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Abstract

In the present work, families of equivalent singe layer and layer-wise models

for the static and free vibrations analysis of magneto-electro-elastic multilay-

ered plates are developed. The models are defined in the framework of a unified

formulation, which offers a systematic approach for generating refined plate the-

ories through suitable expansions of the through-the-thickness components of

the relevant fields, considering the expansion order as a free parameter. The

key features of the developed formulation are: a) the condensation of the elec-

tric and magnetic description into the mechanical representation, based on the

quasi-static electric-magnetic approximation, which allows to reduce the com-

putation of the analysis for both layer-wise and equivalent single layer models;

b) the employment of the Reissner Mixed Variational Theorem, in which the

displacements and transverse stress components are used as primary variables,

thus allowing the explicit fulfilment of the transverse stress interface equilib-

rium. The proposed methodology is assessed by generating different layer-wise

and equivalent single layer models for the analysis of thick magneto-electro-

elastic layer and comparing their solution against available three-dimensional

analytic results.
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1. Introduction

Multi-physics materials, such as piezo-electric (PZ) or magneto-electro-elastic

(MEE) materials, are today largely employed in several scientific and techno-

logical applications, as the coupling between different fields, e.g. mechanical,

electric, magnetic, can be advantageously used for different purposes, such as

structural health monitoring (SHM), vibration control, structural morphing, en-

ergy harvesting [1]. In aerospace and mechanical engineering applications, the

employment of piezo-electric or MEE materials has led to the concept of smart

structure, in which the structural components are endowed with multifunctional

sensing or acting capabilities. In this framework, the use of piezoelectric ma-

terials is today prevalent, while MEE materials are emerging as an interesting

alternative with extended functionalities, due to the possibility of exploiting the

additional coupling with the magnetic field [2]. Among the different possible

applications, much research has been focused on the development of compos-

ite laminates with embedded multi-functional layers, often referred to as smart

laminates [3–5].

One of the factors supporting the successful design of smart structural systems is

the availability of reliable modelling tools, essential for supporting experimental

testing and reducing its cost. In the case of piezoelectric or MEE materials, the

models must accurately represent the complex interactions among the different

fields. Several analytical, numerical and computational techniques have been

developed for the study of systems involving attached or embedded piezoelec-

tric and MEE elements [6–19]). The present work focuses of the modelling of

smart composite plates with general lay-ups of MEE layers.

Several two-dimensional (2D) laminate plate theories have been developed, with

the aim of enabling suitable accuracy at affordable computational cost: both

layer-wise (LW) [20, 21] and equivalent-single layer (ESL) [22, 23] approaches

have been proposed in the literature. LW techniques offer high accuracy, but

their computational cost increases with the number of layers. On the other
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hand, the computational cost of ESL models is independent from the number

of layers, thus resulting in more affordable computations; however, their accu-

racy is generally reduced with respect to that obtained through LW approaches,

especially for thick laminates, whose reliable analysis generally requires higher

order theories.

Both LW and ESL theories for smart plates have been generally formulated

using the electric and magnetic primary quantities as independent state vari-

ables of the problem, see Ref. [24] and references therein; recently, models for

smart MEE laminates have been developed employing the concept of effective

plate, resulting from the condensation of the electric and magnetic state into

the mechanical variables [25–27]. Such theories are usually based on generalised

variational statements extending the application of the variational theorems of

classical elasticity [28, 29]. Most of the proposed models are based on the ex-

tension of the principle of virtual displacements (PVD), where the generalised

displacement components are seen as primary variables and the in-plane stress

components are calculated using Hooke’s law. While these theories might pro-

duce accurate predictions for the displacement and in-plane stress components,

they might fail to yield the same accuracy for the transverse shear and normal

stresses. To overcome this drawback, the Reissner mixed variational theorem

(RMVT) can be invoked [30, 31], where the displacement and transverse stress

components are employed as primary variables and the in-plane stress compo-

nents are derived from these.

Starting from the PVD and RMVT for the formulation and implementation of

both LW and ESL refined higher order theories for multilayered plates, Carrera

proposed a powerful approach known as Carrera Unified Formulation (CUF),

whose underlying ideas, principles and implementation issues for mechanical

problems is reviewed in Refs. [32] and [33]. The CUF offers a systematic

methodology for generating refined plate models, considering the order of the

theory as a free parameter of the formulation. The CUF has been used for

smart laminates with both piezoelectric, see Ref. [24] and references therein,

and MEE layers [34–36] .
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By using the unified formulation and the generalised PVD for smart materials,

Milazzo and co-workers presented families of ESL and LW models for MEE mul-

tilayered plates involving only mechanical kinematical variables, as the electric

and magnetic state is preliminarily condensed into the mechanical description

[37, 38]. The formulation has been extended to geometric non-linearities [39]

and finite elements have been formulated based on the proposed models [40].

Starting from the sketched context, in the present work, families of ESL and

LW models for MEE multilayered plates, with the condensation of the electric

and magnetic fields into the mechanical description, are developed. The nov-

elty of the formulation consists in the use of the generalised RMVT variational

statement in the framework of the CUF, which enhances the model reliability

through the fulfilment of transverse stress interface continuity.

2. Basic equations

Let us consider a multilayered plate comprising N homogeneous orthotropic

MEE layers, all with poling direction along the plate thickness. The plate is

referred to a three-dimensional coordinate system, with the x1 and x2 axes lying

on the plate mid-plane Ω, bounded by the curve ∂Ω, and the x3 axis directed

along the plate thickness (see Fig. 1).

In the following, we will refer to vector and tensor components directed

along x1 and x2 as in-plane components and to x3 components as out-of-plane

components. The plate may be generally subjected to mechanical loads and to

electric and magnetic actions applied on the top and bottom surfaces.

2.1. Gradient equations

The mechanical gradient equations, namely the strain-displacement rela-

tions, are

ε = Dpu, γ = Dnu+Dx3
u (1)
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where uT =
{
u1 u2 u3

}
is the displacement vector and εT =

{
ε11 ε22 ε12

}

and γT =
{
ε31 ε32 ε33

}
are the vectors collecting the in-plane and out-of-

plane components of the strain field, respectively.

The differential operators appearing in Eq. (1) are defined as

Dp =




∂1 0 0

0 ∂2 0

∂2 ∂1 0


 , Dn =




0 0 ∂1

0 0 ∂2

0 0 0


 , Dx3

=




∂3 0 0

0 ∂3 0

0 0 ∂3


 = Di∂3

(2)

where ∂i = ∂(·)/∂xi and Di is the 3× 3 identity matrix.

