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Abstract—In recent years, Online Social Networks (OSNs) have radically changed the way people communicate. The most widely

used platforms, such as Facebook, Youtube, and Instagram, claim more than one billion monthly active users each. Beyond these,

news-oriented micro-blogging services, e.g., Twitter, are daily accessed by more than 120 million users sharing contents from all over

the world. Unfortunately, legitimate users of the OSNs are mixed with malicious ones, which are interested in spreading unwanted,

misleading, harmful, or discriminatory content. Spam detection in OSNs is generally approached by considering the characteristics of

the account under analysis, its connection with the rest of the network, as well as data and metadata representing the content shared.

However, obtaining all this information can be computationally expensive, or even unfeasible, on massive networks. Driven by these

motivations, in this article we propose SpADe, a multi-stage Spam Account Detection algorithm with reject option, whose purpose is to

exploit less costly features at the early stages, while progressively extracting more complex information only for those accounts that are

difficult to classify. Experimental evaluation shows the effectiveness of the proposed algorithm compared to single-stage approaches,

which are much more complex in terms of features processing and classification time.

Index Terms—Social network security, spam detection, artificial intelligence
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1 INTRODUCTION

THE widespread diffusion of Online Social Networks
(OSNs) has enabled new forms of communication that

allow people to regularly share almost any kind of informa-
tion within a virtual community. Nowadays, a number of
OSNs are available to address the needs of different types of
users, providing them with a variety of services and objec-
tives. Some aim to create networks of people who know each
other (e.g., Facebook), or to connect people interested in news
coming from all over the world (e.g., Twitter); others are ori-
ented to professional networking (e.g., LinkedIn), some offer
instant messaging services, such as WhatsApp, Telegram, or
Viber,while some others aremainly intended for sharingmul-
timedia contents, e.g., Instagram andYoutube.

Thanks to their ease of use, popular OSNs claim billions of
active users, most of which are unfortunately not aware of
the threats coming from the cyber space. This represents the
main reason why malicious users are attracted to the social
networks asmuch as, or evenmore than, legitimate ones.

Research on social network security covers a wide number
of topics, from account hijacking, fraud and impersonation attacks

to malware distribution [1]. Beside them, spam detection is a
well-known, and still open, challenge which affects social
networks as well as any other type of network-based
application [2].

In general terms, spammers are entities (real users or
automated software agents) that repeatedly send unsolicited
messages for various purposes, e.g., supporting commercial,
slandering, or proselytizing campaigns [3]. Even though sev-
eral spam detection techniques have been proposed in the lit-
erature, the art of spamming continuously evolves and new
intelligent approaches for identifying spammers are con-
stantly needed. The behavior of early social bots, for instance,
was quite simplistic as they were just intended to spread
messages to as many users as possible. As soon as the spam
detection algorithms became able to identify the typical char-
acteristics of these bots, such as the presence of a biased fol-
lowing/followers ratio (FF) as compared to real users, the
attackers quickly improved their strategy [4]. A trustworthy
FF value, for instance, could be easily forged by relying on
groups of social bots which cooperate to mimic the interac-
tions among normal OSN users, thus avoiding the corre-
sponding countermeasures [5].

As a consequence, spam analysis in online social net-
works is generally approached by considering different lev-
els of information that describe the user as a whole. To this
aim, a variety of features and classification algorithms exist.
Whereas the latter are typically borrowed from those
adopted in other machine learning contexts, the feature
extraction process is strictly dependent on the set of infor-
mation that the OSN makes available. This commonly
includes the characteristics of the account, its connection
with the rest of the social network, as well as data and meta-
data representing the content shared. However, what is
never considered in the existing works is the effort required
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to extract each feature, which deeply impacts on the capabil-
ity of the classifier to provide timely results.

Driven by these motivations, in this paper we propose
SpADe, a multi-stage Spam Account Detection technique
with reject option, whose purpose is to exploit less costly
features at the early stages, while progressively extracting
more complex information only for those accounts that are
more challenging to classify.

SpADe consists of four stages of analysis that progres-
sively combine information about (i) the general characteris-
tics of the account, (ii) the URLs shared, (iii) the similarity of
the published contents, and (iv) the relationship between
the user and the rest of the social network. Bayes classifiers
are adopted to implement the accept/reject mechanism in
all the stages except the last one, in which decision trees are
exploited to make a decision regardless of the uncertainty
degree. The effectiveness of the approach was proven by
considering as case study the most widely diffused micro-
blogging platform, i.e., Twitter. Nevertheless, it is worth
noting that the features we have chosen, as well as the clas-
sification algorithm, are reasonable for any other OSN.

The major contributions of this work are summarized as
follows.

� The paper presents SpADe, a novel Spam Account
Detection approach that takes into account the effec-
tiveness of each feature as well as its observation
(collection/processing) cost; at the best of our knowl-
edge, this is the first work in which the two aspects
are considered together.

� The most representative features presented in the lit-
erature were selected and organized into four consis-
tent categories, each of which captures a different
facet of spamming behaviors and is characterized by
a homogeneous observation cost.

� A novel multi-stage classification algorithm with
reject option that incrementally exploits set of features
of increasing complexity was designed. This allows to
classify an account as soon as the chosen confidence
level is reached,without the need to capture thewhole
feature set for every account under analysis.

� SpADe is evaluated both on a dataset of about 40.000
users we retrieved from the Twitter stream during
the last year, and on a popular reference public data-
set of about 11.000 users collected in 2017. Comparing

the results obtained on datasets of different sizes, and
acquired in different epochs, made it possible to carry
out a robust evaluation of the proposedmethod.

The remainder of the paper is organized as follows:
related works are outlined in Section 2. The mathematical
background of the proposed multi-stage classification algo-
rithm is provided in Section 3. Section 4 presents SpADe and
the features exploited at each stage by highlighting their role
in spam detection. Experimental settings and results are dis-
cussed in Section 5. Conclusions follow in Section 6.

2 RELATED WORK

Spam detection is a popular research topic that has been
widely addressed in the last decades.More recently, the focus
has shifted towards the detection of spam campaigns on
Online Social Networks (OSNs), which represent one of the
most fertile grounds for this type of cyber threat [6]. Themain
reason is that users of OSNs can share information in many
different ways, and so do spammers, making their behavior
difficult to predict. In this paper, we focus on Twitter analysis
because tweets generally refer to popular events and are
therefore characterized by a high information content.

This section presents a review of the state of the art by
following the evolution of spam detection systems. Related
works are arranged in categories, which reflect the most
important characteristics of the studies discussed.

