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Recent train accidents have reaffirmed the need for developing a rail defect detection system more effective than that currently
used. One of the most promising techniques in rail inspection is the use of ultrasonic guided waves and noncontact probes. A rail
inspection prototype based on these concepts and devoted to the automatic damage detection of defects in rail head is the focus of
this paper. The prototype includes an algorithm based on wavelet transform and outlier analysis. The discrete wavelet transform is
utilized to denoise ultrasonic signals and to generate a set of relevant damage sensitive data. These data are combined into a damage
index vector fed to an unsupervised learning algorithm based on outlier analysis that determines the anomalous conditions of the
rail. The first part of the paper shows the prototype in action on a railroad track mock-up built at the University of California, San
Diego. The mock-up contained surface and internal defects. The results from three experiments are presented. The importance of
feature selection to maximize the sensitivity of the inspection system is demonstrated here. The second part of the paper shows the
results of field testing conducted in south east Pennsylvania under the auspices of the U.S. Federal Railroad Administration.

1. Introduction

Safety statistics data from the US Federal Railroad Admin-
istration [1, 2] indicate that train accidents caused by track
failures including rail, joint bars and anchoring resulted in
2700 derailments and $441 M in direct costs, during the
1992–2002 decade. The primary cause of these accidents is
the ‘transverse defect’ type that was found responsible for
541 derailments and $91 M in cost during the same period.
Transverse defects are cracks developing in a direction
perpendicular to the rail running direction, and include
transverse fissures, initiated inside the rail head, and detail
fractures, initiated at the head surface as rolling contact
fatigue defects.

The most common methods of rail inspection are
magnetic induction and contact ultrasonic testing [3–5]. The

first method is affected by environmental magnetic noise and
it requires a small lift-off distance for the sensors in order
to produce adequate sensitivity [6, 7]. Ultrasonic testing
is conventionally performed from the top of the rail head
in a pulse-echo configuration. In this system, ultrasonic
transducers are located inside a water-filled wheel and are
oriented at 0◦ from the surface of the rail head to detect
horizontal cracks and at 70◦ to detect transverse cracks. Such
an approach suffers from a limited inspection speed and
from drawbacks associated with the requirement of contact
between the rail and the inspection wheel. More importantly,
horizontal surface damage such as shelling and head checks
can prevent the ultrasonic beams from reaching the internal
defects resulting in false negative readings. The problem of
surface shelling was highlighted in accidents like the ones in
Superior, WI (U.S.) in 1991 and Hatfield (UK) in 2000.
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Recently, a testing method based on infrared thermogra-
phy has been proposed. This method however is challenging
due to the optical obscuration caused by the various fittings
and fixtures used to hold the rail in place, and to the
attenuation produced by contaminants often present on the
rail surface [8].

Ultrasonic guided waves (UGWs) are being considered
in recent years for rail inspections as an improvement over
wheel-type ultrasonic methods [9–18]. In general, UGWs are
ideal in those monitoring applications that can benefit from
built-in transduction, moderately large inspection ranges,
and high sensitivity to small flaws. In rail applications,
because these waves propagate along, rather than across the
rail, they are ideal for detecting the critical transverse defects.
They are also potentially not sensitive to surface shelling
because they can run underneath this type of discontinuities.
Sometimes when the wavelength of UGWs is in the same
order of magnitude of the rail curvature radius, there are
referred to as surface guided waves [11]. The frequency range
at which the waves are generated typically varies according to
the type of ultrasonic source used. The frequency range is
important to achieve a penetration depth sufficient to probe
the entire rail head cross-section, to allow screening of several
meters of rail from a single inspection point, and to reduce
the sensitivity to noncritical features.

In the last ten years, techniques that do not require con-
tact between the interrogating (probe) and the interrogated
(rail) systems, have been investigated to generate and detect
UGWs. Noncontact rail testing has been demonstrated by
the use of pulsed lasers and air-coupled transducers [16, 19],
electro-mechanical acoustic transducers (EMATs) [12, 18,
20], and laser vibrometers [11]. However, the drawback
of any noncontact testing when compared to conventional
contact testing is a reduced signal-to-noise ratio. The use of
signal processing based on the Discrete Wavelet Transform
(DWT) helps in overcoming this problem, as recently
demonstrated [3, 16, 21–24].

