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1. Introduction

Let A be an associative algebra over a field F of characteristic zero, F 〈X〉 be the 
free algebra generated by the countable set X = {x1, x2, . . .} and W be a unitary asso-
ciative algebra over F . Then A is called W -algebra if it has a structure of W -bimodule 
with some additional conditions. A generalized polynomial identity of A is a polynomial 
f(x1, . . . , xn) of the free W -algebra W 〈X〉 that vanishes under all substitutions of the 
elements of A. Roughly speaking, f(x1, . . . , xn) is a polynomial of F 〈X〉 with “coef-
ficients” in W . Notice that such “coefficients” may appear also between two variables. 
Clearly, these identities are a natural generalization of the ordinary polynomial ones aris-
ing when W coincides with F . The set of all generalized polynomial identities GId(A)
is a TW -ideal of W 〈X〉, i.e., an ideal stable by endomorphisms of W 〈X〉, and one of the 
main problems is to find a set of generators of such TW -ideal.

The idea of generalized polynomial identities stems from the observation that some-
times when we study polynomials in matrix algebras, we want to focus on evaluations 
where certain variables are always replaced by specific elements. Therefore, it would be 
useful to have a theory that allows us to consider “polynomials” whose coefficients can 
be taken from an algebra, instead of from a field.

Generalized identities first appeared in 1965 in Amitsur’s fundamental paper [1] on 
primitive rings satisfying generalized polynomial identities. In 1969, Martindale devel-
oped this idea further and applied it to prime rings [15]. Later, two generalizations were 
pursued: Martindale [16] and Rowen [20–22] investigated generalized polynomial iden-
tities involving involutions, while Kharchenko [10–12] explored generalized polynomial 
identities involving derivations and automorphisms. These two directions were further 
developed and studied by various authors (see [2] and its bibliography). In recent years, 
in case W = A is finite dimensional and the bimodule action is the natural left and right 
multiplication, Gordienko in [8] proved the so-called Amitsur conjecture, i.e., the limit 
limn→+∞

n
√
gcn(A), where gcn(A), n ≥ 1, is the generalized codimension sequence, ex-

ists and is a non-negative integer called the generalized PI-exponent of A. He also proved 
that the generalized exponent equals the ordinary one defined by mean of the ordinary 
codimension sequence cn(A). For what concern the general the problem of describing 
the concrete generalized identities of an algebra so far it has been achieved only for the 
algebra Mn(F ) of n× n full matrices for all n ≥ 1 (see for example [4]).

The codimension sequence of an algebra was introduced by Regev in [19] and it mea-
sures the rate of growth of the multilinear polynomials lying in the corresponding T -ideal. 
In the same paper, Regev proved that if A satisfies a nontrivial polynomial identity, i.e., 
it is a PI-algebra, then its codimension sequence cn(A), n ≥ 1, is exponentially bounded. 
Later Kemer in [13] showed that the variety generated by the algebra UT2 of 2×2-upper 
triangular matrices is of almost polynomial growth, i.e., it has exponential growth of 
the codimensions but every proper subvariety has polynomial growth. Analogous results 
were proved in various settings such as varieties of group-graded algebras [23], algebras 
with derivation [6], special Jordan algebras [17]. It is worth mentioning that in the case 
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of algebras with involution, Mishchenko and Valenti in [18] constructed out of UT2 a 
suitable algebra generating a variety of almost polynomial growth.

Motivated by the above results, here we deal with the generalized polynomial identities 
of UT2 and we investigate the growth of the generalized codimension sequence gcn(A)
of any algebra A lying in the generalized variety generated by UT2.

The paper is organized as follows. After a necessary background on the generalized 
identities involving basic definitions and preliminary settings given in Section 2, we 
describe in Section 3 the T -ideal of generalized identities of UT2 as UT2-algebra finding 
its generator. In Section 4 we study the space of multilinear generalized identities of UT2
of degree n as a representation of the symmetric group Sn, decomposing its character 
into irreducibles by computing the corresponding multiplicities. Finally, in Section 5, we 
prove the main result of the paper, i.e., the generalized variety of UT2-algebras generated 
by UT2, gvar(UT2), has no almost polynomial growth but we are able to construct 
inside gvar(UT2) a subvariety of almost polynomial growth. Moreover, we present another 
variety of UT2-algebras of almost polynomial growth of the codimensions that is not 
contained in gvar(UT2).

2. On generalized polynomial identities and W -algebras

Throughout this paper F will denote a field of characteristic zero and all the algebras 
will be associative and have F as their underlying field.

Given an algebra W , we say that an algebra A is a W -algebra, if A is a W -bimodule 
such that, for any w ∈ W , a1, a2 ∈ A,

w(a1a2) = (wa1)a2, (a1a2)w = a1(a2w), (a1w)a2 = a1(wa2). (2.1)

When W = F , a W -algebra is just an F -algebra, that is an algebra over the field F . 
Clearly, W itself has a natural structure of W -algebra by taking the left and right W -
actions to be the usual left and right multiplications of W . In general, this is not the only 
way to define a structure of W -algebra on W itself; in fact, there might exist different left 
and right W -actions on W itself that induces a structure of W -algebra (see for example 
Section 5).

For fixed W the class of W -algebras is a variety in the sense of universal algebra and 
is nontrivial since it contains W itself. Ideals of W -algebras (W -ideals) are understood to 
be invariant under the bimodule action of W , and homomorphisms ϕ : A → B between 
W -algebras A,B must satisfy ϕ(wav) = wϕ(a)v for a ∈ A, w, v ∈ W .

The variety of W -algebras contains the free (associative) W -algebra W 〈X〉, freely 
generated by the countably infinite set of variables X := {x1, x2, . . . } which satisfies the 
following universal property: given a W -algebra A, any map X → A can be uniquely 
extended to a homomorphism of W -algebras W 〈X〉 → A.

We can give the following combinatorial description of W 〈X〉. First notice that it is 
not restrictive to assume that W is an unital algebra; in fact, if not, we can consider the 
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unital algebra W+ = W +F1 obtained from W by adding the unit element 1. So, given 
a basis BW := {wi}i∈I of W such that w0 = 1, if we identify xi = 1xi = xi1 for i ≥ 1, 
then a basis of W 〈X〉 is the following

BW 〈X〉 :=
{
wi0xj1wi1xj2 · · ·win−1xjnwin | n ≥ 1, j1, . . . , jn ≥ 1, wi0 , . . . , win ∈ BW

}
.