Honey-Profiles. Early spam detection was mainly based on
statistical analysis of the account activities. This type of sys-
tems required a protected environment in which the spam-
mer could act undisturbed, allowing the detection algorithm
to monitor and learn its behavior. In the Social Honeypot
Project [7], for instance, an automated bot is assigned to
every account to be analyzed in order to capture meaningful
features that may reveal a malicious activity. The authors
of [8] exploited 60 Twitter bots as honeypots to attract a total
of 36,000 accounts, which were analyzed by observing their
activities and relationships with their neighborhood. In [9],
an extensive study on how spammers operate to target Face-
book, Twitter and MySpace is presented. In order to observe
four categories of spammers, called displayers, braggers, post-
ers and whisperers, large sets of honey profiles were created
with the aim of capturing information about the accounts
they are connected with, and the messages they received.
Then, users were classified by Random Forest exploiting

TABLE 1
Comparison Between SpADe and Other Relevant Spam Detection Approaches

SpADe [7] [8] [12] [13] [17] [24] [26] [28] [29] [30]

Honey-profiles ✓ ✓
URLs blacklists ✓ ✓
Wide feature sets and ML ✓ ✓ ✓ ✓
Deep-Learning ✓
Other learning methods ✓ ✓
Multi-stage approach ✓

Number of features 39 10 10 14 15 18 107 12 12 – 9
Effort in detection Low High High Medium Medium High High High Medium Low High

Assessment on private dataset ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Assessment on public dataset ✓ ✓ ✓
Assessment on multiple datasets ✓ ✓ ✓ ✓
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conventional features, such as following/follower ratios,
URLs, message similarity, account activity and quality of the
neighborhood. Such an analysis also revealed the possibility
of identifying spam campaigns [10] in which several bots
cooperate with the same goal. The use of social honeypots is
also discussed in [11], which also highlights how these traps
can be effective in identifying previously unknown spam-
ming patterns. The major limitation of these solutions is that
several honeypots must be implemented in order to make
the approaches effective. However, when dealing with large
communities of spammers, this turns out to be computation-
ally expensive, or even unfeasible.

URLs Blacklists. URLs are frequently injected by the
spammers into trending topics and related messages. War-
ningBird [12] aimed at detecting spammers by following the
URLs through all their redirections so as to obtain the target
IP addresses; then, a set of features is computed and ana-
lyzed in order to assign the suspicious label to the correspond-
ing URLs. Results show the good performance of the system;
nevertheless, the effectiveness of WarningBird dramatically
dropswhen a obfuscationmechanism is applied to theURLs,
e.g., via the URL shortening services. The authors of [13]
extended the analysis of URLs by considering also how the
links are received by the community, i.e., counting the actual
number of clicks. However, the analysis is limited to a few
different shortening services and the correlation between
URLs and other type features is not considered.

Wide Feature Sets and ML. In order to identify the distinc-
tive characteristics of a broader set of spamming strategies,
several works proposed a variety of features [3], [14] that
can be exploited as the basis for Machine Learning (ML)
models. The system presented in [15], for instance, lever-
ages on characteristics that are able to capture the way
tweets are written, as well as the user’s posting frequency,
social interactions, and influence on the Twitter network.
These features are exploited to train a Support Vector
Machine (SVM) classifier capable of correctly identifying
70% of spammers and 96% of non-spammers. Even though
these results are notable, the method lacks of considering
other relevant aspects that are typical of spammers. In [16],
elements such as the behavioral and content entropy,
bait-techniques, and profile vectors are considered. The cor-
responding features were used to train four different super-
vised learning algorithms, namely Decision Tree, Random
Forest, Bayes Networks, and Decorate. Results indicate that

such a feature set allows to achieve good performance with
any of the four algorithms. A different kind of features
aimed to model the interactions between users and their fol-
lowers is exploited in [17]. The idea is that spammers can
easily alter features regarding their own behavior, while
those based on to their relationships with the community are
more difficult to change. Nevertheless, complex attacks based
on sybil networks [18]might seriously reduce the effectiveness
of this kind of features. Sybil account detection is addressed
in [19], where a method called Ianus is proposed to discover
fake accounts according to registration information. The
study moves from the observation that sybil accounts are
characterized by different registration patterns than legiti-
mate ones. Then, sybil detection is solved as a graph inference
problem in which registrations are modeled as nodes, and
strongly connected nodes are more likely to represent sybils.
Another approach to deal with compromised accounts is dis-
cussed in [20]. Malicious changes are distinguished from
legitimate ones through statistical analysis and anomaly
detection techniques. The system, called COMPA, exploits
features capable of capturing recurring temporal patterns in
the account usage, information about the messages (e.g., lan-
guage, topic, the application used to share them), as well as
the presence of URLs/mentions and the connections of the
user with the social graph. Social graphs for spammer detec-
tion are also examined in [21], where Graph Convolutional
Networks (GCNs) and Markov Random Fields (MRFs) are
combined to detect neighbor message-passing and capture
human insights in user following relations. The analysis of
communities, and in particular of the topics that spread
through them, can make it possible to identify groups of
accounts with abnormal behaviors. POISED [22] is a system
that models the different propagation paths of benign and
malicious messages in order to distinguish between legiti-
mate and spam accounts. Experimental evaluation performed
on Twitter data shows the effectiveness of this approach, even
against poisoning and evasion adversarial attacks. The detec-
tion of anomalous topics is addressed in [23], where a topol-
ogy-based method to detect cooperative and organized
spammer groups in micro-blogging communities is pro-
posed. An anomaly detection problem is also formulated
in [24], where spammers are described by means of 107 fea-
tures. This system combines two data stream clustering [25]
algorithms, namely StreamKM++ and DenStream, that allow
to correctly identify the most of the spammers, with low

Fig. 1. Bayes decision rules and the corresponding errors for a two-class classification problem (a) without reject, (b) with reject option and threshold
QR ¼ 0, (c) with QR in (0,0.5), and (d) with QR ¼ 0:5.
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percentage of false positives. Data stream clustering is also
discussed in [26], where a modified version of DenStream
based on a set of incremental Bayes classifiers is presented. In
this case, the feature set is designed so as to capture relevant
characteristics of both the user’s behavior and the tweet con-
tent. A different approach is presented in [27], where the
acceptance of a user from other members of the community is
considered as an indicator of its reliability. In particular, the
authors propose an unsupervised spam detection algorithm
in which high peer acceptability values are assigned to users
that have common interests, e.g., users discussing the same
topics and/or sharing the same contents.

Deep Learning. Other works proposed the use of Deep
Learning (DL) because of the lower effort required for fea-
ture extraction [31]. In [30], a novel DL technique is showed
to outperform two machine-learning classifiers. The DL
approach considers only users’ tweets and needs Google’s
Word2vec algorithm to learn tweet syntax, while ML algo-
rithms exploit 9 easy to extract user/account’s meta-data
and text-based features. Word2vec is also used in [32] to
convert tweets into dense vectors, which are analyzed by
means of Recurrent Neural Networks (RNNs). The limita-
tions of this approach are common to all deep learning

based techniques [33], i.e., the reasons for a certain output
are difficult to understand and there is no standard theory
to guide in the selection of the right DL strategy.

Other Learning Methods. Approaches based on pure ML
suffer from the constant evolution of the spammers, which
continuously worsens the performance of existing methods.
Incremental learning aims to keep the models up to date in
order to deal with new attack strategies. This aspect is
deeply analyzed in [28], where a model, called Lfun (Learn-
ing from unlabeled tweets), is proposed to include new
unlabeled spam tweets into the classifier training process.
On the same principle operates AdaGraph [34], an unsuper-
vised graph-based technique that dynamically builds and
updates a graph of behaviors to detect spam in OSNs.
Although the performance of this approach are quite rele-
vant, it cannot be adopted for massive graphs analysis
because of the cost of collecting community-based features.
Social FingerPrinting [29] combines supervised and unsu-
pervised techniques in order to identify two different types
of automated spammers, namely, those interested in adver-
tising products on e-commerce platforms and promoting a
political candidate during the electoral campaign. The
behavior of each account is encoded as a sequence of char-
acters that represents a sort of digital DNA; then, a similarity
measure between DNA sequences is used to detect genuine
or spamming accounts.

