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ABSTRACT

In this work, a discontinuous Galerkin formulation for higher-order plate theories is presented.

The starting point of the formulation is the strong form of the governing equations, which

are derived in the context of the Generalized Unified Formulation and the Equivalent Single

Layer approach from the Principle of Virtual Displacements. To express the problem within the

discontinuous Galerkin framework, an auxiliary flux variable is introduced and the governing

equations are rewritten as a system of first-order partial differential equations, which are weakly

stated over each mesh element. The link among neighbouring mesh elements is then retrieved

by introducing suitably defined numerical fluxes, whose explicit expressions define the proposed

Interior Penalty discontinuous Galerkin formulation. Furthermore, to account for the presence

of generally curved boundaries of the considered plate domain, the discretisation mesh is built

by combining a background grid and an implicit representation of the domain. hp-convergence

analyses and a comparison with the results obtained using the Finite Element Method are

provided to show the accuracy of the proposed formulation as well as the computational savings

in terms of overall degrees of freedom.

KEYWORDS

Interior Penalty discontinuous Galerkin; Generalized Unified Formulation; Equivalent Single

Layer plate theories; Implicitly defined mesh; Multilayered plates

1. Introduction

The combination of multiple layers of different materials is a widely employed design strategy in

engineering to design advanced structures with enhanced properties. An emblematic example is



provided by multilayered composite plates, which are widely employed for structural applications

in aerospace, automotive and naval engineering.

Anisotropy and materials mismatch of multilayered structures induce a non-trivial distri-

butions of stresses, which must be accurately resolved during the design process, particularly

in the regions of stress concentration such as holes and cutouts where usually damage onsets

and failure occurs. Analytical or closed-form solutions are generally not available and therefore

the design of composite multilayered structures is typically supported by numerical tools. Fully

three-dimensional (3D) numerical models provide very accurate solutions but they are extremely

costly and can become prohibitive in many cases. To overcome this issue, two-dimensional (2D)

models have been developed on the basis of suitable assumptions on the behavior of the primary

variables throughout the thickness of the considered multilayered structure. They are typically

formulated from variational principles and can be subdivided into those stemming from the Prin-

ciple of Virtual Displacements (PVD) and those stemming from the Reissner Mixed Variational

Theorem (RMVT). Again, the 2D plate models can be subdivided into: i) Equivalent Single

Layer (ESL) models, which are based on the expansion of the primary variables through known

functions of the thickness coordinate defined throughout the whole thickness of the considered

plate, and ii) Layer-Wise (LW) models where the primary variables are expanded throughout

the thickness of the multilayered structures on a per-layer basis and the continuity at the layers’

interface is enforced subsequently

Many of the 2D models proposed in the literature are based on the two most common

plate theories, namely the Classical Laminated Plate Theory (CLPT) [31] and the First-order

Shear Deformation Theory (FSDT) [43, 36], which assume a linear dependence of the in-plane

displacements and constant transverse displacement with respect to the thickness coordinate.

However, in some cases, especially when high accuracy throughout the plate thickness and

local effects are of interest, these models might result limited or even inaccurate. For such a

reason, more advanced plate theories, usually referred to as higher-order plate theories, have

been proposed in the literature by suitably refining the through-the-thickness assumptions on

the primary variables in the context of both ESL and LW variable description [6].

A unified treatment of multilayered plate 2D models was proposed by Carrera through the

Carrera Unified Formulation (CUF) [8, 9, 7, 10]. The CUF introduces the so-called fundamental

nuclei, whose expression does not depend on the specific plate theory but on the chosen primary

variables of the problem. As a result, ESL and LW fifferent order theories can be written in a

compact unified fashion by suitably combining the fundamental nuclei. In the CUF, the primary
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variables are expanded throughout the thickness using the same order. A generalization of the

CUF was developed by Demasi [16, 17, 18], who proposed to use a different order of expansion for

each primary variable by introducing the Generalized Unified Formulation (GUF) Recently, in

the framework of the CUF and GUF, D’Ottavio and co-workers [20, 21] proposed to treat groups

of layers, the so called sub-laminates, according to the ESL approach and then retrieve the

mechanical behavior of the whole assembly by applying the LW approach over the sublaminates.

This technique can limit the computational cost of the standard LW approaches and improve

the flexibility of the unified formulations of higher-order plate theories.

The standard and largely employed approach for solving the 2D plate theories governing

equations is the Finite Element Method (FEM), e.g. [38, 41, 22, 30, 9, 15, 11]) FEM solutions

heavily rely upon the quality of the generated mesh; domains of analysis characterized by com-

plex geometries require ad-hoc meshing procedure and typically involve a long pre-processing

stage. To reduce the meshing effort, different numerical techniques have been proposed as al-

ternatives to the FEM in the context of plate theories; these include meshless approaches using

radial basis functions [24, 25]the Generalized Differential Quadrature [26, 49], the Ritz method

[32, 48, 33, 34, 35], and boundary integral formulations [13, 14, 28]. The above numerical tech-

niques are based on a continuous representation of the unknown fields over the domain of anal-

ysis and might suffer from limited flexibility when adaptive mesh refinement or non-matching

meshes are needed. A powerful numerical technique in this sense is the discontinuous Galerkin

(dG) method [2], which, upon admitting a discontinuous approximation of the unknown fields

among the mesh elements, can easily handle non-matching and/or hierarchical meshes with

hanging nodes, non standard meshes such as polygonal meshes and approximations with dif-

ferent order among the elements. Discontinuous Galerkin methods for the problems of linear

and non-linear plate/shell problems have been presented using the CLPT [23, 50, 37, 4] and the

FSDT [3, 27, 5, 47] and, to the best of the Authors’ knowledge, are not available for general

higher-order plate theories.

