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1. Introduction

Let A be an associative algebra over a field F' of characteristic zero, F(X) be the
free algebra generated by the countable set X = {1, z2,...} and W be a unitary asso-
ciative algebra over F. Then A is called W-algebra if it has a structure of W-bimodule
with some additional conditions. A generalized polynomial identity of A is a polynomial
f(z1,...,x,) of the free W-algebra W(X) that vanishes under all substitutions of the
elements of A. Roughly speaking, f(x1,...,2,) is a polynomial of F(X) with “coef-
ficients” in W. Notice that such “coefficients” may appear also between two variables.
Clearly, these identities are a natural generalization of the ordinary polynomial ones aris-
ing when W coincides with F'. The set of all generalized polynomial identities GId(A)
is a Tyy-ideal of W (X), i.e., an ideal stable by endomorphisms of W{X), and one of the
main problems is to find a set of generators of such Ty -ideal.

The idea of generalized polynomial identities stems from the observation that some-
times when we study polynomials in matrix algebras, we want to focus on evaluations
where certain variables are always replaced by specific elements. Therefore, it would be
useful to have a theory that allows us to consider “polynomials” whose coefficients can
be taken from an algebra, instead of from a field.

Generalized identities first appeared in 1965 in Amitsur’s fundamental paper [1] on
primitive rings satisfying generalized polynomial identities. In 1969, Martindale devel-
oped this idea further and applied it to prime rings [15]. Later, two generalizations were
pursued: Martindale [16] and Rowen [20-22] investigated generalized polynomial iden-
tities involving involutions, while Kharchenko [10-12] explored generalized polynomial
identities involving derivations and automorphisms. These two directions were further
developed and studied by various authors (see [2] and its bibliography). In recent years,
in case W = A is finite dimensional and the bimodule action is the natural left and right
multiplication, Gordienko in [8] proved the so-called Amitsur conjecture, i.e., the limit
limy, 100 ¥/ gcn(A), where gc,(A), n > 1, is the generalized codimension sequence, ex-
ists and is a non-negative integer called the generalized PI-exponent of A. He also proved
that the generalized exponent equals the ordinary one defined by mean of the ordinary
codimension sequence ¢, (A). For what concern the general the problem of describing
the concrete generalized identities of an algebra so far it has been achieved only for the
algebra M,,(F") of n x n full matrices for all n > 1 (see for example [4]).

The codimension sequence of an algebra was introduced by Regev in [19] and it mea-
sures the rate of growth of the multilinear polynomials lying in the corresponding T-ideal.
In the same paper, Regev proved that if A satisfies a nontrivial polynomial identity, i.e.,
it is a PI-algebra, then its codimension sequence ¢, (A4), n > 1, is exponentially bounded.
Later Kemer in [13] showed that the variety generated by the algebra UT: of 2 x 2-upper
triangular matrices is of almost polynomial growth, i.e., it has exponential growth of
the codimensions but every proper subvariety has polynomial growth. Analogous results
were proved in various settings such as varieties of group-graded algebras [23], algebras
with derivation [6], special Jordan algebras [17]. It is worth mentioning that in the case
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of algebras with involution, Mishchenko and Valenti in [18] constructed out of UT, a
suitable algebra generating a variety of almost polynomial growth.

Motivated by the above results, here we deal with the generalized polynomial identities
of UT, and we investigate the growth of the generalized codimension sequence gec,,(A)
of any algebra A lying in the generalized variety generated by UTs.

The paper is organized as follows. After a necessary background on the generalized
identities involving basic definitions and preliminary settings given in Section 2, we
describe in Section 3 the T-ideal of generalized identities of UT» as UTs-algebra finding
its generator. In Section 4 we study the space of multilinear generalized identities of UT»
of degree n as a representation of the symmetric group S, decomposing its character
into irreducibles by computing the corresponding multiplicities. Finally, in Section 5, we
prove the main result of the paper, i.e., the generalized variety of UT,-algebras generated
by UTs, gvar(UT»), has no almost polynomial growth but we are able to construct
inside gvar(UT3) a subvariety of almost polynomial growth. Moreover, we present another
variety of UTs-algebras of almost polynomial growth of the codimensions that is not
contained in gvar(UT5).

2. On generalized polynomial identities and W -algebras

Throughout this paper F' will denote a field of characteristic zero and all the algebras
will be associative and have F' as their underlying field.

Given an algebra W, we say that an algebra A is a W-algebra, if A is a W-bimodule
such that, for any w € W, a1, a2 € A,

w(araz) = (waq)az, (a1a2)w = aj(asw), (a1w)as = a1(was). (2.1)

When W = F, a W-algebra is just an F-algebra, that is an algebra over the field F.
Clearly, W itself has a natural structure of W-algebra by taking the left and right W-
actions to be the usual left and right multiplications of W. In general, this is not the only
way to define a structure of W-algebra on W itself; in fact, there might exist different left
and right W-actions on W itself that induces a structure of W-algebra (see for example
Section 5).

For fixed W the class of W-algebras is a variety in the sense of universal algebra and
is nontrivial since it contains W itself. Ideals of W-algebras (W -ideals) are understood to
be invariant under the bimodule action of W, and homomorphisms ¢ : A — B between
W-algebras A, B must satisfy ¢(wav) = we(a)v for a € A, w,v € W.

The variety of W-algebras contains the free (associative) W-algebra W(X), freely
generated by the countably infinite set of variables X := {x1, xq, ...} which satisfies the
following universal property: given a W-algebra A, any map X — A can be uniquely
extended to a homomorphism of W-algebras W(X) — A.