Analysis of the literature reveals that spammers’ behav-
ior can be modeled through a variety of feature sets, capable
of capturing the essence of a tweet, the characteristics of the
account, as well as the interaction between users in the net-
work. However, all the works described so far do not explic-
itly consider the cost of obtaining the features, which in
many cases is prohibitive and can significantly affect the
classifier’s ability to provide timely results. For this reason,
our approach aims to progressively exploit features of
increasing complexity, depending on the the peculiarities of
each spammer. The idea is somehow similar to the process
of diagnosing a clinical condition through a series of investi-
gations of increasing cost and complexity [35].

The characteristics of SpADe are summarized in Table 1,
which also provides a comparison with some of the works
discussed in this section.

3 DECISION UNDER UNCERTAINTY

Bayesian decision theory assumes that decisions are taken
according to the probability of a possible outcome. Given

TABLE 2
The Set of Features Aimed to Describe the General Characteris-
tics of the Account, the URLs and the Contents Shared by the

User, as Well as the Properties of its Neighborhood

TABLE 3
Classifiers Employed to Analyze the Features Listed in Table 2,

Namely, RandomForest (RF), Decision Tree (DT), Support-Vector
Machine (SVM), Bayesian Network (BN), k-Nearest Neighbors

(k-NN), andOther

Reference RF DT SVM BN k-NN Other

[17] ✓ ✓ ✓
[24] ✓
[14] ✓ ✓ ✓ ✓ ✓ ✓
[15] ✓
[16] ✓ ✓ ✓ ✓
[39] ✓ ✓ ✓ ✓ ✓
[40] ✓
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the problem of associating an observation X with a class
from the finite set V ¼ fv1;v2; . . . ;vY g, a generic decision
rule would suggest to choose the class that minimizes the
classification error, i.e., the one whose posterior probability
givenX is the greatest

pðvyjXÞ > pðvcjXÞ; c ¼ 1; . . . ; Y c 6¼ y; (1)

or equivalently, in terms of class-conditional and prior proba-
bilities

pðXjvyÞpy > pðXjvcÞpc; c ¼ 1; . . . ; Y c 6¼ y: (2)

Such a decision process can also be seen as splitting the
observation space into a set of regions, C ¼ fc1; . . . ;cY g,
such that ifX 2 cy thenX is associated with the class vy.

Because of their probabilistic nature, Bayes decision rules
are not free from errors; hence, assuming that some classifica-
tion errors are more costly than others, it is reasonable to
associate to each decision di, i 2 f1; . . . ; Y g, a loss function �i;y

that quantifies the penalty of classifying asvi when the actual
class is vy. The zero-one loss function, for instance, assigns no
loss to a correct decision, and a unit loss to any error

�i;y ¼ 0 if i ¼ y;
1 if i 6¼ y:

�
(3)

Given the loss function �i;y, the conditional risk associated
with the ith decision is defined as

RðdiÞ ¼
XY
y¼1

�i;y pðvyjXÞ: (4)

Considering a simple scenario in which only two classes
exist, i.e., V ¼ fv1;v2g, and D ¼ fd1; d2g, the decision rule
should suggest to classify X as v1 if Rðd1Þ < Rðd2Þ, as v2 if
Rðd2Þ < Rðd1Þ, whereas the choice would be arbitrary if the
two risks are equal. Choosing the lowest conditional risk
allows to minimize the overall risk RT , which is defined as

RT ¼
Z
ci

RðdiÞ pðXÞ dX ¼
XY
y¼1

�i;y

Z
ci

pðXjvyÞpy dX:

(5)

Based on Eq. (3), such a risk can be rewritten as

RT ¼
XY

y¼1;y 6¼i

�i;y

Z
ci

pðXjvyÞpy dX

¼ 1�
Z
ci

pðXjviÞpi dX ¼ pðerrorjXÞ; (6)

that corresponds to the average probability error.

3.1 Classification With Reject

Unfortunately, the decision rules from Eqs. (1) and (2) do
not directly consider the conditional risk of a wrong deci-
sion, then they always allow to classify an input, whatever
the classification error is. This can sometimes lead to an
excessive misclassification rate; for this reason, if the risk is
too high, the possibility of refusing to decide is introduced.
In this case, given Eq. (6), the decision to classify or reject can
be made according to a threshold QR 2 ½0; 1� on the overall
risk RT [36]:

di ¼ classify if max fpðXjvyÞpyg � 1�QR;
reject if max fpðXjvyÞpyg < 1�QR:

�
(7)

Rejection, denoted by d0, provides an extra choice within the
decision space D ¼ fd0; d1; . . . ; dY g, and corresponds to
define a new region cR

0 within the observation space, i.e.,
CR ¼ fcR

0 ;c
R
1 ; . . . ;c

R
Y g. When the reject option is consid-

ered, the loss function is also redefined as

�i;y ¼
0 if i ¼ y;
1 if i 6¼ y; i 6¼ 0;
lc if i ¼ 0 (reject);

8<
: (8)

where lc 2 ð0; 1Þ is the value of the loss cost, i.e., the penalty
occurring when the decision d0 is made [35].

The advantages gained from rejecting are demonstrated
by the following theorem.

Lemma 1. Given a classification problem with Y classes, if the
reject threshold QR � 1� 1

Y , then the decision to reject is never
made.

Proof. Since the probabilities of all the Y outcomes sum to 1

XY
y¼1

pðXjvyÞpy ¼ 1; (9)

Fig. 2. Overview of the features and algorithms used in the four stages of
analysis that characterize SpADe.

TABLE 4
Datasets Used in the Experimental Assessment

1KS-10KN [48] our-dataset

Collection period April to July 2010 June to December 2020
Number of accounts 11.000 40.000
Number of tweets 1.000.000 8.000.000

Features on account ✓ ✓

Features on URL ✓ ✓

Features on content ✓ ✓

Features on neighbors ✓ ✓
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the highest joint probability cannot be lower than 1=Y

maxfpðXjvyÞpyg � 1

Y
: (10)

As a consequence, the reject condition defined in Eq. (7)

maxfpðXjvyÞpyg < 1�QR; (11)

is verified for any QR < 1� 1
Y , i.e., QR 2 ½0; 1� 1

Y Þ. tu
Theorem 2. Given 0 � QR < 1� 1

Y , the average probability
error of a classifier that includes the reject option, pðerrorRjXÞ,
is not higher than the error pðerrorjXÞ made by a classifier in
which the reject option is not available

pðerrorRjXÞ � pðerrorjXÞ:

Proof. The proof is given for a binary classification problem
and can be easily extended to a multi-class scenario. Each
region within the observation space can be defined as

ci ¼ fX : pðXjviÞpi > pðXjvjÞpj 8i 6¼ jg: (12)

According to Eq. (7), the reject option impacts on the
observation space by redefining the regions as

cR
i ¼ ci \ fX : pðXjviÞpi � 1�QRg;

cR
0 ¼ ci \ fX : pðXjviÞpi < 1�QRg: (13)

Following Eq. (6), the average probability error in a sys-
tem with reject depends on these regions and can be
expressed as

pðerrorRjXÞ ¼
Z
cR
i

pðXjvjÞpj dX: (14)

Then, the difference between pðerrorjXÞ and pðerrorRjXÞ is

D ¼
Z
ci

pðXjvjÞpj dX �
Z
cR
i

pðXjvjÞpj dX

¼
Z
ci�cR

i

pðXjvjÞpj dX: (15)

Now, let us evaluate the relationship between D and QR.
Case QR ¼ 0: according to Eq. (7), a zero threshold

causes any observationX to be rejected; thus,cR
i ¼ ; 8i >

0, and the integral overci results inD ¼ pðerrorjXÞ.