As the elastic waves propagate several order of magnitude slower than the elec-

tromagnetic ones, the approximation of quasi-static electro-magnetic behaviour

is assumed: introducing the electric potential Φ and the magnetic scalar poten-

tial Ψ , the electric and magnetic gradient equations are written as

Ep = −∇pΦ, En = −∇nΦ, (3)

Hp = −∇pΨ, Hn = −∇nΨ, (4)

where ET
p =

{
E1 E2

}
and HT

p =
{
H1 H2

}
are the vector collecting the in-

plane components of the electric field E and the magnetic field H, ET
n =

{
E3

}

and HT
n =

{
H3

}
are the vectors of the corresponding out-of-plane components

and

∇p =
[
∂1 ∂2

]T
, ∇n =

[
∂3

]
. (5)
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2.2. Constitutive equations

The constitutive law for an orthotropic MEE composite with electric and

magnetic poling directions parallel to the x3−axis is compactly written as





σ

τ

Dp

Dn

Bp

Bn





=




Cpp Cpn 0 −enp
T 0 −qnp

T

Cnp Cnn −epn
T −enn

T −qpn
T −qnn

T

0 epn ǫpp 0 dpp 0

enp enn 0 ǫnn 0 dnn

0 qpn dpp 0 µpp 0

qnp qnn 0 dnn 0 µnn








ε

γ

Ep

En

Hp

Hn





(6)

where Cij are matrix blocks containing the elastic stiffness coefficients, the

ǫij and µij blocks collect the dielectric constants and magnetic permeabilities

respectively, whereas eij , qij and dij collect the piezo-electric, piezo-magnetic

and magneto-electric coupling coefficients. Consistently: σT =
{
σ11 σ22 σ21

}

and τ T =
{
σ31 σ32 σ33

}
are vectors collecting the in-plane and out-of-plane

components of stress respectively; DT
p =

{
D1 D2

}
and DT

n =
{
D3

}
collect

the in-plane and out-of-plane components of the electric displacements; BT
p ={

B1 B2

}
and BT

n =
{
B3

}
collect the in-plane and out-of-plane components of

the magnetic induction vector. It is worth noting that, for multilayered plates,

the constitutive matrices depend on the x3 coordinate. In the present work,

they are considered constant within each laminate layer. For the application

of variational theorems to the MEE problem, mixed forms of the constitutive

equation are often invoked [41, 42]; in the present formulation, employing the

extension of the Reissner Mixed Variational Theorem (RMVT) [30, 31], the
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following mixed form is used





σ

γ

Dp

Dn

Bp

Bn





=




Cσε Cστ 0 CσEn
0 CσHn

Cγε Cγτ CγEp
CγnEn

CγnHp
CγnHn

0 CDpτ CDpEp
0 CDpHp

0

CDnε CDnτ 0 CDnEn
0 CDnHn

0 CBpτ CBpEp
0 CBpHp

0

CBnε CBnτ 0 CBnEn
0 CBnHn








ε

τ

Ep

En

Hp

Hn





, (7)

where the involved matrices have the form given in Appendix A.

2.3. Governing equations

The governing equations for a MEE body with volume V bounded by the

frontier ∂V are obtained by generalising the Reissner Mixed Variational Prin-

ciple (RMTV). Assuming that the gradient and constitutive equations are sat-

isfied, it states that the solution of the MEE problem is given in terms of the

displacement field u, the out-of-plane stress field τ , the electric potential Φ and

the magnetic potential Ψ, i.e. the primary variables, which make stationary the

functional

Π =

∫

V

(
εTσ + τTγ −ET

p Dp −ET
nDn −HT

p Bp −HT
nBn

)
dV+

+

∫

V

τT (γ − γ̂) dV −
∫

V

ρuT ü dV+

−
∫

V

(
uT f̄ − Φq̄

)
dV −

∫

∂V

(
uT t̄− ΦQ̄

)
d∂V

(8)

where t̄ are the applied surface tractions, f̄ are body forces, ρ is the mass

density, Q̄ and q̄ are the surface and body free electric charge densities and

the overdot denotes the derivative with respect to the time t. In Eq. (8) the

superimposed hat denotes quantities evaluated via the constitutive equations

whereas the other quantities depending on the primary variables are evaluated

via the gradient equations. Taking the first variation of Eq. (8) and integrating

by parts, through standard calculus of variations, one obtains:
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i) The equilibrium equations and the Gauss’ laws for electro-statics and magneto-

statics, holding in the volume V

δu : D
T
p σ +D

T
nτ +D

T
x3
τ + f̄ − ρü = 0 (9a)

δΦ : ∇
T
p Dp +∇nDn + q̄ = 0 (9b)

δΨ : ∇
T
p Bp +∇nBn = 0 (9c)

(the conjugated varied fields are indicated for the sake of completeness).

ii) The compatibility equation for the out-of-plane strains holding in the volume

V

δτ : γ − γ̂ = 0 (10)

iii) The natural boundary conditions holding on the boundary ∂V

δu : D̃
T
p σ + D̃

T
nτ + D̃

T
x3
τ = t̄ (11a)

δΦ : ∇̃
T

p Dp + ∇̃nDn = Q̄ (11b)

δΨ : ∇̃
T

p Bp + ∇̃nBn = 0 (11c)

In Eqs.(11) the boundary operators D̃(·) and ∇̃(·) are obtained from the differen-

tial operatorsD(·) and ∇(·) by substituting the partial derivatives ∂i = ∂(·)/∂xi

with the corresponding boundary outward direction cosines ni.

3. Formulation

To develop the advanced refined theories for multilayered smart plates pro-

posed in the present paper, extensive use of the indicial notation is adopted,

according to the following specifications. A superscript 〈k〉 is used to denote

quantities associated with the k-th layer of the laminate. Unless otherwise spec-

ified, it is assumed that α, β ∈ {0, 1, . . . , Mu} where Mu + 1 is the number of

terms of the displacement expansion, λ, µ ∈ {0, 1, . . . , Mτ} where Mτ +1 is the
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number of terms of the transverse stress expansion, k, i ∈ {1, 2, . . . , N} where

N is the number of layers in the laminate. Finally, the notation
∑

r,s

=
∑

r

∑

s

is

used to indicate multiple summation with respect to the indexes r and s raging

over the associated standard set.