This paper presents a hybrid laser/air-coupled transducer
system aimed at detecting defects in the rail head by means
of UGWs. The laser is used to generate UGWs in the rail
head. Pairs of air-coupled transducers are used to sense
the waves propagating along the rail head. The system is
coupled to a robust signal processing algorithm devoted
to automatic damage detection. The algorithm consists of
DWT, feature extraction, and outlier analysis. The DWT
is applied to process the raw signals. Relevant statistical
data extracted from the recorded signals and after DWT-
processing are employed to construct a uni-dimensional or
multidimensional damage index vector. The vector is then
fed to an unsupervised algorithm based on outlier analysis.

The novelty of this paper is multifold. First, the outlier
analysis is applied to problems associated with the detection
of defects in rails. Second, the systematic investigation of fea-
ture selection, as an essential tool to maximize the sensitivity
of the probing system, is conducted. Then, the attempt to
discriminate between surface and internal defects in rail head
is carried out by proposing a filtering separation process. The
hardware/software/algorithm prototype deployed onto a cart
moving on a laboratory rail mock up, represents another
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Figure 1: Schematic of the sensor pair position with respect to the
laser pulse and rail head.

novelty of the present paper. Finally, the results from field
testing where part of the inspection algorithm has been
implemented are presented.

2. Laboratory Tests

2.1. Inspection Prototype. The rail inspection system con-
sisted of a hybrid laser/air-coupled transducers system. A
Nd:YAG, Q-switched type, pulsed laser was used to deliver
through conventional optics 40 mm-long line beam on the
rail head. The line source is known to effectively generate
directional and broadband UGWs propagating perpendicu-
lar to the line.

Three pairs of air-coupled transducers were used to
acquire the ultrasonic signals traveling along the rail head.
The three pairs were deployed to provide coverage of the
centerline, the gage side, and the field side of the rail
head. The sensors were broadband transducers with ultra-
sonic bandwidth in air 40 kHz–2.25 MHz. As traditionally
done with conventional wedge transducers, the alignment
angle of the air-coupled detectors was adjusted to maxi-
mize the sensitivity to the guided waves, following Snell’s
law.

The sensors were located at distances larger than 50.8 mm
(2′′) from the top of the rail head. Figure 1 shows that the
laser was placed in between the sensor pairs. The longitudinal
distance 2d between the transducers of the central pair was
equal to 343 mm, whereas the distance between the elements
of the gage side pair and between the elements of the field
side pair was equal to 254 mm. These distances represented
a good compromise between high signal-to-noise ratio and
high inspection speed. The hybrid system was coupled to
a portable PXI unit running under LabVIEW designed to
perform laser control and data acquisition. A cart was used
to host the hybrid system and the PXI unit.

The ultrasonic signals were acquired at a 5 MHz sampling
rate, and successively analyzed using Matlab Wavelet Tool-
box.



Advances in Civil Engineering 3

(a)

z
y
x

Rail 1

Rail 2

Rail 3

Rail 4

14
13

12
11

10

9

8
7

6

5
43

21

(b)

Figure 2: (a) Photo of the rail track mockup at UCSD; (b) layout of the tested mockup. The numbers on top of the rail layout represent the
location number listed on the second column of Table 1.

2.2. Experimental Setup and Protocol. The rail-mock up
featured approximately a 6 meter long rail track. A photo of
such facility is presented in Figure 2(a). The tested segment
consisted of four rail sections with surface and internal
defects. Rails 1 and 4 were AREMA 110 sections, whereas
rails 2 and 3 were AREMA 136 sections. The position of
the rail joints and defects are enumerated and shown in
Figure 2(b).

Details of the site layout are presented in Table 1. The
starting point is identified as location #1 and it is the
joint between a rail that is not drawn in Figure 2(b) and
rail 1. The first rail section contained four surface defects:
three transverse defects at locations #2, #5, and #6 and a
longitudinal notch over 40 mm long. The second and third
sections contained each an internal defect. These defects were
at locations #8 and #10.

A hand mapping conducted with a commercial contact
ultrasonic instrumentation located the internal defects closer
to the gage side of the head. The mapping estimated that they
extended over 8% and 23% of the cross-sectional head area,
respectively. Finally, the fourth section contained an oblique
defect oriented at 45 degrees on the x-z plane at location #12
and a surface transverse defect at position #13. All surface
defects were machined by using an electrical saw.

Three tests were conducted. The cart was manually
pushed on the mock-up and an ultrasonic acquisition
was made every inch approximately. Each acquisition was
enumerated progressively. For instance, during test 1, 78
acquisitions were made and column 5 of Table 2 shows which
portion of the rail was probed during each acquisition by the
central sensor pair.

