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Abstract: Water Distribution Networks are known to lose a consistent percentage of drinkable water due to the presence of leakages. 

In this paper it is proposed a solution to detect water leaks consisting of: i) a new sensing equipment able to acoustically monitor the 

external surface of a newly laid underground pipe; ii) a training of several machine learning models able to analyse the data collected 

by the new sensing equipment; iii) a user dashboard to give the final user the possibility to monitor the pipe’s condition. The research 

process included the generation of artificial leakages capable to produce a suitable dataset necessary to properly train machine learning 

models onto.  

1. Introduction

The issue of water leakage in public infrastructure has become 

increasingly prevalent in recent years. Aging pipes, which have 

been in service for decades, are beginning to show signs of wear 

and tear. This deterioration often leads to serious leakages, 

resulting in significant water loss. In many European countries, 

the situation is particularly dire. The amount of drinkable water 

lost due to poor pipe conditions exceeds 40% in some areas, and 

in certain regions, this figure reaches a 70%. This poses a serious 

challenge to the sustainability of water supply systems. 

Water pipes, by their very nature, are often installed underground 

and can run for several km. This makes the task of detecting 

leakages particularly difficult. Traditional methods of leakage 

detection, such as visual inspection or listening devices, are often 

ineffective due to the inaccessibility of the pipes and usually can’t 

perform continuous monitoring. Furthermore, these methods are 

labour-intensive and time-consuming, making them impractical 

for large-scale water supply networks. 

This paper proposes a novel approach for leakage detection using 

vibration sensors. These sensors able to detect the unique 

vibration patterns produced by water leaks. By installing these 

sensors along the length of water pipes, it is possible to monitor 

the water distribution network for potential leaks. 

However, the sheer volume of data generated by these sensors 

presents another challenge. It is impractical to manually analyse 

this data for signs of leakage. To address this, the proposed 

system employs Machine Learning (ML) models.  

The use of ML models not only increases the efficiency of the 

leakage detection process but also improves its accuracy. Unlike 

human operators, ML models do not suffer from fatigue or loss 

of concentration. They can operate around the clock, ensuring 

that leaks are detected as soon as possible.  

The problem of water leaks is being addressed on many levels 

(El-Zahab & Zayed, 2019), (Mohd Ismail, et al., 2019). There is 

an effort in developing solid architectures to perform continuous 

monitoring as suggested by (Aziz, et al., 2022). A recent 

literature review has categorized the methodologies for detecting 

and locating leaks into data-driven approaches and model-based 

methods (Nimiri, et al., 2023). Data-driven approaches demand 

efficient exploitation and use of available data from pressure and 

flow devices, while model-based methods require finely 

calibrated hydraulic models to reach a verdict.  

Another review also highlighted the use of model-based and data-

driven approaches for leak detection (Hu, et al., 2021). It noted 

that while model-based approaches require highly calibrated 

hydraulic models, their accuracies are sensitive to modeling and 

measurement uncertainties.  

Moreover, a novel intelligent monitoring-warning system for 

leakage detection has been proposed (Li, et al., 2022). This 

system consists of a leakage locating model and a leakage 

quantity model, aimed to provide valuable insight into the 

construction and maintenance of future rural water supply 

projects. 

These advancements in leakage detection technology, coupled 

with the use of Machine Learning models, are promising steps 

towards addressing the water leakage problem more effectively 

and efficiently.  

2. Methods

The system was developed with the purpose of detecting leakages 

by monitoring the pipe vibrations, as shown by (Martini, et al., 

2013). The waterflow produces vibrations that can be sensed with 

modern industrial Micro-Electro-Mechanical-Systems (MEMS) 

solutions. The data collected by the new system is sent to a server, 

making it available for machine learning and monitoring 

purposes. 

To test the effectiveness of the system, a leakage scenario was 

simulated using a fire hydrant devoted to emulating a possible 

leakage with a predefined timing pattern. This allowed for the 
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generation of real-world data, replicating conditions that the 

system would encounter in a practical setting.  