Case QR ¼ 0:5: according to Lemma 1, if QR � 0:5 the
rejection is never performed. Then, ci ¼ cR

i 8i > 0, and
D ¼ 0.

Case 0 < QR < 0:5: rejection can be chosen and cR
0 ¼

ci � cR
i . As a consequence, D depends on cR

0 , that is the
reduction of the error is proportional to the size of the
reject region. tu
The outcomes of the properties demonstrated so far can

be also observed by comparing the plots in Fig. 1, in which
the easiest case of a two-class problem is illustrated for the
sake of clarity.

The first plot (Fig. 1a) refers to the classifier without reject;
here, two decision regions exist, namely c1 and c2, and the
classification errors for the classes v1 and v2 correspond to the
violet and grey areas respectively, as defined by Eq. (6). The
other three plots show the effect of introducing the reject
option. For instance, if a threshold QR ¼ 0 is considered
(Fig. 1b), every observation is rejected; as a consequence, since
the classification is not performed, all the errors are null and
only the reject region cR

0 exists. As the threshold value
increases (Fig. 1c), the errors are reduced by an amount that
depends on the size of the reject region. However, whenQR ¼
0:5, the region cR

0 is null (Fig. 1d) and the errors, due to the
wrong classification of v1 and v2, are the same as Fig. 1a. The
same holds for any valueQR > 0:5, as proved in Lemma 1.

3.2 Multi-Stage Classification With Reject

Given that proper threshold values are demonstrated to
reduce the classification error, a new problem has to be faced:
how to deal with the observations that are rejected.

A multi-stage classifier can be designed to address this
issue by introducing s stages, s 2 f1; . . .; Sg, each of which
applies the Bayes decision rule to a partial observation vector
xs � X. As onewould expect, the decision at the stage smust
take into account the reject decisions made at the previous
stages. Such a sequence of decisions can be seen as a first-
order Markov chain [37], where the decision at the stage s is
dependent only on the stage s� 1. Thus, starting from
Eq. (4), the conditional risk for the multi-stage classifier is
defined as

RðdisÞ ¼
XY
y¼1

�i;y pðvyjxsÞRðd0s�1Þ; (16)

Fig. 3. Data collection procedure. A initial set of static keywords is used to query the Twitter stream; then, topic detection is performed to find out new
terms emerging from the topics and to update the queries. Tweets are analyzed to retrieve the corresponding metadata and authors. For each author,
the timeline and the neighbors are explored. Then, the procedure is repeated for follower and following accounts extracted in the previous step.
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where Rðd0s�1Þ is the conditional risk of the previous stage,
and �i;y is the loss defined in Eq. (8).

In the scenario addressed here, such a loss strictly
depends on the cost f of making an observation xs. As a
consequence, the multi-stage loss function can be obtained
from Eq. (8) as

�s
i;y ¼

0 if i ¼ y;
1 if i 6¼ y; i 6¼ 0;
fðxsþ1Þ if i ¼ 0 (reject):

8<
: (17)

Such a multi-stage classification process brings advantages
in terms of recognition performance because a decision is
made only when the inputs are certain enough, and moving
to the next stage is too costly. Moreover, an optimal multi-
stage classifier will exhibit the following property [38]:
fðxs�1Þ � fðxsÞ � fðxsþ1Þ.

4 SPADE OVERVIEW

A common assumption of machine learning models is that a
collection D of heterogeneous data can be described by a
finite set of features f ¼ ff1; f2; . . .; fNg. The cost of Observ-
ing each feature value fn depends on two quantities,
namely, the time required to Collect the subset of data dn �
D from which fn can be computed, and the complexity of
the algorithms that actually Process dn in order to produce
the feature value fn

TOðfnÞ ¼ TCðfnÞ þ TP ðfnÞ; 8n 2 ½1; N�: (18)

However, it is frequent that some groups of features
fG � f may be computed from the same subset of data,
while also exploiting algorithms that have similar com-
plexities. Therefore, groups of homogeneous features can
be selected by imposing some constraints on the values
of TC and TP

fG ¼ ffn : t1 � TCðfnÞ � t2 ^ �1 � TP ðfnÞ � �2g; (19)

where t and � define a range of collection and processing
times, respectively. In SpADe, f consists of 39 features
(Table 2) that have been deeply analyzed in the literature
and are demonstrated to be effective in capturing the charac-
teristics of different spam behaviors. The criteria in Eq. (19)
were applied in order to split f in homogeneous groups; as a
result, four groups were identified. In particular, the proper-
ties of the account are observed at the first stage (x1 ¼ fA),
then URLs information is included (x2 ¼ fU ), content is eval-
uated at the third stage (x3 ¼ fC), and finally neighborhood
is visited (x4 ¼ fN ).

An analysis of the works in which the features adopted
were first described (see Table 3) revealed that Bayesian
Network (BN) and Random Forest (RF) are the most fre-
quently chosen algorithms for their classification. The for-
mer is particularly suitable to evaluate the rejection due to
its probabilistic nature, while the latter is proved to be one
of the most proper classifiers when dealing with large fea-
ture sets [28], [41]. These considerations led us to make
SpADe exploit Bayes classifiers to implement the accept/
reject mechanism of the first three stages, while the last-
stage relies on Random Forest.

Given the methodological framework presented in the
previous Section, classification performed at every stage s is
based on a cumulative feature vector Fs that includes all the
observation made so far, i.e., Fs ¼

S
x1;...;s. An overview of

the multi-stage classification process is provided in Fig. 2.
As long as the classification confidence does not reach the
desired acceptance threshold, the process is repeated by
choosing the rejecting option; however, at the last stage,
when no further examinations are possible, a decision is
made regardless of the achieved confidence. Multi-stage
classification also results in a higher processing speed since
the average number of features per stage is substantially
lower than that required in a single-stage [42].

4.1 Feature Extraction

The following subsections describe the feature extraction
processes that characterize each stage. A quantitative evalu-
ation of the observation costs of the four feature sets is pre-
sented in Section 5.2, while other possible configurations
are discussed in Section 5.3.

4.1.1 Stage 1: Account Analysis

Account analysis is the easiest to perform because the
related features (top block in Table 2) can be easily extracted
from public Twitter profiles. The features f1 and f2 capture
the tendency of spammers to have a low number of fol-
lowers and friend; f3 and f4, together, allow to detect
accounts that, despite having been recently created, have
produced a large number of tweets, which could indicate an
automated spamming behavior. Finally, features f5, f6, and
f7 contain important statistics about the presence of preda-
tory elements, such as favorites and hashtags. Although these
features are extremely easy to compute, they can be altered
just as easily, e.g., by buying followers in the so-called social
media’s black market. Thus, it is reasonable to exploit the
set fA to perform an early classification (at the first stage)
only if the risk associated with a given observation is low;
otherwise, it would be more convenient to extract more
complex features at the next stages.