We can give the following combinatorial description of W(X). First notice that it is
not restrictive to assume that W is an unital algebra; in fact, if not, we can consider the
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unital algebra W+ = W + F'1 obtained from W by adding the unit element 1. So, given
a basis By := {w; }iez of W such that wg = 1, if we identify x; = la; = 2,1 for ¢ > 1,
then a basis of W (X) is the following

BW(X) = {wiolewilxj2 C Wi, 4 T, Wi, | n>17J1,...,Jn > 1, Wiy« -, W4, € Bw} .

The multiplication of two elements wj,xj, wi, T, - - ws, _, %5, Wi, and Wy, Ty, Wi, T, -
Wk, T, Wk, of Bwxy is given by first juxtaposition —w;,zjwizj, -
W;, X, Wi, Wy Tl W,y Ty - - Wk, _, L1, Wk, and then expanding w;, wy, = ZpeI oWy,
ap € F. So, W(X) is also understood as some sort of non-commutative polynomials with
coefficients in W. Clearly, the free W-algebra is endowed with a W-bimodule action that
satisfies relations (2.1) determined by first juxtaposition

W (Wig Ty Wiy Ty -+ Wy, T, Wi )W = WeWig Ly Wey Ty ++ - Wey 4 T, Wi, WY,

and then expanding wiw;, and w;, w; in the given basis By of W, for wy, w; € By and
Wig T, Wiy Ty + Wi, Tj, Wi, € By xy. The elements of the free W-algebra are called
generalized W -polynomials or simply generalized polynomials when the role of W is clear.
A Ty -ideal of the free W-algebra is an W-ideal which in addition is invariant under all
algebra endomorphisms ¢ of W(X) such that p(wfv) = we(f)v for all f € W(X) and
w,v € W; by the universal property, under the endomorphisms that we call substitutions,
which send variables of z; € X in elements of W(X).

Given a W-algebra A, a generalized polynomial f(x1,...,z,) € W(X) is a generalized
W -identity, or simply generalized identity if there is not ambiguity about W, of A if
fla,...,a,) =0 for any aq,...,a, € A, ie., f is in the kernel of every homomorphism
from W(X) to A. We denote by GIdw (A4), or simply GId(A) when ambiguity does not
arise, the set of differential identities of A, which is a Tyy-ideal of the free W-algebra.
Remark that in case W = F', then we are dealing with the ordinary polynomial identities.

For n > 1, we denote by GPW or simply GP,, the vector space of multilinear gener-

alized polynomials with coefficient in W in the variables x1, ..., x,, so that
GP, = SpanF{wioxo(l)wth’(Q) C Wiy, Lo (n) Wiy, | S Sn, Wigy -+, Wy, € Bw},
where S,, denotes the symmetric group acting on {1,...,n}. As in the ordinary case,

since F' has characteristic zero, a Vandermonde argument and the standard linearization
procedure show that the Ty -ideal GId(A) is completely determined by its multilinear
generalized polynomials (see [5, Proposition 4.2.3]). We also consider the vector space

GP,
GP,(A) i= ——
(4) GP, NGId(A)
and its dimension gc,(A) := dimp GP,(A) is the nth generalized codimension of A.

Remark that if W is a finite-dimensional algebra, then gc, (A) is finite for n > 1.
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The symmetric group S, acts naturally on the left on GP, by permuting the variables:
for o € Sy, o(wziv) = Wy ;yv. Since GP, N GId(A) is stable under this S,-action, the
space GP,(A) is a left S,-module and its character, denoted by gx,(A), is called the
nth generalized cocharacter of A. Also, since the characteristic of F' is zero,

gxn(A) =D maxa,
AEn

where A is a partition of n, x, is the irreducible S,,-character associated to A and my > 0
is the corresponding multiplicity.

A variety of W-algebras generated by a W-algebra A is denoted by gvary, (A), or
simply gvar(A), and is called generalized W-variety, or simply generalized variety, and
GId(V) := GId(A). The growth of V = gvar(A) is the growth of the sequence ge, (V) :=
gcn(A), n > 1. We say that the generalized variety V has polynomial growth if gc, (V) is
polynomially bounded and V has almost polynomial growth if gc, (V) is not polynomially
bounded but every proper generalized subvariety of V has polynomial growth.

In the last part of this section our focus will be on generalized polynomials that are
trivial. Recall that a generalized polynomial f € W (X) is said W -trivial, or simply t¢rivial,
if f =0; otherwise f is W-nontrivial, or simply nontrivial. Since determining whether a
generalized polynomial is trivial is not always straightforward, we shall introduce some
techniques and approaches that can help.

Let f = f(z1,...,2,) € GP, be a multilinear generalized W-polynomial in the vari-
ables z1,...,x,. Given ¢ € S,, we denote by f, the sum of the monomials of f in which
the variables occur exactly in the order z,(1), To(2), - - - s To(n), and we call it a generalized
monomial of f. If A is a W-algebra, then f is called A-proper if f, ¢ GId(A) for some
o € S,. Clearly, if f is W-proper, then it is W-nontrivial. In general, the converse is not
always true. Although, when W = F “proper” and “nontrivial” are synonymous.

Now we shall focus on linear elements of W(X) in a single variable z, i.e., elements of
GP, = spanp{wav|w,v € By }. Let us introduce the following notation. Let End g (W)
be the algebra of endomorphism of A with product o given by the usual composition
of function. Denote by L, R : W — Endp(W) the operators of left and right multipli-
cations, i.e., for w € W, the left (resp. right) multiplication by w is the endomorphism
Ly : W — W (resp. Ry, : W — W) of W defined by

Ly (v) :==wv (resp. R, (v) := vw),
for all v € W, and consider Ly Ry := spanp{L,, o R, | w,v € By} C Endp(W).
Lemma 2.1. The linear map ¢ : Ly Rw — G Py given by
¢(Lw o Ry) = wav,

for any w,v € By, is an isomorphism.
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Proof. Clearly, ¢ is surjective. Now, let 221 a; Ly, o R, € ker ¢, where w;, v; € By and
o; € Ffor1 <i<m.Then f => ", aywzv; = 0, i.e., f is a generalized polynomial
W-trivial. As a consequence, if we consider W as a W-algebra with the natural the left
and right W-actions defined by multiplication, then it follows that ZZZI a;w;av; = 0 for
alla e W, ie, >"  a;Ly, o Ry, = 0. Thus ¢ is also injective, as required. O

As a direct consequence of Lemma 2.1, we have the following criterion that establishes
whether a linear generalized polynomial in one variable is trivial or not.