In this work, an Interior Penalty discontinuous Galerkin formulation for higher-order plate

ESL theories within the linear elastic regime is presented. The starting points of the formulation

are i) a suitable description of the through-the-thickness displacement field introduced according

to the GUF and the ESL approach, and ii) the strong form of the corresponding set of second-

order partial differential equations obtained by means of the PVD. To place the considered

problem within the framework of dG methods, an auxiliary flux variable is first introduced

and the system of second-order partial differential equations is rewritten as a system of first-

3
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Figure 1.: Schematic representation of a multilayered composite plate.

order partial differential equations, which are stated in weak form over each mesh element.

Then, by suitably specifying the expression of the numerical fluxes at the interfaces between

contiguous mesh elements and at the boundaries of the considered domain, the proposed Interior

Penalty discontinuous formulation is derived. Regarding the meshing strategy, the developed

formulation is coupled with the implicitly defined mesh technique developed by Saye [45, 46],

which allows to resolve curved boundaries with high-order accuracy by combining an easy-to-

generate background grid and the implicit representation of the domain of analysis. The reported

results show the effect of the penalty parameter, optimal hp-convergence and a satisfactory

comparison between the present formulation and standard FEM.

2. Problem statement

A multilayered plate referred to a global reference system x1x2x3 as shown in Fig.(1) is con-

sidered. The plate occupies the domain V and its boundary is indicated by ∂V ; The bottom

and top faces lie in the plane x3 = τb and x3 = τt, respectively, and τ ≡ τt − τb represents the

thickness of the plate. The plate consists of N` layers and, in the following, a quantity referring

to the `-th layer is denoted by the superscript 〈`〉. The `-th layer has the bottom and top faces

located at x3 = τ
〈`〉
b and x3 = τ

〈`〉
t , respectively, and it has a fibers orientation angle θ〈`〉, which

defines a layer’s local reference system x̃
〈`〉
1 x̃
〈`〉
2 x̃
〈`〉
3 such that the x̃

〈`〉
3 direction is aligned with

the x3 direction and the axes x̃
〈`〉
1 -x̃

〈`〉
2 are rotated with respect to the axes x1-x2 of the angle

θ〈`〉.

Using the above notation, the volume V of the whole plate can be identified by the points

belonging to the product space Ω× [τb, τt] where Ω ⊂ R2 denotes the modeling domain for the

composite plate and [τb, τt] is the thickness interval. Similarly, the volume V 〈`〉 of the `-th layer

4



can be identified by the points belonging to Ω× [τ
〈`〉
b , τ

〈`〉
t ].

Eventually, the following notation is introduced: u = {u1, u2, u3}ᵀ denotes the displacement

field, b = {b1, b2, b3}ᵀ denotes the body forces acting on the volume of the plate and t =

{t1, t2, t3}ᵀ denotes the surface tractions acting on the surface of the plate. Moreover, using the

Voigt notation, γ = {γ11, γ22, γ33, γ32, γ31, γ12}ᵀ and σ = {σ11, σ22, σ33, σ32, σ31, σ12}ᵀ denote

the stress and strain fields, respectively.

2.1. Layer’s constitutive behavior

Each layer of the composite plate is assumed to be homogeneous and linear elastic. In the `-th

layer’s local reference system x̃
〈`〉
1 x̃
〈`〉
2 x̃
〈`〉
3 the stress-strain relationships is written as

σ̃〈`〉 = c̃〈`〉γ̃〈`〉 (1)

where c̃〈`〉 is a 6×6 matrix containing the stiffness coefficients. In the plate reference system,

see Fig.(1), the layer’s constitutive law (1) can be written as

σ〈`〉 = c〈`〉γ〈`〉, (2)

where σ〈`〉 = T−1
σ (θ〈`〉)σ̃〈`〉, γ〈`〉 = T−1

γ (θ〈`〉)γ̃〈`〉, c〈`〉 = T−1
σ (θ〈`〉)c̃〈`〉Tγ(θ〈`〉) and Tσ(θ) and

Tγ(θ) are suitable transformation matrices, whose expression can be found in Ref.[29].

2.2. Strain-displacements relationship

Upon adopting the small strains assumption, the strain-displacements relationship are written

by separating the derivatives with respect to the coordinates x1, x2 and x3. In particular, given

the displacement field u at the generic point within the plate, the strain γ can be written as

γ = I1
∂u

∂x1
+ I2

∂u

∂x2
+ I3

∂u

∂x3
= Iλ

∂u

∂xλ
+ I3

∂u

∂x3
, (3)
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where

I1 ≡



1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0


, I2 ≡



0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0


and I3 ≡



0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0


. (4)

In Eq.(3), for the sake of the readability the second equality has been written upon considering

the Einstein summation convention over repeated subscripts, which will be used in the following

part of the paper for subscripts taking values of 1 and 2 only.

2.3. Generalized Unified Formulations

As introduced in Section (1), the main ingredients of the unified formulations for the mechan-

ical behavior of elastic composite plates are: i) the selection of the primary variables (typi-

cally either displacement components or displacement and transverse stress components) and

the corresponding variational statement (Principle of Virtual Displacements or Reissner Mixed

Variational Theorem, respectively); ii) the expression of the unknown primary variables as the

sum of products of known through-the-thickness functions and unknown generalized in-plane

displacement functions, where the order of expansion can be the same for all the variables [7] or

independently selected for each component [16]; iii) the assumptions that such expansions are

valid at the level of the whole plate assembly, at the level of each layer or at the level of groups

of layers [20, 21].

The formulation presented in this work is based on the expansions of the displacement com-

ponents only, which are independently treated through the plate thickness, and on the hypothesis

that such expansions are valid at the level of the plate assembly. The present formulation then

falls within the displacement-based GUF and the ESL approach. Thus, the i-th component of

displacement field for the plate is written as

u
〈`〉
i (x1, x2, x3) =

Nui∑
α=0

uiα(x1, x2)fα(x3), ∀` = 1, . . . , N`, (5)

where fα(x3) denotes the known through-the-thickness functions, uiα(x1, x2) denotes the un-

6



known generalized displacement functions and Nui+1 is the order of expansion introduced for ui.

