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Abstract. We consider a nonlinear nonparametric Dirichlet problem driven by the
sum of a p-Laplacian and of a Laplacian (a (p, 2)-equation) and a reaction which
involves a singular term and a (p − 1)-superlinear perturbation. Using variational
tools and suitable truncation and comparison techniques, we show that the problem
has two positive smooth solutions.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study
the following nonlinear, nonparametric singular Dirichlet problem:

(1) −∆pu(z)−∆u(z) = µ(u(z)) + f(z, u(z)) in Ω, u
∣∣
∂Ω

= 0, 2 < p, u > 0,

where ∆p denotes the p-Laplace differential operator defined by

∆pu = div(|∇u|p−2∇u) for all u ∈ W 1,p
0 (Ω).

When p = 2, we have the usual Laplacian denoted by ∆. So, in problem (1) we have
a combination of two differential operators of different nature. Such situations arise in
mathematical models of physical processes. We mention the works of Cherfils-Il′yasov
[3] (reaction-diffusion systems) and Zhikov [22] (homogenization of composites made
of two different materials with distinct hardening exponents, double phase problems).
Equation (1), having as differential operator the sum of a p-Laplacian and a Laplacian,
is called a “(p, 2)-equation”. The differential operator is nonhomogeneous and this is a
source of difficulties in the analysis of problem (1). In the reaction (right hand side of
(1)), the function µ(·) is singular at x = 0. In the literature we encounter the particular
case µ(x) = x−γ for x > 0. The perturbation f(z, x) is a Carathéodory function (that is,
for all x ∈ R, z → f(z, x) is measurable and for a.e. z ∈ Ω, x→ f(z, x) is continuous).
We assume that for a.e. z ∈ Ω, f(z, ·) exhibits (p − 1)-superlinear growth near +∞.
However, we do not employ the usual in such cases Ambrosetti-Rabinowitz condition
(the AR-condition for short). Using variational methods based on the critical point
theory, together with suitable truncation techniques, we show the existence of a pair of
positive smooth solutions.

Our work here is closely related to the recent paper of Papageorgiou-Rădulescu-
Repovs̆ [14], where the authors deal with a Dirichlet problem driven by the p-Laplacian
and a reaction of the form x−γ+f(z, x). In that paper f(z, ·) is a Carathéodory perturba-
tion which is (p−1)-linear and possibly resonant at +∞. In the literature most nonlinear
singular problems studied are parametric with the parameter λ > 0 multiplying either
the singular term or the perturbation f . The presence of the parameter, gives more
flexibility in the equation and by varying the parameter, one can produce useful bounds
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and growth estimates and satisfy the geometry of various minimax theorems. Such
parametric nonlinear singular problems were considered by Byun-Ko [2], Giacomoni-
Schindler-Takáč [7], Papageorgiou-Rădulescu-Repovs̆ [15], Papageorgiou-Smyrlis [17],
Papageorgiou-Vetro-Vetro [18], Papageorgiou-Winkert [19], Saudi [21]. Finally we men-
tion that double phase problems (but without singularities), can be found in Marano-
Mosconi [12] and Papageorgiou-Rădulescu-Repovs̆ [16].

2. Preliminaries-Hypotheses

In this analysis of problem (1) we will use the Sobolev space W 1,p
0 (Ω) and the Banach

space C1
0(Ω) = {u ∈ C1(Ω) : u

∣∣
∂Ω

= 0}. By ‖ · ‖ we denote the norm of the Sobolev

space W 1,p
0 (Ω). The Poincaré inequality (see, for example, Gasiński-Papageorgiou [4],

p. 216), implies that

‖u‖ = ‖∇u‖p for all u ∈ W 1,p
0 (Ω).

The Banach space C1
0(Ω) is ordered with positive (order) cone

C+ = {u ∈ C1
0(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω

< 0

}
,

with n(·) being the outward unit normal on ∂Ω. Also, we will use the Banach space
C1(Ω). This too is ordered with positive cone

Ĉ+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.
This cone too has a nonempty interior which is given by

D+ =
{
u ∈ Ĉ+ : u(z) > 0 for all z ∈ Ω

}
.

In fact D+ is also the interior of Ĉ+ when the latter is equipped with the weaker
C(Ω)-norm topology.

The following simple fact about ordered Banach spaces will be used in the sequel (see
Gasiński-Papageorgiou [5], Problem 4.180, p. 680).