 

The next phase involved the application of machine learning 

techniques to the collected data. The objective was to train a 

model that could accurately identify and predict leakages based 

on the vibration patterns. This involved training, testing cycles, 

and fine-tuning the models. 

 

Finally, the results of the machine learning model were made 

accessible to the end-users through a graphical user interface 

showing a suitable dashboard.  

 

3. Hardware 

3.1 Sensing System 

The pipe vibrations were acquired using a newly developed 

system consisting of 10 sensors subdivided in two chains. These 

chains were connected to a main computer to consistently 

transfer acquired data to a cloud server equipped with large 

storage space able to record up to 6 months of continuous 

datastream. Acquired data has then ben elaborated using ML 

algorithms as described in paragraph 4. 

 

The experimental campaign took place in an urban area, where 

the sensing system was applied to a 135 Ø mm new underground 

water polyethylene pipe. 

 

Sensors were positioned over the pipe’s surface, using a low 

acoustic impedance glue, at distances between each other as 

displayed in Table 1. Distances are shown as absolute gaps 

starting from sensor 11, relative gaps from the previous sensor or 

absolute distances from the simulated leakage. A more 

comprehensive picture of sensor disposition is depicted in  

Figure 1 where continuous lines represent an electronic 

connection between the 2 nodes. 

 

Sensor # 
Distance (m) 

From 11 From prev. From leak 

11 0 0 93,75 

9 7,75 7,75 86,00 

7 18,95 11,20 74,80 

5 28,75 9,80 65,00 

3 39,25 10,50 54,50 

10 48,45 9,20 45,30 

8 58,45 10,00 35,30 

6 66,75 8,30 27,00 

4 76,35 9,60 17,40 

2 86,45 10,10 7,30 

Table 1 Inter-sensor distances. 

 

 

 
Figure 1 Sensor’s location. 

 

An average 10 meters distance between sensors has been chosen 

as a result of a previously carried out experimental campaign 

where simulated leaks were detected by similar sensors’ 

prototypes. 

 

To sense the small vibrations produced by waterflow in civil 

pipelines, the hardware needed to be designed around a sensing 

element able to capture that information. 

 

Among the many accelerations sensors available, the selection 

focused on MEMS accelerometers, which are known for their 

small size, low costs, and their ability to sense over a relatively 

large bandwidth, starting from very low frequencies. This 

approach has proven to be promising in (Khulief, et al., 2012), 

(Mistretta, et al., 2018), (Restuccia, et al., 2023) and (Lo Valvo, 

et al., 2023). 

 

The accelerometer selection spaced many manufacturers and 

models with different characteristics. Since water produces very 

low amplitude signals and within a relatively low range of 

frequencies, a very low noise and a high sampling frequency are 

required. Among the different sensors, the chosen one is the 

IIS3DWB (from ST Microelectronics) which is able to acquire 

vibration data at a high speed. In the experimentation, this sensor 

was set to use a scale of ±2g where g is the gravity acceleration. 

This accelerometer also features a very high sensitivity, reaching 

a noise level of about 75
𝜇𝑔

√𝐻𝑧
. Summary of its main interesting 

features are given in Table 2. 

The IIS3DWB sensor communicates using SPI, a low range, high 

speed serial protocol (STMicroelectronics, 2020). 

 

Table 2 Accelerometer features 

 

3.2 Microcontroller  

Since the accelerometer is capable of communicating on short 

distances, a microcontroller is required to be able to install 

different sensors at a distance. 

 

The STM32L476RG (STMicroelectronics, 2019) is a low power 

microcontroller equipped with an ARM Cortex-M4 processor 

unit, 1MB of Flash memory and 128 KB of RAM.  

 

The microcontroller is responsible for the acceleration data 

acquisition, a partial elaboration, and the communication of the 

data to the single board PC. 

 

The final PCB design is 85x28 mm in size and includes all the 

electronics needed for the correct behaviour of the sensor. A 3D 

representation of the device is shown in Figure 2. 