The theories obtained with such an approximation are denoted by the notation EDNu1Nu2Nu3
[19],

where the symbol E denotes the ESL hypothesis, D denotes the use of the PVD and the three

subscripts denote the order of expansion of the three displacement components. It is worth

noting that the FSDT corresponds to the ED110 theory provided that the plate-stress reduced

stiffness matrix is used in Eq.(1). Eq.(5) can be rewritten in matricial notation as

u〈`〉 = F (x3)U(x1, x2), ∀` = 1, . . . , N`, (6)

where U is a (Nu1
+Nu2

+Nu3
+ 3)× 1 vector collecting the generalized displacement functions

and, consistently, F is a 3× (Nu1
+Nu2

+Nu3
+ 3) matrix collecting the through-the-thickness

functions. To exemplify the definition of the vector U and the matrix F , if the FSDT is chosen,

U and F would be:

U = {u, v, w, φx, φy}ᵀ and F =


1 0 0 x3 0

0 1 0 0 x3

0 0 1 0 0

 , (7)

where u, v and w denote the displacement components of a point on the plane x3 = 0 and φx

and φy are the rotations about the y- and x-axes [42].

Upon introducing Eq.(6) into Eq.(3), the strain field is also written in term of an expansion

of in-plane and through-the-thickness functions as

γ〈`〉 = IλF
∂U

∂xλ
+ I3

dF

dx3
U , ∀` = 1, . . . , N`. (8)

Eventually, the stress field is obtained by substituting Eq.(8) into Eq.(2).

2.4. Governing equations

The strong form of the governing equations are derived by means of the Principle of Virtual

Displacements, which, for the plate assembly, is written as

N∑̀
`=1

∫
V 〈`〉

δγ〈`〉ᵀσ〈`〉 =

N∑̀
`=1

∫
V 〈`〉

δu〈`〉ᵀb〈`〉 +

N∑̀
`=1

∫
∂V 〈`〉

δu〈`〉ᵀt〈`〉. (9)

7



where it is assumed that γ〈`〉 = γ(U) by means of Eq.(8) and σ〈`〉 = σ〈`〉(U) by means of

Eqs.(2) and (8). In Eq.(9) and for the remaining part of this work, the differential indicating

the measure of integration is dropped as it is clear by means of the domain of integration. Upon

substituting Eqs.(6), (8) and (2) into Eq.(9) and integrating along the thickness, one obtains

the following expression of the PVD for the considered plate theories

∫
Ω

∂δUᵀ

∂xλ

(
Qλµ

∂U

∂xµ
+Rλ3U

)
+ δUᵀ

(
Rᵀ
λ3

∂U

∂xλ
+ S33U

)
=

∫
Ω
δUᵀB +

∫
∂Ω
δUᵀT . (10)

In Eq.(10), the matrices Qλµ, Rλ3, with λ, µ = 1, 2, and S33 denote the generalized stiffness

matrices defined by means of the following integrals over the layers’ thickness

Qλµ ≡
N∑̀
`=1

∫ τ
〈`〉
t

τ
〈`〉
b

F ᵀIᵀλc
〈`〉IµF , (11a)

Rλ3 ≡
N∑̀
`=1

∫ τ
〈`〉
t

τ
〈`〉
b

F ᵀIᵀλc
〈`〉I3

dF

dx3
, (11b)

and

S33 ≡
N∑̀
`=1

∫ τ
〈`〉
t

τ
〈`〉
b

dF ᵀ

dx3
Iᵀ3c

〈`〉I3
dF

dx3
. (11c)

Similarly, the vectors B and T denote the generalized volume and boundary loads, respectively,

defined as

B ≡ F ᵀ(x3 = τb)t+ F ᵀ(x3 = τt)t+

N∑̀
`=1

∫ τ
〈`〉
t

τ
〈`〉
b

F ᵀb〈`〉 (12a)

T ≡
N∑̀
`=1

∫ τ
〈`〉
t

τ
〈`〉
b

F ᵀt
〈`〉
, (12b)

where t denotes the prescribed surface tractions over the surfaces of the plate. Eventually, it is

recalled that in Eq.(10) Ω is the modeling domain of the plate spanned by the coordinates x1

and x2 and ∂Ω is its boundary.

8



The strong form of the governing equations are then derived by integrating by parts Eq.(10)

and noting that the variational statement must be valid for any virtual generalized displacement

vector δU . In fact, one obtains the following set of second order partial different equations

− ∂

∂xλ

(
Qλµ

∂U

∂xµ
+Rλ3U

)
+Rᵀ

λ3

∂U

∂xλ
+ S33U = B, in Ω, (13)

subjected to the following set of boundary conditions

 nλ

(
Qλµ

∂U
∂xµ

+Rλ3U
)

= T , on ∂ΩN

U = U , on ∂ΩD

, (14)

where nλ is the λ-th component of the outward unit normal of the modeling domain boundary

∂Ω, ∂ΩD ⊂ ∂Ω is the part of the boundary where the Dirichlet boundary conditions are pre-

scribed, and ∂ΩN ⊂ ∂Ω is the part of the boundary where the Neumann boundary conditions

are prescribed. The boundary conditions as written in Eq.(14) assume that the boundary ∂ΩD

or ∂ΩN is the same for all the functions contained in U . However, in general ∂ΩD or ∂ΩN

can be different for each functions in U but this aspect does not represent a restriction for the

formulation as it will be shown in the numerical tests.

As discussed in Section (1), the through-the-thickness expansions introduced with plate

higher-order theories allows to transform the equations of three-dimensional elasticity to two-

dimensional partial differential equations as given in Eq.(13), which are solved over the 2D

modeling domain Ω and are subjected to the boundary conditions (14).