Typical waveforms recorded during an acquisition are
illustrated in Figure 3. Figures 3(a) and 3(b) present the
waveforms recorded from the rear and front central trans-
ducers, respectively, when the laser illuminated the rail head
at 1150 mm from the starting point. Ideally, shape and ampli-
tude of the waveforms should be identical; however, slight
variations of the sensor’s inner sensitivity and alignment,
and relative distance between transducers and the beam,
produced small differences in the waveforms’ amplitudes.

Figures 3(c) and 3(d) show the ultrasonic signals recorded
when the laser light impinged on the rail head at 1965 mm.
According to Table 1, this acquisition should detect the
surface defect machined at location #6. The fact, that the
amplitude of the signal detected by the front sensor is smaller
than the signal amplitude from the rear sensor, proves that
the laser illuminated a zone between the notch and the rear
probe. This is also confirmed by the later pulse of Figure 3(c),
which is the result of the reflection from the surface defect.
Finally, Figures 3(e) and 3(f) show the ultrasonic signals
affected by the presence of the second joint placed between
the laser light and the front sensor. No ultrasonic trace is
visible in Figure 3(f). The signal detected by the rear sensor,
presented in Figure 3(e), shows the stress wave traveling from
the laser light, and the echo from the joint.

3. Signal Processing

3.1. The Discrete Wavelet Transform. Ultrasonic signals were
processed through the DWT, which decomposes the original
time-domain signal by computing its correlation with a
short-duration wave called the mother wavelet that is flexible
in time and in frequency. DWT processing consists of
two main parts: decomposition and reconstruction. The
decomposition phase transforms the function into wavelet
coefficients following hierarchical steps, or levels of different
frequency bands. The denoising of the original signal can
be achieved if only a few wavelet coefficients, representative
of the signal, of one or more levels are retained and the
remaining coefficients, related to noise, are discarded. In
the reconstruction process, the coefficients pass through
reconstruction filters that are closely related but not equal to
those of the decomposition [24–27].

3.2. Outlier Analysis. An outlier is a datum that appears
inconsistent with a set of data, the baseline that describes
the normal condition of the structure under investigation.
A set of p-dimensional (multivariate) data consists of n
observations in p variables. In this study, the detection of
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Table 1: Laboratory test site layout.

Location # Distance
(mm)

Description
Head area
reduction

Test 1
center

head pair

Test 1
gage side

pair

Test 2
center

head pair

Test 2
gage side

pair

Test 3
center

head pair

Test 3 gage
side pair

Rail 1

1 0 Joint: start of test zone 1–4 1–3 1–3 1–2 1–3 1

2 127 Surface transverse notch 1% 5–6 4–5 4 3–4 4–5 2–4

No defect 7–11 6–11 5–10 5–10 6–11 5–1

3 920 Start longitudinal notch 12 12 11 11 12 12

4 968 End longitudinal notch 15 15 15 14 15 15

No defect 16–17 16–18 16 15–17 16–17 16–18

5 1428 Surface transverse notch 16% 18–21 19–21 17–20 18–20 18–21 19–21

No defect 22–24 22–25 21–24 21–24 22–25 22–25

6 2060 Surface transverse notch 5% 25–29 26–29 25–28 25–28 26–29 26–29

No defect — 30 — 29 — 30

7 2432 Joint 30–34 31–33 29–33 30–32 31–34 31–33

Rail 2

No defect 35–38 34–38 34–36 33–37 35–37 34–38

8 3073 Internal defect 8% 39–41 39–41 37–41 38–40 38–41 39–41

No defect 42–46 42–46 42–46 41–46 42–46 42–47

9 3789 Joint 47–50 47–50 47–49 47–49 47–50 48–50

Rail 3

No defect 51–54 51–54 50–52 50–53 51–54 51–55

10 4445 Internal defect 23% 55–58 55–57 53–56 54–56 55–59 56–58

No defect 59–61 58–61 57–59 57–59 60–61 59–62

11 5013 Joint 62–65 62–65 60–63 60–62 62–66 63–65

Rail 4

No defect 66–69 66–70 64–66 63–67 67–68 66–68

12 5657 Surface oblique notch 7% 70–73 71–73 67–70 68–69 69–72 69–71

No defect 74 74 — 70–71 — 72–73

13 6010 Surface transverse notch 20% 75–78 75–78 71–74 72–74 73–77 75–77

Table 2: Mother wavelet, number of largest wavelet coefficients, and statistical features considered in the rail head algorithm monitoring
system.