 

 

Sensor features 

Number of axes 3 

Full-scale ±2/±4/±8/±16 g 

Response range from dc to 6 kHz 

Noise density 75
𝜇𝑔

√𝐻𝑧
 in 3-axis mode 

Sampling 

resolution 
16 bit per axis 
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Figure 2 3D view of the final device. 

 

3.3 Serial Communication Protocol 

The communication protocol for the two chains needed to: 

 

● reliably cover long distances 

● have a simple connection scheme 

● support high speed rates 

 

The final choice for the bus communication ended up being the 

RS485, which respected the requirements. Since a lot of data is 

produced, even the RS485 wouldn’t be enough to transfer data 

coming from 10 sensors, they have been split in two chains (odd 

and even) connected to the same sink node. With this approach, 

the system is capable to deliver acceleration samples at a rate up 

to 1700 samples per seconds (sps). Due to the described 

conditions, a sample speed of 1600 sps have been setup taking 

also into account that each accelerometer hasn’t exactly the same 

output data rate (ODR). However this approach grants the ability 

to detect frequency in the range of 0÷800 Hz, which 

comprehends most of the necessary informations. 

 

3.4 Single board computer 

The transferring of data to the internet was done using a 

Raspberry Pi (RPi), a small, single board computing element with 

enough computing power to perform data polling, compression, 

and delivery to the cloud. 

 

The RPi is also able to upgrade the firmware installed on the 

devices via Over The Air (OTA) mechanism. 

 

3.5 Installation 

Before the on-site installation, the sensors were glued to 

waterproof boxes, previously drilled for sealed cable allocation. 

A curved surface was added underneath the box to make better 

acoustic contact with the outer surface pipe. 

 

The installation happened concurrently to the process of pipe 

layout. When the pipe was already inside the trench, the sensors 

were glued to the pipe and cabled together, as shown in Figure 3. 

 

4. Software 

4.1 Machine Learning  

The original data gathered in the server are high-frequency data 

recording the vibrations measured by the installed sensors on the 

pipe. As such, they record the fluctuations of the amplitude of the 

vibrations measured, whether they are caused by water waves 

hitting the surfaces of the water pipe, but also due to surface 

vibrations caused for example by heavy vehicles moving in the 

vicinity. As a result, the sensors can often record very high values 

that are not due to leakage, but instead have external causes. 

 

 
Figure 3 Example of sensor with enclosure glued to the pipe. 

 

As shown in Figure 1, the experimental data used for this study 

isolated only a single leakage located to the right of each sensor. 

Given the uniformity of the sensors used in this experiment, an 

individual machine learning model was constructed for each 

sensor, taking into account the distances of each sensor from the 

leakage source. For instance, sensor #2’s model determines if 

there is a leakage 7,3 meters to its right, while sensor #4’s model 

identifies a leakage 17,4 meters to its right, and so forth.  

 

For each sensor, two features were derived for both detection and 

localization of the leakage: the first feature aggregates the values 

read by the sensor in non-overlapping intervals of 0.1 seconds; in 

particular, the original data come in tuples of (<timestamp>, 

<value>) pairs, we take the average avg of all values that lie in 

the time-span [0, 0.1), and we create the new aggregate tuple (0.1, 

avg1) then for values in the interval [0.1, 0.2) we create the 

aggregate tuple [0.2, avg2) and so on. The second feature 

maintains the highest recorded value in the previous 10 seconds. 

This pre-processed data set (derived from the original raw data in 

a single scan) results in 10 models (one for each sensor) whose 

accuracy is maximum for the closest sensor (#2) with a test-value 

of 98,5% and is minimum for the most distant sensor (#11) with 

a test value of 97%. Each of these 10 models corresponds to a set 

of rules produced by the RIPPER-k (Cohen, 1995) rule extraction 

algorithm as implemented in the WEKA machine learning 

environment (Hall, et al., 2008). 