3.1. Mechanical variables modeling

Within each layer k of the laminate, the displacement field and the out-of-

plane stresses are modelled as an expansion along the plate thickness of so-called

thickness functions Fα (x3) and F̃α (x3), respectively [32, 33]. One writes

u〈k〉(x1, x2, x3) =

Mu∑

α=0

u〈k〉
α (x1, x2)F

〈k〉
α (x3) =

∑

α

F 〈k〉
α u〈k〉

α (12a)

τ 〈k〉(x1, x2, x3) =

Mτ∑

λ=0

τ
〈k〉
λ (x1, x2)F̃

〈k〉
λ (x3) =

∑

λ

F̃
〈k〉
λ τ

〈k〉
λ (12b)

Using the gradient relationships, Eqs.(1), the corresponding mechanical strain

field is written as

ε〈k〉 =
∑

α

F 〈k〉
α Dpu

〈k〉
α (13a)

γ〈k〉 =
∑

α

(
F 〈k〉
α Dn +

∂F
〈k〉
α

∂x3
Di

)
u〈k〉
α (13b)

3.2. Electro-magnetic variables modeling

The two-dimensional nature of plates allows simplifying assumptions on the

electromagnetic behaviour of smart plates [37]. For both thin and thick plates,

the in-plane derivatives of the in-plane components of the electric displacement

and magnetic induction can be assumed negligible with respect to the out-

of-plane components. Thus in particular it holds ∂Dj/∂xj = ∂Bj/∂xj = 0

for j = 1, 2 and using Eqs.(7), (1), (3) and (4) into the Gauss’ equations for

electrostatics and magnetostatics, namely Eqs. (9b) and (9c), one infers the
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following system of equations holding for each k-th layer





C
〈k〉
DnEn

∂2Φ〈k〉

∂x2
3

+C
〈k〉
DnHn

∂2Ψ〈k〉

∂x2
3

= C
〈k〉
Dnε

∂ε〈k〉

∂x3
+C

〈k〉
Dnτ

∂τ 〈k〉

∂x3

CBnEn

∂2Φ〈k〉

∂x2
3

+CBnHn

∂2Ψ〈k〉

∂x2
3

= CBnε
∂ε〈k〉

∂x3
+CBnτ

∂τ 〈k〉

∂x3

(14)

Taking the mechanical variable approximation into account, namely Eqs. (12b)

and (13a), one obtains

∂2Φ〈k〉

∂x2
3

=
∑

α

∂F
〈k〉
α

∂x3
AAA

〈k〉
ΦεDpu

〈k〉
α +

∑

λ

∂F̃
〈k〉
λ

∂x3
AAA

〈k〉
Φτ τ

〈k〉
λ (15a)

∂2Ψ〈k〉

∂x2
3

=
∑

α

∂F
〈k〉
α

∂x3
AAA

〈k〉
ΨεDpu

〈k〉
α +

∑

λ

∂F̃
〈k〉
λ

∂x3
AAA

〈k〉
Ψτ τ

〈k〉
λ (15b)

where for r ∈ {ε, τ}


AAA

〈k〉
Φr

AAA
〈k〉
Ψr


 =


C

〈k〉
DnEn

C
〈k〉
DnHn

C
〈k〉
BnEn

C
〈k〉
BnHn



−1 
C

〈k〉
Dnr

C
〈k〉
Bnr


 (16)

Integrating twice Eqs.(15) gives

Φ〈k〉 =
∑

α

G〈k〉
α AAA

〈k〉
ΦεDpu

〈k〉
α +

∑

λ

G̃
〈k〉
λ AAA

〈k〉
Φτ τ

〈k〉
λ + x3a

〈k〉
Φ + b

〈k〉
Φ (17a)

Ψ〈k〉 =
∑

α

G〈k〉
α AAA

〈k〉
ΨεDpu

〈k〉
α +

∑

λ

G̃
〈k〉
λ AAA

〈k〉
Ψτ τ

〈k〉
λ + x3a

〈k〉
Ψ + b

〈k〉
Ψ (17b)

where G〈k〉
α (z) =

∫
F 〈k〉
α (z)dz and G̃

〈k〉
λ (z) =

∫
F̃

〈k〉
λ (z)dz. The integration

constants a
〈k〉
Φ , b

〈k〉
Φ , a

〈k〉
Ψ , and b

〈k〉
Ψ are determined by enforcing the electric and

magnetic continuity conditions at theN−1 layers interfaces and external electric

and magnetic boundary conditions at the top and bottom faces of the laminate.

The electric and magnetic interface conditions are given by the continuity of

the electric and magnetic potentials, normal electric displacement and mag-

netic induction; the electric and magnetic boundary conditions at the upper
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and bottom laminate surfaces consist of prescribed potentials or normal electric

displacement and magnetic induction, whose values are collected in the vector

ξ. According with the form of enforced electric and magnetic interface and

boundary conditions, a system of equations of the form

AAA x =
∑

i,α

BBBiαDpu
〈i〉
α +

∑

i,λ

CCC iλτ
〈i〉
λ +WWW ξ (18)

is obtained, where x is a vector collecting the layers integration constants and

AAA , BBBiα, CCC iλ and WWW are matrices involving the layers material properties and

thickness functions only. Details on the procedure used to derive Eq.(18) are

given in Ref.[38]; they are not reported in the present paper for the sake of

conciseness. Therefore, the integration constants can be compactly written in

the general form

z
〈k〉
Λ =

∑

i,α

z
〈ki〉
Λεα

Dpu
〈i〉
α +

∑

i,λ

z
〈ki〉
Λτλ

τ
〈i〉
λ + z

〈k〉
Λξ ξ (19)

where the symbol z stands for a or b and the symbol Λ stands for Φ or Ψ , so

that Eq.(19) holds for a
〈k〉
Φ , b

〈k〉
Φ , a

〈k〉
Ψ , and b

〈k〉
Ψ . It is worth remarking that in

Eq.(19) the (1× 3) row arrays z
〈ki〉
Λεα

and z
〈ki〉
Λτλ

collect the coefficients expressing

the effects on the k-th layer’s potential Λ of the i-th layer strains terms Dpu
〈i〉
α

and transverse stresses terms τ 〈i〉
α . Finally, the (1× 4) row array zΛξ collects

the coefficients expressing the influence on the potential Λ of the electric and

magnetic boundary conditions ξ. In conclusion, the electric and magnetic state

is described by the following expression of the potentials

Φ〈k〉 =
∑

i,α

ÃAA
〈ki〉

ΦεαDpu
〈i〉
α +

∑

i,λ

ÃAA
〈ki〉

Φτλτ
〈i〉
λ + ÃAA

〈k〉

Φξ
ξ (20a)

Ψ 〈k〉 =
∑

i,α

ÃAA
〈ki〉

ΨεαDpu
〈i〉
α +

∑

i,λ

ÃAA
〈ki〉

Ψτλτ
〈i〉
λ + ÃAA

〈k〉

Ψξ
ξ (20b)
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where, for Λ = Φ, Ψ , the following relations hold

ÃAA
〈ki〉

Λεα = GαAAA
〈k〉
Λε δki + x3a

〈ki〉
Λεα

+ b
〈ki〉
Λεα

(21)

ÃAA
〈ki〉

Λτλ = G̃λAAA
〈k〉
Λτ δki + x3a

〈ki〉
Λτλ

+ b
〈ki〉
Λτλ

(22)