The multiplication of two elements wi0xj1wi1xj2 · · ·win−1xjnwin and wk0xl1wk1xl2 · · ·
wkm−1xlmwkm

of BW 〈X〉 is given by first juxtaposition wi0xj1wi1xj2 · · ·
win−1xjnwinwk0xl1wk1xl2 · · ·wkm−1xlmwkm

and then expanding winwk0 =
∑

p∈I αpwp, 
αp ∈ F . So, W 〈X〉 is also understood as some sort of non-commutative polynomials with 
coefficients in W . Clearly, the free W -algebra is endowed with a W -bimodule action that 
satisfies relations (2.1) determined by first juxtaposition

wk(wi0xj1wi1xj2 · · ·win−1xjnwin)wl = wkwi0xj1wi1xj2 · · ·win−1xjnwinwl,

and then expanding wkwi0 and winwl in the given basis BW of W , for wk, wl ∈ BW and 
wi0xj1wi1xj2 · · ·win−1xjnwin ∈ BW 〈X〉. The elements of the free W -algebra are called 
generalized W -polynomials or simply generalized polynomials when the role of W is clear. 
A TW -ideal of the free W -algebra is an W -ideal which in addition is invariant under all 
algebra endomorphisms ϕ of W 〈X〉 such that ϕ(wfv) = wϕ(f)v for all f ∈ W 〈X〉 and 
w, v ∈ W ; by the universal property, under the endomorphisms that we call substitutions, 
which send variables of xi ∈ X in elements of W 〈X〉.

Given a W -algebra A, a generalized polynomial f(x1, . . . , xn) ∈ W 〈X〉 is a generalized 
W -identity, or simply generalized identity if there is not ambiguity about W , of A if 
f(a1, . . . , an) = 0 for any a1, . . . , an ∈ A, i.e., f is in the kernel of every homomorphism 
from W 〈X〉 to A. We denote by GIdW (A), or simply GId(A) when ambiguity does not 
arise, the set of differential identities of A, which is a TW -ideal of the free W -algebra. 
Remark that in case W = F , then we are dealing with the ordinary polynomial identities.

For n ≥ 1, we denote by GPW
n , or simply GPn, the vector space of multilinear gener-

alized polynomials with coefficient in W in the variables x1, . . . , xn, so that

GPn := spanF {wi0xσ(1)wi1xσ(2) · · ·win−1xσ(n)win | σ ∈ Sn, wi0 , . . . , win ∈ BW },

where Sn denotes the symmetric group acting on {1, . . . , n}. As in the ordinary case, 
since F has characteristic zero, a Vandermonde argument and the standard linearization 
procedure show that the TW -ideal GId(A) is completely determined by its multilinear 
generalized polynomials (see [5, Proposition 4.2.3]). We also consider the vector space

GPn(A) := GPn

GPn ∩ GId(A) ,

and its dimension gcn(A) := dimF GPn(A) is the nth generalized codimension of A. 
Remark that if W is a finite-dimensional algebra, then gcn(A) is finite for n ≥ 1.
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The symmetric group Sn acts naturally on the left on GPn by permuting the variables: 
for σ ∈ Sn, σ(wxiv) = wxσ(i)v. Since GPn ∩ GId(A) is stable under this Sn-action, the 
space GPn(A) is a left Sn-module and its character, denoted by gχn(A), is called the 
nth generalized cocharacter of A. Also, since the characteristic of F is zero,

gχn(A) =
∑
λ�n

mλχλ,

where λ is a partition of n, χλ is the irreducible Sn-character associated to λ and mλ ≥ 0
is the corresponding multiplicity.

A variety of W -algebras generated by a W -algebra A is denoted by gvarW (A), or 
simply gvar(A), and is called generalized W -variety, or simply generalized variety, and 
GId(V) := GId(A). The growth of V = gvar(A) is the growth of the sequence gcn(V) :=
gcn(A), n ≥ 1. We say that the generalized variety V has polynomial growth if gcn(V) is 
polynomially bounded and V has almost polynomial growth if gcn(V) is not polynomially 
bounded but every proper generalized subvariety of V has polynomial growth.

In the last part of this section our focus will be on generalized polynomials that are 
trivial. Recall that a generalized polynomial f ∈ W 〈X〉 is said W -trivial, or simply trivial, 
if f = 0; otherwise f is W -nontrivial, or simply nontrivial. Since determining whether a 
generalized polynomial is trivial is not always straightforward, we shall introduce some 
techniques and approaches that can help.

Let f = f(x1, . . . , xn) ∈ GPn be a multilinear generalized W -polynomial in the vari-
ables x1, . . . , xn. Given σ ∈ Sn, we denote by fσ the sum of the monomials of f in which 
the variables occur exactly in the order xσ(1), xσ(2), . . . , xσ(n), and we call it a generalized 
monomial of f . If A is a W -algebra, then f is called A-proper if fσ / ∈ GId(A) for some 
σ ∈ Sn. Clearly, if f is W -proper, then it is W -nontrivial. In general, the converse is not 
always true. Although, when W = F “proper” and “nontrivial” are synonymous.

Now we shall focus on linear elements of W 〈X〉 in a single variable x, i.e., elements of 
GP1 = spanF {wxv | w, v ∈ BW }. Let us introduce the following notation. Let EndF (W )
be the algebra of endomorphism of A with product ◦ given by the usual composition 
of function. Denote by L,R : W −→ EndF (W ) the operators of left and right multipli-
cations, i.e., for w ∈ W , the left (resp. right) multiplication by w is the endomorphism 
Lw : W −→ W (resp. Rw : W −→ W ) of W defined by

Lw(v) := wv
(
resp. Rw(v) := vw

)
,

for all v ∈ W , and consider LWRW := spanF {Lw ◦Rv | w, v ∈ BW } ⊆ EndF (W ).

Lemma 2.1. The linear map ϕ : LWRW −→ GP1 given by

ϕ(Lw ◦Rv) = wxv,

for any w, v ∈ BW , is an isomorphism.
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Proof. Clearly, ϕ is surjective. Now, let 
∑m

i=1 αiLwi
◦Rvi ∈ kerϕ, where wi, vi ∈ BW and 

αi ∈ F for 1 ≤ i ≤ m. Then f =
∑m

i=1 αiwixvi = 0, i.e., f is a generalized polynomial 
W -trivial. As a consequence, if we consider W as a W -algebra with the natural the left 
and right W -actions defined by multiplication, then it follows that 

∑m
i=1 αiwiavi = 0 for 

all a ∈ W , i.e., 
∑m

i=1 αiLwi
◦Rvi = 0. Thus ϕ is also injective, as required. �

As a direct consequence of Lemma 2.1, we have the following criterion that establishes 
whether a linear generalized polynomial in one variable is trivial or not.

Proposition 2.2. Let f =
∑m

i=1 αiwixvi ∈ GP1. Then f is W -trivial if and only if ∑m
i=1 αiLwi

◦Rvi = 0.

Corollary 2.3. Let W be W -algebra with the left and right actions defined by multiplication 
and f ∈ W 〈X〉. If f ∈ GP1 ∩ GId(W ), then f is W -trivial.

Proof. Let f =
∑m

i=1 αiwixvi ∈ GP1 ∩ GId(W ), where wi, vi ∈ BW and αi ∈ F for 
1 ≤ i ≤ m. If αi = 0 for all 1 ≤ i ≤ m, then f is W -trivial. So, let us assume that 
αi �= 0 for some 1 ≤ i ≤ m. Since f ∈ GId(W ), 

∑m
i=1 αiwiavi = 0 for all a ∈ W , i.e., ∑m

i=1 αiLwi

(
Rvi(a)

)
= 0 for all a ∈ W , and by Proposition 2.2 f is W -trivial. �

So, when we consider W as W -algebra with the natural left and right W -actions 
defined by multiplication, then there are no nonzero linear generalized identities in one 
variable. It is important to notice that in case we are considering W with the structure of 
W -algebra given by another action, then this result is not in general true (see Section 5).