3. Discontinuous Galerkin framework

For the solution of the plate governing equations derived in the previous section, a discontin-

uous Galerkin method is proposed and discussed. Within the dG framework, a flux variable is

introduced to transform the governing equations into a first-order system of partial differential

equations [2]. In this case, it is convenient to introduce the flux variable

Σλ ≡ Qλµ

∂U

∂xµ
+Rλ3U , λ, µ = 1, 2, (15)

9



in such a way that the set of governing equations (13) are equivalently written as

− ∂Σλ

∂xλ
+Rᵀ

λ3

∂U

∂xλ
+ S33U = B, (16a)

Σλ = Qλµ

∂U

∂xµ
+Rλ3U . (16b)

Let us now suppose that the domain Ω is divided into Ne non-overlapping mesh elements.

In the following, quantities referred to the generic e-th mesh element are denoted using the

superscript (e). Let us also introduce the space Vhp of discontinuous polynomials defined as

Vhp ≡ {v : Ω→ R | v|Ω(e) ∈ P(e)
p ∀e = 1, . . . , Ne}

where P(e)
p is the space of the polynomials functions of degree p ≥ 1 on Ω(e). Accordingly,

the space Vdhp of discontinuous polynomial vector fields is defined as Vdhp ≡ (Vhp)d. The weak

statements of Eqs.(16a) and (16b) over each mesh element Ω(e) are then derived by introducing

the test functions V ,Γ 1,Γ 2 ∈ VNuhp , where Nu = Nu1
+ Nu2

+ Nu3
+ 3, see Sec.(2.3). More

specifically, upon multiplying Eq.(16a) by V ᵀ, integrating over the generic element Ω(e) and

using integration by parts, one obtains the weak form of Eq.(16a) as follows

∫
Ω(e)

∂V ᵀ

∂xλ
Σhλ + V ᵀ

(
Rᵀ
λ3

∂Uh

∂xλ
+ S33Uh

)
=

∫
∂Ω(e)

V ᵀΣ̂λnλ +

∫
Ω(e)

V ᵀB, (17a)

where ∂Ω(e) represents the boundary of Ω(e). Analogously, the weak form of Eq.(16b) is written

as

∫
Ω(e)

Γᵀ
λΣhλ =

∫
Ω(e)

Γᵀ
λ

(
Qλµ

∂Uh

∂xµ
+Rλ3Uh

)
+

∫
∂Ω(e)

(Γᵀ
λQλµ +V ᵀRᵀ

µ3)(Û −Uh)nµ. (17b)

A few comments follow: i) Σ̂λ and Û appearing in Eqs.(17a) and (17b), respectively, denote

the numerical fluxes, which are approximations of Σλ and U , respectively, on the boundary

∂Ω(e). The expressions of the numerical fluxes typically specify the adopted dG method and are

well known to affect its stability and accuracy as well as the sparsity pattern of the resulting

stiffness matrix [12, 2, 40]; ii) Uh and Σhλ denote the solutions of the weak statement of the

governing equations, i.e. Eqs.(17a) and (17b), and are in general approximations of the exact
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solutions U and Σλ of Eqs.(16a) and (16b); iii) as it will be shown in what follows, the specific

form of Eq.(17b) has been chosen to obtain a dG formulation which is symmetric and verifies

the consistency condition.

To derive the dG formulation of the whole plate domain Ω, some preliminaries are needed.

Let us first define ∂Ω
(e)
D ⊂ ∂Ω(e) and ∂Ω

(e)
N ⊂ ∂Ω(e) as the boundaries of the e-th element

where Dirichlet and Neumann boundary conditions are enforced, respectively. It follows that

∂ΩD =
⋃Ne
e=1 ∂Ω

(e)
D and ∂ΩN =

⋃Ne
e=1 ∂Ω

(e)
N . Recalling that Ω =

⋃Ne
e=1 Ω(e), the following integral

operators are introduced

∫
Ωh

• ≡
Ne∑
e=1

∫
Ω(e)

•(e),
∫
∂ΩhD

• ≡
Ne∑
e=1

∫
∂Ω

(e)
D

•(e) and

∫
∂ΩhN

• ≡
Ne∑
e=1

∫
∂Ω

(e)
N

•(e), (18)

where •(e) denotes the integrand functions defined over the corresponding domain of integration.

Similarly, let us define ∂Ω
(e)
I ⊂ ∂Ω(e) as the boundary that the e-th element shares with neighbor-

ing elements, and ∂ΩI as the union of all the elements’ internal boundaries, i.e. ∂ΩI ≡
⋃
e ∂Ω

(e)
I .

It is worth to underline that ∂ΩI also coincides with the union of all the internal edges of the

mesh, that is ∂ΩI =
⋃Ni
i=1 I

(i), where Ni is the total number of mesh edges and I(i) is the i-th

edge shared by two generic neighboring elements Ω(e) and Ω(e′), that is I(i) = Ω(e) ∩Ω(e′). Con-

sistently with Eq.(18), the following integral operator over the mesh internal edges is introduced

∫
∂ΩhI

• ≡
Ni∑
i=1

∫
I(i)
•(i), (19)

where •(i) denotes the integrand functions defined over the edge I(i). Furthermore, it is useful

to define the following average and jump operators

{•}(i) =
1

2

(
•(e) + •(e′)

)
and [[•]](i)λ = n

(e)
λ •(e) +n

(e′)
λ •(e

′), (20)

which are defined for each couple of neighboring elements Ω(e) and Ω(e′) sharing the interface

I(i). Using Eqs.(18) to (20) and noting that n
(e)
λ = −n(e′)

λ , it is demonstrated that the following

identity holds

Ne∑
e=1

∫
∂Ω(e)

V ᵀΣλnλ =

∫
∂ΩhI

{V }ᵀ[[Σλ]]λ + [[V ]]ᵀλ{Σλ}+

∫
∂ΩhD∪∂ΩhN

V ᵀΣλnλ. (21)

11



This identity is useful to rewrite the element boundary integral appearing in the right-hand

sides of Eqs.(17a) and (17b) when the sum over all the mesh elements is considered. Indeed,

summing over all the mesh elements and employing the operators defined in Eqs.(18) to (20)

as well as the identity given in (21), Eqs.(17a) and (17b) lead to following weak dG statements

for the whole plate domain:

∫
Ωh

∂V ᵀ

∂xλ
Σhλ + V ᵀ

(
Rᵀ
λ3

∂Uh

∂xλ
+ S33Uh

)
=

∫
∂ΩhI

{V }ᵀ[[Σ̂λ]]λ + [[V ]]ᵀλ{Σ̂λ}+

+

∫
∂ΩhD∪∂ΩhN

V ᵀΣ̂λnλ +

∫
Ωh

V ᵀB (22a)

and

∫
Ωh

Γᵀ
λΣhλ =

∫
Ωh

Γᵀ
λ

(
Qλµ

∂Uh

∂xµ
+Rλ3Uh

)
+

+

∫
∂ΩhI

{Γᵀ
λQλµ + V ᵀRᵀ

µ3}[[Û −Uh]]µ + [[Γᵀ
λQλµ + V ᵀRᵀ

µ3]]µ{Û −Uh}+

+

∫
∂ΩhD∪∂ΩhN

(Γᵀ
λQλµ + V ᵀRᵀ

µ3)(Û −Uh)nµ, (22b)

respectively. By suitably specializing the numerical fluxes appearing in Eqs.(22a) and (22b), it

is possible to obtain different dG formulations. For the scope of this work, an Interior Penalty

dG formulation is selected.

3.1. Interior Penalty formulation

In the Interior Penalty dG formulation proposed in this work, the numerical fluxes Û and Σ̂λ

are specialized as follows

Û =


{Uh}, on ∂ΩhI

U , on ∂ΩhD

Uh, on ∂ΩhN

(23)

and


Σ̂λ = {Qλµ

∂Uh

∂xµ
+Rλ3Uh} − µ[[Uh]]λ, on ∂ΩhI

Σ̂λ = Qλµ
∂Uh

∂xµ
+Rλ3Uh − µ(Uh −U)nλ, on ∂ΩhD

nλΣ̂λ = T , on ∂ΩhN

, (24)

12



where µ denotes the penalty parameter.

Eventually, setting Γλ ≡ ∂V /∂xλ, and using the numerical fluxes given in Eqs.(23) and

(24), Eqs.(22a) and (22b) are combined together to obtain the primal form of the proposed

Interior Penalty formulation as follows

BIP(V ,Uh) = RIP(V ,B,T ,U), (25)

where

BIP(V ,Uh) =

∫
Ωh

∂V ᵀ

∂xλ

(
Qλµ

∂Uh

∂xµ
+Rλ3Uh

)
+ V ᵀ

(
Rᵀ
λ3

∂Uh

∂xλ
+ S33Uh

)
+

−
∫
∂ΩhI

[[V ]]ᵀλ

{
Qλµ

∂Uh

∂xµ
+Rλ3Uh

}
+

{
∂V ᵀ

∂xλ
Qλµ + V ᵀRᵀ

µ3

}
[[Uh]]µ+

−
∫
∂ΩhD

nλV
ᵀ

(
Qλµ

∂Uh

∂xµ
+Rλ3Uh

)
+

(
∂V ᵀ

∂xλ
Qλµ + V ᵀRᵀ

µ3

)
Uhnµ+

+

∫
∂ΩhI

µ[[V ]]ᵀλ[[Uh]]λ +

∫
∂ΩhD

µV ᵀUh (26)

and

RIP(V ,B,T ,U) =

∫
Ωh

V ᵀB +

∫
∂ΩhN

V ᵀT+

−
∫
∂ΩhD

(
∂V ᵀ

∂xλ
Qλµ + V ᵀRᵀ

µ3

)
Unµ +

∫
∂ΩhD

µV ᵀU . (27)

It is worth noting that the bilinear form BIP(•, •) is symmetric and verifies the consistency

condition, which ensures that the Galerkin orthogonality holds, i.e.

BIP(V ,U −Uh) = 0, ∀V ∈ VNuhp ,

where U is the exact solution of Eqs.(13) and (14).

As the last remark on the discontinuous Galerkin approach to plate higher-order theories, it

is interesting to note that, from the present Interior Penalty formulation, it is possible to obtain

a pure Penalty formulation by neglecting the second and third integrals from the right-hand side

of Eq.(26) and the third integral from the right-hand side of Eq.(27). A comparison between

the Interior Penalty and the Penalty dG formulation of plate higher-order theories is reported

in Sec.(5).
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Ω(e)
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Figure 2.: (a) Implicit representation of the domain Ω through the signed distance function
φ(x); (b) Implicit definition of the generic mesh element Ω(e) and its boundary ∂Ω(e) as the
intersection between the cell C(e) and the domain Ω.

4. Implicitly defined mesh

The formulation presented in the previous section can be employed in conjunction with different

domain partion strategies. As an example, it could be easily implemented for generally polygonal

meshes and would require only the knowledge of the inter-element neighboring information

and a suitable integration procedure for polygonal elements. However, in this work, instead of

constructing a mesh whose edges might approximate the boundaries of the considered domain,

the implicitly-defined mesh technique for dG methods proposed by Saye [44, 45, 46] is employed.

Such a technique offers the advantage of resolving curved boundaries with high-order accuracy,

a feature that is highly desirable in weak formulations. The main steps to construct the mesh

using Saye’s technique are briefly recalled next.

Let us consider a domain Ω and its implicit representation by a suitably defined signed

distance function φ(x) such that

Ω = {x ∈ R2 | φ(x) < 0} and ∂Ω = {x ∈ R2 | φ(x) = 0}; (28)

let us also consider a background grid covering the whole domain Ω and consisting of a collection

of cells with typical dimension equal to h. Then, the generic mesh element Ω(e) is defined as the

intersection between the generic cell C(e) of the background grid and the domain Ω, that is:

Ω(e) = C(e) ∩ Ω and ∂Ω(e) = (C(e) ∩ ∂Ω) ∪ (∂C(e) ∩ Ω), (29)

where ∂C(e) denotes the boundary of the cell C(e). Such a meshing procedure is sketched in
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Fig.(2): Fig.(2a) shows the implicit representation of the domain Ω (in grey) and its boundary

∂Ω, whereas Fig.(2b) shows the definition of the generic element Ω(e) (in darker grey) as the

intersection of the cell C(e) and the domain Ω itself.