Proposition 2.2. Let f = >", cywzv; € GP. Then f is W-trivial if and only if
> @iLy, o Ry, = 0.

Corollary 2.3. Let W be W -algebra with the left and right actions defined by multiplication
and f € W(X). If f € GP, N GId(W), then f is W-trivial.

Proof. Let f = > 1", cyw;zv; € GPp N GId(W), where w;,v; € By and o; € F for
1<i<m.Ifa, =0forall 1l <i<m,then f is W-trivial. So, let us assume that
a; # 0 for some 1 <4 < m. Since f € GIA(W), > I", yw;av; = 0 for all a € W, ie.,
S aiLy, (Ry,(a)) =0 for all a € W, and by Proposition 2.2 f is W-trivial. O

So, when we consider W as W-algebra with the natural left and right W-actions
defined by multiplication, then there are no nonzero linear generalized identities in one
variable. It is important to notice that in case we are considering W with the structure of
W-algebra given by another action, then this result is not in general true (see Section 5).

In what follows we shall assume that W = UT5, the algebra of 2 x 2 upper triangular
matrices over F, i.e., we shall work in the class of UTs-algebras. Also, we shall consider
as a basis the set By, = {1 := e11 + ea9, €22, €12}, where e;;’s are the standard matrix
units.

3. Generalized polynomial identities of UT3

In this section we shall compute a basis for the T-ideal of generalized identities, and
the corresponding codimension sequence, of UT, as UTs-algebra with the left and right
UTs-actions given by the usual multiplication.

Let [z1,22] := 2129 — 2221 be the commutator of x; and z5. Also, in what follows we
use [z, T2, ..., 2] to denote a left normed commutator. A straightforward computation
shows that the following polynomial is a generalized polynomial identity of UTx:

[21, 22] — [z1, 22, €20] = 0. (3.1)

Also, it is a UTy-nontrivial polynomial since it is UTs-proper. Next, we find some con-
sequences that we will use to reach our goal.
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Lemma 3.1. The following polynomials are generalized identities of UTs and consequences

of (3.1):
eanlx1, Tal; (1, 2] — (21, T2leas; [T1, @2][xs, x4]; X1, x2]e12; era]x1, 2]

Proof. By acting on (3.1) by ess from the right we get that esa[z1,22]e22 = 0. By
Proposition 2.2 egaxess = egax, then it follows that egs[zy, 23] = 0. Moreover, as a
consequence of (3.1) and eas[x1, 2] = 0, we obtain that [z1, z2] — [£1, X2]esn = 0.

Also, by multiplying [z1,22] — [21,Z2]ess = 0 by [x3,24] on the right and by using
eanlr1, 23] = 0 we get [x1, xa][x3, 24] = 0.

Finally, the generalized identities eja[z1,22] = 0 and [z1,23]e;2 = 0 follow from
eanlr1, 23] = 0 and |21,z — [21, 22]eaa = 0, respectively, by acting by ejo respectively
from the left and the right. O

We are now in position to prove that the generalized polynomial (3.1) span GId(UT3)
as T-ideal.

Theorem 3.2. Let UTy be the UTy-algebra with the action given by the right and the left
multiplication. Then GId(UT3) is generated, as Tyr,-ideal, by the following polynomial:

[-rla-732] — [-%‘1,.’)3'2,622].
Moreover, ge,(UTy) = (n +2)27 "1 + 2.

Proof. Let I be the Tyr,-ideal generated by the above polynomials. It is clear that I C
GId(UT5). In order to prove the opposite inclusion, let w be a monomial of GP,. If w does
not contain any esy or ejs, i.e., it is an ordinary monomial, then, since [z, zo][z3, 24] € T
(Lemma 3.1) and by applying the well-known reduction process modulo the ordinary
polynomial identities of UT5 (see for instance [7, Theorem 4.1.5]), w can be written as a
linear combination of z1xs - - - x,, and

Ly =+ Ty, [mk’ Lpys--- "Tpnf'm,fl]7

where 0 <m<n—-2, 1 < - <Ilpand k>p; < - < Pp_m-_1-

Now, suppose that in w appears at least one ess. By Proposition 2.2, essxess = eoor,
egoxers = 0 and ejaress = e1ax, then we may assume that w contains exactly one ess.
By the Poincare-Birkhoff-Witt Theorem and by egs[z1,x2] € I (Lemma 3.1), w can be
written as a linear combination of essxixs - - -, and polynomials of the type

xil ...l'iy‘cl...cs7

where i < --- < 4, and ¢y, ...,cs are left-normed commutators and just one of them
contains egq. Since [x1, x2][x3, 4] € I (Lemma 3.1), then s = 2 and one in between of
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the two commutators c1, ¢y contains ess. Now, since eag[r1, 22], [21,22] — [71, 22]eas €
I (Lemma 3.1), we may assume that s = 1. Moreover, since [z1,x2] — [21,Z2]ean €
I (Lemma 3.1), then we can assume that esy appears in the second position of the
commutator (otherwise we can erase ess and come back to the previous case of ordinary
polynomials). Now, take the left-normed commutator [zy,ea2,xj,,...,z;,] and notice
that using the same reasoning as we did before, we may assume that j; < --- < js. Also,
by the Jacobi identity [z, €22, 21] = [21, €22, T2] — [¥1, T2, e22] it turns out that

(€2, €22, 1] = [x1, €22, 2] — [w1, 22] (mod I).