Proposition 1. If X is an ordered Banach space with order cone K and intK 6= ∅,
then given e ∈ intK, for every u ∈ K we can find λu > 0 such that λue− u ∈ K.

By λ̂1 we denote the first eigenvalue of (−∆p,W
1,p
0 (Ω)). We know that

(a) λ̂1 > 0;

(b) λ̂1 is simple (that is, if û, v̂ ∈ W 1,p
0 (Ω) are two eigenfunctions corresponding to

λ̂1, then û = ξv̂ for some ξ ∈ R \ {0});

(c) λ̂1 = inf

[‖∇u‖pp
‖u‖pp

: u ∈ W 1,p
0 (Ω), u 6= 0

]
.

The infimum in (c) is realized on the corresponding one dimensional eigenspace, the
elements of which have fixed sign. By û1 we denote the positive, Lp-normalized (that

is, ‖û1‖p = 1) eigenfunction corresponding to λ̂1. From the nonlinear regularity theory
and the nonlinear maximum principle (see Gasiński-Papageorgiou [4], pp. 737-738), we
have that û1 ∈ intC+.



POSITIVE SOLUTIONS FOR SINGULAR (p, 2)-EQUATIONS 3

In the sequel we will use the following notation. If x ∈ R, then we set x± =
max{±x, 0}. Then for u ∈ W 1,p

0 (Ω) we define u±(·) = u(·)±. We know that

u± ∈ W 1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

By Ap : W 1,p
0 (Ω) → W−1,p′(Ω) = W 1,p

0 (Ω)∗
(

1

p
+

1

p′
= 1

)
we denote the nonlinear

map defined by

〈Ap(u), h〉 =

∫
Ω

|∇u|p−2(∇u,∇h)RNdz for all u, h ∈ W 1,p
0 (Ω).

If p = 2, then we write A2 = A ∈ L(H1
0 (Ω), H−1(Ω)). These maps are continuous

and strictly monotone (hence maximal monotone too).
Given q ∈ (1,+∞), by q∗ we denote the critical Sobolev exponent corresponding to

q and defined by q∗ =


Nq

N − q
if q < N,

+∞ if N ≤ q.
If u, v : Ω→ R are measurable functions and u ≤ v, then we define

[u, v] =
{
y ∈ W 1,p

0 (Ω) : u(z) ≤ y(z) ≤ v(z) for a.e. z ∈ Ω
}
,

[u) =
{
y ∈ W 1,p

0 (Ω) : u(z) ≤ y(z) for a.e. z ∈ Ω
}
.

Also by intC1
0 (Ω)[u, v] we will denote the interior in the C1

0(Ω)-norm topology of [u, v]∩
C1

0(Ω).
For h1, h2 ∈ L∞(Ω), we write h1 ≺ h2 if and only if for all K ⊆ Ω compact, there

exists ĉK > 0 such that 0 < ĉK ≤ h2(z) − h1(z) for a.e. z ∈ K. If h1, h2 ∈ C(Ω), then
h1 ≺ h2 if and only if h1(z) < h2(z) for all z ∈ Ω.

Given ϕ ∈ C1(W 1,p
0 (Ω)), by Kϕ we denote the critical set of ϕ, that is,

Kϕ =
{
u ∈ W 1,p

0 (Ω) : ϕ′(u) = 0
}
.

Also we say that ϕ satisfies the C-condition if:

“Every sequence {un}n≥1 ⊆ W 1,p
0 (Ω) such that {ϕ(un)}n≥1 ⊆ R is bounded and

(1 + ‖un‖)ϕ′(un)→ 0 in W−1,p′(Ω) as n→ +∞, then {un}n≥1 has a convergent subse-
quence”.

Now we are ready to introduce our hypotheses on the data of (1).

H(µ): µ : (0,+∞)→ (0,+∞) is a locally Lipschitz function such that

(i) for some γ ∈ (0, 1) we have

0 < c0 ≤ lim inf
x→0+

µ(x)xγ ≤ lim sup
x→0+

µ(x)xγ ≤ c1;

(ii) µ(·) is nonincreasing.

Remark 1. As we already mentioned in the introduction, in the literature we encounter
the particular case µ(x) = x−γ for all x > 0. However, our hypotheses H(µ) can also
treat a singularity of the form µ(x) = cx−γ + sinx−γ for all x > 0, with c > 1.