Mother wavelet # Mother wavelet # # of largest coefficients retained(1) Feature # Statistical Feature

a “db4” I 6–6 1 RMS o

b db7′ II 6–10 2 ppk o

c db10′ III 10–6 3 CF o

d “coif4” IV 10–10 4 RMS w

e “sym5” 5 ppk w

f sym7′ 6 CF w

7 RMS r

8 ppk r

9 CF r

10 Area FFT

11 RMS FFT
(1)The first number refers to the decomposition level 2 or 4 when the high-frequency bandwidth or the low-frequency bandwidth is considered, respectively.
The second number refers to the decomposition level 3 or 5 when the high-frequency bandwidth or the low-frequency bandwidth is considered, respectively.

outliers is expressed by the Mahalanobis squared distance Dζ ,
which is a nonnegative scalar defined as

Dζ =
({
xζ
}− {x})T · [K]−1 · ({xζ

}− {x}), (1)

where {xζ} is the potential outlier vector, {x} is the mean
vector of the baseline, [K] is the covariance matrix of the

baseline and T symbolizes the transpose operation. Both
vectors {xζ} and {x} are p-dimensional whereas [K] is a
square matrix of order p.

The mean and the standard deviation can be calculated
with or without the potential outlier depending upon
whether inclusive or exclusive measures are preferred. In the
present study, since the potential outliers are always known a
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Figure 3: Typical waveforms detected by the hybrid laser/air-coupled transducer system. Time waveforms detected by the (a) rear and (b)
front sensors when the inspection system is probing a pristine rail section. Time waveforms detected by the (c) rear and (d) front sensors
when the inspection system is probing a transverse surface notch. Time waveforms detected by the (e) rear and (f) front sensors when the
inspection system is probing a joint.

priori, Dζ is calculated exclusively without contaminating the
statistics of the baseline. In order to determine whether a new
multidimensional datum is an outlier, the corresponding
value of Dζ has to be compared to a threshold. As the data
set consisted of samples generated by adding artificial noise
to the ultrasonic signals, once the values of Dζ of the baseline
distribution were determined, the threshold value was taken

as the upper value of 3σ , equal to 99.73% of the Gaussian
confidence limit.

Anytime baseline samples exceed the threshold, they
classify as outliers. In the context of the present framework,
these values represent false indications of damage, that is,
false positives. Conversely, anytime a datum associated with a
defect is below the threshold, it is classified as a false negative.
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3.3. Structural Health Monitoring Algorithm. The overall
algorithm adopted to the laboratory tests is illustrated in the
flowchart of Figure 4. From each ultrasonic measurement
other 19 signals were obtained by adding white Gaussian
noise. Thus, a total number of 20 samples per acquisition
were available. As done in previous works [24, 27, 28]
the noise was created by using MATLAB randn function.
The statistical features of root mean square (RMS), crest
factor (CF), and peak-to-peak (ppk) were computed from
these signals. The DWT was applied to every signal. Two
wavelet coefficient vectors were created by separating the
second and third decomposition levels from the fourth and
fifth decomposition levels. The second and the third levels
comprise approximately the 300 kHz–1.2 MHz range. Such
a range is hereafter indicated as high-frequency bandwidth.
The fourth and fifth levels instead include approximately
the 75 kHz–300 kHz range. This range is hereafter indicated
as the low-frequency bandwidth. Owing to their small
wavelength, high frequency acoustic signals are expected to
be more sensitive to surface defects than internal defects.
Each of the two coefficient vectors was threshold by retaining
the largest wavelet coefficient moduli.

Denoised signals were obtained by using DWT recon-
struction process. The same statistical features introduced
above were applied both to the wavelet coefficient vectors and
to the denoised signals.

In order to increase the set of features, the Fourier
transform of the denoised signals was evaluated, and the
area (Area FFT) and the RMS (RMS FTT) of the frequency
spectrum were calculated.

3.4. Damage Index Vector. Each selected feature was em-
ployed to compute a damage index. As the laser light was
delivered in the middle between the transducers, the damage
index was calculated as the ratio between a certain feature of
the signal detected by the front sensor, Ffront, over the same
feature from the rear sensor, Frear. The inverse was computed
as well

D.I. f /r = Ffront

Frear
, D.I.r/ f = Frear

Ffront
. (2)

Only the largest value between D.I. f /r and D.I.r/ f was
considered. As such every time a defect was between the laser
light and either one of the transducers, the damage index was
expected to increase from its ideal value of 1 with increasing
defect size. Two or more features were used as the elements of
a multidimensional damage index vector, which represented
the input of the multivariate analysis. Table 2 summarized
the mother wavelets, the number of retained coefficients, and
the features considered in the present study.