In what follows we shall assume that W = UT2, the algebra of 2× 2 upper triangular 
matrices over F , i.e., we shall work in the class of UT2-algebras. Also, we shall consider 
as a basis the set BUT2 = {1 := e11 + e22, e22, e12}, where eij ’s are the standard matrix 
units.

3. Generalized polynomial identities of UT2

In this section we shall compute a basis for the T -ideal of generalized identities, and 
the corresponding codimension sequence, of UT2 as UT2-algebra with the left and right 
UT2-actions given by the usual multiplication.

Let [x1, x2] := x1x2 − x2x1 be the commutator of x1 and x2. Also, in what follows we 
use [x1, x2, . . . , xk] to denote a left normed commutator. A straightforward computation 
shows that the following polynomial is a generalized polynomial identity of UT2:

[x1, x2] − [x1, x2, e22] ≡ 0. (3.1)

Also, it is a UT2-nontrivial polynomial since it is UT2-proper. Next, we find some con-
sequences that we will use to reach our goal.
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Lemma 3.1. The following polynomials are generalized identities of UT2 and consequences 
of (3.1):

e22[x1, x2]; [x1, x2] − [x1, x2]e22; [x1, x2][x3, x4]; [x1, x2]e12; e12[x1, x2].

Proof. By acting on (3.1) by e22 from the right we get that e22[x1, x2]e22 ≡ 0. By 
Proposition 2.2 e22xe22 = e22x, then it follows that e22[x1, x2] ≡ 0. Moreover, as a 
consequence of (3.1) and e22[x1, x2] ≡ 0, we obtain that [x1, x2] − [x1, x2]e22 ≡ 0.

Also, by multiplying [x1, x2] − [x1, x2]e22 ≡ 0 by [x3, x4] on the right and by using 
e22[x1, x2] ≡ 0 we get [x1, x2][x3, x4] ≡ 0.

Finally, the generalized identities e12[x1, x2] ≡ 0 and [x1, x2]e12 ≡ 0 follow from 
e22[x1, x2] ≡ 0 and [x1, x2] − [x1, x2]e22 ≡ 0, respectively, by acting by e12 respectively 
from the left and the right. �

We are now in position to prove that the generalized polynomial (3.1) span GId(UT2)
as T -ideal.

Theorem 3.2. Let UT2 be the UT2-algebra with the action given by the right and the left 
multiplication. Then GId(UT2) is generated, as TUT2-ideal, by the following polynomial:

[x1, x2] − [x1, x2, e22].

Moreover, gcn(UT2) = (n + 2)2n−1 + 2.

Proof. Let I be the TUT2-ideal generated by the above polynomials. It is clear that I ⊆
GId(UT2). In order to prove the opposite inclusion, let w be a monomial of GPn. If w does 
not contain any e22 or e12, i.e., it is an ordinary monomial, then, since [x1, x2][x3, x4] ∈ I

(Lemma 3.1) and by applying the well-known reduction process modulo the ordinary 
polynomial identities of UT2 (see for instance [7, Theorem 4.1.5]), w can be written as a 
linear combination of x1x2 · · ·xn and

xl1 · · ·xlm [xk, xp1 , . . . , xpn−m−1 ],

where 0 ≤ m ≤ n− 2, l1 < · · · < lm and k > p1 < · · · < pn−m−1.
Now, suppose that in w appears at least one e22. By Proposition 2.2, e22xe22 = e22x, 

e22xe12 = 0 and e12xe22 = e12x, then we may assume that w contains exactly one e22. 
By the Poincarè-Birkhoff-Witt Theorem and by e22[x1, x2] ∈ I (Lemma 3.1), w can be 
written as a linear combination of e22x1x2 · · ·xn and polynomials of the type

xi1 · · ·xirc1 · · · cs,

where i1 < · · · < ir and c1, . . . , cs are left-normed commutators and just one of them 
contains e22. Since [x1, x2][x3, x4] ∈ I (Lemma 3.1), then s = 2 and one in between of 
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the two commutators c1, c2 contains e22. Now, since e22[x1, x2], [x1, x2] − [x1, x2]e22 ∈
I (Lemma 3.1), we may assume that s = 1. Moreover, since [x1, x2] − [x1, x2]e22 ∈
I (Lemma 3.1), then we can assume that e22 appears in the second position of the 
commutator (otherwise we can erase e22 and come back to the previous case of ordinary 
polynomials). Now, take the left-normed commutator [xk, e22, xj1 , . . . , xjs ] and notice 
that using the same reasoning as we did before, we may assume that j1 < · · · < js. Also, 
by the Jacobi identity [x2, e22, x1] = [x1, e22, x2] − [x1, x2, e22] it turns out that

[x2, e22, x1] ≡ [x1, e22, x2] − [x1, x2] (mod I).

This implies that the left-normed commutator can be written as [xi1 , e22, xi2 , . . . , xis ]
where i1 < i2 < · · · < is.

Finally, let w be a monomial of GPn containing at least one e12. Again by Proposi-
tion 2.2, e12xe12 = 0, e22xe12 = 0 and e12xe22 = e12x, then w must contain just one e12. 
Moreover, since by Lemma 3.1 e12[x1, x2], [x1, x2]e12 ∈ I, all the variables on the left 
and on the right of e12 are ordered. Thus w can be written modulo I as

xi1 · · ·xire12xj1 · · ·xjn−r
,

where 0 ≤ r ≤ n, i1 < · · · < ir and j1 < · · · < jn−r.
By putting together all the previous remarks, we have proved that GPn is generated 

modulo I by the polynomials:

x1 · · ·xn;

e22x1 · · ·xn;

X
(I)
12 = xi1 · · ·xire12xj1 · · ·xjn−r

;

X(L,k) = xl1 · · ·xls [xk, xm1 , . . . , xmt
];

X
(P)
22 = xp1 · · ·xpu

[xq1 , e22, xq2 , . . . , xqv ]

(3.2)

where I = {i1, . . . , ir}, L = {l1, . . . , ls} and P = {p1, . . . , pu} are subsets of {1, . . . , n}, 
i1 < · · · < ir, j1 < · · · < jn−r, l1 < · · · < ls, k > m1 < · · · < mt, p1 < · · · < pu, 
q1 < q2 < · · · < qv, 0 ≤ r ≤ n, t ≥ 1 and v ≥ 1.