This implies that the left-normed commutator can be written as [z;,, €22, Tiy, - - ., Ti,]
where 17 < ig < -+ < 1.

Finally, let w be a monomial of GP, containing at least one ej>. Again by Proposi-
tion 2.2, ejgxe1s = 0, esoxe;r = 0 and ejaxess = e1ax, then w must contain just one eqs.
Moreover, since by Lemma 3.1 eja[z1, 22], [21,x2)e1a € I, all the variables on the left
and on the right of e;o are ordered. Thus w can be written modulo I as

xil o ’rir€12xj1 e xj",,,n
where 0 <r <n, i <--- <t and j; <+ < Jp_r.
By putting together all the previous remarks, we have proved that GP, is generated

modulo I by the polynomials:

Ty En;

€221 * * T

() _ .

X3 =@y o mi€12T5 Ty, (3.2)
Lk) _ .

X (LR =Xy X [Tk Tong s e e s Tiny |
(P) _

X22 = Tpy Tp, [xqueﬂu Lggy -y va]

where Z = {i1,...,ir}, L={l1,...,ls} and P = {py,...,p,} are subsets of {1,...,n},
i< e <y 1 < < Gy i < e <l ke >mp < e <y, p1 < o0 < Pus
G <q<-<q,0<r<n,t>1landwv>1.

Next we prove that these elements are linearly independent modulo GId(UTz). To
this end, let

[ =@ xp + agegomy - Ty + Z ﬂng) + Z’Yﬁ,kX(ﬁ’k) + Z 57>X2(;))
z L.k P

be a linear combination of the generalized polynomials (3.2) and suppose by contradiction
that f # 0. We shall make suitable evaluations to prove that f = 0 and this will complete
the proof.
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First, if we evaluate 1 = --- = z, = ej1, then we get aje;; + fzreis = 0, where
T ={1,...,n}, thus a3 = Bz = 0. Now let us make the evaluation z; = -+ =z, = e.
In this case we get agess + fSrie12 = 0, where I = 0, so ag = Bz = 0. For a fixed
Z={i1,...,0r}, weset x;;, = -+ =ux; = ey and x;, = --- = x; = ez and we
get Bre1s = 0 thus Bz = 0. Now, for fixed £ = {ly,...,l5} and k, from the evaluation
Ty, ==, =ei1+ew, Ty =eppand Ty, = = Ty, = €22, We get vz pe12 = 0, thus

vc,k = 0. Here remark that all the polynomials of the type XQ(;)) evaluate to zero since

in X (k) it must be k > my < --- < m; whereas in XQ(;D) it must be 1 < g2 < -+ < -
Finally, for any fixed P = {p1,...,pu}, we make the substitution z,, = --- = z,, =
ei1 + €22, Tq, = €12 and x4, = -+ = T4, = €22 and we get dpeip = 0, that is ép = 0.
Therefore, all the scalars appearing in f are zero, i.e., f = 0, a contradiction.

Thus the elements in (3.2) are linearly independent modulo GId(UT:) and, since
GP,NI C GP,NGId(UTz), this proves that GId(UT3) = I and the polynomials in (3.2)
are a basis of GP,, modulo GP, N GId(UT>). Hence, by counting we get

2+ 5(0) £ ()£ ()
BB B0 50

=Mm+2)2"1+2. O

4. Generalized cocharacter sequence of UT»

In this section, we shall determine the generalized cocharacter of UT5 as UTs-algebra
where the action of UT, as bimodule over itself is the usual product of UT5.

We shall start by proving some technical lemmas that give us a lower bound for the
multiplicities my of nth generalized UTs-cocharacter of UT,

9Xn(UT2) = maxa. (4.1)

AFn
To this end recall that any irreducible left S,-module W) C GP, with character x, can
be generated as S,,-module by an element of the form er, f, for some f € W) and some

tableau T\ of shape A. Here er, = ) sepry, (sgn7)o7 is a minimal quasi-idempotent
7€CT,
corresponding to Ty, where Ry, and Cp, are the subgroups of S,, stabilizing the rows

and columns of T}, respectively.

Lemma 4.1. m,) > 2n + 3 in (4.1).

Proof. Let us consider the standard tableau

Tiny = |1]2]-- - [n],
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and the following 2n + 3 generalized polynomials associated to it

a(z) = 2", (4.2)
aég) (z) = exna”, (4.3)
0% (x) = &'z ep)e ™, 1<i<n, (4.4)
aff) (x) =alena" I, 0<j<n (4.5)

These polynomials are obtained from the quasi-idempotents corresponding to the tableau
T(y by identifying all the elements. Clearly, the polynomials (4.2)—(4.5) do not vanish
in UT,. We claim that these generalized polynomials are linear independent modulo
GId(UTy). So, let f € GId(UT3) be a linear combination of such polynomials, i.e.,

)+ Zﬁzazz + Z'Yjagjz)

First suppose that a # 0 or 7, # 0. Then, by making the evaluation z = e;; one gets
aeq1 + Yne12 = 0. Hence, it follows that o = 7,, = 0, a contradiction.

Now assume that Gy # 0 or 79 # 0. Then, if we consider the evaluation x = egs, we
obtain Spess + ype12 = 0. Hence, it follows that Sy = v9 = 0, a contradiction.

Next, assume that there exists v; # 0 for some 1 < j < n — 1. If we substitute
T = ey + ego with § € F, 6 # 0, we get Z?:I 5jfyj = 0. Since F' is an infinite filed, we
can choose d1,...,0,—1 € F such that d; # 0 and ; # 6; for 1 <4 # j <n — 1. Then
we get the following homogeneous linear system of n — 1 equations in the n — 1 variables

717"'7777.—1
Za =0, 1<k<n-1.