H(f): f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.e. z ∈ Ω
and

(i) |f(z, x)| ≤ a(z)[1 + xr−1] for a.e. z ∈ Ω, all x ≥ 0, with a ∈ L∞(Ω), p < r < p∗;
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(ii) set F (z, x) =
∫ x

0
f(z, s)ds, then limx→+∞

F (z, x)

xp
= +∞ uniformly for a.e. z ∈

Ω;

(iii) there exists τ ∈
(

(r − p) max

{
N

p
, 1

}
, p∗
)

such that

0 < c2 ≤ lim inf
x→+∞

f(z, x)x− pF (z, x)

xτ
uniformly for a.e. z ∈ Ω;

(iv) there exists δ0 > 0 such that 0 < ms ≤ inf[f(z, x) : s ≤ x ≤ δ0] for a.e. z ∈ Ω;
(v) there exists η0 > δ0 such that η−γ0 + f(z, η0) ≤ 0 for a.e. z ∈ Ω;

(vi) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.e. z ∈ Ω the function

x→ f(z, x) + ξ̂ρx
p−1 is nondecreasing on [0, ρ].

Remark 2. Since we look for positive solutions and the above hypotheses concern the
positive semiaxis R+ = [0,+∞), without any loss of generality we may assume that

(2) f(z, x) = 0 for a.e. z ∈ Ω, all x ≤ 0.

Hypotheses H(f)(ii),(iii) imply that

lim
x→+∞

f(z, x)

xp−1
= +∞ uniformly for a.e. z ∈ Ω.

So, the perturbation f(z, ·) is (p − 1)-superlinear. Usually elliptic problems with a
superlinear reaction are studied using the AR-condition which in our setting has an
unilateral form due to (2). So, in this form the AR-condition says that there exist q > p
and M > 0 such that

0 < qF (z, x) ≤ f(z, x)x for a.e. z ∈ Ω, all x ≥M,(3)

0 < ess inf
Ω
F (·,M).(4)

Integrating (3) and using (4), we obtain the weaker condition

c3x
q ≤ F (z, x) for a.e. z ∈ Ω, all x ≥M , some c3 > 0,

⇒ c4x
q−1 ≤ f(z, x) for a.e. z ∈ Ω, all x ≥M , some c4 > 0 (see (3)).

So, the AR-condition implies that for a.e. z ∈ Ω the perturbation f(z, ·) has at least
(q − 1)-polynomial growth. In our case hypothesis H(f)(iii) which replaces the AR-
condition, is less restrictive and permits superlinear nonlinearities with “slower” growth
near +∞. For example, consider the following function (for the sake of simplicity we
drop the z-dependence):

f(x) =

{
xq−1 − xτ−1 if 0 ≤ x ≤ 1,

xp−1 lnx if 1 < x,

with 1 < p < q < τ < +∞ (see (2)). This function satisfies hypotheses H(f), but fails
to satisfy the AR-condition (see (3)).

3. Positive Solution

Let ϑ ∈ (0,+∞). We start by considering the following auxiliary Dirichlet problem:

(Auϑ) −∆pu(z)−∆u(z) = ϑ in Ω, u
∣∣
∂Ω

= 0.
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Proposition 2. For all ϑ > 0, problem (Auϑ) has a unique solution ũϑ ∈ intC+,
the function ϑ → ũϑ is strictly increasing from (0,+∞) into C+ (that is, ϑ1 < ϑ2 ⇒
ũϑ2 − ũϑ1 ∈ intC+) and ũϑ → 0 in C1

0(Ω) as ϑ→ 0+.

Proof. The operator Ap +A : W 1,p
0 (Ω)→ W−1,p(Ω) (recall p > 2) is continuous, strictly

monotone (hence maximal monotone too) and coercive. So, it is surjective (see Gasiński-
Papageorgiou [4], p. 319). Hence we can find ũϑ ∈ W 1,p

0 (Ω), ũϑ 6= 0 such that

〈Ap(ũϑ), h〉+ 〈A(ũϑ), h〉 = ϑ

∫
Ω

hdz for all h ∈ W 1,p
0 (Ω).

Choosing h = −ũ−ϑ ∈ W
1,p
0 (Ω), we obtain

‖∇ũ−ϑ ‖
p
p + ‖∇ũ−ϑ ‖

2
2 ≤ 0,

⇒ ũϑ ≥ 0, ũϑ 6= 0.

We have

−∆pũϑ(z)−∆ũϑ(z) = ϑ for a.e. z ∈ Ω, ũϑ
∣∣
∂Ω

= 0.