Fig. 4. Time to collect and process URL-, Content-, and Neighborhood-
based features. Processing of fU involves the tasks TL and BL, while
TL, ND and TC are performed to compute fC . The features in fN are
obtained through the tasks CD, CB and NB.
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4.1.2 Stage 2: URLs Analysis

Tweets containing links to external websites are more likely
to be re-tweeted, which is the primary goal of most
spammers, i.e., to quickly reach as many people as possible.
In order to evaluate the quality and the quantity of URLs
shared by a user, we choose to rely on the 7 features
reported in the second block of Table 2. The most intuitive
element to observe in the user’s timeline is the amount of
URLs shared; in the simplest case, if every tweet contains
an URL, then the probability the user is a spammer is very
high. This aspect is captured by means of the features
f8; f9; f10; f11. Aside from sharing a large number of URLs,
some types of spamming activities are aimed to promote
specific URLs, such as those related to commercial products
or untrusted/malicious websites. The features f12; f13; f14
have been introduced to examine this kind of behavior;
while f12 traces all URLs that contain spam-related key-
words, such as those regarding money gain and adult con-
tents [43], the feature f13 counts URLs that point to the same
IP/domain, and f14 tests URLs for malicious contents by
relying on third-party services, such as Google’Safe Browsing.

Since the computation of this set of features requires to
retrieve all the user’s tweets, the observation cost is clearly
higher than the one measured at the first stage. Moreover,
f14 requires external safe-browsing services, whose analy-
sis-response time is not predictable.

4.1.3 Stage 3: Content Analysis

A straightforward characteristic of spammers is their ten-
dency to repeatedly share same information, or similar infor-
mation that implies the same content. In order to capture

different aspects of content-based spamming, we selected
the 16 features listed in the third block of Table 2.

The subset from f15 to f23 is intended to point out the dif-
ferences between real tweets and those forged by automated
spammers. The latter, for instance, are inclined to abuse
popular hashtags so that their tweets can be more easily
found; thus, the ratio of hashtags used in the tweets to the
total number of tweets (f15) is higher for spammers than
trusted users. The same considerations apply to mentions,
retweets, replies, and so on.

The analysis of timing is also important to evaluate if con-
tents are shared by following regular (artificial) patterns. We
address this aspect by means of the features f24 to f29. For
instance, the variance in the time taken by an account to post
tweets (f24), aswell as the variance in the number of tweets (f25)
are twouseful parameters to distinguish between bots and legit-
imate users,which are expected to tweet stochastically [16].

A further analysis is aimed to process the user’s timeline
in order to detect tweets that are not exact copies of each
other, but differ in a few characters. The feature f30, that
highlights the presence of near-duplicates contents, is com-
puted through an effective clustering approach based on the
combination of two algorithms, namelyMinHash and Local-
ity-Sensitive Hashing (LSH) [44], [45]. The output of the near-
duplicates detection is a collection of clusters containing simi-
lar tweets. Thus, the feature f30 is actually computed on this
output and consists of a set of values representing the size
and the number of clusters obtained from each timeline.

4.1.4 Stage 4: Neighborhood Analysis

The last, most computationally expensive, stage of analysis
concerns the evaluation of the user as a member of a

Fig. 5. Heatmap representing howmany times (%) the features adopted in SpADewere chosen by CASCAROat the generic stage si, with i 2 ½1; 39�.

Fig. 6. Stacked bars representing the usage (%) of the groups of features defined in SpADe at the generic stage si of CASCARO, with i 2 ½1; 39�.
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community. As observed in [46], [47], it is quite difficult for
a spammer to alter, or even influence, the behavior of its
neighborhood, especially when composed of genuine users.

The most relevant characteristics to look at for perform-
ing neighborhood analyses are reported in the last block of
Table 2. Some of them, i.e., f31 � f34, describe the degree of
interaction between users and their followers, or friends.
The features f35 and f36 measure, respectively, the probabil-
ity that two users become followers of each others (this
value is expected to be high for genuine users that usually
send requests to accounts they actually know), and the level
of trust existing between two nodes, which, in the OSNs
domain, depends on how close the connected nodes are,
e.g., based on common friendships. The remaining two fea-
tures, f38 and f39, provide an evaluation of the account
according to the community it belongs to. The former calcu-
lates the average reputation of the community in terms of
reciprocity rate, i.e., the fraction of the users who follow
back in response to followings. The latter studies the degree
to which accounts tend to cluster together within the com-
munity. For both features the lower the value they provide,
the more likely it is that the account is a spammer.

In order to obtain community-based features it is neces-
sary to explore both the target user and all the accounts in
its neighborhood. Hence, these features should be com-
puted for a small number of users only, if previous classifi-
cation stages have not led to a decision.

5 EXPERIMENTAL RESULTS

After describing the data collection process, the following
sections present a set of experiments aimed at tuning the
system parameters and evaluating the classification perfor-
mance. Then, comparative analysis are provided in order to
assess the performance of SpADe with respect to some rele-
vant related works.

5.1 Data Collection

Experiments have been carried out on two different data-
sets, whose characteristics are summarized in Table 4. The
former is a reference public dataset, named 1KS-10KN [48],
which consists of 11 k accounts and more than 1 million
tweets crawled by means of the Twitter APIs in the period
April-July 2010. The dataset contains also a set of features
regarding the accounts and their timelines, as well as infor-
mation about the URLs contained in the tweets. As its name
suggests, 1KS-10KN is characterized by a ratio of spammers
to genuine of 1:10, i.e., 1,000 accounts are labeled as spammer
and the remaining 10.000 as genuine. More details about the
dataset and the features provided can be found in [46].

The second dataset was collected by carrying out the pro-
cedure summarized in Fig. 3. Data collection starts by query-
ing the Twitter stream through a set of static keywords, which
will be successively refined. Initial keywords include ele-
ments that are generally used by spammers to reach as many
users as possible. In particular, we chose a set of common
spammy words [43] (such as “earn money”, “free money”,
“no credit check”, “viagra”, “enlargement pill”, “legal bud”,
etc.), and a list of trending topics/hashtags thatwere obtained
from a preliminary API request. Tweets matching the queries
are analysed by a topic detection algorithm [49], [50] with the

aim of putting together similar tweets and finding out impor-
tant terms emerging from them, such as keywords that char-
acterize newly discovered topics or recently popular hashtags
and mentions. Hence, the initial set of keywords is progres-
sively updated by including these terms or deleting those
unused. Such a strategy allows to acquire a large volume of
data while keeping the focus on relevant topics. As a results,
between June and December 2020 we collected 8 million
tweets and 40 thousands accounts, which were processed to
compute all the features required by SpADe. For each tweet
we retrieved both the associatedmetadata (e.g., tweet ID, date
of creation, and so on) and the author’s ID, which is essential
for obtaining account-related information. Then, for each
account, the tweets in the timeline and the set of followers
and followings were acquired. Finally, timeline and neigh-
bors extractions were performed even on followers and fol-
lowings accounts so as to capture information needed for
computing the neighborhood-based features.

A semi-automatic labeling procedure [44] was adopted to
assign ground-truth to collected data. The scheme consists
of three phases. The first two automatically ascribe labels to
“easy” users based on the analysis of the URLs and the simi-
larity of the content shared: if URLs are malicious (e.g.,
blacklisted) or the timelines contain many repeated ele-
ments, users are labelled as spammers. Otherwise, manual
annotation is required. In this case, the third phase aims to
minimize label assignment effort by creating groups of simi-
lar users, perform manual annotation of just a few samples
per group, and then extend the label to the whole set. The
entire process is detailed in [44].

