 

Overall, soil erosion is clearly considered an important agro-environmental indicator to assess the 1169 

effectiveness of EU policies such as the Common Agricultural Policy (e.g. Gobin et al., 2004; Zalidis 1170 

et al., 2004).  However, the CAP-induced soil conservation practices consider only sheet and rill 1171 

erosion and do not account for gully erosion (Panagos et al., 2015a; 2015b). 1172 

The situation in the EU contrasts, with other regions. For example in the United States, gully control 1173 

measures are more widespread. Measures to reduce gully erosion have been implemented as early as 1174 

the 1930s in the USA, including those by the Civilian Conservation Corps (USDA, 2007). The 1175 

development of handbooks on the formation and control of gullies by national agencies greatly 1176 

contributed to this (e.g. USDA, 2007). Grade stabilization structures such as drop pipes were the most 1177 

common conservation practice to control gully erosion (Wilson et al., 2008), but also extensive 1178 

reforestation and reservoir construction programmes were implemented (e.g. Rhemtulla et al., 2009; 1179 

Abbasi et al., 2019). In China, The Grain for Green programme strongly mitigated gully erosion in the 1180 

Loess Plateau by implementing slope conservation measures and check-dams on a massive scale 1181 

(Xiang-zhou et al., 2004; Sun et al., 2019). In some areas, the restoration of vegetation on hillslopes 1182 

through the Grain for Green programme reduced gully erosion rates with up to 90% (Wang et al., 1183 

2016). Also in Australia, there are several large government-funded programmes focused on gully 1184 

remediation (Wilkinson et al., 2019). They aim to reduce sediment and particulate nutrient loads that 1185 

form, in combination with climate change, an important threat to the Great Barrier Reef (MacNeil et 1186 

al., 2019). A variety of gully remediation approaches are currently tested in catchments draining to the 1187 

Great Barrier Reef, ranging from low-cost erosion control structures to larger scale landscape 1188 

remediation (Koci et al., 2021). Also Ethiopia has implemented several large-scale soil and water 1189 

conservation programmes that included measures specifically targetting gully erosion (e.g. 1190 

Haregeweyn et al., 2015). 1191 
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 1193 
Figure 4: Examples of commonly applied gully control measures. (a) Cropland in Litichovice, Czech Republic with rill and 1194 

ephemeral gully erosion (photo: J. Krása). (b) The same cropland area, treated with grassed waterways (foreground) and 1195 

grass buffer strips to control sediment production and transfer by ephemeral gullying (photo: J. Krása). (c) Grass buffer strip 1196 

installed at a parcel border to reduce the transfer of sediments originating in an ephemeral gully (Huldenberg, Belgium) 1197 

(photo: J. Poesen). (d) Control of ephemeral gully erosion in the concentrated flow zone with a life vegetation barrier 1198 

forming a hedgerow (Wisques, France) (photo: J. Poesen). (e) Control of ephemeral gully erosion in the concentrated flow 1199 

zone with a dam made of straw bales (Huldenberg, Belgium) (photo: J. Poesen). (f) Control of a permanent gully erosion 1200 

with a gabion check dam in the concentrated flow zone (Andalucia, Spain) (photo: J. Poesen). (g) Control of a permanent 1201 

gully erosion in the concentrated flow zone with a wood/concrete check dam (Wisques, France) (photo: J. Poesen). (h) 1202 

Revegetation of a permanent gully channel (Adi Shuhu, Ethiopia)  (photo: J. Poesen). 1203 

1204 



In summary, the large number of policy initiatives at the European level (i.e. the Soil Thematic 1205 

Strategy, the Common Agricultural Policy, the Water Framework Directive, and EU Green Deal) as 1206 

well as global initiatives (Sustainable Development Goals, FAO guidelines, IPBES, UNCCD) show 1207 

that soil erosion is widely recognized as a problem. Nonetheless, relatively limited attention is given to 1208 

gully erosion. This likely results from insufficient awareness and understanding of this process. 1209 