Next we prove that these elements are linearly independent modulo GId(UT2). To 
this end, let

f = α1x1 · · ·xn + α2e22x1 · · ·xn +
∑
I

βIX
(I)
12 +

∑
L,k

γL,kX
(L,k) +

∑
P

δPX
(P)
22

be a linear combination of the generalized polynomials (3.2) and suppose by contradiction 
that f �= 0. We shall make suitable evaluations to prove that f = 0 and this will complete 
the proof.
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First, if we evaluate x1 = · · · = xn = e11, then we get α1e11 + βIe12 = 0, where 
I = {1, . . . , n}, thus α1 = βI = 0. Now let us make the evaluation x1 = · · · = xn = e22. 
In this case we get α2e22 + βI′e12 = 0, where I ′ = ∅, so α2 = βI′ = 0. For a fixed 
I = {i1, . . . , ir}, we set xi1 = · · · = xir = e11 and xj1 = · · · = xjn−r

= e22 and we 
get βIe12 = 0 thus βI = 0. Now, for fixed L = {l1, . . . , ls} and k, from the evaluation 
xl1 = · · · = xls = e11+e22, xk = e12 and xm1 = · · · = xmt

= e22, we get γL,ke12 = 0, thus 
γL,k = 0. Here remark that all the polynomials of the type X(P)

22 evaluate to zero since 
in X(L,k) it must be k > m1 < · · · < mt whereas in X(P)

22 it must be q1 < q2 < · · · < qv. 
Finally, for any fixed P = {p1, . . . , pu}, we make the substitution xp1 = · · · = xpu

=
e11 + e22, xq1 = e12 and xq2 = · · · = xqv = e22 and we get δPe12 = 0, that is δP = 0. 
Therefore, all the scalars appearing in f are zero, i.e., f = 0, a contradiction.

Thus the elements in (3.2) are linearly independent modulo GId(UT2) and, since 
GPn∩I ⊆ GPn∩GId(UT2), this proves that GId(UT2) = I and the polynomials in (3.2)
are a basis of GPn modulo GPn ∩ GId(UT2). Hence, by counting we get

gcn(UT2) = 2 +
n ∑

r=0 

(
n

r

)
+

n ∑
r=2 

(
n

r

)
(r − 1) +

n−1∑
r=0 

(
n

r

)

= 2 +
n ∑

r=0 

(
n

r

)
+

n ∑
r=1 

r

(
n

r

)
− 1 −

n ∑
r=0 

(
n

r

)
+ 2 +

n ∑
r=0 

(
n

r

)
− 1

= (n + 2)2n−1 + 2. �
4. Generalized cocharacter sequence of UT2

In this section, we shall determine the generalized cocharacter of UT2 as UT2-algebra 
where the action of UT2 as bimodule over itself is the usual product of UT2.

We shall start by proving some technical lemmas that give us a lower bound for the 
multiplicities mλ of nth generalized UT2-cocharacter of UT2

gχn(UT2) =
∑
λ�n

mλχλ. (4.1)

To this end recall that any irreducible left Sn-module Wλ ⊆ GPn with character χλ can 
be generated as Sn-module by an element of the form eTλ

f , for some f ∈ Wλ and some 
tableau Tλ of shape λ. Here eTλ

=
∑

σ∈RTλ
τ∈CTλ

(sgn τ)στ is a minimal quasi-idempotent 

corresponding to Tλ, where RTλ
and CTλ

are the subgroups of Sn stabilizing the rows 
and columns of Tλ, respectively.

Lemma 4.1. m(n) ≥ 2n + 3 in (4.1).

Proof. Let us consider the standard tableau

T(n) = 1 2 · · · n ,
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and the following 2n + 3 generalized polynomials associated to it

a(x) = xn, (4.2)

a
(0)
22 (x) = e22x

n, (4.3)

a
(i)
22 (x) = xi−1[x, e22]xn−i, 1 ≤ i ≤ n, (4.4)

a
(j)
12 (x) = xje12x

n−j , 0 ≤ j ≤ n. (4.5)

These polynomials are obtained from the quasi-idempotents corresponding to the tableau 
T(n) by identifying all the elements. Clearly, the polynomials (4.2)–(4.5) do not vanish 
in UT2. We claim that these generalized polynomials are linear independent modulo 
GId(UT2). So, let f ∈ GId(UT2) be a linear combination of such polynomials, i.e.,

f = αa(x) +
n ∑

i=0 
βia

(i)
22 (x) +

n ∑
j=0 

γja
(j)
12 (x).

First suppose that α �= 0 or γn �= 0. Then, by making the evaluation x = e11 one gets 
αe11 + γne12 = 0. Hence, it follows that α = γn = 0, a contradiction.

Now assume that β0 �= 0 or γ0 �= 0. Then, if we consider the evaluation x = e22, we 
obtain β0e22 + γ0e12 = 0. Hence, it follows that β0 = γ0 = 0, a contradiction.

Next, assume that there exists γj �= 0 for some 1 ≤ j ≤ n − 1. If we substitute 
x = δe11 + e22 with δ ∈ F , δ �= 0, we get 

∑n
j=1 δ

jγj = 0. Since F is an infinite filed, we 
can choose δ1, . . . , δn−1 ∈ F such that δi �= 0 and δi �= δj for 1 ≤ i �= j ≤ n − 1. Then 
we get the following homogeneous linear system of n− 1 equations in the n− 1 variables 
γ1, . . . , γn−1

n−1∑
j=1 

δjkγj = 0, 1 ≤ k ≤ n− 1.

Since the matrix associated to the above system is a Vandermonde matrix, it follows 
that γj = 0, for any 1 ≤ j ≤ n− 1, a contradiction.

Finally, if βi �= 0 for some 1 ≤ i ≤ n, then by making the substitution x = δe11 +e22 +
e12, we get that 

∑n
i=1 δ

iβi = 0. Now, as above, one may choose distinct δ1, . . . , δn ∈ F

such that δi �= 0 for 1 ≤ i ≤ n. Hence, we obtain the following linear system of n
equations in the n variables β1, . . . , βn

n ∑
i=1 

δikβi = 0, 1 ≤ k ≤ n.

Again, we obtained a linear system whose associated matrix is a Vandermonde matrix. 
Thus, it follows that βi = 0 for any 1 ≤ i ≤ n, a contradiction. Therefore the 2n + 3
generalized polynomials (4.2)–(4.5) are linearly independent modulo GId(UT2).
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Notice that the complete linearization of a(x) is e(n)(x1, . . . , xn) = eT(n)(x1 · · ·xn), 
and, for every 0 ≤ i ≤ n, the complete linearization of a(i)

22 (x) and a(i)
12 (x) are the poly-

nomials ee22,i(n) (x1, . . . , xn) = eT(n)(x1 · · ·xi−1[xi, e22]xi+1 · · ·xn) and ee12,i(n) (x1, . . . , xn) =
eT(n)(x1 · · ·xie12xi+1 · · ·xn), respectively. Then it follows that the polynomials e(n), 
ee22,i(n) , ee12,i(n) are also linearly independent modulo Idε(UT2) and as a consequence 
m(n) ≥ 2n + 3, as desired. �
Lemma 4.2. If p ≥ 1 and q ≥ 0, then m(p+q,p) ≥ 3(q + 1) in (4.1).