ÃAA
〈k〉

Λξ
= x3a

〈k〉
Λξ + b

〈k〉
Λξ (23)

By using Eqs.(3) and (4), the expressions for the in- and out-of-plane compo-

nents of the electric and magnetic fields are obtained as

Ep = −
∑

i,α

{
I1ÃAA

〈ki〉

Φεα

∂Dpu
〈i〉
α

∂x1
+ I2ÃAA

〈ki〉

Φεα

∂Dpu
〈i〉
α

∂x2

}
−

∑

i,λ

{
I1ÃAA

〈ki〉

Φτλ

∂τ
〈i〉
λ

∂x1
+ I2ÃAA

〈ki〉

Φτλ

∂τ
〈i〉
λ

∂x2

}
− I1ÃAA

〈k〉

Φξ

∂ξ

∂x1
− I2ÃAA

〈k〉

Φξ

∂ξ

∂x2

(24a)

E〈k〉
n =−

∑

i,α

∂ÃAA
〈ki〉

Φεα

∂x3
Dpu

〈i〉
α −

∑

i,λ

∂ÃAA
〈ki〉

Φτλ

∂x3
τ
〈i〉
λ −

∂ÃAA
〈k〉

Φξ

∂x3
ξ (24b)

Hp = −
∑

i,α

{
I1ÃAA

〈ki〉

Ψεα

∂Dpu
〈i〉
α

∂x1
+ I2ÃAA

〈ki〉

Ψεα

∂Dpu
〈i〉
α

∂x2

}
−

∑

i,λ

{
I1ÃAA

〈ki〉

Ψτλ

∂τ
〈i〉
λ

∂x1
+ I2ÃAA

〈ki〉

Ψτλ

∂τ
〈i〉
λ

∂x2

}
− I1ÃAA

〈k〉

Ψξ

∂ξ

∂x1
− I2ÃAA

〈k〉

Ψξ

∂ξ

∂x2

(24c)

H〈k〉
n =−

∑

i,α

∂ÃAA
〈ki〉

Ψεα

∂x3
Dpu

〈i〉
α −

∑

i,λ

∂ÃAA
〈ki〉

Ψτλ

∂x3
τ
〈i〉
λ −

∂ÃAA
〈k〉

Ψξ

∂x3
ξ (24d)

where IT
1 =

[
1 0

]
and IT

2 =
[
0 1

]
.

3.3. Layer governing equations

Considering that the Gauss’ laws for electrostatics and magnetostatics are

fulfilled in their strong form by the expressions of Φ and Ψ determined in the

preceding section via Eqs.(14), the first variation of the functional Π reduces to

its mechanical part only. For the k-th layer, the stationarity condition is then
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written as

δΠ〈k〉 =

∫

Ω〈k〉

∫ hk

hk−1

[
δε〈k〉

T
σ〈k〉 + δγ〈k〉Tτ 〈k〉

]
dx3 dΩ+

∫

Ω〈k〉

∫ hk

hk−1

δτ 〈k〉T
(
γ〈k〉 − γ̂

〈k〉
)
dx3 dΩ+

∫

Ω〈k〉

∫ hk

hk−1

ρ〈k〉δu〈k〉T ü
〈k〉 dx3 dΩ−

∫

Ω〈k〉

∫ hk

hk−1

δu〈k〉T f̄
〈k〉

dx3 dΩ−
∫

∂Ω〈k〉

∫ hk

hk−1

δu〈k〉T t̄
〈k〉
n dx3 d∂Ω−

∫

Ω〈k〉

[(
δu〈k〉T t̄

〈k〉
x3

)∣∣∣
hk

+
(
δu〈k〉T t̄

〈k〉
x3

)∣∣∣
hk−1

]
dΩ = 0

(25)

where the integration domain Ω〈k〉 ≡ Ω is the reference plane of the lamina, t̄
〈k〉
n

are the tractions applied on the layer lateral surfaces and t̄
〈k〉
x3

denotes tractions

acting on planes parallel to Ω. The notation f |z is used to indicate that the

function f is evaluated at x3 = z. It is worth noting that t̄
〈1〉
x3

|h0=−H/2 and

t̄
〈N〉
x3

|hN=H/2 coincide with the external tractions applied over the plate bottom

and top surfaces, respectively.

The discrete form of Eq.(25) is obtained according to the following steps. First,

the constitutive relationships from Eqs.(7) are substituted into Eq.(25). In turn,

the gradient equations, namely Eqs.(13) and (24), are introduced and eventu-

ally the primary variables are expressed through their approximations, namely

Eqs.(12).

Integrating by parts the resulting expression, one obtains the RMVT stationar-
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ity statement for the k-th layer that reads

−

∫

Ω〈k〉

∑

α

δu〈k〉
α

T


∑

i,β

u
δuK

〈ki〉
αβ u

〈i〉
β +

∑

i,µ

τ
δuK

〈ki〉
αµ τ

〈i〉
µ


 dΩ−

∫

Ω〈k〉

∑

α

δu〈k〉
α

T ξ
δuW

〈k〉
α ξ dΩ+

∫

Ω〈k〉

∑

λ

δτ
〈k〉
λ

T


∑

i,β

u
δτK

〈ki〉
λµ u

〈i〉
µ +

∑

i,µ

τ
δτK

〈ki〉
λµ τ

〈i〉
µ


 dΩ +

∫

Ω〈k〉

∑

λ

δτ
〈k〉
λ

T ξ
δτW

〈k〉
λ ξdΩ+

∫

∂Ω〈k〉

∑

α

δu〈k〉
α

T


∑

i,β

u
δuK̃

〈ki〉
αβ u

〈i〉
β +

∑

i,µ

τ
δuK̃

〈ki〉
αµ τ

〈i〉
µ


 d∂Ω+

∫

∂Ω〈k〉

∑

α

δu〈k〉
α

T ξ
δuW̃

〈k〉
α ξ d∂Ω+

∫

Ω

∑

α

δu〈k〉
α

T ∑

β

u
δuM

〈kk〉
αβ ü

〈k〉
β dΩ−

∫

Ω

∑

α

δu〈k〉
α

T
[
F

〈k〉
α + ¯̄

P
〈k〉
α + P̄

〈k〉
α

]
dΩ−

∫

∂Ω

∑

α

δu〈k〉
α

T
T

〈k〉
α dΩ = 0

(26)

where the so-called fundamental nuclei [32] are defined as

u
δuK

〈ki〉
αβ = D

T
p

ε
δεQ

〈ki〉
αβ Dp (27a)