5.2 Observation Cost Evaluation

Quantifying the effort needed to observe the four categories
of features outlined in Table 2 is crucial to implement the
reject mechanism. According to Eqs. (18) and (19), the obser-
vation time of every group fG is determined by the time
required to collect and to processes the relative raw data.

The former amount depends on the capability of the
observer to query the data source, e.g., by means of the
available APIs. For instance, if the analyses are performed
by the social media company itself, the collection time is
negligible since all the data needed to calculate the features
are available immediately. However, in the more general
case, potential beneficiaries of SpADe include organizations

Fig. 7. According to the confidence value and the the reject ratio r, the
accounts analysed at each stage can be Accurately classified, Misclas-
sified, Rejected, or Not rejected. As a results, four sets can be identified:
aAN , aMN , aAR, and aMR.
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involved in countering cybercrimes (e.g., cyberbullying or
other phenomena conveyed by OSNs), marketing and
advertising companies interested in distinguishing real and
fake accounts, government agencies working in the field of
cybersecurity (e.g., for discovering data flows that could
trigger devious political campaigns and misinformation),
and even academic researchers, from both the fields of com-
puter and social sciences, that being external to the OSN
would need a certain amount of time to collect data to be
processed. In general terms, this time for a group of homo-
geneous features, i.e., TCðfGÞ, can be defined as a function
of four parameters, namely the number of data to collect (d),
the maximum number of data that can be retrieved from a
single API call (maxd), the maximum number of API calls
allowed within a certain time window (maxc), and the dura-
tion of the time window itself (Dt).

The second component of the observation time, i.e., the
processing time TP , depends on the complexity of the algo-
rithms chosen to actually calculate the feature values. For
instance, the core processing tasks performed in SpADe
involve timeline browsing (TL), verification of blacklisted URLs
(BL), near duplicate clustering (ND), analysis of tweets’ con-
tents (TC), community detection (CD) and browsing (CB), and
neighborhood browsing (NB).

The observation times of the URL-, Content-, and Neigh-
borhood-based features discussed so far were assessed
through an experimental analysis conducted by means of the
two datasets presented in Section 5.1. Tests were run on a
multi-core server equippedwith 4 Intel Xeon at 2.00 GHz and
results are summarized in Fig. 4. Please note that the evalua-
tion of TOðfAÞ is omitted since fA is obtained directly from
raw account information. The TC and TP bars exhibit similar
trends on both datasets; in particular, it can be observed that
neighborhood-based features (fN ) are the most expensive to
obtain, both in terms of collection (striped) and processing
(solid) times. The groups fU and fC are characterized by
the same collection time since URLs are embedded in the
tweets; however, processing content-based features takes
more because of the computational complexity of near-dupli-
cates analysis. Overall, results confirm an increasing trend in
costs when moving from URL- to neighborhood-based fea-
tures. It is worth noting that even in the specific case of the
OSN data owner, though the collection time is negligible, the
processing time is progressively higher.

These outcomes can be exploited to quantify the effort
required to move from one stage to another. According to
Eq. (17), the loss fðxsÞ of the multi-stage classifier at the stage
s is strictly related to the cost of making the observation xs.
For instance, at the second stage of SpADe, x2 corresponds to
the set F2 ¼ ffA; fUg. Thus, by averaging and normalizing
the results shown in Fig. 4, the following loss values are cho-
sen: fðFsÞ � f0; 10�2; 10�1; 1g. It is worth noting that the loss
of the last stage is about 1, since themaximum cost is reached
when all the features are considered together.

5.3 Stages Order Selection

The performance of a multi-stage classifier depends heavily
on the order in which the features are employed. Using the
most effective features in the early stages could in fact
reduce the error, but may in some cases increase the overall
complexity of the system.

One way to find the optimal sequence is by testing all
possible permutations and determine the best trade-off
between cost and error. However, if the number of features
is large enough, this process may be impractical. As intro-
duced in Section 4, and further discussed in the previous
Section 5.2, the 39 features adopted in SpADe are grouped
into four categories according to their semantics and obser-
vation costs. This design choice actually allowed us to
reduce the search space from 39! to just 4!.

A different approach is suggested in [51], where the
problem of establishing a good order of the features to adopt
in a multi-stage system is addressed. In particular, CAS-
CARO is a method based on a variant of the Monte Carlo
Tree Search (MCTS), in which the problem of variable
ordering is treated as a search problem in a tree of depth D
+1, where D is the number of features. Each path in the tree
is associated with a reward that depends on L, a parameter
representing the penalty in case of misclassification. In
order to demonstrate the effectiveness of the feature order
used in SpADe, we applied the CASCARO procedure to a
system with 39 stages (one for each feature).

Results of the tests performed with L 2 ½1; 20� are illus-
trated in Figs. 5 and 6. The former shows the percentage the
feature fn was chosen by CASCARO at the generic stage si;
thus, the darker the cell, the higher the usage of that feature.
As it can be observed, simplest features (e.g., account-based
ones, with n ¼ ½1; 7�) are usually chosen in the initial stages,

Fig. 8. Non-rejected accuracy and classification quality achieved at the first (a), second (b), and third (c) classification stage. Stage 4 is omitted as no
reject option is allowed. Results shown in each column refer to the subset of samples rejected at the previous stage.
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while as the value of n increases, the choice of the corre-
sponding features is postponed to later stages.

In order to further analyze this aspect, the individual fea-
tures used in the CASCARO experiment were correlated
with the groups employed in SpADe. Fig. 6 shows how
many times the ith stage processed by CASCARO has used
features belonging to one of the four groups in SpADe. The
different colors highlight the existence of some patterns that,
with a few minor exceptions, well match the distributions of
the features we considered in SpADe. In particular, in the
early stages of CASCARO account-related features are regu-
larly selected; then, from stage 9 to 15 features ascribable to
the URL group are chosen more frequently. Stages 16 to 29
extensively rely on content-based features, while at the
remaining stages neighborhood information is preferred.
These groups, regardless of the inner order in which the fea-
tures are picked, correspond to those that are the core of our
method. Thus, these results confirm the validity of the order
adopted in the four stages.

5.4 Reject Threshold Evaluation

Choosing the proper threshold Qs
R at each stage is essential

to balance the reject and classification rates, on which the
performance of the spam detection system actually
depends. On the one hand, low thresholds may increase the
system accuracy as the decision to classify is made only
when the outcome is almost certain; however, rigid thresh-
olds could cause also inputs that would have been classified
correctly at the current stage to be discarded. Conversely,
high threshold values could lead the system to never reject,
even when the outcome is uncertain. We present here a set
of experiments aimed to find the proper threshold value for
each classification stage.

In order to measure the performance of the classifier as a
function of the fraction r of accounts rejected at each stage,
we adopted the evaluation metrics proposed in [52]. Given
a certain value of r, the classification of A accounts produces
as output four distinct sets (see Fig. 7):

� aAN : accounts Accurately classified andNot rejected;
� aMN : accountsMisclassified andNot rejected;
� aAR: accounts Accurately classified and Rejected;
� aMR: accountsMisclassified and Rejected.
According to these quantities, two performance meas-

ures, namely non-rejected accuracy ðNAÞ and classification
quality ðCQÞ, are defined

NA ¼ kaANk
jAj ; (20)

CQ ¼ kaAN þ aMRk
jAj ; (21)

The non-rejected accuracy measures the ability of the system
to properly classify samples, accounts in our case, that are
not rejected; the values of non-rejected accuracy (NA) can be
used as rough indicators of the effectiveness of both the
classifier and the features, evaluated on the “most evident”
inputs, i.e., those that are not rejected. A more in-depth
analysis of the reject region can be carried out through the
classification quality (CQ) index, which assesses the perfor-
mance of the classifier on the set of non-rejected accounts,
and the reject policy on the set of misclassified accounts.