Proof. For any 0 ≤ i ≤ q, let T (i)
(p+q,p) be the standard tableau

i + 1 i + 2 · · · i + p− 1 i + p 1 · · · i i + 2p + 1 · · · n

i + p + 2 i + p + 3 · · · i + 2p i + p + 1 ,

and let associate to it the following generalized polynomials

b(i)p,q(x, y) = xi x̄ · · · x̃︸ ︷︷ ︸
p−1 

[x, y] ȳ · · · ỹ︸ ︷︷ ︸
p−1 

xq−i,

c(i)p,q(x, y) = xi x̄ · · · x̃︸ ︷︷ ︸
p−1 

(xe12y − ye12x) ȳ · · · ỹ︸ ︷︷ ︸
p−1 

xq−i,

d(i)
p,q(x, y) = xi x̄ · · · x̃︸ ︷︷ ︸

p−1 
(xe22y − ye22x) ȳ · · · ỹ︸ ︷︷ ︸

p−1 

xq−i,

where the symbol ̄ or ̃ means alternation on the corresponding variables. For any 1 ≤
i ≤ q, these polynomials are obtained from the quasi-idempotents corresponding to the 
tableau T (i)

(p+q,p) by identifying all the elements in each row. Also, they are not generalized 
identities of UT2.

Next, we shall show that the generalized polynomials b(i)p,q(x, y), c(i)p,q(x, y) d
(i)
p,q(x, y), 

0 ≤ i ≤ q, are linear independent modulo GId(UT2). To this end, let us consider

f =
q∑

i=0 
αib

(i)
p,q(x, y) +

q∑
i=0 

βic
(i)
p,q(x, y) +

q∑
i=0 

γid
(i)
p,q(x, y) ∈ GId(UT2).

First, suppose that there exists βi �= 0 for some 0 ≤ i ≤ q. By evaluating x = δe11 + e22, 
with δ ∈ F , δ �= 0, and y = e11, we get 

∑q
i=0(−1)p−1δiβi = 0. Since F is infinite, we 

may take δ1, . . . , δq+1 ∈ F , where δj �= 0, δj �= δk, for all 1 ≤ j �= k ≤ q + 1. Thus, as in 
the proof of the previous lemma, we obtain the following homogeneous linear system of 
q + 1 equations in the q + 1 variables β0, . . . , βq

q∑
i=0 

δijβi = 0, 1 ≤ j ≤ q + 1. (4.6)
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Since the matrix associated to the system above is a Vandermonde matrix, it follows 
that βi = 0, for all 0 ≤ i ≤ q.

Now if there exists αi �= 0 for some 0 ≤ i ≤ q, then we substitute x = δe11 + e12 + e22, 
with δ ∈ F , δ �= 0, and y = e11, and we get 

∑q
i=0(−1)p−1δiαi = 0. Thus, as above, 

since F is infinite, we obtain a homogeneous linear system of q + 1 equations in the 
q + 1 variables α0, . . . , αq equivalent to (4.6). Therefore αi = 0 for all 0 ≤ i ≤ q, a 
contradiction.

Finally, assume that there exists γi �= 0 for some 0 ≤ i ≤ q. By making the evaluation 
x = δe11 + e12 + e22, with δ ∈ F , δ �= 0, and y = e22, we obtain 

∑q
i=0 δ

iγi = 0. Then, 
as above, we get a homogeneous linear system of q + 1 equations in the q + 1 variables 
γ0, . . . , γq equivalent to (4.6). So, γi = 0 for all 0 ≤ i ≤ q, a contradiction.

Thus, the 3(q + 1) generalized polynomials b(i)p,q(x, y), c(i)p,q(x, y) d
(i)
p,q(x, y), 0 ≤ i ≤ q, 

are linearly independent modulo GId(UT2) and, so, as in Lemma 4.1, m(p+q,p) ≥ 3(q+1), 
as required. �
Lemma 4.3. If p ≥ 1 and q ≥ 0, then m(p+q,p,1) ≥ q + 1 in (4.1).

Proof. For any 0 ≤ i ≤ q, define T (i)
(p+q,p,1) to be the standard tableau

i + p i + 1 · · · i + p 1 · · · i i + 2p + 2 · · · n

i + p + 1 i + p + 3 · · · i + 2p + 1
i + p + 2

,

and associate to it the generalized polynomial

h(i)
p,q(x, y, z) = xi x̂ · · · x̃︸ ︷︷ ︸

p−1 
x̄ȳz̄ ŷ · · · ỹ︸ ︷︷ ︸

p−1 

xq−i,

where the symbol ̂ or ̃ or ̄ means alternation on the corresponding variables. For any 
1 ≤ i ≤ q these generalized polynomials are obtained from the quasi-idempotents corre-
sponding to the tableau T (i)

(p+q,p,1) by identifying all the elements in each row. Clearly, 
h

(i)
p,q(x, y, z), 1 ≤ i ≤ q, do not belong to GId(UT2). We claim that the q + 1 generalized 

polynomials h(i)
p,q(x, y, z), 0 ≤ i ≤ q, are linear independent modulo GId(UT2). If not, 

there exist α0, . . . , αq ∈ F not all zero such that

q∑
i=0 

αih
(i)
p,q(x, y, z) ∈ GId(UT2).

If we substitute x = βe11 + e12 + e22, with β ∈ F , β �= 0, y = e11, and z = e22, then we 
obtain 

∑q
i=0 β

iαi = 0, and again with a Vandermonde argument we get that αi = 0 for 
all 0 ≤ i ≤ q, a contradiction.



320 F. Martino, C. Rizzo / Journal of Algebra 666 (2025) 308–330 

Therefore the q + 1 generalized polynomials h(i)
p,q(x, y, z), 0 ≤ i ≤ q, are linearly 

independent modulo GId(UT2), as claimed. Again, as in Lemma 4.1, this implies that 
m(p+q,p,1) ≥ q + 1. �

Next, we shall prove the main theorem of the section.

Theorem 4.4. If gχn(UT2) =
∑

λ�n mλχλ is the nth generalized cocharacter of UT2, then

mλ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n + 3, if λ = (n)
3(q + 1), if λ = (p + q, p)
q + 1, if λ = (p + q, p, 1)
0, in all other cases

.

Proof. Let dλ = degχλ be the degree of χλ, λ � n. Then gcn(UT2) =
∑

λ�n mλdλ, and 
by Lemmas 4.1, 4.2 and 4.3 we have that

gcn(UT2) ≥ (2n+3)d(n) +
∑

1≤p≤
n
2 �

0≤q≤n−2p

3(q+1)d(p+q,p) +
∑

1≤p≤
n−1
2 �

0≤q≤n−2p−1

(q+1)d(p+q,p,1). (4.7)

Thus, to complete the proof is enough to show the (4.7) is actually an equality. To this 
end, notice that for n = 2p+q, by the hook formula (see for example [9, Theorem 2.3.21]) 
we have that

d(p+q,p) = n! 
p!q!(p + q + 1) · · · (q + 2) =

(
n

p 

)
n− 2p + 1
n− p + 1 

.