τ
δuK

〈ki〉
αµ = D

T
p

τ
δεQ

〈ki〉
αµ +D

T
n

τ
δγQ

〈ki〉
αµ − τ

δuQ
〈ki〉
αµ (27b)

u
δτK

〈ki〉
λβ = ε

δτQ
〈ki〉
λβ Dp +

γ
δτQ

〈ki〉
λβ Dn + u

δτQ
〈ki〉
λβ +

∂ε
∂x1

δτ Q
〈ki〉
λβ

∂

∂x1
Dp +

∂ε
∂x2

δτ Q
〈ki〉
λβ

∂

∂x2
Dp

(27c)

τ
δτK

〈ki〉
λµ = τ

δτQ
〈ki〉
λµ +

∂τ
∂x1

δτ Q
〈ki〉
λµ

∂

∂x1
+

∂τ
∂x1

δτ Q
〈ki〉
λµ

∂

∂x2
(27d)

u
δuM

〈kk〉
αβ = J

〈k〉
αβ (27e)

u
δuK̃

〈ki〉
αβ = D̃

T
p

ε
δεQ

〈ki〉
αβ Dp (27f)

τ
δuK̃

〈ki〉
αµ = D̃

T
p

τ
δεQ

〈ki〉
αµ + D̃

T
n

τ
δγQ

〈ki〉
αµ (27g)

In Eq.(26), the electric and magnetic effective loading vectors are given by

ξ
δuW

〈k〉
α = D

T
p

ξ
δεQ

〈k〉
α (28a)

ξ
δuW̃

〈k〉
α = D̃

T
p

ξ
δεQ

〈k〉
α (28b)
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ξ
δτW

〈k〉
λ = ξ

δτQ
〈k〉
λ +

∂ξ
∂x1

δτ Q
〈k〉
λ

∂

∂x1
+

∂ξ
∂x2

δτ Q
〈k〉
λ

∂

∂x2
(28c)

and the mechanical loading vectors read as

P̄
〈k〉
α =

∣∣∣F 〈k〉
α t̄

〈k〉
x3

∣∣∣
hk−1

(29a)

¯̄
P

〈k〉
α =

∣∣∣F 〈k〉
α t̄

〈k〉
x3

∣∣∣
hk

(29b)

F
〈k〉
α =

∫ hk

hk−1

F 〈k〉
α f̄

〈κ〉
dx3 (29c)

T
〈k〉
α =

∫ hk

hk−1

F 〈k〉
α t̄

〈k〉
dx3 (29d)

The expressions of the smart layer’s effective characteristic matrices s
rQ

〈pq〉
ως , ef-

fective inertia characteristics J 〈k〉
ως and electric-magnetic effective loading char-

acteristics s
rQ

〈p〉
ω are given in Appendix B. In general, in the notation f

gB
〈mn〉
αβ ,

f and g indicate specific fields, α and β indicate specific terms of the expansions

of the above fields and m and n indicate specific layers within the laminate; in

particular, the expansion term α of the field g within the layerm and the expan-

sion term β of the field f within the layer n are being considered. Therefore, the

fundamental nucleus s
rK

〈pq〉
ως accounts for the contribution of the expansion term

ω of the field r within the layer p to the work associated with the variation of the

term ς of the field s within the layer q. On the other hand, the electric-magnetic

loading kernel ξrW
〈p〉
ω accounts for the contribution of the electric-magnetic load-

ing term ξ within the layer p to the work associated with the variation of the

expansion term ω of the field r within the layer p itself.

Through standard calculus of variations on the stationarity statement given by

Eq.(26), the layer governing equations holding in Ω〈k〉 are eventually obtained

15



as





∑

i,β

u
δuK

〈ki〉
αβ u

〈i〉
β +

∑

i,µ

τ
δuK

〈ki〉
αµ τ 〈i〉

µ +

∑

β

u
δuM

〈k〉
αβ ü

〈k〉
β + ξ

δuW
〈k〉
α ξ −F

〈k〉
α − ¯̄

P
〈k〉
α − P̄

〈k〉
α = 0

∑

i,β

u
δτK

〈ki〉
λβ u

〈i〉
β +

∑

i,µ

τ
δτK

〈ki〉
λµ τ 〈i〉

µ + ξ
δτW

〈k〉
α ξ = 0

(30)

with α = 1, 2, ...., Mu and λ = 1, 2, ...., Mτ ; the associated natural boundary

conditions, holding on ∂Ω〈k〉, are given by

∑

i,β

u
δuK̂

〈ki〉
αβ u

〈i〉
β +

∑

i,µ

τ
δuK̂

〈ki〉
αµ τ 〈i〉

µ + ξ
δuŴ

〈k〉
α ξ − T 〈k〉

α = 0. (31)

4. Multilayered plate

The governing equations for multilayered plates are obtained by enforcing

the stationarity condition of the functional Π for all the laminate layers

n∑

k=1

δΠ〈k〉 = 0 (32)

with the additional requirements on the interface displacements continuity and

tractions equilibrium





u〈k〉
∣∣∣
hk

− u〈k+1〉
∣∣∣
hk

= 0 k = 1, 2, . . . , (N − 1)

t̄
〈k〉
x3

∣∣∣
hk

+ t̄
〈k+1〉
x3

∣∣∣
hk

= 0 κ = 1, 2, . . . , (N − 1)
(33)

Enforcing the stationarity and interface conditions in Eqs.(32-33) leads to the

plate resolving system

KuuU +KuτT = F u −MuuÜ

KτuU +KττT = F τ

(34)
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where U and T are vectors collecting the the unknown coefficients of the dis-

placement and transverse stress expansions u〈κ〉
α and τ

〈κ〉
λ and the operator ma-

trices Krs (r, s = u, τ), Muu and the loading vectors F r (r = u, τ) are obtained

via assembly procedures of the fundamental nuclei, which are described in the

next sections.

4.1. Layer-wise theories

Assuming the primary variable expansion coefficients u〈κ〉
α and τ

〈κ〉
λ as dis-

tinct for each individual layer leads to layer-wise plate models. In this case, a

suitable choice of the thickness functions Fα is a linear combination of Legendre

polynomials Lα(ζk) specified as

F
〈κ〉
0 =

L0(ζk)− L1(ζk)

2
(35)

F 〈κ〉
α = Lα+1(ζk)− Lα−1(ζk) α = 1, ...(M − 1) (36)

F
〈κ〉
M =

L0(ζk) + L1(ζk)

2
(37)

where ζk = (2x3 − hκ − hκ−1) / (hκ − hκ−1) (see Fig. 1). The same choice is

introduced for the transverse stress thickness functions F̃λ. Due to the prop-

erties of the Legendre polynomials, the displacements continuity and tractions

equilibrium at the layer interfaces reduce to the following relationships

u
〈k〉
Mu

= u
〈k+1〉
0

τ
〈k〉
Mτ

= τ
〈k+1〉
0

k = 1, . . . , (N − 1). (38)

Taking Eqs.(38) into account, the unknown primary variables can be collected

into the global column vectors U , whose rows with indexes ranging from 3[(k−
1)Mu+α+1]−2 to 3[(k−1)Mu+α+1] contain the coefficients u〈k〉

α , and T , whose

rows with indexes ranging from 3[(k− 1)Mτ +α+1]− 2 to 3[(k− 1)Mτ +α+1]

contain the coefficients τ 〈k〉
α .