Developing adequate policies to deal with gully erosion requires reliable, spatially explicit indicators 1210 

on where this problem occurs. Furthermore, it requires tools and data to assess the effectiveness and 1211 

efficiency of soil conservation measures. This is especially pertinent since gully erosion generally 1212 

requires interventions that are more drastic and expensive than for sheet and rill erosion (e.g. Valentin 1213 

et al., 2005; Bartley et al., 2021). 1214 

Holistically addressing the problem of soil erosion and land degradation requires models that can 1215 

simulate and assess all relevant erosion processes, as well as their impacts on catchment sediment 1216 

budgets (e.g. Borrelli et al., 2018; Poesen, 2018). While detailed models and maps at the European and 1217 

global level exist to assess sheet and rill erosion (e.g. Borrelli et al., 2017a) this is clearly not the case 1218 

for gully erosion (cf. sections 3 and 4). Our current inability to quantify gully erosion and its impacts 1219 

should not imply that this process should remain neglected in policies. Building on the already 1220 

extensive scientific knowledge gained in several regions worldwide (e.g. USDA, 2007; Sabir et al., 1221 

2020), EU and national/regional agro-environmental policies should aim to address, prevent and 1222 

mitigate gully erosion and its impacts. It deserves mentioning that the EU already makes important 1223 

efforts in this regard, including through initiatives like the ‘Land Use/Cover Area frame statistical 1224 

Survey Soil’ (LUCAS; e.g. Blum et al., 2004; Panagos et al., 2015b; Borrelli et al., 2017b; Orgiazzi et 1225 

al. 2018) which aims at monitoring soil health in the EU. In the LUCAS 2018 campaign, a soil erosion 1226 

module was introduced where different processes of soil erosion (including gully erosion) were 1227 

assessed for more than 20,000 visited points across the EU (Borrelli et al., subm.). 1228 

 1229 

7. Conclusions and recommendations 1230 

Gully erosion is an important land degradation process, leading to major on- and off-site impacts (cf. 1231 

section 1). Climate change and land use/land cover changes may aggravate these impacts in many 1232 

regions. Adequately addressing land degradation in a context of global change therefore requires 1233 

strategies and policies that specifically account for gully erosion. However, the development of these 1234 

is strongly hampered by our inability to accurately quantify and simulate gully erosion in relation to its 1235 

driving factors, especially at larger (i.e. regional to global) scales. More specifically, we need tools and 1236 

models that are capable of:  1237 

(i) identifying gully erosion hotspots; 1238 

(ii) quantifying gully erosion rates at different spatio-temporal scales;  1239 



(iii) assessing the impacts of gullies, including their (direct and indirect) contribution to catchment 1240 

sediment yields; and  1241 

(iv) simulating the effects of land use/land cover changes, climate change, land management and 1242 

conservation measures on gully erosion and its impacts.  1243 

While the development of such tools and models poses an important challenge, significant progress 1244 

has been made over recent decades. Based on a review of over 590 scientific publications and policy 1245 

documents, this article presents a state-of-the-art on monitoring, modelling and managing gully 1246 

erosion at larger scales. Here we list our key conclusions and recommendations regarding these three 1247 

aspects. 1248 

 1249 

7.1 Gully monitoring 1250 

Monitoring the occurrence and dynamics of gully systems remains essential for better understanding 1251 

and constraining rates and controlling factors of gully erosion. Especially datasets on the initiation and 1252 

evolution of gully systems over large areas are a prerequisite for the development of models that can 1253 

simulate this process at larger scales. Such datasets currently remain scarce. New remote sensing 1254 

products can greatly help in addressing this gap. Nevertheless, monitoring gully erosion at larger 1255 

scales remains highly labour-intensive and/or requires significant concessions in accuracy, 1256 

completeness and level of detail (cf. section 2). Also the limited length of the observation periods and 1257 

the coarse temporal resolution often form important constraints.  1258 

We make the following recommendations with respect to gully monitoring via remote sensing: 1259 