Fig. 8 shows the values of the two metrics computed on
our dataset while varying the fraction of rejected inputs from
r ¼ 0 (no reject) to r ¼ 1 (reject all). By observing the results
of the first stage, Fig. 8a, we can notice that the more inputs
are rejected the higher the non-rejected accuracy. The reason is
thatmost of the inputs are uncertain because of the weakness
of the features adopted. Hence, in order to achieve a proper
level of accuracy it is necessary to impose a very high reject
threshold. For instance, a threshold that guarantees a non-
rejected accuracy of 90% would discard about 90% of the
observed accounts (or accept only 10% of them). The same
figure also provides a general measure of the effectiveness of
the account-based feature set, which would lead to an accu-
racy of 60%without the reject option (r ¼ 0).

Given a target reject ratio of 0.9, the classification quality
observed at this first stage is quite low; in fact, striving for
high accuracy in the non-reject region inevitably leads to
reject also some “good” samples that could have been classi-
fied correctly. With respect to Eq. (21), this means that the
number of aAN and aMR decreases as the reject ratio increases.

The performances observed at the second stage are more
promising, as summarized in Fig. 8b. Here, in order to
achieve the same target accuracy of 90%, only half of the
analyzed accounts need to be rejected (r ¼ 0:5). Even when
no sample is rejected (r ¼ 0), the features adopted at this
stage are more accurate than the previous ones; this proves
the usefulness of including URL information in the classifi-
cation process. Moreover, also the classification quality
increases, confirming that a proper threshold allows to
obtain a satisfying number of correctly classified samples
(aAN ), but also an adequate number of misclassified and cor-
rectly rejected samples (aMR).

This trend is confirmed at the third stage, in which the
reject ratio that maximizes the accuracy (r ¼ 0:3) coincides

Fig. 9. Relationships between reject ratios and reject thresholds mea-
sured at the three classification stages.

TABLE 5
Accuracy and F-Score Achieved by SpADe, Accounts (%)

Rejected at the NTh Stage, and Total Percentage of Accounts
Classified After the nth Stage)

Accuracy F-Score Rejected Classified

(current %) (overall %)

Stage 1 0.90 0.91 91 9
Stage 2 0.92 0.93 69 37
Stage 3 0.91 0.95 27 83
Stage 4 0.95 0.96 - 100
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with the maximum classification quality, as depicted in
Fig. 8c. It is worth noting that results shown in each column
of the figure refer to the subset of samples rejected at the
previous stage; thus, choosing a threshold that allows to
achieve an accuracy of 90% at the third stage, for instance,
would cause to reject only 30% of the accounts rejected at
the second stage, which in turn are only half of those
rejected at the second stage, which were 90% of those
rejected at the first stage.

The reject ratios are strictly dependent on the reject thresh-
olds chosen at each stage; thus, other tested were performed
in order to highlight the relationship between the two values.
We can observe from Fig. 8 that the lowest reject ratios for a
target accuracy of 90% are 0.9, 0.5 and 0.3 at stage-1, stage-2,
and stage-3 respectively. Then, Fig. 9 shows that these ratios
can be obtained by choosing the thresholds Q1

R ¼ 0:03, Q2
R ¼

0:15, and Q3
R ¼ 0:02. Moreover, the same figure points out

that as the system moves to the next stages, the reject thresh-
olds decrease; this indicates a progressively reduced uncer-
tainty because of an increasing feature significance.

5.5 Classification Performance

Once the observation costs were estimated and the classifier
was tuned with the proper threshold values, a 10-fold cross
validation was performed in order to assess the performan-
ces of SpADe in terms of overall accuracy, F-score, and per-
centage of classified accounts. Tests were repeated multiple
times on a balanced subset of the dataset, randomly select-
ing the same number of spammers and genuine accounts.

Results, summarized in Table 5, indicate that the idea of
progressively rejecting uncertain accounts allows the sys-
tem to achieve an adequate (above 90%) classification rate
at every stage. The F-Score values also highlights the ability
of the system to drastically reduce the number of false posi-
tives and false negatives. Furthermore, it is possible to note
that, stage by stage, the reject rate decreases as the feature
sets become more and more significant. This last result sug-
gests that even the effort required to process the features is
progressively reduced; for instance, the neighborhood fea-
tures are computed at stage four for only 17% of the initial
set of accounts.

Since the performance evaluation might be biased by the
ratio n:m between spammers (n) and genuine accounts (m),
other tests were performed by considering different ver-
sions of the dataset with ratios 1:2, 1:5, and 1:10, which are
increasingly more representative of the real social networks.

Table 6 shows that the system performances do not
change significantly as different ratios are considered.
Slightly better results are obtained when the proportion
between spammers and genuine accounts is moderately

unbalanced (e.g., 1:2); however, the average accuracy and f-
score achieved in the 1:10 scenario are still above 90%. Also
the percentages of inputs discarded at each stage are com-
parable, so confirming the quality of the rejection strategy.

The choice of the feature sets to adopt in each of the four
stages was also supported by an experimental evaluation.

For each permutation of the four sets fA, fU , fC , and fN ,
a multi-stage system was defined and tuned by following
the procedure described in Section 5.4. The performances of
the 24 variations of the multi-stage system were measured
in terms of their classification cost

F ¼
XS
s¼1

asc
jAj fðFsÞ; (22)

where asc ¼ jjaAN jj þ jjaMN jj is the number of account classi-
fied at each stage s by means of the cumulative feature vec-
tor Fs. It is worth noting that the value of F is maximum in
a single-stage system, as all data are required at once in
order to perform the classification.

Table 7 reports the percentages of accounts classified at
each stage by imposing a target accuracy of 90%, where
each row indicates a different sequence of feature sets and
the overall observation cost of the resulting multi-stage clas-
sifier. The first sequence of features is the one we adopted
in SpADe, which exhibits the lowest value of F. The last six
rows show the highest percentage of accounts classified at
the first stage, which demonstrates the effectiveness of the
community-based features. However, these configurations
also yield the highest observation costs, which reflects the
effort required to compute the set fN on a great number of
accounts.

The costs of the other combinations we tested depend on
how discriminative the feature sets are and the order in
which they are used in the processing chain. In any case, it
can be seen that none of the systems reaches the maximum
complexity, stressing again the benefits of the proposed
method over traditional approaches.

5.6 ComparisonWith State-of-the-ArtMLApproaches

The last set of experiments aims to compare SpADe with
three “single-stage” machine learning techniques without
reject option, namely Random Forest (RF), Decision Trees
(DT), and Bayesian Networks (BN). This choice is motivated
by the results summarised in Table 3, which show that these
algorithms are the most frequently employed in spam
detection scenarios.