Since the matrix associated to the above system is a Vandermonde matrix, it follows
that v; = 0, for any 1 < j < n — 1, a contradiction.

Finally, if 8; # 0 for some 1 < ¢ < n, then by making the substitution x = dej; +e22+
e12, we get that >_"  6'8; = 0. Now, as above, one may choose distinct d1,...,8, € F
such that é; # 0 for 1 < ¢ < n. Hence, we obtain the following linear system of n
equations in the n variables §1,..., G,

> 68i=0, 1<k<n.

Again, we obtained a linear system whose associated matrix is a Vandermonde matrix.
Thus, it follows that §; = 0 for any 1 < ¢ < n, a contradiction. Therefore the 2n + 3
generalized polynomials (4.2)—(4.5) are linearly independent modulo GId(UT5).
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Notice that the complete linearization of a(x) is e, (@1,...,2n) = er,, (T1- - Tn),
and, for every 0 < < n, the complete linearization of agig) (z) and aliQ( ) are the poly-

nomials 6?23’ (T1,. s m0) = er, (21 zica[T4, e20]Ti1 -+ 2,) and e?lr‘;’ (T1ye ey Ty) =

€T, (21 - 21241 - - Ty), respectively. Then it follows that the polynomials €(n)>
e?ff)’z, 6((3713’2 are also linearly independent modulo 1d*(UT,) and as a consequence

M(p) = 2n + 3, as desired. O
Lemma 4.2. If p > 1 and ¢ > 0, then mp4qp) > 3(q+1) in (4.1).

Proof. For any 0 <i < ¢, let T

(p+0.p) be the standard tableau

i+1 [ i+2 [ Jitp=1] i+p [1]--|ili+2p+1]-[n]
i+p+2li+p+3l---] i+2p li+p+1 ’

and let associate to it the following generalized polynomials

b (,y) =2 @ Elw,ylg- -Gt
p—1 p—1

C;S,Z;)q(m,y) =3’ Z- - d(xerny — yerpx) Yoo gt

p—1 p—1

d;%( y) =a' g i(vexny — yenx)y---jal

where the symbol ~or " means alternation on the corresponding variables. For any 1 <
i < g, these polynomials are obtained from the quasi-idempotents corresponding to the
tableau T((;qu ) by identifying all the elements in each row. Also, they are not generalized
identities of UT5.

Next, we shall show that the generalized polynomials bz(f;zl(x,y) c](gzl(x Y) dz(f}](x, ),

0 < i < g, are linear independent modulo GId(UT3). To this end, let us consider

q q

F =Y aibiy(e.y) + ) Ficl)(z,y) +Z% () (2,) € GIA(UT).

1=0 =0

First, suppose that there exists 8; # 0 for some 0 < i < ¢q. By evaluating x = deq1 + eao,
with § € F, § # 0, and y = eq1, we get > ;_o(—1)P~1§'8; = 0. Since F is infinite, we
may take d1,...,0q41 € F, where 6; # 0, §; # i, for all 1 < j #k < ¢+ 1. Thus, as in
the proof of the previous lemma, we obtain the following homogeneous linear system of
q + 1 equations in the g + 1 variables fo, ..., 84

q
D 0Ai=0, 1<j<q+l. (4.6)
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Since the matrix associated to the system above is a Vandermonde matrix, it follows
that 8; =0, for all 0 < i <gq.

Now if there exists «; # 0 for some 0 < i < ¢, then we substitute z = de1; + e12 + €a9,
with § € F, § # 0, and y = e11, and we get » . (—1)?"'6a; = 0. Thus, as above,
since F' is infinite, we obtain a homogeneous linear system of ¢ + 1 equations in the
g + 1 variables ay,...,a, equivalent to (4.6). Therefore a; = 0 for all 0 < ¢ < ¢, a
contradiction.

Finally, assume that there exists 7; # 0 for some 0 < ¢ < ¢g. By making the evaluation
T = dey; + e1o + ego, with § € F', 6 # 0, and y = eq, we obtain 23:0 d%y; = 0. Then,
as above, we get a homogeneous linear system of ¢ + 1 equations in the ¢ + 1 variables
Y0, - - -, Vg equivalent to (4.6). So, 7; = 0 for all 0 < ¢ < ¢, a contradiction.

Thus, the 3(q + 1) generalized polynomials b,(,izl(x,y), cg}](x,y) dz(,z;)q(ac,y), 0<i<uyg,
are linearly independent modulo GId(UT5) and, so, as in Lemma 4.1, mp4.q.p) > 3(¢+1),
as required. O

Lemma 4.3. If p > 1 and ¢ > 0, then mp4qp.1) > ¢+ 1 in (4.1).

Proof. For any 0 < i < ¢, define T((;i_q%l) to be the standard tableau

i+p | i+l || it+p |1 Jili+2p+ 2] n]
i+p+1lli+p+3]---li+2p+1 :
i+p+2

and associate to it the generalized polynomial

i

O (@,y,2) =a' g TEgEG gt

p—1 p—1

where the symbol " or ~or “means alternation on the corresponding variables. For any
1 < i < g these generalized polynomials are obtained from the quasi-idempotents corre-

sponding to the tableau 7 by identifying all the elements in each row. Clearly,

(p+4q,p,1)

h;ﬁé(x, y,2), 1 < i < ¢, do not belong to GId(UT5). We claim that the ¢ + 1 generalized
polynomials h](gf)q(x,y,z), 0 < i < g, are linear independent modulo GId(UTz). If not,

there exist ayp, ..., € F' not all zero such that

q
> aih) (x,y, z) € GIA(UTY).
=0

If we substitute © = fe1; + e12 + €92, with § € F', f # 0, y = e11, and z = egq, then we
obtain Y 7 , Bla; = 0, and again with a Vandermonde argument we get that o; = 0 for
all 0 <7 < ¢, a contradiction.
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(@)

Therefore the ¢ + 1 generalized polynomials hpq(z,y,2), 0 < i < ¢, are linearly

independent modulo GId(UT53), as claimed. Again, as in Lemma 4.1, this implies that

Mptqp1) = ¢+ 1. O

Next, we shall prove the main theorem of the section.