On the basis of their position with respect to the domain Ω, the background cells are

consequently classified into those that fall entirely within Ω, referred to as the entire cells

[45], those that fall outside Ω, the so-called empty cells, and those that are partially within

Ω, referred to as the partial cells. It is clear that the empty cells do not contribute to the

final collection of the mesh elements, whereas the entire cells represent those mesh elements for

which the volume and boundary integrals appearing in Eqs.(26) and (27) are computed using

standard quadrature schemes; on the other hand, the volume and boundary integrals over the

partial cells are evaluated using the quadrature algorithms for implicitly defined volumes and

surfaces over n-dimensional hyperrectangles developed by Saye [44]. In such a way, the mesh

elements stemming from the partial cells are never explicitly constructed but they are implicitly

defined by the distance function φ(x) and the parent background cell. This ensures a high-order

resolution of the domain boundaries as well as a high-order accuracy in the enforcement of the

boundary conditions. As the last remark on the implicitly-defined mesh, it is noted that it may

happen the case when some partial cells have an overly small volume, which would ill-condition

the final system. To overcome this issue, small partial cells are merged with neighboring cells

leading to the definition of extended mesh elements [45]. Also in this case, extended elements are

not explicitly constructed but are defined in terms of neighboring information only. An example

of extended elements will be given in the numerical tests of Section (5).

The interested reader is referred to the works of Saye [44, 45, 46] for a more comprehensive

description of the implicitly defined mesh and the related quadrature algorithms.

5. Numerical results

In this section, the performances of the developed implicit mesh Interior Penalty discontinuous

Galerkin formulation are assessed by considering the elastostatic response of two plate struc-

tures, namely a square plate and a square plate with a circular cutout. The two considered

plates are shown in Fig.(3): they have sides of length L and a total thickness τ = L/10, while

the circular cutout in the plate of Figs.(3b) has radius r = L/5.

The plates are subjected to simply supported boundary conditions over their four straight
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edges, which are enforced by setting T = 0 in Eq.(27) and by prescribing

u2α = u3α = 0, at x1 = 0, L, and u1α = u3α = 0, at x2 = 0, L, (30)

where the subscript α of the generalized displacement uiα runs from 0 to Nui . The plates are

also subjected to a prescribed surface tractions t over their top surface given by

t = q sin
(πx1

L

)
sin
(πx2

L

)
ê3, at x3 = τ/2, (31)

where q denotes the amplitude and ê3 is the unit vector along the x3-axis; it is worth recalling

that he prescribed load given in Eq.(31) contributes to the generalized volume load B through

the second term of Eq.(12a). The bottom surfaces and the internal lateral surfaces of the cutout

shown in Fig.(3b) are traction-free.

The numerical tests are presented using two different materials and three different layups,

whose properties are reported in Tables (1) and (2), respectively. In Table (1), Er denotes a

reference stiffness. The three considered plates, namely a single-layer isotropic plate, a single-

layer orthotropic plate and a multilayered antisymmetric cross-ply laminate, will be referred to

as P1, P2 and P3, respectively, as in Table (2).

Geometry, materials, loads and boundary conditions have been selected since, in the case of

the square plate, closed form solution for the 3D case [39] as well as for classical and higher-order

plate theories [42, 7, 16] are available in the literature. Eventually, the results are reported in

terms of the following non-dimensional quantities

ū1 = u1

(
τ2Er
L3q

)
, ū3 = u3

(
τ3Er
L4q

)
,

and

σ̄11 = σ11

(
τ2

L2q

)
, σ̄22 = σ22

(
τ2

L2q

)
, σ̄12 = σ12

(
τ2

L2q

)
.

5.1. Square plate

The first set of tests are performed on the square plate shown in Fig.(3a). A cartesian n×n mesh

grid is employed with mesh size equal to h = L/n, where n denotes the number of elements
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Table 1.: Properties of the considered materials.

Material ID Property Component Value
M1 (Isotropic) Young’s modulus E/Er 1.0

Poisson’s ratio ν 0.25
M2 (Orthotropic) Young’s moduli E1/Er 25.0

E2/Er, E3/Er 1.0
Poisson’s ratios ν23, ν13, ν12 0.25
Shear moduli G23/Er 0.2

G13/Er, G12/Er 0.5

Table 2.: Properties of the considered plate sections. The properties of materials M1 and M2

are those reported in Tab.(1).

Plate ID Material Layup Layer(s) thickness
P1 (Single-layer) M1 [0] 0.1
P2 (Single-layer) M2 [0] 0.1
P3 (Multilayered) M2 [0, 90]4 0.0125

along one edge of the plate. To test the accuracy and convergence rate of the proposed dG

method, the following ∞-norm error is introduced

e(Uh) ≡ ||Uh −U exact||∞
||U exact||∞

, (32)

where Uh denotes the solution computed with dG and U exact denotes the exact solution.

Figure (4) reports the effect of the penalty parameter µ introduced in Eq.(24) on the error

e(Uh) as a function of the polynomial order p a for a 2× 2 mesh grid. The results are presented

for two different plate theories, namely the FSDT and the ED444 theory, and for the three plate

layups reported in Tab.(2). The plots show that, after a certain threshold, the error e(Uh)

is insensitive to the value of µ, a feature that is highly desirable in dG formulations. Also,

it is interesting to note the comparison between the results obtained with the present Interior

Penalty dG formulation and those obtained with a pure Penalty formulation, which are reported

in Fig.(4a) with solid and dashed lines, respectively. In particular, by fixing the order of the

polynomials and the mesh size, it is observed that a much higher value of the penalty parameter

is required to achieve the same level of error. This feature is a drawback of pure Penalty methods

as significantly increases the condition number of the resolving matrix [2].

