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Abstract

How can discrete pitches and chords emerge from the continuum of
sound? Using a quantum cognition model of tonal music, we prove that
the associated Schrödinger equation in Fourier space is invariant under
continuous pitch transpositions. However, this symmetry is broken in the
case of transpositions of chords, entailing a discrete cyclic group as trans-
position symmetry. Our research relates quantum mechanics with music
and is consistent with music theory and seminal insights by Hermann von
Helmholtz.

Keywords: scales, continuum, discrete, quantum cognition, transposi-
tion symmetry, circle of fifths, cyclic groups

1 Introduction

The dualism between the continuum and the discrete is ubiquitous in human
culture. It involves mathematics, music, and thus mathematical music theory
as well [25, 35]. According to Maier [35] the continuous versus the discrete
aspects of melodic motion were highly disputed in the history of music and
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music psychology, as exemplified by the controversies between Riemann on the
one hand and Stumpf, Lotze and Hornborstel on the other hand.

Discreteness and continuity also belong to advanced musical studies and to
the daily practice of musicians. Belcanto singers are used to make a portamento
[35], that is, a short slide from one note to another. Violinists can make con-
tinuous glissandos while pianists only discrete ones. Gregorian chant notation
evolved from continuous and approximative signs (neumes) to a discrete and
precise pitch notation. Indian singers use a discrete notation but they have
practice in continuously connecting these points, and so on [14].

The same holds for musical instruments. For some of them, it can be more
natural to produce discrete pitches than continuous ones, and vice versa. In the
orchestra, strings or trombones can naturally produce continuous pitch frequen-
cies. This is also the case for the theremin [55], where the selection of precise,
discrete pitches requires a lot of training and expertise for the movement of
hands and arms, even without any physical reference, such as positions on the
neck of the violin, as moving along an invisible road [41]. Other instruments,
such as keyboards or flutes, possess only a discrete spectrum of available pitch
frequencies. Human voice can have the precision of discrete pitch as well as the
fluency of continuous glides.

Questions of pitch continuity or discreteness regard performance practice as
well as geometry: single notes can be seen as points or vertices, and contin-
uous pitch connections as edges or segments of straight lines [41]. In musical
performance, gestures [44, 37] also embody the continuity of motion through
trajectories in space and time, while single notes can be seen as points that are
touched during continuous movements [44].

The continuous-discreteness dichotomy is also important in the fields of
biomusicology [22, 45] and ethnomusicology [11, 13, 14]. In the light of cul-
tural studies, Burns [14, p. 217] therefore asked:

Is this use of discrete scale steps universal? That is, are there musical
cultures that use continuously variable pitches? The evidence from
ethnomusicological studies indicates that the use of discrete pitch
relationships is essentially universal. The only exceptions appear to
be certain primitive musical styles [. . . ] which are found in a few
tribal cultures. Of course, pitch glides — glissandos, portamentos,
trills, etc. are used as embellishment and ornamentation in most
musical cultures. However, these embellishments are distinct from
the basic scale structure of these musics.

For the emergence of discrete musical scales different approaches have been
discussed in the literature. One of them, salience of musical categories, that has
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already been addressed by von Helmholtz [56, p. 252], was further leveraged in
psychological theories of categorial perception [14, 45, 22]. Another explanation,
also going back to von Helmholtz [56], is by means of the harmonic overtone
series [56, 53, 24]. According to von Helmholtz [56, p. 253]:

Recent theoreticians that have been born and bred in the system
of harmonic music, have consequently supposed that they could ex-
plain the origin of the scales, by the assumption that all melodies
arise from thinking of a harmony to them, and that the scale itself,
considered as a melody of the key, arose from resolving the funda-
mental chords of the key into their separate tones. This view is
certainly correct for modern scales; at least these have been mod-
ified to suit the requirements of the harmony. But scales existed
long before there was any knowledge or experience of harmony at
all. [. . . ] It is clear that in the period of monophonic music, the scale
could not have been constructed so as to suit the requirements of
chordal connections unconsciously supplied. Yet a meaning may be
assigned, in a somewhat altered form, to the views and hypotheses
of musicians above mentioned, by supposing that the same physical
and physiological relations of the tones, which become sensible when
they are sounded together and determine the magnitude of the con-
sonant intervals, might also have had an effect in the construction
of the scale, although under somewhat different circumstances.

In this approach, a musical tone is considered as a periodic sound signal that can
be decomposed into a discrete Fourier series of overtones [46]. These overtones
obey certain frequency ratios, e.g., octave 2 : 1, perfect fifth 3 : 2, perfect
fourth 4 : 3 and so on. On the one hand, it is well known that two overtones
forming an octave are perceptionally equivalent [14, 45, 22], which leads to the
important concept of pitch classes, possessing a circular pitch symmetry that
can be analyzed by means of group theory and its symmetries [3, 18]. On
the other hand, perfect fourths and fifths appear perceptionally most similar
[45, 22], giving rise to the structural organization of the circle of fifths [3].