Theorem 4.4. If gxn,(UT) = >, .,, maXx is the nth generalized cocharacter of UTs, then

2n + 3,
3(g+1),
q+1,
0,

if A= (n)
if\=(p+4q,p)
ifA\=(p+aqp1)
in all other cases

Proof. Let dy = deg x be the degree of xx, A - n. Then gc,(UTs) = ) ,,,, madx, and
by Lemmas 4.1, 4.2 and 4.3 we have that

1<p<[ 3]
0<q<n—2p

3(q+1)d(prqp) + Z

—1
1<p<|*3

0<g<n—2p-1

(g+ 1)d(p+q,p,1) - (A7)

Thus, to complete the proof is enough to show the (4.7) is actually an equality. To this
end, notice that for n = 2p+¢, by the hook formula (see for example [9, Theorem 2.3.21])
we have that

. B n! _(n)n—?p—!—l
(p+q7p)_p!q!(p+q+1)...(q+2) S \p) n—p+1-

Then, it follows that

> @+ Ddgprgp = (n+1)

1<p<|%] p=1 p=1 p=1
0<q<n-2p
[3] n n n [3] n
e (20 () -X()
p=1 P p=n—[%]+1 p p=1 p
n n 3] n
- 3 G ()
p=n—|%]+1 p p=1 p

where in the last equality we use that (
and Z;:O (z) = 2°. Hence, if n = 2k,

J

n—g+1) = (Z) n—];+1' Recall that z(;j) — J(;)
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2k —
§ (q+ )dptqp = (2k +1)(2°% — 1) — k2°% — 4k § ( ) ) =22k 9k — 1.
1<p<k p=1 N0
0<g<n-—2p

In case n =2k + 1,

2k +1
2k+1
Z (¢ + 1)d(prq,p) =(2k +2) (2 * 1<k‘+1)>

1<p<k

0<q<n 2p
k
2% + 1 2k
—(2k+1)2* + (k+1 —2(2k +1
@2 e () 2w+ E(p_l)
=%+l _ 9 2.
Thus, we have that

> g+ Vdprgp =2"—n—1. (4.8)
1<p<| %]
0<g<n-—2p

Now, for n = 2p + ¢+ 1, by applying the hook formula again, we get that

J _ n! :< n )p(n—2p)
e = - Dlglp+ Dp+q+2)p+a)---(@+2)  \p+1)n—p+1’

Then, by recalling that (1)) = (3) 558, (o 340) = () iy and (1) + () = (),

it follows

LL—l

Z (@+ Ddprgpn) = Z ((Zii)p - (p i 1)) (n — 2p).

‘. -
1<p<| 23 p=1
0<q<n—2p—1

Hence, with a similar computation as above, we obtain that

> @+ Ddgrgpny = —42""  +n+2. (4.9)

1<p<| 5t
0<g<n—2p—1

Thus, by (4.8), (4.9) and since d(,,) = 1, it follows that

(2n + 3)d(n) +3 Z (¢+ 1)d(p+q>p) + Z (¢+ 1)d(p+q,p,1)

1<p<[3] 1<p<| 5t )
0<q<n—2p 0<g¢<n—2p—1

=M +3+32"—n—1)+n—-4)2"""4n+2=(n+2)2"""1+2

Since by Theorem 3.2 ge,(UTy) = (n + 2)2"71 + 2, we get that (4.7) is actually an
equality and we are done. O



322 F. Martino, C. Rizzo / Journal of Algebra 666 (2025) 308—-330

5. On almost polynomial growth

In this section, we shall construct a variety of UTs-algebras inside gvar(UT») of almost
polynomial growth of the codimensions. We shall also present another variety of UTs-
algebras that have almost polynomial growth of the codimensions but it is not contained
in gvar(UT3).

Let us define on UT, a new structure as UTs-bimodule in the following way: let
1:=e11 + eq and e act by left and right multiplication as in the previous case and let

612'a2a~€1220

for all a € UTs. It readily follows that this action defines UT; as a new UTs-algebras
that we will denote it by UT°. Such a notation is justified by noticing that if we let D
be the subalgebra of UT» spanned by e;; and ess, then the above action is the natural
generalization of the left and right multiplication of UT, by elements of D, i.e., we can
also view UT; as a D-algebra.

Following step-by-step the lines of Theorem 3.2 and Theorem 4.4 with the necessary
changes, we can prove the following results.

Theorem 5.1. Let UTP be the UTy-algebra with the above action. Then GIA(UTY) is
generated, as Tyr,-ideal, by the following polynomials:

e12q;  wein; (X1, T2) — (21,22, €]
Moreover, ge,(UTP) = n2n~1 + 2.

Theorem 5.2. Let gx,(UTY) = >, maXa be the nth generalized cocharacter of UTY .
Then

n+ 2, if A= (n)

iy — 2¢+1), fr=@+qp)
q+1, ifAx=®+aqp1)
0, in all other cases

Remark that by Theorem 5.1 UTY € gvar(UT) and gvar(UTP) grows exponentially,
then it immediately follows that

Corollary 5.3. guar(UT5) does not have almost polynomial growth of the codimensions.

Next, we shall prove that gvar(UT{) is a variety of UT-algebras of almost polynomial
growth. If V is a variety of UT5-algebras, then for every n > 1, we write

9xn(V) = m¥xa,

AFn
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where m/\ denotes the multiplicity of irreducible character x in gx, (V).