Theorem 7.1, p. 286, of Ladyzhenskaya-Ural′tseva [9], implies that ũϑ ∈ L∞(Ω). So,
we can apply Theorem 1 of Lieberman [11] and have ũϑ ∈ C+ \ {0}.

Moreover, the nonlinear maximum principle of Pucci-Serrin [20] (pp. 111, 120) guar-
antees that ũϑ ∈ intC+.

This solution is unique on account of the strict monotonicity of the map u→ Ap(u)+
A(u).

Now suppose that ϑ1 < ϑ2 and let ũϑ1 , ũϑ2 ∈ intC+ be the corresponding unique
solutions of problems (Auϑ1) and (Auϑ2). We have

−∆pũϑ1 −∆ũϑ1 = ϑ1 < ϑ2 = −∆pũϑ2 −∆ũϑ2 a.e. in Ω,

⇒ ũϑ2 − ũϑ1 ∈ intC+ (see Gasiński-Papageorgiou [6], Proposition 3.2),

⇒ ϑ→ ũϑ is strictly increasing.

Finally let ϑn → 0+ and let ũn = ũϑn ∈ intC+ be the corresponding unique solution
of (Auϑn), n ∈ N. As before, from Ladyzhenskaya-Ural′tseva [9] (p. 286), we know that
there exists c4 > 0 such that

‖ũn‖∞ ≤ c4 for all n ∈ N.
Hence Theorem 1 of Lieberman [11] implies that we can find α ∈ (0, 1) and c5 > 0

such that

ũn ∈ C1,α
0 (Ω) = C1,α(Ω) ∩ C1

0(Ω), ‖ũn‖C1,α
0 (Ω) ≤ c5 for all n ∈ N.

Exploiting the compact embedding of C1,α
0 (Ω) into C1

0(Ω) and since for ϑ = 0, ũ0 ≡ 0
is the unique solution of the auxiliary problem, we have that ũn → 0 in C1

0(Ω). �

Using hypothesis H(µ)(ii), we can find ϑ0 > 0 such that

(5) 0 <
ϑ

µ(ũϑ)
≤ 1 and 0 ≤ ũϑ ≤ δ0 on Ω for all ϑ ∈ (0, ϑ0],

We fix ϑ ∈ (0, ϑ0] and introduce the following two Carathéodory functions

gϑ(z, x) =

{
µ(ũϑ(z)) + f(z, ũϑ(z)) if x ≤ ũϑ(z),

µ(x) + f(z, x) if ũϑ(z) < x,
(6)
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ĝϑ(z, x) =

{
gϑ(z, x) if x ≤ η0,

gϑ(z, η0) if η0 < x.
(7)

We set Gϑ(z, x) =
∫ x

0
gϑ(z, s)ds and Ĝϑ(z, x) =

∫ x
0
ĝϑ(z, s)ds.

Note that on account of hypotheses H(µ), we can find c6 > 0 and δ > 0 such that

(8) µ(x) ≤ c6x
−γ for all 0 < x ≤ δ and µ(y) ≤ µ(δ) for all y ≥ δ.

Let s > N and ε > 0. We have (ũϑ + ε)s ∈ D+ and û1 ∈ C+ ⊆ Ĉ+. So, according to
Proposition 1, we can find c7 > 0 such that û1 ≤ c7(ũϑ + ε)s.

Then we have

û
1/s
1 ≤ c

1/s
7 (ũϑ + ε),

⇒ (ũϑ + ε)−γ ≤ c8û
−γ/s
1 for some c8 > 0,

⇒ ũ−γϑ ≤ c8û
−γ/s
1 on Ω (just let ε→ 0+).

From the Lemma in Lazer-McKenna [10], we have that

û
−γ/s
1 ∈ Ls(Ω),

⇒ ũ−γϑ ∈ L
s(Ω),

⇒ µ(ũϑ) ∈ Ls(Ω) (see (8)).(9)

So, we can consider the following two functionals ϕϑ, ϕ̂ϑ : W 1,p
0 (Ω)→ R defined by

ϕϑ(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

Gϑ(z, u)dz,

ϕ̂ϑ(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

Ĝϑ(z, u)dz for all u ∈ W 1,p
0 (Ω).

Proposition 3 of Papageorgiou-Smyrlis [17] implies that ϕϑ, ϕ̂ϑ ∈ C1(W 1,p
0 (Ω)).