4. Experimental Results

4.1. Features and Frequency Bandwidth Sensitivity. The
importance of selecting the appropriate statistical features
and frequency bandwidths was investigated. Figure 5 com-
pares the damage indexes associated with the vector of the
wavelet coefficients obtained by decomposing the original

signals with the db10 mother wavelet. Six coefficients at both
levels of each bandwidth were retained. Thus, following the
notation introduced in Table 2, the filter combination c I was
used. The indexes are plotted as a function of the acquisition
position. The statistical features of RMS, ppk, and CF, were
used. For this particular study also the value of the largest
coefficient modulus was considered. The results of test 1
are presented. The high frequency bandwidth contained in
the signals acquired with the central transducers and the
gage side transducers are illustrated in Figures 5(a) and
5(c), respectively. The results from the analysis of the low
frequency components are instead presented in Figures 5(b)
and 5(d), respectively. To improve the readability of the plots
the vertical axes are scaled down. As expected, the transducer
pair deployed on the gage side of the rail is less suitable
to identify the presence of anomalies located on the central
portion of the rail, but it is effective to unfold the presence
of the gage oblique defect. This is demonstrated by the sharp
increase of the damage index around acquisition #71.

In Figure 5(d) a peak at acquisition #39 is visible when
considering the statistical feature of the CF. Such a peak is
related to the presence of the first internal defect. This result
confirms the diagnostics made by conventional ultrasonic
contact probes, that is, that the internal defects were close
to the gage side.

4.2. Multivariate Analysis. The purpose of combining fea-
tures was to increase the sensitivity to the presence of
damage. However, the use of all eleven features listed in
Table 2 may not be necessary and the selection of all features
may degrade the detection performance. To investigate this
aspect, a parametric analysis was carried out. All of the
features were considered ranging from all combinations
of two-dimensional damage index vectors to the single
combination of an 11-dimensional vector. Figure 6 shows
the Mahalanobis squared distance of the best and worst
combination as a function of the sample number. The values
are related to the analysis of the high-frequency bandwidth
of the ultrasonic signals acquired by the central sensor pair.
The horizontal lines in this figure represent the 99.73%
confidence thresholds. The algorithm performance ranged
from 93% to 57%. The criterion used to sort the success rate
was the same discussed in Section 4.3 Some false negatives
are located in correspondence with the longitudinal and the
gage oblique defects. The combination c I (1-3, 6, 9) yielded
to the best performance. Such a combination used db10
mother wavelet, the six largest coefficients at both level 2 and
3 and five features. The values of the Mahalanobis squared
distance associated with the presence of a defect are several
orders of magnitude higher with respect to the threshold.
The poor performance of the “worst combination” b II (9,
11) is noticed by the many false negatives located within the
samples associated with the transverse defect.

The same routine was applied to process the waveforms
detected by the gage transducer pair. Figures 7(a) and 7(b)
show the Mahalanobis squared distance as a function of the
sample numbers for the high-frequency and low-frequency
bandwidths, respectively. For the low frequency component,
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Figure 4: Flowchart of the automatic damage detection algorithm based on discrete wavelet transform, feature extraction, and outlier
analysis.

the ranking criteria to assess the combination which provides
the best algorithm performance were given by the highest
percentage of outliers related to the internal defects and the
lowest number of false positives.

The best performance was obtained filtering the signals
with the coif4 mother wavelet, retaining 10 and 6 of the
largest coefficients at levels 4 and 5, respectively and using
ten features. This means the combination d III (2-11).

The first internal defect, comprised in the sample range
781-840, was detected by using both bandwidths. The second
internal defect, comprised in the sample range 1101–1160,
was detected only using the low frequency bandwidth.

The hand mapping revealed that the second internal
defect was located more than 10 mm below the rail head
surface, whereas the first internal defect lied underneath the
rail surface. Therefore, the latter defect was also detectable
exploiting the high-frequency bandwidth of the propagating
guided waves. This outcome demonstrates that the proposed
algorithm yields to the depth location of internal defects.

Table 3 summarizes the best and worst performances of
the two transducer pairs at both frequency bandwidths.