Figure (5) report the hp-convergence of the∞-norm error e(Uh) for the present formulation

and shows that optimal accuracy is achieved by choosing the penalty parameter µ of order

O(h−1) as is typical in the case of Interior Penalty methods for elliptic problems [2].
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Figure 3.: Schematic representation of the geometrical features, the applied loads and the en-
forced boundary conditions of (a) the square plate and (b) the square plate with a central hole
employed in the numerical tests.

Furthermore, it can be interesting to investigate how the present dG formulation performs

against classical FEM approaches in terms of the overall number of degrees of freedom. Fig.(6)

shows the error e(Uh) computed using dG (filled markers) and using quadratic S8R elements

implemented in Abaqus [1] (unfilled markers) with default options as a function of the system

order. It is possible to note how, clear advantages of the present formulation with respect to

FEM are achieved when high-order polynomials are employed.

For the sake of completeness, the higher-order plate theory solutions obtained with the

present dG formulation are compared with the exact solutions of 3D elasticity. The comparison is

shown in Fig.(7) for the considered plate layups in terms of the displacement components u1 and

u3 evaluated throughout the thickness of the plate at the coordinates {x1, x2} = {0, L/2} and

{x1, x2} = {L/2, L/2}, respectively. As expected, in the case of the plates P1 and P2, which are

homogeneous throughout the thickness, the ED444 theory provides a very accurate solution when

compared to lower-order theories, whereas, in the case of the multilayered plate, a relatively

higher error is observed. This confirms that ESL theories are not adequate for multilayered

plates if high accuracy is needed and that the LW approach could then be employed. However,

LW theories are outside the scope of this work and will be considered in a future study.

5.2. Square plate with circular cutout

The second set of tests are performed on the square plate with the circular cutout shown in

Fig.(3b). Also in this case, a cartesian mesh grid is used. However, the mesh is now utilized as

a background grid and the presence of the cutout is resolved by means of the implicitly defined

mesh technique introduced in Sec.(4). The main steps to construct the implicit mesh for this

18



specific case are as follows. Fig.(8a) shows the modeling domain Ω and a sample 8×8 background

mesh grid. With reference to Eq.(28), the domain Ω is implicitly defined by a suitable distance

function φ. Here, the following distance function is employed

φ(x) = ± min
y∈∂Ω

||x− y||, (33)

where x = {x1, x2} is the generic point belonging to R2 and the + or − sign is selected if x

is outside or inside Ω. Figure (8b) shows the contour plot of the distance function obtained

when Eq.(33) is applied to the considered problem of the plate with a circular cutout; from the

colorbar reported in the figure, it is possible to note that the boundaries correspond to the zero

of the considered distance function.

As described in Sec.(4), the cells of the background grid are subdivided into empty, partial

and entire cells on the basis of their position with respect to the domain Ω, i.e. on the basis

of the value of the distance function over the cells themselves. In case of the 8 × 8 mesh grid,

this subdivision is shown in Fig.(8c); then, the final mesh elements are formally defined through

Eq.(29) and are drawn in Fig.(8d). It is worth noting that, from the implementation point

of view, the partial mesh elements are never explicitly computed nor parametrized and the

corresponding stiffness matrices are evaluated using the quadrature technique developed in [44].

Fig.(8e) shows the same subdivision in case of a 10×10 mesh grid; in such a case, some partial

cells are deemed small as they fall inside the domain Ω for a very small fraction. To avoid the

presence of these small elements, which would increase the condition number of the final stiffness

matrix, they are merged with suitably chosen neighboring elements, which are subsequently

referred to as extended elements. The final element subdivision in case of a 10 × 10 mesh grid

is drawn in Fig.(8f). Also in this case, extended elements are never explicitly constructed but

their contribution to the stiffness matrix is computed by neighboring information only.

Three plate theories are considered, namely the FSDT, the ED222 theory and the ED444

theory. The solution is computed with the dG formulation by means of the 10 × 10 mesh grid

shown in Fig.(8e) and polynomial order p = 6. The results are compared with those obtained

with Abaqus by means of quadratic S8R elements for the FSDT and by means of C3D20R

elements for the fully 3D analysis.

Figure (9) shows the displacement components u1 and u3 evaluated throughout the thickness

of the plate at the point {x1, x2} = {L/2− r, L/2} for the three different plate theories. Figures

(9a) and (9b) refer to the isotropic and orthotropic plates, respectively. In both cases, it is
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possible to notice that the ED444 provides a very accurate solution, with a difference smaller

than 0.03%.

Figure (10) shows the contour plots of the displacement component u3 and of the stress

component σ22 computed over the top surface of the isotropic plate, i.e. at x3 = τ/2, considering

the FSDT. In the figure, the dashed contour levels refer to the FEM solution obtained, whereas

the continuous contour levels refer to the solution computed using the dG approach. The results

show a satisfactory accuracy of the present formulation in terms of both the displacement

component and the stress component.

Similarly, Fig.(11) shows the contour plots of the displacement component u3 and of the

stress components σ11, σ22 and σ12 computed over the top surface of the orthotropic plate

considering the FSDT. Also in this case, the dashed contour levels refer to the FEM solu-

tion, whereas the continuous contour levels refer to the dG solution; a satisfactory accuracy is

observed for both the displacement and the stresses.

Lastly, Fig.(12) shows the contour plots of the displacement component u3 and of the stress

components σ11, σ22 and σ12 computed over the top surface of the orthotropic plate when

the dG ED444 and the fully FEM 3D solutions are considered. The obtained results show a

satisfactory overall accuracy but small discrepancies are observed between the values of σ12

computed by the 3D FEM and those computed using the ED444 theory in proximity of the

points {x1, x2} = {L/2, L/2± r}.