Then, it follows that

∑
1≤p≤
n

2 �
0≤q≤n−2p

(q + 1)d(p+q,p) = (n + 1)

n

2 � ∑
p=1 

(
n

p 

)
− 3


n
2 � ∑

p=1 

(
n

p 

)
p +


n
2 � ∑

p=1 

(
n

p 

)
p2

n− p + 1

= (n + 1)

⎛
⎝
n

2 � ∑
p=1 

(
n

p 

)
+

n ∑
p=n−
n

2 �+1

(
n

p 

)⎞⎠−

n

2 � ∑
p=1 

(
n

p 

)
p

−
n ∑

p=n−
n
2 �+1

(
n

p 

)
p− 2


n
2 � ∑

p=1 

(
n

p 

)
p,

where in the last equality we use that 
(

n 
n−p+1

)
=

(
n
p 
)

p 
n−p+1 . Recall that i

(
i−1 
j−1

)
= j

(
i 
j

)
and 

∑i
j=0

(
i 
j

)
= 2i. Hence, if n = 2k,
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∑
1≤p≤k

0≤q≤n−2p

(q + 1)d(p+q,p) = (2k + 1)(22k − 1) − k22k − 4k
k∑

p=1 

(
2k − 1
p− 1 

)
= 22k − 2k − 1.

In case n = 2k + 1,

∑
1≤p≤k

0≤q≤n−2p

(q + 1)d(p+q,p) =(2k + 2)
(

22k+1 − 1 −
(

2k + 1
k + 1 

))

− (2k + 1)22k + (k + 1)
(

2k + 1
k + 1 

)
− 2(2k + 1)

k∑
p=1 

(
2k

p− 1

)

=22k+1 − 2k − 2.

Thus, we have that ∑
1≤p≤
n

2 �
0≤q≤n−2p

(q + 1)d(p+q,p) = 2n − n− 1. (4.8)

Now, for n = 2p + q + 1, by applying the hook formula again, we get that

d(p+q,p,1) = n! 
(p− 1)!q!(p + 1)(p + q + 2)(p + q) · · · (q + 2) =

(
n 

p + 1

)
p(n− 2p)
n− p + 1 

.

Then, by recalling that 
(

n 
p+1

)
=

(
n
p 
)
n−p
p+1 , 

(
n 

n−p+1
)

=
(
n
p 
)

n 
n−p+1 and 

(
n 

p+1
)

+
(
n
p 
)

=
(
n+1
p+1 

)
, 

it follows

∑
1≤p≤
n−1

2 �
0≤q≤n−2p−1

(q + 1)d(p+q,p,1) =

n−1

2 �∑
p=1 

((
n + 1
p + 1 

)
p−

(
n 

p− 1

))
(n− 2p).

Hence, with a similar computation as above, we obtain that∑
1≤p≤
n−1

2 �
0≤q≤n−2p−1

(q + 1)d(p+q,p,1) = (n− 4)2n−1 + n + 2. (4.9)

Thus, by (4.8), (4.9) and since d(n) = 1, it follows that

(2n + 3)d(n) + 3
∑

1≤p≤
n
2 �

0≤q≤n−2p

(q + 1)d(p+q,p) +
∑

1≤p≤
n−1
2 �

0≤q≤n−2p−1

(q + 1)d(p+q,p,1)

= 2n + 3 + 3(2n − n− 1) + (n− 4)2n−1 + n + 2 = (n + 2)2n−1 + 2.

Since by Theorem 3.2 gcn(UT2) = (n + 2)2n−1 + 2, we get that (4.7) is actually an 
equality and we are done. �
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5. On almost polynomial growth

In this section, we shall construct a variety of UT2-algebras inside gvar(UT2) of almost 
polynomial growth of the codimensions. We shall also present another variety of UT2-
algebras that have almost polynomial growth of the codimensions but it is not contained 
in gvar(UT2).

Let us define on UT2 a new structure as UT2-bimodule in the following way: let 
1 := e11 + e22 and e22 act by left and right multiplication as in the previous case and let

e12 · a = a · e12 = 0

for all a ∈ UT2. It readily follows that this action defines UT2 as a new UT2-algebras 
that we will denote it by UTD

2 . Such a notation is justified by noticing that if we let D
be the subalgebra of UT2 spanned by e11 and e22, then the above action is the natural 
generalization of the left and right multiplication of UT2 by elements of D, i.e., we can 
also view UT2 as a D-algebra.

Following step-by-step the lines of Theorem 3.2 and Theorem 4.4 with the necessary 
changes, we can prove the following results.

Theorem 5.1. Let UTD
2 be the UT2-algebra with the above action. Then GId(UTD

2 ) is 
generated, as TUT2-ideal, by the following polynomials:

e12x; xe12; [x1, x2] − [x1, x2, e22].

Moreover, gcn(UTD
2 ) = n2n−1 + 2.

Theorem 5.2. Let gχn(UTD
2 ) =

∑
λ�n mλχλ be the nth generalized cocharacter of UTD

2 . 
Then

mλ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n + 2, if λ = (n)
2(q + 1), if λ = (p + q, p)
q + 1, if λ = (p + q, p, 1)
0, in all other cases

.

Remark that by Theorem 5.1 UTD
2 ∈ gvar(UT2) and gvar(UTD

2 ) grows exponentially, 
then it immediately follows that

Corollary 5.3. gvar(UT2) does not have almost polynomial growth of the codimensions.

Next, we shall prove that gvar(UTD
2 ) is a variety of UT2-algebras of almost polynomial 

growth. If V is a variety of UT2-algebras, then for every n ≥ 1, we write

gχn(V) =
∑
λ�n

mV
λχλ,



F. Martino, C. Rizzo / Journal of Algebra 666 (2025) 308–330 323

where mV
λ denotes the multiplicity of irreducible character χλ in gχn(V).

Remark 5.4. Recall that the n + 2 linear independent generalized polynomials corre-
sponding to the partition λ = (n) are:

a(x) = xn,

a
(0)
22 (x) = e22x

n,

a
(i)
22 (x) = xi−1[x, e22]xn−i, 1 ≤ i ≤ n.

The 2(q + 1) linear independent generalized polynomials corresponding to the partition 
λ = (p + q, p) are:

b(i)p,q(x, y) = xi x̄ · · · x̃︸ ︷︷ ︸
p−1 

[x, y] ȳ · · · ỹ︸ ︷︷ ︸
p−1 

xq−i, 0 ≤ i ≤ q

d(i)
p,q(x, y) = xi x̄ · · · x̃︸ ︷︷ ︸

p−1 
(xe22y − ye22x) ȳ · · · ỹ︸ ︷︷ ︸

p−1 

xq−i, 0 ≤ i ≤ q.

Finally, the q + 1 linear independent generalized polynomials corresponding to the par-
tition λ = (p + q, p, 1) are:

h(i)
p,q(x, y, z) = xi x̂ · · · x̃︸ ︷︷ ︸

p−1 
x̄ȳz̄ ŷ · · · ỹ︸ ︷︷ ︸

p−1 

xq−i, 0 ≤ i ≤ q.

Lemma 5.5. Let U be a proper subvariety of gvar(UTD
2 ). Then there exist constants M <

N such that

xMyxN−M +
∑
i<M

μix
iyxN−i ∈ GId(U),

for some μi ∈ F .