4.3. Repeatability Tests. In order to verify the repeatability of
the setup, two more tests were conducted on separate days.
Between each test session, the cart hosting the prototype was
removed from the rail. Minimal variations of the transducers
orientation and alignment of the optical system, if any
occurred, were unintended. The outlier analysis conducted
on these two tests used the same baseline data of Test 1.
The same level of noise was added to the raw waveforms
recorded during Test 2 and Test 3. Figures 8(a) and 8(b)
show the Mahalanobis squared distance as a function of
the sample number for Test 2 and Test 3, respectively. The
results are associated with the high frequency component of
the waveforms acquired with the central pair. In Figure 8(a),
the results from the features’ selection that maximize the
detection of the transverse and longitudinal defects in Test
2 and Test 1 are superimposed. Similarly, Figure 8(b) shows
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Table 3: Test 1. Multivariate analysis: percentage of outliers for various transducer pairs, frequency bandwidths, and damage types. The best
and the worst combination of wavelet processing and damage index features are presented.

Defect type

Transverse Longitudinal Oblique Internal

DATA Best/Worst Combination Success rate

Central sensors
high-freq

B c I (1-3,6,9) 92.8% 48.8% 22.5%

W b II (9,11) 57.1% 0% 2.5%

Central sensors
low-freq

B a IV (1-3,5-11) 93.2% 65% 78.8%

W a II (5,9) 41.8% 0% 0%

Gage sensors
high-freq

B a II (1-4,8-9) 58.1% 0% 41.7%

W a IV (3,5) 23.5% 0% 5%

Gage sensors
low-freq

B a III (1-3,5-11) 70.4% 8.8% 68.3%

W a IV (3,5) 33.8% 0% 13.3%

Central sensors
high-freq

B c I (1-2,4-9,11) 57.1%

W b II (4,5) 0%

Central sensors
low-freq

B f IV (1-3,5-6,8-9,11) 77.9%

W b I (1,2,10) 0%

Gage sensors
high-freq

B f I (1,4-9) 41.7%

W a IV (3,5) 0%

Gage sensors
low-freq

B d III (2-11) 60%

W a IV (3,5) 0%

the results from the selections that maximize the detection
of the transverse and longitudinal defects in Test 3 and
Test 1. The values of the corresponding thresholds are
superimposed. It is evident that the results are very similar.
As the number of acquisitions changes, the total number of
samples varies. This causes the slight shift between the two
plots in Figure 8(a).

4.4. Discussion. Overall it was observed that the percentage
of defects properly identified as outliers increases with the
increase of the damage index vector dimension, whereas the
number of false positives is relatively constant. This outcome
is visualized in Figure 9 where the success rate is plotted as a
function of the dimension of the damage index vector, that
is, the number of features utilized. Each value in the plot is
the average of all the rates resulted from the combinations
that used the same number of features. The corresponding
averages of false positives are superimposed. It can be seen
that the selection of only five features provides a success rate
nearly identical to the one obtained by considering all eleven
features. The analysis presented in Figure 9 is associated
with the detection of transverse defects by means of high
frequency ultrasonic bandwidth. The time waveforms were
recorded by the central transducer pair.

For the detection of the internal defects, it was found
that the highest success rate was achieved with a high

number of features. However, the number of false positives
was also found to be high. This is probably related to
the inclination of the transducers with respect to the rail
surface. In preparation of the set up, the sensors position
was optimized with respect to rail Section 1. However, as two
AREMA sections were simultaneously tested, the sensitivity
over rails 2 and 3 was not optimal. As such, the higher
number of false positives may have been arisen.

It must be highlighted that the detection rate discussed
in Figure 9 is not conceptually identical to the probability
of detection (POD). For instance, let us assume that a given
defect was probed at least five times during each test, and
three out of five acquisitions were correctly identified as
outliers. The success rate of the outlier analysis is 60%.
However, because the defect was identified at least once the
probability of detection is 100%.