6. Conclusion and future developments

In this work, an Interior Penalty discontinuous Galerkin formulation has been developed for

higher-order plate theories within the framework of the GUF and the ESL approach.

The formulation has been employed to study the elastic response of a square plate and a

square plate with a central circular cutout subjected to an out-of-plane bisinusoidal load. The

numerical results on the square plate have been reported to investigate the effect of the penalty

parameter and to show that the present technique offers optimal hp-convergence and remarkable

savings with respect to classic FEM approach when higher-order polynomials are employed.

On the other hand, the numerical results on the plate with the circular cutout have been

presented to test the combination of the present dG formulation and the implicitly defined

mesh technique proposed by Saye [44, 45, 46]. This approach has the advantage of reducing

the meshing effort when complex geometries are considered since the mesh elements are able to

resolve with high-order accuracy the boundaries of the domain despite they are never explicitly
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constructed. Such a meshing technique would require some further effort in case it were employed

within continuous discretization approaches.

However, the developed model still presents some limitations and offers directions of further

investigation. First of all, the presented Interior Penalty dG formulation has introduced the

penalty parameter µ, see Eq.(24). As shown in the numerical tests, the value of the penalty

parameter affects the error of the obtained results and must be typically chosen as a function of

the mesh size h. Then it could be interesting to investigate different dG formulations, e.g. the

Local or the Compact discontinuous Galerkin methods [2, 40], which, in some cases, only require

the positiveness of µ regardless of the mesh size.

As a second remark, the numerical results have shown that, in the case of the orthotropic

plate with a central circular hole, the large ratio between the elastic constants of the orthotropic

material induced a significant stress concentration around the hole. In this case, the proposed

dG formulation could be coupled with selective mesh refinement through hierarchical meshes

that would improve the accuracy without excessively increasing the computational cost of the

method.

As regards the framework of higher-order plate theories, another direction of further inves-

tigation would be the extension of the present dG formulation to Layer Wise models involving

either the PVD or the RMVT, which would definitely improve the accuracy of the considered

theory throughout the thickness of the plate. On the other hand, numerical tests have been

reported with relatively thick plates and, therefore, it would also be interesting to include the

thin-plate limit within the present formulation.

Eventually, directions of further studies, which would benefit from the developed implicit

mesh discontinuous Galerkin formulation, could include linear eigenvalue and buckling analyses

as well as non-linear post-buckling problems of multilayered plate with complex holes or cutouts.
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[2] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous

21



galerkin methods for elliptic problems. SIAM journal on numerical analysis, 39(5):1749–

1779, 2002.

[3] D. N. Arnold, F. Brezzi, and L. D. Marini. A family of discontinuous galerkin finite elements

for the reissner–mindlin plate. Journal of Scientific Computing, 22(1-3):25–45, 2005.

[4] G. Becker and L. Noels. A full-discontinuous galerkin formulation of nonlinear kirchhoff–

love shells: elasto-plastic finite deformations, parallel computation, and fracture applica-

tions. International Journal for Numerical Methods in Engineering, 93(1):80–117, 2013.
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Figure 4.: Effect of the penalty parameter µ on the ∞-norm error, see Eq.(32), for different
plate theories and layups: figures (a), (b) and (c) refer to the P1, P2 and P3 plates, respectively,
reported in Table (2). In figure (a), dashed lines with smaller markers are referred to the Penalty
method. Data are referred to a 2× 2 mesh grid.
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Figure 5.: hp-convergence analysis of the ∞-norm error, see Eq.(32), for different plate theories
and layups: figures (a), (b) and (c) refer to the P1, P2 and P3 plates, respectively, reported in
Table (2). The penalty parameter is set to µ = 10/h for the plate P1 and µ = 250/h for the
plates P2 and P3.
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Figure 7.: Comparison between exact 3D solutions and dG higher-order plate theories solutions
in terms of through-the-thickness displacement components u1 and u3 evaluated at {x1, x2} =
{0, L/2} and {x1, x2} = {L/2, L/2}, respectively. Figures (a), (b) and (c) refer to the P1, P2

and P3 plates, respectively, reported in Table (2). The results computed using the present dG
method are obtained with a 2× 2 mesh grid.

29



Background
cell

Domain

(a)

−0.2

−0.1

0.0

0.1

0.2

φ
(x

)
D

is
ta

n
ce

 f
u
n
ct

io
n
,

(b)

Entire cell

Partial cell

Empty cell

(c)

Entire
element

Partial
element

(d)

Entire cell

Partial cell

Empty cell

Small cell

(e)

Entire
element

Partial
element

Extended
element

(f)
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the computation of the stiffness matrices.
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Figure 9.: Comparison between FEM 3D solutions and dG higher-order plate theories solutions
in terms of through-the-thickness displacement components u1 and u3 evaluated at {x1, x2} =
{L/2−r, L/2}. Figures (a) and (b) refer to the P1 and P2 plates, respectively, reported in Table
(2). The results computed using the present dG method are obtained with the 10 × 10 mesh
grid shown in Fig.(8e).
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isotropic single-layer plate, whose properties are reported in Table (2). The results computed
using the present dG method are obtained with the 10× 10 mesh grid shown in Fig.(8e).
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Figure 11.: Comparison between FEM FSDT solution and dG FSDT solution in terms of contour
plots of the displacement component u3 and the stress components σ11, σ22 and σ12 over the
top surface of the orthotropic single-layer plate, whose properties are reported in Table (2). The
results computed using the present dG method are obtained with the 10× 10 mesh grid shown
in Fig.(8e).
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Figure 12.: Comparison between FEM 3D solution and dG ED444 solution in terms of contour
plots of the displacement component u3 and the stress components σ11, σ22 and σ12 over the
top surface of the orthotropic single-layer plate, whose properties are reported in Table (2). The
results computed using the present dG method are obtained with the 10× 10 mesh grid shown
in Fig.(8e).
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