However, explaining discrete scale emergence through the overtone series
exhibits several peculiarities. One problem is that major scales are preferred
against minor scales. Another one is that the argument applies to just intonation
only. In order to account for equal temperament as well, several approaches
have been suggested in the literature [57, 29, 21] that lead to the structure of
a cyclic group Zz (for z ∈ N), describing transpositions jointly with inversions
as basic musical symmetries [18]. Balzano [3] presented some evidence for the
chromatic scale z = 12 of Western music, because two particular generators of
the group Z12 generate the semitone steps of melodic dynamics on the one hand,
and the fifth steps, important for harmonic composition, on the other hand.
The resulting circle of fifths contains all diatonic scales as connected subsets.
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Moreover, the decomposition Z12 = Z3×Z4 explains the canonical construction
of tertian harmonies. According to Balzano [3], these organizational principles
could also be used for microtonal scales, such as Z20 = Z4×Z5, or Z42 = Z6×Z7.

An even more crucial problem with the overtone model is the silent as-
sumption that a tone must be considered as a periodic sound signal of infinite
duration in order to justify expansion into a discrete Fourier series. This is a
rough idealization [7] since tones appear as whole, half, quarter or even shorter
notes in musical scores. Therefore, the mathematical prerequisite for Fourier
expansion is not fulfilled and instead of Fourier series, one would have to com-
pute Fourier integrals of an acoustic signal with finite duration. This, however,
leads immediately to a continuous overtone spectrum that is not able to explain
pitch quantization anymore. Moreover, its frequency bandwidth is inversely
related to the signal duration by means of the uncertainty relation for signal
processing [23]. Thus, the shorter a note, the more continuous frequencies must
be superimposed to yield the expected sound signal.

Therefore, the problem of discrete pitch emergence can be connected with
quantization in physics. In fact, the contraposition between continuity and
discreteness is a relevant part of quantum mechanics, and it is at the base of the
dualism between particles and waves, between the corpuscular and undulatory
nature of light and matter [54]. While the wave formalism is well-established
in the domain of sound studies, discreteness and quantization is still a fertile
research field there.

In fact, after the pioneering work by Gabor [23] in the domain of sound
quantization, to the best of our knowledge, most relevant applications of the
quantum paradigm to sound studies and music theory are relatively recent, and
concentrated in the latest years. This represents an increased attention towards
this topic, from music theory to sound processing and other technological ap-
plications. And yet, the wave formalism developed for sound seems to show
significative analogies with quantum wave mechanics [12]. The idea of sound
quantization, in terms of mechanical oscillation quantization, led to the concep-
tualization of the phonon. According to Perkovitz [48], “a phonon is a definite
discrete unit or quantum of vibrational mechanical energy, just as a photon is
a quantum of electromagnetic or light energy.” Regarding the application of
the quantum paradigm to sound, recent applications in the domain of quantum
acoustics and technology include the storing quantum states within macroscopic
devices and performing quantum operations on qubit-phonon systems [16]. Very
recently, scientists have been able to “listen to” phonons via “quantum micro-
phones” [2].

The paradigms of quantum mechanics have further been informing music
and shaping research in music and cognition [19], human voice as a probe to
investigate the world of sound with the quantum vocal theory of sound [52], the
evaluation of musical memory [38], the quantitative and experimental investi-

4



gation of tonal models [6], and developments of studies in mathematical theory
of musical gestures first described by Mazzola and Andreatta [44].

In this article, instead of considering signals in the time domain, we regard
tones as cognitive entities or psychological Gestalts [26, 59], namely as wave
functions over the continuation of the circle of fifths. This requires harmonic
analysis over the circle group and hence proper Fourier series with discrete
spectrum. From that assumption, we prove the emergence of a cyclic group
Zz (Theorem 3.4). Cyclic groups such as Zz are heavily used in mathematical
music theory [1, 3, 18, 47]; in our paper, we actually join current research in the
domain of mathematical music theory, acoustics, and quantum mechanics, by
proving the emergence of discrete pitches and cyclic groups from the continuity
of sound. Thus, our approach offers a new solution to the old problem, addressed
by Maier [35].

Specifically, we start from the quantum cognition approach [15, 49] to tonal
attraction [30, 6]. We investigate musical transformations such as transpositions,
and we formulate the tonal attraction phenomenon as an eigenvalue problem,
according to a fundamental method in quantum mechanics [54]. Thus, from very
general considerations and evaluations about energy and symmetry breaking, we
reach fundamental topics in mathematical music theory. This would also make
more concrete some hints of application of quantum mechanics and in general
physics results and methods to music [43].

The structure of the paper is the following. In Section 2 we list some re-
quired preliminaries about the quantum cognition approach to tonal attraction,
presenting it later as an eigenvalue problem. In Section 3 we deliver the har-
monic analysis, also discussing tonal and chordal transposition symmetry. After
a short Discussion in Section 4 including possible future developments of this
research, we conclude the paper in Section 5.