Proposition 3. If hypotheses H(µ), H(f) hold, then

(a) Kϕϑ ⊆ [ũϑ) ∩ intC+;
(b) Kϕ̂ϑ ⊆ [ũϑ, η0] ∩ intC+.

Proof. (a) Let u ∈ Kϕϑ . Then

(10) 〈Ap(u), h〉+ 〈A(u), h〉 =

∫
Ω

gϑ(z, u)hdz for all h ∈ W 1,p
0 (Ω).

We choose h = (ũϑ − u)+ ∈ W 1,p
0 (Ω). Then we have

〈Ap(u), (ũϑ − u)+〉+ 〈A(u), (ũϑ − u)+〉

=

∫
Ω

[µ(ũϑ) + f(z, ũϑ)] (ũϑ − u)+dz (see (6))

≥
∫

Ω

µ(ũϑ)(ũϑ − u)+dz (see (5) and hypothesis H(f)(iv))

≥
∫

Ω

ϑ(ũϑ − u)+dz (see (5))

= 〈Ap(ũϑ), (ũϑ − u)+〉+ 〈A(ũϑ), (ũϑ − u)+〉 (see Proposition 2),

⇒ ũϑ ≤ u.(11)
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From (6), (10), (11), we infer that

(12) −∆pu(z)−∆u(z) = µ(u(z)) + f(z, u(z)) for a.e. z ∈ Ω.

As before, from (12) and Ladyzhenskaya-Ural′tseva [9] (p. 286), we have u ∈ L∞(Ω).
Let k(z) = µ(u(z)) + f(z, u(z)). Hypothesis H(f)(i) and (9) imply that k ∈ Ls(Ω). Let
y ∈ H1

0 (Ω) be the unique solution of the linear Dirichlet problem

−∆y(z) = k(z) in Ω, y
∣∣
∂Ω

= 0.

Invoking Theorem 9.15, p. 241, of Gilbarg-Trudinger [8], we have that y ∈ W 2,s(Ω).
From the Sobolev embedding theorem we know that

W 2,s(Ω) ↪→ C1,α(Ω) with α = 1− N

s
> 0.

Therefore, if we set η(z) = ∇y(z), then η ∈ Cα(Ω,RN) and from (12) we have

−div
(
|∇u(z)|p−2∇u(z)−∇u(z)− η(z)

)
= 0 for a.e. z ∈ Ω.

But then we can apply Theorem 1 of Lieberman [11] and conclude that u ∈ intC+

(see (11)). So, we have proved that Kϕϑ ⊆ [ũϑ) ∩ intC+.

(b) Let u ∈ Kϕ̂ϑ . We have

(13) 〈Ap(u), h〉+ 〈A(u), h〉 =

∫
Ω

ĝϑ(z, u)hdz for all h ∈ W 1,p
0 (Ω).

From part (a) we already have that ũϑ ≤ u (see (7)).
Next in (13) we choose h = (u− η0)+ ∈ W 1,p

0 (Ω) (recall u ∈ W 1,p
0 (Ω)). We have

〈Ap(u), (u− η0)+〉+ 〈A(u), (u− η0)+〉

=

∫
Ω

[µ(η0) + f(z, η0)] (u− η0)+dz (see (7) and (6))

≤ 0 = 〈Ap(η0), (u− η0)+〉+ 〈A(η0), (u− η0)+〉 (see hypothesis H(f)(v)),

⇒ u ≤ η0.

So, we have proved that u ∈ [ũϑ, η0].
As before (see part (a)), we can prove that u ∈ intC+, so we conclude that Kϕ̂ϑ ⊆

[ũϑ, η0] ∩ intC+.
�

Now we are ready for our multiplicity theorem producing two positive smooth solu-
tions.

Theorem 1. If hypotheses H(µ), H(f) hold, then problem (1) has two positive solutions
u0, û ∈ intC+ with û 6= u0.