Proof. Let a(x), a(i)
22 (x), b(j)p,q(x, y), d(j)

p,q(x, y), and h(j)
p,q(x, y, z), 0 ≤ i ≤ n, 0 ≤ j ≤ q, be 

the polynomial of Remark 5.4. Since U ⊊ V = gvar(UTD
2 ), then there exists λ � n such 

that mU
λ < mV

λ . Thus by Theorem 5.2, it follows that either

α1a(x) +
n ∑

i=0 
α

(i)
2 a

(i)
22 (x) ∈ GId(U), (5.1)

with α1, α
(i)
2 not all zero, or

q∑
i=0 

βib
(i)
p,q(x, y) +

q∑
i=0 

δid
(i)
p,q(x, y) ∈ GId(U), (5.2)
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with βi, δi not all zero, or

q∑
i=0 

ηih
(i)
p,q(x, y, z) ∈ GId(U), (5.3)

with ηi not all zero. Suppose that (5.2) holds. Then

f(x, y) =
q∑

i=0 
βix

i x̄ · · · x̃︸ ︷︷ ︸
p−1 

[x, y] ȳ · · · ỹ︸ ︷︷ ︸
p−1 

xq−i

+
q∑

i=0 
δix

i x̄ · · · x̃︸ ︷︷ ︸
p−1 

(xe22y − ye22x) ȳ · · · ỹ︸ ︷︷ ︸
p−1 

xq−i ∈ GId(U).

If we substitute in f(x, y) the variable y with y1 + y2, we obtain that

f(x, y1, y2) =
q∑

i=0 
βix

i x · · · x̃︸ ︷︷ ︸
p−1 

[x, y1 + y2] (y1 + y2) · · · ̃(y1 + y2)︸ ︷︷ ︸
p−1 

xq−i

+
q∑

i=0 
δix

i x · · · x̃︸ ︷︷ ︸
p−1 

(xe22(y1 + y2) − (y1 + y2)e22x)

× (y1 + y2) · · · ̃(y1 + y2)︸ ︷︷ ︸
p−1 

xq−i ∈ GId(U).

Now, let us consider in the polynomial f(x, y1, y2) the component f ′(x, y1, y2) of degree 
1 in y2. By substituting in f ′(x, y1, y2) the variable y1 with x2 and y2 with [x, y], we get 
that

q∑
i=0 

βix
i x · · · x̃︸ ︷︷ ︸

p−1 
[x, [x, y]]x2 · · · x̃2︸ ︷︷ ︸

p−1 
xq−i

+
q∑

i=0 
δix

i x · · · x̃︸ ︷︷ ︸
p−1 

(xe22[x, y] − [x, y]e22x)x2 · · · x̃2︸ ︷︷ ︸
p−1 

xq−i ∈ GId(U).

Since e22[x, y], [x, y] − [x, y]e22 ∈ GId(UTD
2 ) ⊆ GId(U), it follows that

g(x, y) =
q∑

i=0 
βi x · · · x̃︸ ︷︷ ︸

p−1 
x[x, y]x2 · · · x̃2︸ ︷︷ ︸

p−1 
xq−i−

q∑
i=0 

γix
i x · · · x̃︸ ︷︷ ︸

p−1 
[x, y]xx2 · · · x̃2︸ ︷︷ ︸

p−1 
xq−i ∈ GId(U),

(5.4)
where γi = βi + δi ∈ F , 0 ≤ i ≤ q.

Suppose first that βi �= 0 for some 0 ≤ i ≤ q, and let t = max{i | βi �= 0} and 
N ′ = deg g(x, y). Since g(x, y) ∈ GId(U), we have that
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βtx
t+2p−1[x, y]xN ′−2p−t−1 +

∑
i<t+2p−1

γ′
ix

i[x, y]xN ′−i−2 ∈ GId(U),

for some γ′
i ∈ F . Since βt �= 0, we get that

xt+2pyxN ′−2p−t−1 +
∑

i<t+2p
μix

iyxN ′−i−1 ∈ GId(U),

for some μi ∈ F . Now, if we set N = N ′ − 1 and M = t + 2p, then it follows that

xMyxN−M +
∑
i<M

μix
iyxN−i ∈ GId(U),

for some μi ∈ F , as required.
Assume now that in (5.4) βi = 0 for all 1 ≤ i ≤ q. Then γi �= 0 for some 1 ≤ i ≤ q. 

So, let t = max{i | γi �= 0} and N ′ = deg g(x, y) in (5.4). Then

γtx
t+2p−2[x, y]xN ′−2p−t +

∑
i<t+2p−2

γ′
ix

i[x, y]xN ′−i−2 ∈ GId(U),

for some γ′
i ∈ F . Since γt �= 0, we get that

xt+2p−1yxN ′−2p−t−1 +
∑

i<t+2p−1
μix

iyxN ′−i−1 ∈ GId(U),

for some μi ∈ F . Now, if we set N = N ′ − 1 and M = t + 2p− 1, then it follows that

xMyxN−M +
∑
i<M

μix
iyxN−i ∈ GId(U),

for same μi ∈ F , as required.
Now, suppose that (5.1) holds. Then, we have that

α1x
n + α

(0)
1 e22x

n +
n ∑

i=1 
α

(i)
2 xi−1[x, e22]xn−i ∈ GId(U). (5.5)

Let us substitute x with x1 + x2 in (5.5), and consider the homogeneous component of 
degree 1 in x2. Then in this homogeneous component, we substitute x1 with x and x2
with [x, y]. Thus, with similar computations as in the previous case, we reach the desired 
conclusion.

Finally, suppose that (5.3) holds in U . By substituting in h(i)
p,q(x, y, z) the variable z

with x2, we obtain (5.2), and, by the first case, the proof is complete. �
Proposition 5.6. Let U be a proper subvariety of gvar(UTD

2 ). Then there exists a constant 
N̄ such that mU

λ ≤ N̄ for any λ � n, n ≥ 1.
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Proof. By Lemma 5.5, there exists N such that

xMyxN−M +
∑
i<M

μix
iyxN−i ∈ GId(U), (5.6)

for some μi ∈ F and a suitable M < N . We shall prove that mU
λ ≤ 2N for all λ � n. By 

Theorem 5.2 it is enough to consider the cases when either λ = (n), or λ = (p+ q, p), or 
λ = (p + q, p, 1).

We prove the statement for λ = (p + q, p). The other cases will follow with similar 
arguments.
If q < N there is nothing to prove. So, let us assume that q ≥ N and consider the 
polynomials b(i)p,q(x, y) and d(i)

p,q(x, y), 0 ≤ i ≤ q, defined in Remark 5.4. Notice that from 
relation (5.6) it follows that

xM x̄ · · · x̃︸ ︷︷ ︸
p−1 

[x, y] ȳ · · · ỹ︸ ︷︷ ︸
p−1 

xN−M ≡
∑
i<M

μix
i x̄ · · · x̃︸ ︷︷ ︸

p−1 
[x, y] ȳ · · · ỹ︸ ︷︷ ︸

p−1 

xN−i (mod GId(U)), (5.7)

and

xM x̄ · · · x̃︸ ︷︷ ︸
p−1 

(xe22y − ye22x) ȳ · · · ỹ︸ ︷︷ ︸
p−1 

xN−M

≡
∑
i<M

μix
i x̄ · · · x̃︸ ︷︷ ︸

p−1 
(xe22y − ye22x) ȳ · · · ỹ︸ ︷︷ ︸

p−1 

xN−i (mod GId(U)). (5.8)

Hence, since q ≥ N , we can apply the relation (5.7) to any polynomial b(i)p,q(x, y) such 
that i ≥ M , and, as a consequence, we get that

b(i)p,q(x, y) ≡
∑
j<M

b(j)p,q(x, y) (mod GId(U)).