According with this global indexing of the unknown coefficients, the resolving

system matricesKrs are built by summing the fundamental nuclei s
δrK

〈ki〉
ως at the

17



rows with indexes ranging from 3[(k−1)Mr+ω+1]−2 to 3[(k−1)Mr+ω+1] and

the columns with indexes ranging from 3[(i−1)Ms+ς+1]−2 to 3[(i−1)Ms+ς+1].

Similarly, the matrix Muu is built by summing the fundamental nuclei u
δuM

〈ki〉
ως

at the rows with indexes ranging from 3[(k−1)Mu+ω+1]−2 to 3[(k−1)Mu+

ω+1] and the columns with indexes ranging from 3[(i−1)Mu+ς+1]−2 to 3[(i−
1)Mu+ ς+1]. The right-hand-side vector F u is built by: a) summing the nuclei

ξ
δuW

〈k〉
ω and the domain load terms F 〈k〉

ω at the rows from 3[(k−1)Mu+ω+1]−2

to 3[(k − 1)Mu + ω + 1]; b) summing at the rows from 1 to 3 the nucleus P̄
〈1〉
0

accounting for the external mechanical load t̄
〈1〉
x3

|−h/2 applied at the laminate

bottom surface; c) summing at the rows from 3(NMu + 1)− 2 to 3(NMu + 1)

the nucleus P̄
〈N〉
Mu

accounting for the external mechanical load t̄
〈N〉
x3

|h/2 applied

at the laminate top surface Finally, the right-hand-side vector F τ is built by

summing the nuclei ξ
δτW

〈k〉
ω at the rows from from 3[(k − 1)Mr + ω + 1]− 2 to

3[(k−1)Mr+ω+1]. It is worth noting that t̄
〈1〉
x3

|−h/2 = τ
〈1〉
0 and t̄

〈N〉
x3

|h/2 = τ
〈N〉
Mτ

;

this represents a constraint for the transverse stress expansion coefficients, which

can be forced in the resolving system through penalty techniques.

4.2. Equivalent-single-layer theories

For the equivalent-single-layer plate models, the primary variable expansion

coefficients u〈κ〉
α = uα are assumed common to the all of the layers whereas

the expansion coefficients τ
〈κ〉
λ are again assumed as distinct for each individual

layer. In this case, a suitable choice of the thickness functions F 〈k〉
α is provided

by the adoption of Taylor polynomials

F 〈κ〉
α = xα

3 , α = 0, ...,Mu. (39)

The thickness functions F̃
〈k〉
λ are defined by Eq.(35). Due to the thickness

functions selections, the displacements continuity and tractions equilibrium at
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the layer interfaces reduce to the following relationships

u〈k〉
α = u〈k+1〉

α

τ
〈k〉
Mτ

= τ
〈k+1〉
0

with
α = 0, . . . ,Mu

k = 1, . . . , (N − 1)
(40)

The displacement expansion coefficients are then collected within the global col-

umn vector U , whose rows with indexes ranging from 3[α + 1] − 2 to 3[α + 1]

contain the coefficients uα and the transverse stress expansion coefficients are

collected within the vector T , whose rows with indexes ranging from 3[(k −
1)Mτ + α+ 1]− 2 to 3[(k − 1)Mτ + α+ 1] contain τ 〈k〉

α .

According with this global indexing of the unknown coefficients the resolving

system matrices are built as follows. The matrices Kuu and Muu are built by

summing the fundamental nuclei u
δuK

〈ki〉
ως and u

δuM
〈kk〉
ως , respectively, at the rows

with indexes ranging from 3[ω+1]− 2 to 3[ω+1] and the columns with indexes

ranging from 3[ς + 1]− 2 to 3[ς + 1].

The matrix Kuτ is built by summing the fundamental nuclei τ
δuK

〈ki〉
ως at the

rows with indexes ranging from 3[(ω + 1]− 2 to 3[ω + 1] and the columns with

indexes ranging from 3[(i− 1)Mτ + ς + 1]− 2 to 3[(i− 1)Mτ + ς + 1].

The matrix Kτu is built by summing the fundamental nuclei u
δτK

〈ki〉
ως at the

rows with indexes ranging from 3[(k− 1)Mτ +ω+1]− 2 to 3[(k− 1)Mτ +ω+1]

and the columns with indexes ranging from 3[ς + 1]− 2 to 3[ς + 1].

The matrixKττ is built by summing the fundamental nuclei τ
δτK

〈ki〉
ως at the rows

with indexes ranging from 3[(k−1)Mτ+ω+1]−2 to 3[(k−1)Mτ+ω+1] and the

columns with indexes ranging from 3[(i−1)Mτ+ς+1]−2 to 3[(i−1)Mτ+ς+1].

The right-hand-side vector F u is built by summing the nuclei ξ
δuW

〈k〉
ω , the do-

main load terms F 〈k〉
ω and the external surface load characteristics P̄

〈1〉
ω and

¯̄P 〈N〉
ω at the rows with indexes ranging from 3[ω + 1]− 2 to 3[ω + 1].

Finally, the right-hand-side vector F τ is built by summing the nuclei ξ
δτW

〈k〉
ω at

the rows with indexes ranging from 3[(k−1)Mr+ω+1]−2 to 3[(k−1)Mr+ω+1].

Also in this case, the transverse stress expansion coefficients constraints, ex-

pressed by t̄
〈1〉
x3

|−h/2 = τ
〈1〉
0 and t̄

〈N〉
x3

|h/2 = τ
〈N〉
Mτ

, have to be be enforced.
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5. Solution and results

Let us consider a simply-supported rectangular plate with MEE layers with

principal material axes aligned with the plate reference system. In this case,

a closed form solution can be found assuming the following expressions for the

primary variable expansion terms

u〈k〉
α =





∑

m

∑

n

u1
〈k〉
αmn cos

mπ

Lx
x1 sin

nπ

Ly
x2

∑

m

∑

n

u2
〈k〉
αmn sin

mπ

Lx
x1 cos

nπ

Ly
x2

∑

m

∑

n

u3
〈k〉
αmn sin

mπ

Lx
x1 sin

nπ

Ly
x2





exp
(√

−1̟t
)
, (41a)

τ
〈k〉
λ =





∑

m

∑

n

σ31
〈k〉
λmn cos

mπ

Lx
x1 sin

nπ

Ly
x2

∑

m

∑

n

σ32
〈k〉
λmn sin

mπ

Lx
x1 cos

nπ

Ly
x2

∑

m

∑

n

σ33
〈k〉
λmn sin

mπ

Lx
x1 sin

nπ

Ly
x2





exp
(√

−1̟t
)
. (41b)

Substituting Eqs.(41) into the plate governing equations and applying the Bubnov-

Galerkin method, an algebraic resolving system is obtained for the unknown

coefficients uj
〈k〉
αmn and σ3j

〈k〉
λmn associated with each of the harmonic terms of

the primary variables approximation series. In the present work, representative

results obtained using the mentioned closed-form solution are presented and

discussed. Different LW and ESL theories have been implemented considering

variable kinematics with through-the-thickness power expansion orders up to

the fourth.