2 Musical Quantum Models

Quantum cognition has evolved as a powerful mathematical instrument to treat
several puzzles and paradoxes of bounded rationality in cognitive psychology
and decision theory [15, 49, 9]. It became increasingly popular in mathematical
music theory in recent times [8, 19, 20, 5, 6, 51, 40] because they perfectly
suit to the group-theoretical methods applied to investigate musical symmetries
[3, 18, 47, 17].

The probable most important musical symmetry is transposition invariance,
generalizing the basic concept of octave equivalence. According to McDermott
and Hauser [45, p. 33]:
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In music, the relationships between pitches are generally more im-
portant than the absolute values of the pitches that are used. A
melody will be recognized effortlessly even if it is transposed up or
down by a fixed amount, a manipulation that alters the absolute
pitch but preserves the relative pitch distances.

Transposition invariance in general, and octave equivalence in particular have
been investigated in numerous experimental studies in humans and other species
(see McDermott and Hauser [45], Fitch [22] for overviews and Wagner et al. [58]
for a recent study). Also the quantum cognition approach for tonal attraction
essentially builds upon transpositional symmetry [8, 10, 5, 6].

The starting point of the theoretical approach of Blutner [8], Blutner and
beim Graben [10], beim Graben and Blutner [5], and beim Graben and Blutner
[6] are experimental findings on static and dynamic tonal attraction [31, 30,
60, 61]. These are music-psychological priming experiments where subjects are
asked to rate how well probe tone pitches fit into an earlier presented priming
context. These contexts which are given by chords, cadences, ascending or de-
scending scales, establish a tonal scale. Depending on their instruction, subjects
indicate whether a probe either statically fits or dynamically resolves the prime.
With their static tonal attraction experiments, Krumhansl and Kessler [30] laid
the ground for Lerdahl’s hierarchical model of the diatonic scales [32, 33]. As
probe tones, the tonic received the highest rating, followed by the tones com-
pleting the tonic triad and then by the diatonic scale tones. The non-scale tones
were ranked at the bottom.

In their original publication, Krumhansl and Kessler [30] reported their re-
sults graphically with interval size at the x- and attraction value at the y-axis.
The resulting plots show large fluctuations according to the arrangement of
tones along the chroma circle. However, when plotting the results after rear-
rangement along the circle of fifths, the Krumhansl and Kessler data appear
much smoother because the diatonic and the non-scale tones are separated in
two disjoint connected sets. beim Graben and Blutner [5] and beim Graben and
Blutner [6] have realized that the static attraction profile can be described —
in first order — as cosine similarity [50] between tones along the circle of fifths.
Therefore, the circle of fifths appears to be more suitable for cognitive repre-
sentations than the chroma circle of physical pitch heights. This conforms with
ideas about the height-width duality and Handschin’s tone character [17], where
tonal representation space is regarded as a two-dimensional continuum spanned
by “tone height” (corresponding to the octave dimension) and “tone character”
(tone width, corresponding to the fifth dimension), the latter representing the
music-psychological qualia [17].
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2.1 Preliminaries

In musical quantum cognition tones are considered as Gestalts [26, 59], i.e., as
wave functions (probability amplitudes) over the continuation of the circle of
fifths. Although this continuation can be music-theoretically motivated through
the constructions of Clampitt and Noll [17], here we simply postulate the ex-
istence of this one-dimensional continuous manifold as cognitive representation
space, assuming equal temperament.

Definition 2.1. Let S1 = R/2πZ be the unit circle as configuration space.
S1 is parameterized by a real variable, the arc angle x ∈ [0, 2π[ measured in
radians. The circle of fifths is then a sampling of S1 obtained from xk = kπ/6 for
k ∈ Z12. A tone is a wave function ψ : S1 → C, such that

∫
S1 ψ

∗(x)ψ(x) dx = 1.
Therefore, a tone is a state in the complex Hilbert space L2(S1).1

This definition leads immediately to the notion of an attraction kernel.

Definition 2.2. Let ψ ∈ L2(S1) be a tone over the unit circle S1. The squared
modulus p(x) = |ψ(x)|2 = ψ∗(x)ψ(x) is the attraction rate — or anchoring
strength according to [33] — of the probe x by the context tone ψ. The proba-
bility density function p(x) is called attraction kernel.

Next, we define the important concepts of musical transposition and the
tonic.

Definition 2.3. Let ψ ∈ L2(S1) be a tone over the unit circle S1. Moreover,
let a ∈ S1 be an arbitrary context. The transposition of ψ by a is obtained by
applying a transposition operator Ta to ψ through

ψa(x) = Taψ(x) = ψ(x− a) . (1)

Definition 2.4. The transposition by a = 0 gives the distinguished tonic ψ0,

ψ0(x) = T0ψ(x) = ψ(x− 0) = ψ(x) . (2)

Because any transposition is parameterized by some a ∈ S1, we state our
first result.