5. Field Test

This section presents the results of field testing activities
conducted over the past two years near Gettysburg, Penn-
sylvania. The site consisted of a segment of railway siding,
160 ft (49 m) in length, containing known defects. Several
joints were present along the test section. Three, 1.8 m (6 ft)
long, 136-lb A.R.E.M.A. sections with known internal defects
in the head were inserted, and secured with joint bars, in the
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Figure 5: Test 1. Feature-based unidimensional damage index as a function of the acquisition number. The max amplitude (x), crest factor
(o), peak-to-peak (�), and the RMS (♦) of the wavelet coefficient vector are plotted for the (a) high frequency components and (b) low
frequency components of the time waveforms acquired with the central pair transducers, and for the (c) high frequency components and
(d) low frequency components of the time waveforms acquired with the gage side transducers.
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Figure 6: Test 1. Mahalanobis squared distance as a function of
the sample number associated with the filtering combination that
maximizes (best) and minimizes (worst) the detection of transverse
surface defects probed using the central sensors pair and high-
frequency bandwidth.

test section. From ultrasonic hand mapping, three internal
defects were located and sized, with 3.5% head area (HA),
35% HA, and 12% HA, respectively. The hand mapping also
indicated that all internal defects were primarily transverse,
with two located in the gage side and one located in the
head-center. In addition, two surface cuts were machined
perpendicularly to the rail running direction, with sizes of

5% and 2% HA, respectively. Two oblique surface cuts (45
degree inclination from the running direction) were also
added at the top of the head, both about 3.5% HA. A photo
of the test site is shown in Figure 10(a). More details of the
test site are in refs. [29, 30].

The prototype shown in Figure 10(b) was used for the
test.

The signal processing algorithm implemented in the field
test prototype was adapted to provide real-time indication of
defects in a statistically robust manner and to provide two
levels of classification. The first level identifies “discontinu-
ities” in the track (including defects and joints); the second
classification level flags each discontinuity as “joint,” “surface
defect,” “internal defect,” or “unclassified defect.” The two-
level classification was implemented to minimize the chances
of missing a defect (i.e., minimizing false negatives) and, at
the same time, to provide the defect classification (“surface
defect” versus “internal defect”) whenever possible. Defects
are flagged in real-time along with their position. The
classification analyzes damage indexes. It must be pointed
out that in the context of the field testing, the damage index
is the Mahalanobis squared distance calculated by combining
five statistical features associated with the time domain of
the raw signals detected from air-coupled transducers pairs
[31, 32].

Figure 11 shows a typical damage index plot as a function
of the inspection distance. The largest peaks are rail joints
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Figure 7: Test 1. Mahalanobis squared distance as a function of the sample number associated with the filtering combination that maximizes
(best) and minimizes (worst) the detection of internal defects probed using (a) the gage sensors pair and high-frequency bandwidth and (b)
the gage sensors pair and low-frequency bandwidth.
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Figure 8: Mahalanobis squared distance as a function of the sample number associated with the filtering combination that maximizes (best)
the detection of transverse surface defects probed using (a) the central sensors pair and high-frequency bandwidth during Test 1 and Test 2,
and (b) the central sensors pair and high-frequency bandwidth during Test 1 and Test 3.
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Figure 9: Average detection rate as a function of the dimension of
the damage index vector as a result of probing transverse defects
with central sensor pairs and high-frequency bandwidth in Test 1.

which the system interprets as “very large discontinuity”,
and the smaller peaks are real defects. The discontinuity-free
portions of the rail show an almost identically zero damage
index.

Figure 12 shows the graphical user interface relative to
the defect classification results. Notice that the plots are
zoomed between locations 70 ft and 120 ft. The software
shows two plots, namely the “Discontinuities” plot which
includes both joints and defects, and the “Classification” plot
which color codes the discontinuities according to the classes
“Joint,” “Internal Defect,” “Surface Defect,” and “Unclassified
Defect.”

Various runs were made during four days of testing.
Twenty-four of these runs were used to collect Damage Index
data for estimating the POD for the present defects. The
other runs were performed to collect raw data for further
analysis. To assess the robustness of the system, the tests were
performed under various conditions including calm versus
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(a) (b)

Figure 10: (a) Test site near Gettysburg, Pennsylvania. (b) Photo of the latest inspection prototype tested in the field.

Table 4: Defect detection reliability during March 2008 field test at Gettysburg, PA.

Defect
Surface cut
(5% H.A)

Surface cut
(2% H.A)

Internal
defect
(gage side,
3.6% H.A.)

Internal
defect
(gage side,
35% H.A.)

Oblique cut
(3.5% H.A.)

Internal
defect
(center head,
12% H.A.)

Oblique cut
(3.5% H.A.)