Results are presented for smart MEE multilayered plates with plies of piezo-
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electric barium titanate BaT iO3 and piezomagnetic cobalt ferrite CoFe2O4,

shortly denoted as B and F respectively, whose material properties can be

found in Ref.[25]. Attention is devoted to thick plates, as these allow to high-

light the possible lack of accuracy and the effectiveness of 2D plate theories.

Thus, simply-supported square plates with side length Lx = 1m, total thickness

H = 0.3m and equal thickness layers B/F/B and F/B/F stacking sequences

have been investigated as representative problem. However it is worth mention-

ing that the scheme has been used to analyse different lay-ups, obtaining similar

results.

5.1. Static analysis under mechanical load

The plates undergo a bi-sinusoidal pressure p3 = p̄3 sin (πx1/Lx) sin (πx2/Lx)

applied over the top surface with peak p̄3 = 1N/m2. The electric and magnetic

potentials are set to zero on both the top and bottom plate surfaces, which cor-

respond to the closed circuit condition. For this problem the exact 3D solution

can be evaluated by the approach given in Ref.[6]. First, a set of numerical

experiments have been performed by selecting transverse stress expansions of

order greater than, equal to and lower than that adopted for the displacements

expansions. Fig.2 and Fig.3 show representative results for these analyses high-

lighting how the choice of the same expansion order for both displacements and

transverse stresses provides reliable results for all the investigated theories. In-

deed, it is observed that, for LW models, selecting for the transverse stresses

expansions an order lower than that selected for the displacements provides

good results for higher order theories only. On the other hand, for ESL mod-

els, selecting for the transverse stresses expansions an order greater than that

selected for the displacements provides good results for higher order theories

only.

To appraise the approach accuracy, Fig.4 and Fig.5 show the through-the-

thickness distribution of representative mechanical and electric and magnetic

quantities at the point of coordinates x1 = x2 = 0.25Lx for different plate mod-

els and their comparison with the 3D exact solution. These results have been
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obtained using the same expansion order for both displacements and transverse

stresses. As expected, better results are obtained employing higher order layer-

wise models, which provide accurate distributions of mechanical quantities and

electric potential, whereas a slight loss of accuracy with respect to the analytic

solution is shown for the magnetic potentials. Higher order ESL models can give

satisfactory results and also in this case the magnetic potential results slightly

overestimated with respect to the analytic solution.

5.2. Static analysis under electromagnetic load

A plate with H/Lx = 0.1 and the same lay-up as that considered in the

previous example, subjected to a bi-sinusoidal electric voltage with peak ∆Φ =

100V , has been analysed; the voltage is symmetrically applied between the

upper and bottom surfaces and zero magnetic potential is assumed over both

the top and bottom plate surfaces. In this case the plate can be considered

as an actuator under the action of the external electric excitation. Results for

representative quantities of the plate response are shown in Fig.6 and Fig.7 for

layer-wise and equivalent-single-layer theories, respectively. The analytic 3D

solution, computed using the approach given in Ref.[6], is also shown. It is

observed that the obtained results are generally in good agreement with those

of the 3D solution with a slight overestimation of the magnetic quantities. As

expected, also in this case, layer-wise theories generally deliver more reliable

results with respect to those produced by equivalent-single-layer models and

they are adequately accurate if higher order expansions are employed.

5.3. Free vibrations

Tables 1 and 2 list the first five natural frequency ̟ of the B/F/B and

F/B/F simply-supported square plates related to spatial modes with m =

n = 1 in Eq. (41). The plate circular frequencies are normalised as ω̄ =

̟Lx

√
ρmax/Cmax, where Cmax and ρmax are the maximum values of the elas-

tic coefficient and density among the materials of the plate layers. Results are

presented for both LW and ESL models, which are labeled by the acronyms
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LWn and ESLn being n the order of the employed thickness expansions, se-

lected with the same order for both displacements and transverse stresses. Two

different aspect ratios, namely H/Lx = 0.1 and H/Lx = 0.3, are investigated

and closed circuit conditions, i.e. zero electric and magnetic potentials on both

top and bottom plate surfaces, are enforced. Results are compared with those

produced using the 3D approach given in Ref. [7]. The agreement between the

two different solutions confirms the accuracy of the proposed approach. Both

LW and ESL models give reliable natural frequencies and little or no difference

is found between the predictions of the two techniques, which can be motivated

by the fact that natural frequencies characterise the global behaviour of the

plate that is not affected by slight differences in the local fields.

6. Conclusions

In the present work, advanced multilayered models for smart plates have

been developed in the framework of an axiomatic unified formulation where the

order of the through-the-thickness expansion is assumed as a model parameter

at layer level. The proposed models are based on the condensation of the electric

and magnetic states into the plate mechanics, performed via the strong form of

the electrostatics and magnetostatics governing equations. Consequently, the

plate governing equations are inferred by using the generalised Reissner Mixed

Variational Theorem. The resulting layer model corresponds to an effective

plate, with mechanical behaviour only, described in terms of suitable stiffness,

inertia and loading characteristics that take the magneto-electro-elastic coupling

into account. The layers equations are then coupled through the interface con-

ditions that provide displacement and transverse stress continuity, which can

be explicitly enforced thanks to the use of RMVT. The method naturally trans-

lates into through-the-thickness algorithmic assembly procedures that allow to

build models based on both equivalent single layer and layer-wise kinematics.