Proposition 2.5. The transpositions Ta with a ∈ S1 are represented through
the continuous circle group U(1).

Proof. Let Ta, Tb be two transpositions with a, b ∈ S1. Then Ta ◦ Tb = Ta+b,
where a+ b is addition modulo 2π in S1. Then, ρ(Ta) = eiâ is a representation

1 This definition can be justified by an experimental finding of Krumhansl and Shepard
[31] using quartertones as probes in a tonal attraction experiment. The attraction rates at
quartertones interpolate those of neighboring semitones.

7



of Ta in U(1) where â ∈ R is the realization of a ∈ S1 such that

ρ(Ta) · ρ(Tb) = eiâeib̂ = ei(â+b̂) = ρ(Ta+b) .

Often one wants to assess the anchoring strength of a probe tone exerted
by a chord context instead of a single tone. For this aim, Woolhouse [60] and
Blutner [8] suggested to sum or to average the attraction profiles of individual
pairs of tones over all possible pairings. We therefore formulate the Woolhouse
Conjecture 2.6 as follows.

Conjecture 2.6. Let C = {ai ∈ S1|i = 1, . . . , n} be a chord context of n context
tones and let ρ(ai) ∈ R be their respective weights. Then, the attraction rate of
probe x ∈ S1 is obtained through discrete convolution [1]

pC(x) =

n∑
i=1

ρ(ai)p(x− ai) (3)

with kernel function p(x) = |ψ(x)|2.

In the following, we assume equal weights 1/n of all chord members and get
for a simple dyad C = {a, b},

pab(x) = |ψab(x)|2 =
1

2

(
|ψa(x)|2 + |ψb(x)|2

)
, (4)

where ψab is a tentative wave function for the dyad C that will be explored
subsequently.

2.2 The eigenvalue problem of tonal attraction

beim Graben and Blutner [5] have shown that tonal attraction can be formulated
as an eigenvalue problem

Hψ(x) = Eψ(x) (5)

with real eigenvalue E for a hermitian differential operator H, the Hamilto-
nian, acting on Hilbert space L2(S1). Equation (5) is essentially a stationary
Schrödinger equation for the wave function ψ of a single quantum particle [54].

One simple model was obtained by the choice

H = T = − ∂2

∂x2
, (6)
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corresponding to the operator of kinetic energy T of a particle freely moving
across the circle of fifths S1. Equation (5) is solved by the wave function

ψ(x) =
1√
π

cos
x

2
(7)

for eigenvalue E = 1/4, leading to a cosine similarity [50] attraction kernel

p(x) =
1

π
cos2

x

2
(8)

that reflects the perceptional similarity of fifths and fourths along the circle of
fifths according to Krumhansl and Kessler [30].

A more appropriate model with Hamiltonian

H = T +M + U (9)

and differential operators

M = m(x)
∂

∂x
(10)

and
U = E + g(x) (11)

for some real functions m, g defined upon S1 leads to the quantum deformation
model [5, 6, 10]

− ψ′′(x) +m(x)ψ′(x) + g(x)ψ(x) = 0 . (12)

When

m(x) =
γ′′(x)

γ′(x)
, (13)

and
g(x) = −γ′(x)2 (14)

for some deformation function γ, this differential equation is solved by

ψ(x) = A cos γ(x) (15)

where A is an appropriate normalization constant, and hence by a deformed
cosine similarity kernel

p(x) = A2 cos2 γ(x) . (16)

Choosing several polynomial deformations γ, beim Graben and Blutner [6] were
able to fit both static [30] and dynamic [60] tonal attraction data. Moreover,
Blutner and beim Graben [10] have shown how different deformations can be
ubiquitously unified as local gauge symmetries.
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3 Harmonic Analysis

Since the above functions m, g, ψ are defined over the configuration space of the
unit circle S1 = R/2πZ, namely the continuation of the circle of fifths Z12, they
obey its circular symmetry and must hence be 2π-periodic functions over C.2

The musical interpretation of this periodicity is octave equivalence or rather its
harmonic analogue at the circle of fifths, that is, enharmonic equivalence.3 Thus
we may apply the framework of harmonic analysis [1], and developing them into
their Fourier series (provided their existence):

m(x) =
∑
k

Mkeikx (17)

g(x) =
∑
k

Gkeikx (18)

ψ(x) =
∑
k

Pkeikx (19)

where the indices extend over all integers −∞ < k < ∞. Their Fourier coeffi-
cients are given as

Mk =
1

2π

∫ 2π

0

m(x)e−ikx dx (20)

Gk =
1

2π

∫ 2π

0

g(x)e−ikx dx (21)

Pk =
1

2π

∫ 2π

0

ψ(x)e−ikx dx . (22)

Proposition 3.1. In Fourier space the Schrödinger Equation (12) is

k2Pk +
∑
l

(ilMk−l +Gk−l)Pl = 0 (23)

for all k ∈ Z.