Position from
start

81′ 7′′ 82′ 7.5′′ 86′ 4′′ 91′ 3.5′′ 95′ 1′′ 96′ 4′′ 97′ 8′′
False positive
%

POD (5 MPH) 100 97.7 100 81.8 95.5 84.1 100 0.8

POD (10 MPH) 100 100 100 100 75 87.5 100 2.9

POD
(Cumulative)

100 98.1 100 84.6 92.3 84.6 100 1.1
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Figure 11: Field testing damage index as a function of the
inspection distance. Large peaks denotes the presence of joints,
smaller peaks denote the presence of defects.

windy, dry versus wet rail, 5 mph versus 10 mph, and using
two different powers of laser excitation.

The performance of the prototype, evaluated in terms
of POD, is summarized in Table 4. The results are shown
separately for the 5 mph and the 10 mph testing speeds.
The “cumulative” POD, obtained by considering all tests
regardless of testing speed, is also shown. The POD was
calculated as the ratio between the number of runs where a
given defect was detected, over the total number of usable
runs. A defect was considered detected when at least one of
the statistical damage indices associated with the transducers’
pair was activated. An index was called “activated” when

the corresponding value was above a fixed threshold level.
Table 4 shows an excellent performance in detecting all
present defects. Particularly noteworthy is the high POD
obtained for the three internal defects. The reliability of
detection for the surface and the oblique cuts was also high.
It is not clear why the POD of the 35% H.A. internal defect
was smaller than that of the other two internal defects at
5 mph. It is possible that the 35% H.A. defect has a curvature
that makes the ultrasonic detection more challenging. The
fact that this effect was not seen at 10 mph could be due to
the favorable position of the air-coupled sensors relative to
the defect in the faster runs. Hence, for some of the defects,
there seems to be a dependence of reliability of detection on
the position of the sensors. This is not surprising, because
the defect “ultrasonic shadow” footprint will change with
position along the rail.

6. Conclusions

This paper describes a rail inspection prototype based on
noncontact probing and ultrasonic guided waves coupled
with a robust signal processing algorithm. The algorithm
consists of discrete wavelet transform, feature extraction,
and outlier analysis aimed at providing automatic damage
detection and classification. The system uses laser generated
guided waves to detect surface-breaking cracks and internal
defects located in the rail head. Ultrasonic signals were
detected by using three pairs of air-coupled transducers.
Time waveforms were processed with the Discrete Wavelet



12 Advances in Civil Engineering

70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120
Distance (feet)

70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120
Distance (feet)

Figure 12: The “Defect Detection” window of the user’s interface showing the real-time classification of joints and defects as color-coded
points.

Transform to denoise the signals and to generate a set of
relevant damage sensitive features used to construct a uni
or multidimensional damage index. The damage index was
fed to an unsupervised learning algorithm based on outlier
analysis aimed at detecting anomalous conditions of the rail
head. The population of data for the outlier analysis was
created by adding digital random noise to the ultrasonic
measurements. A total of 20 samples per acquisition were
thus obtained for the baseline constituting the undamaged
condition and for each of the damage conditions.

The importance of feature selection related to damage
detection performance was examined. It was shown that
combining multiple features in a multivariate analysis sub-
stantially improves the performance of the system in terms
of sensitivity to defect sizes’ detections and discrimination.
By combining as few as five features, the improvement
in defect detections was demonstrated. By separating the
low-frequency from the high-frequency signal bandwidth,
discrimination between internal and surface defects can be
achieved. Moreover, by deploying sensors across the rail head
width, the position of the defect within the head cross section
can be identified.

The results presented here showed the effectiveness of
deploying pairs of sensors over the entire rail width and
the efficiency of performing robust signal processing to
enhance the defect sensitivity of the inspection prototype.
For instance, the oblique defect located was clearly identified
through the analysis of the gage side data but barely visible
through the analysis of the central transducers’ data. The
proposed setup, not only adds complete coverage of the rail
head, but also offers a tool to conduct defect location and
classification across the rail head section.

The last part of the paper presented the status of the rail
defect detection prototype being developed at UCSD under
FRA sponsorship. The prototype was field tested at speeds of

up to 10 mph. The test track included three different sizes of
Internal Head Defects (3.5%, 35% and 12% H.A.), two sizes
of transverse Surface Head Cuts (2% and 5% H.A.), and one
size of oblique Surface Head Cut (3.5% H.A.). The results
of the tests indicated a high Probability of Detection for all
defects present, ranging from 75% to 100% success rate over
twenty-four runs conducted with varying environmental
conditions including wind and rain. Unfortunately it was not
possible to compare the proposed technology with existing
rail inspection technologies. It is hoped that this comparison
can be done in the near future.
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