The main difference between our algorithm and those
presented in the literature is undoubtedly the characteriza-
tion of the observation cost. Hence, in addition to the

TABLE 6
Accuracy, F-Score, and Rejected Accounts (%) Measured While Varying the Ratio Between Spammers and Genuine Accounts

1:2 1:5 1:10

Accuracy F-Score Rejected (%) Accuracy F-Score Rejected (%) Accuracy F-Score Rejected (%)

Stage 1 0.90 0.89 93 0.91 0.89 94 0.89 0.88 87
Stage 2 0.89 0.91 65 0.92 0.90 70 0.91 0.88 68
Stage 3 0.91 0.94 28 0.90 0.92 27 0.93 0.91 24
Stage 4 0.92 0.93 - 0.93 0.92 - 0.95 0.92 -
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accuracy and F-Score values, the comparative evaluations
have to consider the complexity as defined in Eq. (22).
Results of the comparison with RF, DT, and BN are reported
in Table 8. Although these techniques are generally applied
in balanced scenarios, we have selected a subset of our data-
set in order to test their validity also with a spammer-genu-
ine ratio of 1:10. Moreover, in order to make a fair
comparison in terms of observation cost, we also considered
a non-optimal configuration of SpADe based on the
sequence of groups ffN; fU ; fC; fAg. We refer to this system
as SpADe	, which is characterized by an observation cost
similar to that of the baselines.

All methods achieve fairly comparable performances in
terms of accuracy and F-Score, but the classification cost of
SpADe is extremely lower. The slight deterioration in the
performance of SpADe	 compared to the optimal configura-
tion are mainly due to the fact that, although the SpADe
reject option was tuned on a target accuracy of 90%, the last
stage has no chance to reject and thus will be more prone to
misclassification errors. Then, a higher probability of error
subsists if poorly discriminative features are used at the last
stage, such as fA in the case considered.

The effectiveness and generality of SpADe were further
assessed by setting up a new four-stage classification system
that exploits a different set of features, namely the four cate-
gories of features described in [17]: metadata, content, interac-
tion, and network. Also for this system, tested on the public
1KS-10KN dataset [48], we tuned the reject capability by
computing the observation cost for the new feature sets, as
well as the thresholds to be chosen at each stage in order to
achieve 90% of accuracy.

Results, reported in Table 9, show that SpADe still out-
performs the considered competitors. Moreover, it is possi-
ble to note that the performances of RF, DT, and BN are
lower than those measured while using the proposed

feature set; this suggests that the features from [17] are
probably less general in describing the spammers’ behav-
iors. The costly version of the system, SpADe	, is character-
ized by a reduced detection accuracy that is very similar to
RF and DT, and still superior to BN. These trends are almost
the same regardless of the imbalance ratio, although the
overall results are slightly worse in the 1:10 case.

In order to better understand the different performance
of the methods considered as baselines, a final set of experi-
ments was carried out to assess the contribution that differ-
ent groups of features may have in such a “single-stage”
classification process.

To this aim, the four groups fA; fU ; fC , and fN were con-
sidered both individually and combined with each other, so
making the cost of observing the feature subsets progres-
sively higher. The leftmost plot in Fig. 10 shows that the
accuracy of RF, DT, and BN increases as multiple groups are
considered together, up to the best case - when thewhole fea-
ture set is taken as input of the baselines. The curves indicate
a very similar trend for the three classifiers, withRF provid-
ing slightly better performance regardless of the chosen fea-
ture group. The observation costs measured in the different
cases provide further insights into the relationship between
accuracy and efficiency of the classifiers.

The same procedure was repeated for the groups used in
the experiments in Table 9, namely fm; fc; fi, and fn. Even
in this case, we can observe a general trend indicating an
improvement in performance as the observation cost
increases, even though accuracy values are slightly lower
than those observed in the private dataset.

These outcomes indicate that all features contribute to clas-
sification, i.e., they are not redundant, although the use of

TABLE 7
Observation Costs of Different Configurations of
the Multi-Stage System, Obtained by Varying the

Order in Which the
Four Feature Sets are Used

TABLE 8
Comparison Between the Least (SpADe) and the Most Costly

(SpADe	) Versions of the System, Random Forest (RF),
Decision Trees (DT), and Bayesian Networks (BN) Classifiers

1:1 1:10

Accuracy F-Score F Accuracy F-Score F

SpADe 0.92 0.94 0.21 0.91 0.90 0.19
RF 0.93 0.92 1 0.92 0.89 1
DT 0.90 0.90 1 0.91 0.87 1
BN 0.89 0.88 1 0.87 0.83 1
SpADe	 0.89 0.90 0.89 0.87 0.84 0.87

TABLE 9
Comparison Between the Least (SpADe) and the Most Costly

(SpADe	) Versions of the System, Random Forest (RF),
Decision Trees (DT), and Bayesian Networks (BN)

Classifiers Exploiting the Features From [17]

1:1 1:10

Accuracy F-Score F Accuracy F-Score F

SpADe 0.90 0.91 0.20 0.89 0.87 0.18
RF 0.85 0.86 1 0.84 0.81 1
DT 0.83 0.85 1 0.80 0.82 1
BN 0.77 0.79 1 0.75 0.71 1
SpADe	 0.84 0.85 0.88 0.81 0.80 0.85
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certain groups (e.g., fC and fN , or fi and fn) impacts on the
performancemore than others. This is also consistent with the
other findings discussed in this Section, from which results
the convenience of postponing the observation of expensive
features to later stages, when fewer samples are evaluated.

6 CONCLUSION

In this paper we faced the problem of identifying spam
accounts in social networks from a different perspective.
Related works are generally oriented towards proposing new
features capable of capturing the behavior of spammers, as
well as new classifiers tuned on increasingly larger feature
sets. However, feature acquisition and processing may be
very costly in OSNswithmillions of users. For this reason, we
presented a multi-stage spam account detection technique
with reject option,whose purpose is to initially exploit the fea-
tures that are easier to compute, while progressively extract-
ing more complex information only for those accounts that
have not yet been classified.

The proposed system has been validated both on a
dataset we retrieved from the Twitter stream, and on a
reference public dataset. The performances have been also
compared with single-stage state-of-the-art techniques
that do not include the reject option, namely Random For-
est, Decision Trees, and Bayesian Networks. The results
highlighted the effectiveness of the multi-stage approach
which achieves high accuracy in distinguishing between
spammers and genuine accounts, while maintaining
extremely low the overall complexity. These two charac-
teristics are mainly due to the analysis, stage by stage, of
increasingly significant features and to the ability of this
system to classify the accounts only when it is quite confi-
dent of the outcome. Moreover, we observed that the
accuracy of the multi-stage algorithm is comparable to
that of a single-stage classifier that uses all the features at
once; nevertheless, our approach allows to detect a spam-
mer sooner, which also results in a lower complexity of
the classification process.

The current approach equally weighs the misclassifica-
tion of spammers and genuine accounts. However, while
false positives could erroneously block honest users, unde-
tected spammers could compromise the trustworthiness of
the whole social network. As future work, this issue can be

addressed by evaluating the effectiveness of a different loss
function, which should be capable of assigning different
penalties for an incorrect classification.

The solution proposed could be integrated in a more com-
plex system in which the last classification stage is performed
by entities that have knowledge of the problem, namely
experts [53]. In fact, it happens more andmore frequently that,
especially in critical systems, machine learning algorithms are
assisted by human experts that are able to better untangle
uncertain situations. This kind of approaches must face a
number of relevant open challenges, themost crucial ofwhich
is finding the right balance between classification accuracy
and human overwork. These aspects will also be studied in
future research.
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