Proof. Inserting Equations (17 – 19) into the Schrödinger Eq. (12) yields Eq.
(23).

2 This has an interesting physical interpretation: Periodic potentials in the Hamiltonian
describe the Bravais lattices of crystals in solid state physics. The Schrödinger equation in
configuration space is solved by Bloch waves [27, 28] for canonically conjugated lattice sites
and wave vectors. In particular, Kramers [28] proved the emergence of the Lie group SL(2,C)
as an essential symmetry. This group is also relevant for the canonical transformation of
intervals and their respective multiplicities in mathematical musicology [17, 47].

3 With a small caveat: enharmonic equivalence leads to exactly the same sounds but with
different names for single notes or for intervals, while octave equivalence leads to different
sounds, having an n-octave distance between them, but considered within the same pitch
class and hence with the same note names.
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3.1 Tonal transposition symmetry

First, we prove that musical transposition symmetry holds also in Fourier space.
To this end, we recognize that a (continuous) transposition a ∈ S1 turns out to
be equivalent up to multiplication by a constant phase factor.

Proposition 3.2. Let the periodic functions m, g, ψ be given as their Fourier
series (17 – 19). Then the transposed functions are obtained as

m(x− a) =
∑
k

M̃keikx (24)

g(x− a) =
∑
k

G̃keikx (25)

ψ(x− a) =
∑
k

P̃keikx (26)

with Fourier coefficents

M̃k = Mke−ika (27)

G̃k = Gke−ika (28)

P̃k = Pke−ika . (29)

for a ∈ R.

Proof. Since the transposition operator Ta is linear it can be applied to the
Fourier series (17 – 19),

m(x− a) =
∑
k

Mkeik(x−a) =
∑
k

Mkeikxe−ika (30)

g(x− a) =
∑
k

Gkeik(x−a) =
∑
k

Gkeikxe−ika (31)

ψ(x− a) =
∑
k

Pkeik(x−a) =
∑
k

Pkeikxe−ika . (32)

Theorem 3.3. The Schrödinger equation in Fourier space (23) is invariant
under continuous transpositions Ta for a ∈ S1 (corresponding to ρ(Ta) = eiâ ∈
U(1) with â ∈ R).

Proof. Replacing all Fourier coefficients Mk, Gk, Pk in (23) by the transposed
ones in (27 — 29), where we deliberately equate â = a ∈ R in the following for
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the sake of simplicity, yields

k2P̃k +
∑
l

(ilM̃k−l + G̃k−l)P̃l = 0

k2Pke−ika +
∑
l

(ilMk−le
−i(k−l)a +Gk−le

−i(k−l)a)Ple
−ila = 0

k2Pke−ika +
∑
l

(ilMk−l +Gk−l)Ple
−ika = 0

k2Pk +
∑
l

(ilMk−l +Gk−l)Pl = 0 ,

i.e., continuous transposition invariance.

3.2 Chordal transposition symmetry

Next, we consider a simple dyad C = {a, b} and assume that the Woolhouse
Conjecture 2.6 is valid for the anchoring strength of chord contexts. Then, Eq.
(4) holds:

pab(x) = |ψab(x)|2 =
1

2

(
|ψa(x)|2 + |ψb(x)|2

)
.

Theorem 3.4. The Schrödinger equation in Fourier space (23) is only invariant
under discrete transpositions Ta for a ∈ Zz (z ∈ N) for chord contexts. Hence
continuous transposition symmetry is broken.

Proof. Under the assumption that the wave function ψab has the Fourier series

ψab(x) =
∑
k

Qkeikx (33)

we obtain on the one hand

|ψab(x)|2 =
∑
kl

QkQ
∗
l e

i(k−l)x

for the convolution. On the other hand, we have

|ψa(x)|2 =
∑
kl

PkP
∗
l ei(k−l)xe−i(k−l)a

|ψb(x)|2 =
∑
kl

PkP
∗
l ei(k−l)xe−i(k−l)b

due to Eq. (32). Their mixture yields then the identity

QkQ
∗
l =

1

2

(
e−i(k−l)a + e−i(k−l)b

)
PkP

∗
l . (34)
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Next, we need the complex conjugated Schrödinger equation

k2P ∗k +
∑
l

(−ilM∗k−l +G∗k−l)P
∗
l = 0 (35)

such that the product of (23) and (35) yields

k2m2PkP
∗
m + k2

∑
n

(−inM∗m−n +G∗m−n)PkP
∗
n+

+m2
∑
l

(ilMk−l+Gk−l)PlP
∗
m+
∑
ln

(ilMk−l+Gk−l)(−inM∗m−n+G∗m−n)PlP
∗
n = 0.