The approach has been validated against solutions available in the literature for

static problems and free vibrations. The obtained results confirm good accuracy
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and the potential of the approach for the construction of general smart laminate

models.
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Appendix A. Matrices of the mixed form MEE constitutive law

The matrices involved in the the mixed form of the MEE constitutive law,

Eq.(7), are defined as

Cσε = Cpp −CT
npC

−1
nnCnp (A.1)

Cστ = CT
npC

−1
nn (A.2)

CσEn
= CT

npC
−1
nne

T
nn − eTnp (A.3)

CσHn
= CT

npC
−1
nnq

T
nn − qT

np (A.4)
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Cγε = −C−1
nnCnp (A.5)

Cγτ = C−1
nn (A.6)

CγEp
= C−1

nne
T
pn (A.7)

CγEn
= C−1

nne
T
nn (A.8)

CεnHp
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(A.14)

CDnτ = ennC
−1
nn (A.15)

CDnEn
= ennC

−1
nne

T
nn + ǫnn (A.16)
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Appendix B. Effective MEE layer characteristics

The MEE layer effective characteristic matrices involved in Eq.(27) and (28)

are defined as

ε
δεQ

〈ki〉
αβ =

∫ hk

hk−1

[
F 〈k〉
α F

〈k〉
β δik

(
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where δki denote the Kronecker delta. It is remarked that the generic effective

characteristic matrix s
rQ

〈pq〉
ως accounts for the cross-work between the expansion

term ς of the field s within the layer q and the expansion term ω of the field

r within the layer p; on the other hand, the electric-magnetic effective load-

ing s
rQ

〈p〉
ω accounts for the contribution of the electric-magnetic loading field s

within the layer p to the work associated with the variation of the term ω of the

field r within the layer p itself.
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Figure 1: Plate geometrical scheme.
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Figure 2: B/F/B simply-supported square plate with H/Lx = 0.3 loaded by bi-sinusoidal
pressure: through-the thickness distributions at x1 = x2 = 0.25Lx for layer-wise models with
different variable approximation schemes, namely Mu > Mτ , Mu = Mτ and Mu < Mτ .
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Figure 3: B/F/B simply-supported square plate with H/Lx = 0.3 loaded by bi-sinusoidal
pressure: through-the thickness distributions at x1 = x2 = 0.25Lx for equivalent-single-layer
models with different variable approximation schemes, namely Mu > Mτ , Mu = Mτ and
Mu < Mτ .
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Figure 4: B/F/B simply-supported square plate with H/Lx = 0.3 loaded by bi-sinusoidal
pressure: through-the thickness distributions at x1 = x2 = 0.25Lx for different layer-wise
models.

36



-2 -1 0 1 2 3
u1(Lx/4, Ly/4, x3) [m]

×10-12

-0.5

0

0.5

x
3
/H

3D

Mu = M
τ
= 1

Mu = M
τ
= 2

Mu = M
τ
= 3

Mu = M
τ
= 4

5.2 5.4 5.6 5.8 6 6.2 6.4
u3(Lx/4, Ly/4, x3) [m]

×10-12

-0.5

0

0.5

x
3
/H

3D

Mu = M
τ
= 1

Mu = M
τ
= 2

Mu = M
τ
= 3

Mu = M
τ
= 4

-0.2 0 0.2 0.4
τxz(Lx/4, Ly/4, x3) [N/m2]

-0.5

0

0.5

x
3
/H

3D

Mu = M
τ
= 1

Mu = M
τ
= 2

Mu = M
τ
= 3

Mu = M
τ
= 4

-1 -0.5 0 0.5 1
σzz(Lx/4, Ly/4, x3) [N/m2]

-0.5

0

0.5

x
3
/H

3D

Mu = M
τ
= 1

Mu = M
τ
= 2

Mu = M
τ
= 3

Mu = M
τ
= 4

0 0.2 0.4 0.6 0.8 1 1.2
Φ(Lx/4, Ly/4, x3) [V ]

×10-3

-0.5

0

0.5

x
3
/H

3D

Mu = M
τ
= 1

Mu = M
τ
= 2

Mu = M
τ
= 3

Mu = M
τ
= 4

-4 -2 0 2
Ψ(Lx/4, Ly/4, x3) [C/s] ×10-7

-0.5

0

0.5

x
3
/H

3D
Mu = M

τ
= 1

Mu = M
τ
= 2

Mu = M
τ
= 3

Mu = M
τ
= 4

Figure 5: B/F/B simply-supported square plate with H/Lx = 0.3 loaded by bi-sinusoidal
pressure: through-the thickness distributions at x1 = x2 = 0.25Lx for different equivalent-
single-layer models.
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Figure 6: B/F/B simply-supported square plate with H/Lx = 0.1 loaded by bi-sinusoidal
electric potential: through-the thickness distributions at x1 = x2 = 0.25Lx for different layer-
wise models.
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Figure 7: B/F/B simply-supported square plate with H/Lx = 0.1 loaded by bi-sinusoidal
electric potential: through-the thickness distributions at x1 = x2 = 0.25Lx for different
equivalent-single-layer models.
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H/Lx = 0.1 H/Lx = 0.3

Mode n. 1 2 3 4 5 1 2 3 4 5

ESL1 0.406 1.885 3.431 12.874 13.256 0.972 1.885 3.396 4.628 5.534

ESL2 0.393 1.885 3.391 13.716 14.030 0.973 1.884 3.335 4.890 5.634

ESL3 0.393 1.885 3.276 13.042 13.400 0.956 1.884 3.232 4.681 5.538

ESL4 0.391 1.885 3.397 13.043 13.358 0.961 1.884 3.349 4.682 5.424

LW 1 0.400 1.885 3.432 12.862 13.205 0.976 1.884 3.401 4.628 5.439

LW 2 0.399 1.885 3.431 13.052 13.378 0.975 1.884 3.399 4.684 5.447

LW 3 0.399 1.885 3.430 13.042 13.373 0.973 1.884 3.389 4.681 5.455

LW 4 0.399 1.885 3.430 13.042 13.374 0.973 1.884 3.389 4.681 5.459

3D 0.395 1.858 3.294 12.528 13.248 0.961 1.856 3.228 4.497 5.215

Table 1: Normalized natural circular frequencies ω̄ for the B/F/B simply-supported square
plate.
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H/Lx = 0.1 H/Lx = 0.3

Mode n. 1 2 3 4 5 1 2 3 4 5

ESL1 0.474 1.932 3.468 12.316 12.846 1.065 1.932 3.421 4.506 5.721

ESL2 0.437 1.932 3.529 13.292 13.682 1.042 1.931 3.451 4.804 5.708

ESL3 0.436 1.932 3.488 12.499 12.880 1.030 1.931 3.431 4.561 5.431

ESL4 0.435 1.932 3.488 12.500 12.878 1.027 1.931 3.429 4.561 5.419

LW 1 0.439 1.932 3.467 12.361 12.733 1.040 1.931 3.407 4.517 5.363

LW 2 0.435 1.932 3.467 12.500 12.878 1.027 1.931 3.406 4.561 5.418

LW 3 0.435 1.932 3.467 12.492 12.870 1.027 1.931 3.407 4.558 5.416

LW 4 0.435 1.932 3.467 12.492 12.870 1.027 1.931 3.407 4.558 5.416

3D 0.444 1.960 3.478 12.997 13.961 1.067 1.960 3.388 4.742 5.895

Table 2: Normalized natural circular frequencies ω̄ for the F/B/F simply-supported square
plate.
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