Similarly, since q ≥ N , we can apply the relation (5.8) to any polynomial d(i)
p,q(x, y) such 

that i ≥ M , and we obtain that

d(i)
p,q(x, y) ≡

∑
j<M

d(j)
p,q(x, y) (mod GId(U)).

Therefore, it follows that mU
λ ≤ 2M ≤ 2N = N̄ , as required. �

Theorem 5.7. The variety of UT2-algebras generated by UTD
2 has almost polynomial 

growth.

Proof. Let U be a proper subvariety of V = gvar(UTD
2 ). We shall prove that U has 

polynomial growth of the codimensions. By Lemma 5.5, there exist constant M < N

such that
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xMyxN−M +
∑
i<M

μix
iyxN−i ∈ GId(U)

for some μi ∈ F . By a standard multilinearization process (see for instance [7, Theorem 
1.3.8]), we get

∑
σ∈SN

xσ(1) · · ·xσ(M)yxσ(M+1) · · ·xσ(N)

+
∑
i<M

∑
σ∈SN

μixσ(1) · · ·xσ(i)yxσ(i+1) · · ·xσ(N) ∈ GId(U)

where x1, . . . , xN are new variables.
In the previous identity, we substitute y by [y1, y2], we multiply on the right by 

z1 · · · zM and we alternate xi with zi, for all 1 ≤ i ≤ M . Since [x1, x2][x3, x4] ∈
GId(UTD

2 ) ⊆ GId(U), it follows that

x̄1 · · · x̃M [y1, y2]z̄1 · · · z̃MxM+1 · · ·xN ∈ GId(U).

Now, we multiply on the left by zM+1 · · · zN and we alternate xj with zj for all M +1 ≤
j ≤ N . It readily follows that

x̄1 · · · x̃N [y1, y2]z̄1 · · · z̃N ∈ GId(U). (5.9)

Take the previous identity and substitute firstly y1 by y1e22 and, secondly, y2 by y2e22. 
We get

x̄1 · · · x̃N (y1e22y2 − y2y1e22)z̄1 · · · z̃N ∈ GId(U),

x̄1 · · · x̃N (y1y2e22 − y2e22y1)z̄1 · · · z̃N ∈ GId(U).

Let us sum the previous identities and, since [x1, x2]− [x1, x2]e22 ∈ GId(UTD
2 ) ⊆ GId(U)

and (5.9) holds, we obtain

x̄1 · · · x̃N (y1e22y2 − y2e22y1)z̄1 · · · z̃N ∈ GId(U).

By renaming the variables, we get

x̄1 · · · x̃N x̂N+1e22ẑN+1z̄1 · · · z̃N ∈ GId(U). (5.10)

The identities (5.9) and (5.10) tell us that the irreducible S2(N+1)-character correspond-
ing to the partition λ = (N + 1, N + 1) participates into the 2(N + 1)th generalized 
cocharacter of U with a zero multiplicity, i.e., mU

(N+1,N+1) = 0.
Finally, take identity (5.9), multiply it on the right by yN+1 and alternate y1, y2 and 

yN+1. By renaming as before the variable y1 by xN+1 and y2 by zN+1, we get
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x̄1 · · · x̃N x̂N+1ŷN+1ẑN+1z̄1 · · · z̃N ∈ GId(U).

Thus, as in the previous case, mU
(N+1,N+1,1) = 0.

Hence, if λ � n is such that λ2 ≥ N + 2 then mU
λ = 0 or, equivalently, if χλ appears 

with a non-zero multiplicity in the generalized Sn-cocharacter of U , then λ must contain 
at most N + 1 boxes below the first row. Therefore

gχn(U) =
∑
λ�n

|λ|−λ1≤N+1

mU
λχλ.

Recall that λi stands for the number of boxes of the ith row of λ.
Since |λ| − λ1 ≤ N + 1, then λ1 ≥ n− (N + 1) and by the hook formula

dλ = χλ(1) ≤ n! 
(n− (N + 1))! ≤ nN+1.

We are now in a position to reach the goal, in fact by the previous remark and by 
Proposition 5.6

gcn(U) = gχn(U)(1) =
∑
λ�n

|λ|−λ1≤N+1

mU
λdλ ≤

∑
λ�n

|λ|−λ1≤N+1

N̄nN+1 ≤ (N + 1)2N ′nN+1,

since the number of partitions such that |λ| − λ1 ≤ N + 1 is bounded by (N + 1)2. 
Therefore gcn(U) is polynomially bounded and we are done. �

Let us denote by UTF
2 the F -algebra UT2 regarded as UT2-algebra, i.e., UTF

2 has 
a structure of UT2-bimodule where 1 := 1UT2 acts by left and right by multiplication, 
e22 · a = a · e22 = 0 and e12 · a = a · e12 = 0 for all a ∈ UT2. Clearly, from the definition 
of this new action it readily follows that e22x ≡ 0, xe22 ≡ 0, e12x ≡ 0 and xe12 ≡ 0 are 
generalize identities of UTF

2 . Thus, we are dealing with ordinary polynomial identities, 
and by the results in [3,13,14] we have the following.

Theorem 5.8. Let UTF
2 be the UT2-algebra with the above action. Then GId(UTF

2 ) is 
generated, as TUT2-ideal, by the following polynomials:

e22x; xe22; [x1, x2][x3, x4].

Moreover, gcn(UTF
2 ) = 2n−1(n− 2) + 2.

Theorem 5.9. Let gχn(UTF
2 ) =

∑
λ�n mλχλ be the nth generalized cocharacter of UTF

2 . 
Then
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mλ =

⎧⎪⎪⎨
⎪⎪⎩

1, if λ = (n)
q + 1, if λ = (p + q, p) or λ = (p + q, p, 1)
0, in all other cases

.

Theorem 5.10. The variety of UT2-algebras generated by UTF
2 has almost polynomial 

growth.

Notice that from Theorems 3.2 and 5.8 it follows that UTF
2 / ∈ gvar(UT2). Also, as 

a consequence of Theorems 5.1 and 5.8 we have that GId(UTF
2 ) ⊈ GId(UTD

2 ) and 
GId(UTD

2 ) ⊈ GId(UTF
2 ). Thus by Theorems 5.7 and 5.10 we have the following.

Corollary 5.11. The algebras UTF
2 and UTD

2 generate two distinct varieties of UT2-
algebras of almost polynomial growth.
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