(36)

Now we assume that the chord wave function ψab obeys a structurally similar
product equation

k2m2QkQ
∗
m + k2

∑
n

(−inM̂∗m−n + Ĝ∗m−n)QkQ
∗
n+

+m2
∑
l

(ilM̂k−l+Ĝk−l)QlQ
∗
m+
∑
ln

(ilM̂k−l+Ĝk−l)(−inM̂∗m−n+Ĝ∗m−n)QlQ
∗
n = 0

(37)

in Fourier space, where M̂k, Ĝk are the Fourier coefficients of the yet unknown
energy operators resulting from the interaction of two context tones a and b.

Inserting (34) into (37) gives

k2m2
(

e−i(k−m)a + e−i(k−m)b
)
PkP

∗
m+

+ k2
∑
n

(−inM̂∗m−n + Ĝ∗m−n)
(

e−i(k−n)a + e−i(k−n)b
)
PkP

∗
n+

+m2
∑
l

(ilM̂k−l + Ĝk−l)
(

e−i(l−m)a + e−i(l−m)b
)
PlP

∗
m+

∑
ln

(ilM̂k−l + Ĝk−l)(−inM̂∗m−n + Ĝ∗m−n)
(

e−i(l−n)a + e−i(l−n)b
)
PlP

∗
n = 0 .

(38)

In case of transposition invariance, Eq. (38) must reduce to (36) in analogy
to the proof of Theorem 3.3.
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When e−i(k−m)a + e−i(k−m)b 6= 0, we can divide by this term and obtain

k2m2PkP
∗
m + k2

∑
n

(−inM̂∗m−n + Ĝ∗m−n)
e−i(k−n)a + e−i(k−n)b

e−i(k−m)a + e−i(k−m)b
PkP

∗
n+

+m2
∑
l

(ilM̂k−l + Ĝk−l)
e−i(l−m)a + e−i(l−m)b

e−i(k−m)a + e−i(k−m)b
PlP

∗
m+

∑
ln

(ilM̂k−l + Ĝk−l)(−inM̂∗m−n + Ĝ∗m−n)
e−i(l−n)a + e−i(l−n)b

e−i(k−m)a + e−i(k−m)b
PlP

∗
n = 0 .

(39)

As all the fractions above are similar, we discuss their general form

Fab(p, q) =
e−ipa + e−ipb

e−iqa + e−iqb
(40)

for independent p, q ∈ Z. First, we use Euler’s formula for rewriting

e−ipa + e−ipb = 2 cos
p(a− b)

2
exp

[
−i
p(a+ b)

2

]
and thus

Fab(p, q) =
cos p(a−b)2

cos q(a−b)2

exp

[
−i

(p− q)(a+ b)

2

]
.

To evaluate the first term, we substitute p− q = u and insert p = u+ q into
the denominator

cos
p(a− b)

2
= cos

u(a− b)
2

cos
q(a− b)

2
− sin

u(a− b)
2

sin
q(a− b)

2

by virtue of the trigonometric addition theorems. Inserting this into Fab again,
yields

Fab(p, q) = cos
(p− q)(a− b)

2
exp

[
−i

(p− q)(a+ b)

2

]
−

− sin
(p− q)(a− b)

2
tan

q(a− b)
2

exp

[
−i

(p− q)(a+ b)

2

]
, (41)

after reverting the substitution.

This function depends only on the interval p− q if

tan
q(a− b)

2
= 0 (42)
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for all q ∈ Z. Moreover, the poles q∞ of

tan
q∞(a− b)

2
= ±∞ (43)

must be excluded in order to permit the division in Eq. (39).

Now, we have to discuss these quantization conditions [54]. Consider (42),
which holds for all q ∈ Z if there is another p ∈ Z with4

q(a− b)
2

= pπ . (44)

Because of the periodicity of (42), we choose p as a multiple of q, i.e. p = jq
with some j ∈ Z.

Equation (44) is solvable in Z only when the interval a − b is a rational
multiple of 2π. We therefore assume the existence of fixed integers r, s ∈ Z and
z ∈ N, such that a = 2πr/z, b = 2πs/z and obtain

a− b = 2π
r − s
z

. (45)

Inserting (45) into (44) yields

r − s = jz , (46)

which means that r, s are congruent modulo z. Thereby r, s ∈ Zz with the cyclic
group Zz.

For Western music we have particularly z = 12, and hence a, b ∈ π
6Z12.

Thus, the originally assumed continuous transposition symmetry U(1) breaks
down into the cyclic group of the circle of fifths, leading to the emergence of
the chromatic scale from musical transposition invariance. Note that the same
argument also applies to contemporary approaches for microtonality [14] which
give rise to other cyclic groups Zz, with z = 20, 30, or z = 42 [3].