(i) Further research is needed to develop approaches that allow assessing the occurrence, 1260 

properties and evolution of gully systems at larger spatial scales in efficient and accurate 1261 

ways. Promising avenues for this are strategies that rely on monitoring gullies in large sets of 1262 

small yet representative case study areas and the (semi-)automatic detection and 1263 

characterization of gullies.  1264 

(ii) More studies are needed that provide data on the dynamics of gully erosion at high temporal 1265 

resolutions across different environmental settings. This is particularly relevant for ephemeral 1266 

gullies which may be formed and erased again over short time spans, potentially leading to 1267 

significant underestimations of their erosion rates. Repeated analyses of frequent imagery, 1268 

preferably taken shortly after every significant runoff event is likely the best way to address 1269 

this need. The increasing availability of EO products at high spatio-temporal and spectral 1270 

resolutions opens promising perspectives here. 1271 

(iii) Better insight and data are needed on the long-term evolution of gully systems. Gullies often 1272 

form and expand over short time periods and then remain stable for many years. In some 1273 

environments they may even be filled in again. Likewise, apparently stable gullies may be 1274 



reactivated as a result of extreme climatic events or land cover/use/management changes. 1275 

Nonetheless, most of the available data on gully erosion rates cover relatively short time 1276 

periods (i.e. a few years) and are not necessarily representative for long-term average erosion 1277 

rates. Systematically assessing the evolution of both active and seemingly stable gullies over 1278 

decadal timescales will help addressing this need. Historical (aerial) photos and early satellite 1279 

imagery can be an important asset for this. 1280 

(iv) Methodological advancements are required that allow better quantifying the uncertainties 1281 

associated with gully monitoring. Assessed gully dimensions and dynamics are often subject 1282 

to considerable uncertainties as a result of mapping errors, observation biases, the large 1283 

temporal variability of gully erosion and conversion errors (e.g. when deriving gully volumes 1284 

from gully lengths or areas). We recommend more research that allows quantifying these 1285 

different sources of uncertainty, as well as their combined effects on the total uncertainty. 1286 

Linked to that, we recommend developing procedures that allow better comparisons of 1287 

collected data. Classifying gullies according to a consistent typology across different studies 1288 

will be an important element in this. 1289 

Apart from remote sensing, also field-based research in well-targeted areas will remain essential to 1290 

understand gully erosion. Our overview for Europe (section 3) may serve as a starting point for future 1291 

studies aiming to develop gully erosion models at regional to continental scales. However, it also 1292 

uncovered shortcomings and gaps. For example, most studies focused on permanent gullies, while 1293 

bank gullies and ephemeral gullies received considerably less attention. Nonetheless, their associated 1294 

impacts can be very high. Other pertinent research needs include:  1295 

(i) studies that monitor gully densities and gully expansion rates systematically over larger areas;  1296 

(ii) studies that monitor gully dynamics (i.e. initiation, headcut retreat, but also gully widening, 1297 

deepening and infilling) and related subprocesses (e.g. piping, mass movement) at decadal 1298 

timescales, preferably at high temporal resolutions;  1299 

(iii) studies that evaluate the performance of different gully modelling strategies based on detailed 1300 

field observations; and 1301 

(iv) studies that assess the effectiveness of different gully erosion control measures over 1302 

sufficiently long time periods. 1303 

 1304 

7.2. Gully modelling 1305 

There is an important need for models and tools that can simulate and predict gully erosion at regional 1306 

to global scales. Various viable model approaches and concepts have already been proposed, but need 1307 

to be further developed, upscaled and tested so that they can be applied at larger scales (cf. section 4). 1308 

A major challenge is finding a good balance between an accurate process representation and feasible 1309 



data requirements. The recent and ongoing development of new environmental data products at 1310 

(sub)continental to global scales opens promising perspectives in this regard (cf. section 5). 1311 

More specifically, process-oriented model approaches can yield relevant insights into the factors and 1312 

mechanisms driving gully erosion, as well as their interactions. As such, they can be important tools 1313 

for scenario analyses. However, their generally high data requirements make it difficult to apply them, 1314 

especially at larger scales. Empirical modelling strategies, and in particular machine-learning 1315 

approaches, offer great potential. However, their overall ‘black box’ nature can impede clear insights 1316 

into the actual drivers of gully erosion. Different modelling strategies will therefore need to be 1317 

developed and combined.  1318 

We make the following recommendations with respect to modelling gully erosion and its impacts: 1319 