Remark 5.4. Recall that the n + 2 linear independent generalized polynomials corre-
sponding to the partition A = (n) are:

a(x) = 2",
aé%) (r) = ex
aég(x) =2z, ez 1<i<n.

The 2(q 4 1) linear independent generalized polynomials corresponding to the partition
A= (p+q,p) are:

o) (z,y) =2’z &[z,yly--ga?’, 0<i<q

p—1 p—1

Finally, the ¢ + 1 linear independent generalized polynomials corresponding to the par-
tition A = (p+ ¢,p, 1) are:

W@,y ) =o' g BagEg-gat, 0<i<q.
Lemma 5.5. Let U be a proper subvariety of guar(UTY). Then there exist constants M <
N such that

aMyaN=M 4 Z wir'yzN e GIA(U),
i<M

for some p; € F.
Proof. Let a(z), aé;( ), bg()z(x,y), d,(;{zl(x,y), and hé{c)](:c,y,z), 0<i<n,0<j<gq,be

the polynomial of Remark 5.4. Since Z/l &V =gvar(U T.P), then there exists A - n such
that m)\ < m)\ Thus by Theorem 5.2, it follows that either

ara(x) + Z a2 a22 ) € GId(U), (5.1)

with oy, aéi) not all zero, or
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with 3;,d; not all zero, or
th(z x,y, z) € GId(U), (5.3)

with 7; not all zero. Suppose that (5.2) holds. Then

[z, y) :Zﬂﬂziiu~j[x,y]g...g$q7i

e
=0 p—1 p—1
q . .
+ z; 0;x' T - ZT(wegoy — yegox) Y- gx?" € GId(U).
= p—1 p—1

If we substitute in f(x,y) the variable y with y; + y2, we obtain that

—_—~—

q
Flayye) = B T+ Tlawyr + o) (1 +v2) -+ (Y1 + y2) 297"
i=0

p—1 p—1

+ Z 62 T Z(weas(y1 + y2) — (Y1 + y2)enx)

X (y1 +y2) - (1 +y2) 277" € GIA(U).

p—1

Now, let us consider in the polynomial f(z,y1,y2) the component f'(x,y;,ys2) of degree
1 in yo. By substituting in f/(x,y1,y2) the variable y; with 22 and y, with [z, y], we get
that

me T | R A
p—1 p—1

+ Z 6 T - T(xegafr, y) — [2,ylesw) 22 - - g2g070 € GId(U).
1=0 p—1 p—1

Since egs[z,y], [7,y] — [z, y]es € GIA(UTL) C GId(U), it follows that

- T F 2. g2 0 2.2 pa—i
glz,y) = ¥ﬁ2$ Txlr,ylg? 22z Z%m T T, ylra?--- 22297 € GIAU),
= p—1 p—1 p— 1 p—1

{

(5.4)
where v, =8, +6; € F,0<i<q.
Suppose first that 5; # 0 for some 0 < i < ¢, and let ¢ = max{i|B; # 0} and
= deg g(x,y). Since g(z,y) € GId(U), we have that
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t+2p—1 N’'—2p—t—1 Z /i N'—i—-2
th +2p [$7y]$ P + ’szl[xvy]x ’ € GId(Z/I),
i<t+2p—1

for some v, € F. Since 3; # 0, we get that

xt+2pny/_2p_t_1 + Z Mixiny/_i_l € GId(U),
i<t+2p

for some p; € F. Now, if we set N = N’ —1 and M =t + 2p, then it follows that

aMyaN =M 4 Z wir'yzN e GIA(U),
i<M

for some u; € F, as required.
Assume now that in (5.4) 8; = 0 for all 1 < ¢ < g. Then v; # 0 for some 1 < i < gq.
So, let t = max{i|v; # 0} and N’ = degg(x,y) in (5.4). Then

,tht+2p_2[x’ y]xN/_Zp—t + Z ,y;xz [l‘, y]xN/_iJ c GId(u),
i<t+2p—2

for some v, € F. Since v # 0, we get that

xt+2p71yz1\’/*2p*t*1 + Z ‘uixiny/*i*l e GId(U),
i<t+2p—1

for some p; € F. Now, if we set N = N’ —1 and M =t + 2p — 1, then it follows that

My N M Z pwirtyzN Tt € GId(U),
i<M

for same p; € F, as required.
Now, suppose that (5.1) holds. Then, we have that

arx” —l—al Jegoa™ +Za 7 [z, eg0]z" ™t € GIA(U). (5.5)

Let us substitute « with 21 + x5 in (5.5), and consider the homogeneous component of
degree 1 in x9. Then in this homogeneous component, we substitute x; with x and x5
with [z, y]. Thus, with similar computations as in the previous case, we reach the desired
conclusion.

Finally, suppose that (5.3) holds in . By substituting in h,(f,é (z,y, 2) the variable z
with 22, we obtain (5.2), and, by the first case, the proof is complete. O

Proposition 5.6. Let U be a proper subvariety of gvar(UTYL). Then there exists a constant
N such that m%\’ <N forany A\Fn, n>1.
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Proof. By Lemma 5.5, there exists N such that

My N =M Z pirtyz™N € GId(U), (5.6)
i<M

for some p; € F and a suitable M < N. We shall prove that m& < 2N for all A - n. By
Theorem 5.2 it is enough to consider the cases when either A = (n), or A = (p+ ¢, p), or
A=(p+4qp1).