In order to finalize the invariance proof, we introduce a function

Hab(z) = cos
z(a− b)

2
exp

[
−i
z(a+ b)

2

]
(47)

reproducing Fab(z) [Eq. (41)] in the Schrödinger product equation (39) under

4 Condition (43) leads accordingly to

q(a− b)

2
=
π

2
+ pπ

that is solved under the same considerations below.
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the quantization condition (42). Then

k2m2PkP
∗
m + k2

∑
n

(−inM̂∗m−n + Ĝ∗m−n)Hab(k − n− k +m)PkP
∗
n+

+m2
∑
l

(ilM̂k−l + Ĝk−l)Hab(l −m− k +m)PlP
∗
m+∑

ln

(ilM̂k−l + Ĝk−l)(−inM̂∗m−n + Ĝ∗m−n)Hab(l − n− k +m)PlP
∗
n = 0 . (48)

Therefore, we obtain

k2m2PkP
∗
m + k2

∑
n

(−inM̂∗m−n + Ĝ∗m−n)Hab(m− n)PkP
∗
n+

+m2
∑
l

(ilM̂k−l + Ĝk−l)Hab(l − k)PlP
∗
m+∑

ln

(ilM̂k−l + Ĝk−l)(−inM̂∗m−n + Ĝ∗m−n)Hab(l − n− k +m)PlP
∗
n = 0 , (49)

and after complex conjugation

k2m2PkP
∗
m + k2

∑
n

(−inM̂∗m−n + Ĝ∗m−n)Hab(m− n)PkP
∗
n+

+m2
∑
l

(ilM̂k−l + Ĝk−l)H
∗
ab(k − l)PlP ∗m+∑

ln

(ilM̂k−l + Ĝk−l)(−inM̂∗m−n + Ĝ∗m−n)Hab(l − n− k +m)PlP
∗
n = 0 , (50)

Equations (36) and (50) lead to the following invariance constraints

M̂∗m−nHab(m− n) = M∗m−n (51)

Ĝ∗m−nHab(m− n) = G∗m−n (52)

M̂k−lH
∗
ab(k − l) = Mk−l (53)

Ĝk−lH
∗
ab(k − l) = Gk−l (54)

M̂k−lM̂
∗
m−nHab(l − n− k +m) = Mk−lM

∗
m−n (55)

M̂k−lĜ
∗
m−nHab(l − n− k +m) = Mk−lG

∗
m−n (56)

Ĝk−lM̂
∗
m−nHab(l − n− k +m) = Gk−lM

∗
m−n (57)

Ĝk−lĜ
∗
m−nHab(l − n− k +m) = Gk−lG

∗
m−n . (58)

These constraints that are highly redundant are identically fulfilled when

M̂kH
∗
ab(k) = Mk (59)

ĜkH
∗
ab(k) = Gk (60)
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for the transposed Fourier coefficients M̂k and Ĝk of the dyad C = {a, b}.
Thus, the transposed product equation (38) reduces to (36) in the case when
the interval a − b is a rational multiple of 2π. Hence discrete transposition
invariance holds.

4 Discussion

In this study, we have used harmonic analysis of tonal Gestalt patterns over
the continuation of the circle of fifths to the unit circle. Formulating tonal
attraction as an eigenvalue problem for a musical wave function [8, 10, 5, 6],
we transformed the resulting Schrödinger equation into Fourier space, as all
involved functions and differential operators must exactly be periodic over their
cyclic configuration space. We investigated musical transposition symmetry
through linear translations of wave functions along the unit circle.

Our study entailed two main results. First, considering monophonic mu-
sic consisting only of simple tones, melodies can be continuously transposed
(Theorem 3.3). Moreover, we have proven in Theorem 3.4 that the continuous
transposition symmetry is broken for polyphonic music consisting of chords.
This actually proves the emergence of discrete pitches (organized within musi-
cal chords) from the continuum of pitch frequencies. Such a result appears as
a connecting anchor within different topics in the framework of mathematical
music theory.

In fact, developments in mathematical music theory involve several areas
such as tuning, chords, musical structures, and they exploit different mathemat-
ical and computational tools, ranging from signal processing to most abstract
algebra. One of the contemporary challenges in this field is rejoining all these
studies within a unified vision [43, 39]. Our investigation presented in this pa-
per connects some thoughts by von Helmholtz [56] regarding the sound with the
abstraction and formalization of music theory. Interestingly, the same paradigm
of Fourier analysis is present at the level of sound within acoustics, at the level
of music theory of chords and rhythms with complex exponentials [1], and in
our research, that aims to connect these two worlds. In fact, the emergence of
discrete pitches (and chords) from the continuum can be seen as a first, but
essential step towards all Western (but not only) music theory.