(i) Better insights are needed on the factors controlling gully erosion at larger scales and how the 1320 

role of these factors can be translated into meaningful variables and proxies that can be 1321 

derived from GIS/EO data. This is especially so for the effects of climate and weather 1322 

conditions, vegetation cover, land use/management, soil and lithological properties.  1323 

(ii) While numerous modelling strategies have already been proposed, more work is required to 1324 

scale up these approaches from case studies to larger regions. This is the case for process-1325 

oriented strategies (e.g. relying on a spatially explicit hydrological model) as well as for 1326 

empirical (e.g. machine learning) approaches. Much of this work will revolve around finding 1327 

optimal trade-offs between model accuracy and feasible data and calculation requirements.  1328 

(iii) The potential to couple and combine different approaches needs to be further explored and 1329 

developed. Most efforts so far have focussed on simulating either gully initiation, density or 1330 

expansion (mainly through headcut retreat), while little research has been conducted on how 1331 

to integrate these different aspects into models that predict total gully erosion rates. Such 1332 

integration will also need accounting for potential interactions between these different 1333 

components of gully erosion and their controlling factors as well as with potential interactions 1334 

with other erosion processes (e.g. sheet and rill erosion).  1335 

(iv) Additional research is necessary on accounting for the effects of land use and land 1336 

management practices, and in particular soil and water conservation measures, on gully 1337 

erosion and its impacts at larger scales. This will require further developing large-scale 1338 

datasets indicating the presence of specific erosion control measures but also modelling 1339 

frameworks that allow quantifying their effectiveness and efficiency. 1340 

(v) There is a large need for tools and model frameworks that allow better assessing and 1341 

quantifying the diverse on- and off-site impacts of gully erosion, both at short and longer 1342 

timescales. This includes the effects of gully erosion on hillslope hydrology, crop yields, 1343 

biomass production and other ecosystem services of soils, but also downstream impacts (e.g. 1344 

assessing the contribution of gullies to river sediment load and catchment hydrology). This 1345 



will likely require coupling gully erosion models to available models, but also developing new 1346 

model components (e.g. accounting for the impacts of gullies on sediment connectivity). 1347 

(vi) On a more general level, the potential of models to simulate gully erosion and its impacts for 1348 

scenario analyses needs to be further developed and tested. A key element in this will be the 1349 

thorough validation of these models, using reliable observations over a large range of 1350 

environmental conditions. 1351 

 1352 

7.3. Gully management 1353 

Overall, there is a significant and growing international interest to tackle the challenges of soil erosion 1354 

and land degradation in the context of global change (cf. section 6). In Europe, numerous frameworks 1355 

and policies help addressing the problem of soil erosion. However, very few of them explicitly 1356 

account for (or even mention) gully erosion. More specific guidelines and recommendations to deal 1357 

with this process are required. To a large extent, the absence of gully erosion in current policies is 1358 

mainly due to our inability to accurately assess and quantify this process and its impacts. This hampers 1359 

effective communication between scientists and policy makers on setting realistic targets and 1360 

solutions. Nevertheless, our current state of knowledge does already allow accounting more explicitly 1361 

for gully erosion.  1362 

We believe the following elements can aid in a better management of gully erosion at larger scales: 1363 

(i) Scientific initiatives that help to better quantify and understand gully erosion, allowing for 1364 

more targeted policies, need to be further supported. Especially initiatives that help identifying 1365 

(potentially) problematic areas and assessing the effectiveness, costs and benefits of 1366 

prevention and control measures are needed in this regard. 1367 

(ii) Lessons learned from other policy implementations (e.g. with respect to sheet and rill erosion) 1368 

as well as from regions where gully control measures are already implemented should be 1369 

integrated in policies dealing with gully erosion. 1370 

(iii) Given that the formation, expansion rates and impacts of gullies strongly vary between 1371 

regions,  (future) policy instruments should accommodate for this diversity of contexts.  1372 
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