We prove the statement for A\ = (p + ¢,p). The other cases will follow with similar
arguments.
If ¢ < N there is nothing to prove. So, let us assume that ¢ > N and consider the
polynomials bg,)](x y) and dl(f,zl(x, y), 0 < i < g, defined in Remark 5.4. Notice that from
relation (5.6) it follows that

M= - ZN-M = N—i
VT Zryyly - Z izt x z,yly--gx (mod GId(UA)), (5.7)
p—1 p—1 <M o p—1
and
aM @ F(wepy —yempa)y---ga M
p—1 p—1
= Z izt .-z i(reany — yeoox) G- -- g " (mod GIA(U)). (5.8)
<M p— 1 p—1

Hence, since ¢ > N, we can apply the relation (5.7) to any polynomial bg;)q(x, y) such
that ¢ > M, and, as a consequence, we get that

b (w,y) = > bY)(w,y) (mod GIA(U)).
j<M

Similarly, since ¢ > N, we can apply the relation (5.8) to any polynomial dz(,g(x, y) such

that ¢ > M, and we obtain that

p)q (x,y) Z d(J) ) (mod GId(U)).

J<M

Therefore, it follows that ml){ <2M <2N =N , as required. O

Theorem 5.7. The variety of UTs-algebras generated by UTP has almost polynomial
growth.

Proof. Let U be a proper subvariety of V = gvar(UTJ). We shall prove that U has
polynomial growth of the codimensions. By Lemma 5.5, there exist constant M < N
such that
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aMygN-—M 4 Z pirtyzN e GId(U)
i<M

for some p; € F. By a standard multilinearization process (see for instance [7, Theorem
1.3.8]), we get

Z Lo(1) " To(M)YLo(M+1) " " Lo (N)
oceSN

+ Z Z WiTo(1) " To(i)YTo(it1) * To(ny € GIAU)
<M o€ESN

where 1, ...,z N are new variables.

In the previous identity, we substitute y by [y1,y=2], we multiply on the right by
z1-+-zp and we alternate x; with z;, for all 1 < ¢ < M. Since [z1,z2][x3,24] €
GIA(UTL) C GId(U), it follows that

Ty Imlyr, Yol Eurmg o an € GIAU).

Now, we multiply on the left by zp/41 -+ - 2n and we alternate x; with z; for all M +1 <
j < N. It readily follows that

Z1oEnly, ye)Z - En € GIAWU). (5.9)

Take the previous identity and substitute firstly y; by yiess and, secondly, yo by yseas.
We get

Ty TN (yre22y2 — Yay1€22) 21 - - Zn € GIA(U),
Ty IN(Y1yaean — Yaeooy1)z1 - 2y € GIA(U).

Let us sum the previous identities and, since [z1, 73] — [z1, T2]esz € GIA(UTY) C GId(U)
and (5.9) holds, we obtain

Ty In(y1e22ye — Yoeoy1)21 - - - 2y € GIA(U).
By renaming the variables, we get
fl"'i'Ni'N+le222N+121 2N € GId(Z/l) (510)

The identities (5.9) and (5.10) tell us that the irreducible Sy y41)-character correspond-
ing to the partition A = (N + 1, N 4+ 1) participates into the 2(N + 1)th generalized
cocharacter of i with a zero multiplicity, i.e., mZ(JN N4 = 0.

Finally, take identity (5.9), multiply it on the right by yny+1 and alternate yq, y2 and
YN+1- By renaming as before the variable y; by xny1 and yo by zy41, we get
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X1 - 'jNi'N+12?N+12N+121 - ZN E GId(Z/{)

Thus, as in the previous case, ml(1N+1,N+1,1) = 0.

Hence, if A F n is such that Ay > N + 2 then mﬁ’ = 0 or, equivalently, if x ) appears
with a non-zero multiplicity in the generalized S,,-cocharacter of U, then A must contain
at most N + 1 boxes below the first row. Therefore

@)= > mix
AFn
A=A <N+1
Recall that \; stands for the number of boxes of the ith row of .

Since |A| = A1 < N +1, then A; > n — (N + 1) and by the hook formula

|
n! <nN+1.

dy=xx(1) < (N D) S

We are now in a position to reach the goal, in fact by the previous remark and by
Proposition 5.6

gen(U) = gxn(U)(1) = Z m&tdy < Z NN+ < (N 4 1)2N'nVH
AFn AFn
[A[=A1<N+1 [A[=A1<N+1

since the number of partitions such that [A| — A\; < N + 1 is bounded by (N + 1)2.
Therefore ge, (U) is polynomially bounded and we are done. 0O

Let us denote by UTY the F-algebra UTh regarded as UTy-algebra, i.e., UTY has
a structure of UTh-bimodule where 1 := 1y, acts by left and right by multiplication,
€ -a=a-e32 =0and ejs-a=a-e =0 for all a € UT;. Clearly, from the definition
of this new action it readily follows that eqox = 0, zeags =0, e1ox = 0 and xejp = 0 are
generalize identities of UTY . Thus, we are dealing with ordinary polynomial identities,
and by the results in [3,13,14] we have the following,.

Theorem 5.8. Let UTY be the UTy-algebra with the above action. Then GIA(UTY) is
generated, as Tyr,-ideal, by the following polynomials:

ean;  Teaz; [w1,T2][w3, T4l
Moreover, ge, (UTE) =2""1(n — 2) + 2.

Theorem 5.9. Let gx,(UTS ) = >, maxa be the nth generalized cocharacter of UTY .
Then
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1, if A= (n)
mx=9q¢+1l, fA=(p+qp) orA=(p+qp1)-.
0, in all other cases

Theorem 5.10. The variety of UTy-algebras generated by UTYL has almost polynomial
growth.

Notice that from Theorems 3.2 and 5.8 it follows that UTY ¢ gvar(UTh). Also, as
a consequence of Theorems 5.1 and 5.8 we have that GId(UT{) ¢ GId(UTP) and
GId(UTP) ¢ GId(UTY'). Thus by Theorems 5.7 and 5.10 we have the following.

Corollary 5.11. The algebras UTY and UTP generate two distinct varieties of UTs-
algebras of almost polynomial growth.
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