Starting point of our argumentation was a one-dimensional, continuous and
periodic manifold, the unit circle S1. A coordinate x ∈ S1 refers to a probe
tone at the circle of fifths which can be identified with the cognitively relevant
width dimension [17]. In quantum mechanics, positions are eigenvalues of a
corresponding operator x̂. Canonically conjugated to the position operator is a
momentum operator p̂, such that both obey the Heisenberg commutation rela-
tion. Thus, position and momentum form Fourier pairs such that our method
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applies. For a free quantum system, the joint spectrum of position and momen-
tum is then S1×R. In order to obtain a musical interpretation it is tempting to
regard the x-dimension still as tone width but the p-dimension as tone height in
the sense of Clampitt and Noll [17]. As we have proven here, in a first step mo-
mentum becomes quantized by octave equivalence or enharmonic equivalence,
respectively, for monophonic music, leading to S1×Z. In a second step, contin-
uous transposition symmetry is broken for polyphonic music such that position
and momentum are then restricted to the discrete space Zz × Z.

In future research, canonical transformations of position and momentum (or
of tone width and tone height) could be examined. These would describe how
different harmonic basis systems are mapped onto each other, e.g. perfect fifths
and fourths onto major and minor seconds. We hope that our approach could
therefore lead to new insights about the psychological representations of tonal
music and the emergence of pentatonic, diatonic and chromatic scales [47, 17].

Our theory essentially rests upon equal temperament of the underlying tonal
space. Therefore one might ask how it could apply to other tunings, such as
just intonation or Pythagorean temperament as well. In a recent contribution,
Baroin and Calvet [4] have demonstrated how different tuning systems could
be related to each other by deformations of tonal spaces, such as the circle
of fifths or a tonnetz. Yet, deformation transformations are at the core of our
quantum models. beim Graben and Blutner [5] and beim Graben and Blutner [6]
introduced deformations of pure cosine similarity to describe the tonal attraction
data of Krumhansl and Kessler [30] and [60], respectively. Moreover, Blutner
and beim Graben [10] have shown how different deformation models could be
transformed by means of gauge symmetries. Future research in mathematical
music theory may show whether and how those gauge transformations could be
related to canonical transformations of tonal space [47, 17].

Future developments can further involve more quantitative evaluations, cog-
nitive experiments, as well as an overall formalization of these topics. Although
musical transposition invariance has been extensively studied in psychological
experiments [45, 22, 58], our study poses new interesting questions for exper-
imental investigation. Our first result, demonstrated in Theorem 3.3, states
continuous transposition symmetry for monophonic music. Thus we suggest ex-
periments where the acoustic pitch frequencies of monophonic melodies could be
electronically manipulated to obtain continuous transpositions. Yet our second
result, proven in Theorem 3.4, requires discrete transposition symmetry for poly-
phonic and hence harmonic music. Controlling monophony against polyphony
could yield new experimental insights about musical transposition symmetry in
humans and other species.

Moreover, we could, for example, define suitable functors5 connecting ‘nat-

5 A functor is a morphism between category. A category is constituted by objects and
morphisms between them, satisfying associative and identity properties [34].
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ural’ sounds, with emerging ‘musical’ sounds, with abstract objects of music
theory, and their organization within (Western) musical scores. The inverse con-
struction, that can be obtained by reversing all the arrows, can lead from written
scores to more and more ‘isolated’ theoretical objects in music (scales, chords,
notes), to finally reach the physical reality of sounds. Such a construction can
be easily related with Mazzola’s performance theory [42] and with mathematical
theory of musical gestures [44]. The relationship between the overall movement
‘physical reality of sound to written scores’ and the vice versa, ‘written scores to
sounds,’ can be seen as a categorical adjunction [34]. In this framework, our re-
search might play a decisive role to strengthen the connection between passages,
and to stress the relevance of mathematical paradigms such as the Fourier for-
malism, convolutions, gauge transformations, and symmetry breaking [10, 5, 6].
Some of the concepts, such as transposition, are familiar to musicians, math-
ematicians, and math-musicians; others, such as symmetry breaking, are more
deeply connected with physics. In particle physics, e.g., spontaneous symme-
try breaking is connected with the emergence of matter according to the Higgs
mechanisms [36, pp. 253 – 265]. By contrast, we demonstrated the emergence
of musical harmony here, thereby offering a new solution to the old problem,
discussed by Maier [35].

5 Conclusion

In this paper, we investigated the emergence of discrete pitches and chords from
the continuum of sound. This is strictly related with the dualism between dis-
creteness and continuity in physics. Thus, the use of quantum formalism with
quantization rules appeared as a natural and helpful research tool. Applying
harmonic analysis to the quantum deformation model, we derived quantiza-
tion conditions for musical wave functions in infinite-dimensional Fourier space.
Combining musical transposition symmetry with the discrete convolution model
for chordal contexts, we derived the emergence of the chromatic 12-tone cyclic
group through symmetry breaking. Other possible symmetries are cyclic groups
as considered in microtonality approaches. This research opens up new interdis-
ciplinary and collaborative scenarios, where scientists and musicians can work
closely, highlighting the relevance of paradigms from theoretical physics, and
thus from nature, for the definition of music fundamentals. We can wonder if,
once more, the roots of the best human creations might be hidden within the
rules and the beauty of nature.
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