Proof. From (7) it is clear that ϕ̂ϑ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find u0 ∈ W 1,p

0 (Ω) such that

ϕ̂ϑ(u0) = inf
[
ϕ̂ϑ(u) : u ∈ W 1,p

0 (Ω)
]
,

⇒ u0 ∈ Kϕ̂ϑ ⊆ [ũϑ, η0] ∩ intC+ (see Proposition 3).(14)

Let ρ = η0 and let ξ̂ρ > 0 be as postulated by hypothesis H(f)(vi). Then for ξ̃ρ > ξ̂ρ
we have

−∆pu0 −∆u0 + ξ̃ρu
p−1
0 − µ(u0)
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= f(z, u0) + ξ̃ρu
p−1
0

≥ f(z, ũϑ) + ξ̃ρũ
p−1
ϑ for a.e. z ∈ Ω (see hypothesis H(f)(vi) and (14)).(15)

Using (5) we have

−∆pũϑ −∆ũϑ = ϑ ≤ µ(ũϑ) ≤ µ(ũϑ) + f(z, ũϑ) for a.e. z ∈ Ω

(see hypothesis H(f)(iv) and recall that 0 < ũϑ ≤ δ0).

We return to (15) and use the above inequality. We obtain

−∆pu0 −∆u0 + ξ̃ρu
p−1
0 − µ(u0)

= f(z, u0) + ξ̃ρu
p−1
0

≥ f(z, ũϑ) + ξ̃ρũ
p−1
ϑ

≥ −∆pũϑ −∆ũϑ + ξ̃ρũ
p−1
ϑ − µ(ũϑ).(16)

Let a(y) = |y|p−2y + y for all y ∈ RN . Then a ∈ C1(RN ,RN) (recall that p > 2) and
div a(∇u) = ∆pu+ ∆u for all u ∈ W 1,p

0 (Ω). We have

∇a(y) = |y|p−2

[
I + (p− 2)

y ⊗ y
|y|2

]
+ I for all y ∈ RN ,

⇒ (∇a(y)ξ, ξ)RN ≥ |ξ|2 for all y, ξ ∈ RN ,

⇒ ∇a(∇u0(·)) is positive definite on Ω.

Also, we have

−∆pu0 −∆u0 = µ(u0) + f(z, u0) for a.e. z ∈ Ω,

−∆pη0 −∆η0 = 0 ≥ µ(η0) + f(z, η0) for a.e. z ∈ Ω (see hypothesis H(f)(v)).

Recall that µ(·) is locally Lipschitz. On account of hypothesis H(f)(vi), f(z, ·) is
lower locally Lipschitz. So, we can apply the tangency principle of Pucci-Serrin [20]
(see Theorem 2.5.2, p. 35) and infer that

(17) u0(z) < η0 for all z ∈ Ω.

In a similar way (see (16)) we get that

(18) ũϑ(z) < u0(z) for all z ∈ Ω.

From (18), hypothesis H(f)(vi) and since ξ̃ρ > ξ̂ρ, we see that

(19) f(·, u0(·)) + ξ̃ρu0(·)p−1 � f(·, ũϑ(·)) + ξ̃ρũϑ(·)p−1.

From (16), (19) and Proposition 4 of Papageorgiou-Smyrlis [17] (singular strong com-
parison principle), it follows that

(20) u0 − ũϑ ∈ intC+.

From (17) and (20) we have u0 ∈ intC1
0 (Ω)[ũϑ, η0].

Note that

ϕ̂ϑ

∣∣∣
[ũϑ,η0]

= ϕϑ

∣∣∣
[ũϑ,η0]

(see (6), (7)),

⇒ u0 is a local C1
0(Ω)-minimizer of ϕϑ,

⇒ u0 is a local W 1,p
0 (Ω)-minimizer of ϕϑ (see [7]).(21)
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From Proposition 3 it is clear that we may assume that Kϕϑ is finite (otherwise we
have already infinitely many positive smooth solutions (see Proposition 3 and (6)) and
so we are done). Then on account of (21), we can find ρ ∈ (0, 1) small such that

(22) ϕϑ(u0) < inf [ϕϑ(u) : ‖u− u0‖ = ρ] = m

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29).
Hypothesis H(f)(ii) implies that

(23) ϕϑ(tû1)→ −∞ as t→ +∞.

Finally hypothesis H(f)(iii) and Proposition 9 of Papageorgiou-Rǎdulescu [13] imply
that

(24) ϕϑ(·) satisfies the C-condition.

Then (22), (23), (24) permit the use of the mountain pass theorem (see Gasiński-
Papageorgiou [4], p. 648). So, we can find û ∈ W 1,p

0 (Ω) such that

(25) û ∈ Kϕϑ ⊆ [ũϑ) ∩ intC+ (see Proposition 3), m ≤ ϕϑ(û).

From (6), (22) and (25) we conclude that û is a second positive smooth solution of
(1) and û 6= u0. �
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