The RIPPER-k algorithm is a rule-learning system that works by 

first separating the training dataset into a grow-set and a prune-

set, and then starting to create conjunctive rules for the minority 

class, starting with an empty rule, and then sequentially adding 

clauses of the form “attribute=value” for categorical attributes, 

and “attribute<=value”, “attribute>=value” or “attribute=value” 

for numerical attributes, until the rule is 100% correct on the 

grow-set (i.e. there are no data belonging to the majority class 

that satisfy all the clauses of the rule) until the entire minority 

class is “covered” by one or more rules. The choice for which 

attribute-value pair should be added to the rule next is mandated 

by the FOIL information gain criterion, see (Quinlan, 1990) 

similar to the choice of what attribute to branch on decision trees. 

As soon as a rule is constructed, it is pruned by iteratively 

deleting the clause from the rule that maximizes a particular 

function on the prune-set, until no deletion further improves the 

value of this function. The final ruleset, after a series of 
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optimizations forms the classifier that is used as follows: if a test 

instance satisfies all conditions of any rule in the rule-set, the 

instance is classified as belonging to the minority class, otherwise 

the instance is classified as belonging to the majority class. 

 

Regarding localization, we design a “thought experiment” to see 

if we can detect leakages located in locations other than the one 

we have data for, further to the right of the location of the leakage 

in the experimental data. This should be possible, given that each 

sensor Y, using the data in the previous experiment, in reality 

learnt a model that answers the question Q(Y,L)=“Is there a 

leakage L meters to my right?”. Therefore, if a leakage is located 

approximately at a multiple k of 10m. (approximately the spacing 

between sensors) to the right of the original leakage, if we “shift” 

the models of the sensors by k steps to the right, and we apply 

them to the new data of the sensors in these positions should 

answer the model question Q with a “Yes”. 

 

This new “thought-experiment” assumed a leakage located 20 m. 

to the right of sensor #2, in other words, 10m to the right of the 

original leakage (see Figure 1). We make the assumption that the 

data that were in the original experiment read by sensor #11 (who 

is 93.75m away from the real leakage location), were now read 

instead by sensor #9 (who is in reality 86m away from the real 

leakage location); then the data that were really read by sensor #9 

were read by sensor #7 (who is in reality 74.8m to the left of the 

real leakage location) and so on until we reach the right-most 

sensor (#2). For sensor #11 (the left-most sensor), we assumed 

that its data corresponded to a set of measurements that are read 

when there is no leakage; and we discard the data that sensor #2 

read in the original experiment. With this arrangement, we expect 

that the model for sensor #11, when applied to the data (that was 

in reality read by sensor #9) will reply with “Yes”. Since this 

answer means “there is a leakage 93.75m. to my right” this means 

that there is an indication that there is a leakage 93.75m to the 

right of sensor #9, and since sensor #9 is located 86m from the 

original leakage location, this means we have an indication for a 

leakage 93.75m - 86m = 7.75m (~10m) to the right of the original 

leakage, as we would like! Similarly, for each of the other models 

and data. 

In general, by applying the 10 models we have already derived 

from the 10 individual sensors to each of the 10 datasets we have, 

we get a total of 10x10=100 decisions in one of the two possible 

forms:  

A. “leakage answer indidates that 

sensor_X_detects_leakage_N_meters_to_my_right”, or  

B. “no_leakage”  

The decision making in case (A) is as follows: assume that sensor 

X is located M m. to the left of sensor Y (M can be negative), and 

sensor Y is located L m. to the left of the (original) leakage. If the 

model trained for sensor Y data when applied to data read by 

sensor X says “leakage”, then the decision is that 

“sensor_X_detects_leakage_N_meters_to_my_right” where 

N=M+L.  

 

 
(a) 

 
(b) 

Figure 4 The model trained with data coming from sensor X (a) 

can be used on sensor Y to find leaks N meters away (b). 

 

This way, every sensor location provides 10 answers (1 answer 

for each of the 10 models applied to the data it reads), and ideally, 

one answer will be of the form (A) and the other 9 in the form 

(B). The average of the positions dictated by all answers of the 

form (A) give us the best estimate of the location of the leakage.   

  

4.2 User Dashboard 

The policy dashboard is essentially the middle communication 

layer between the user and the AI model. The present dashboard 

is giving the user the option to upload the available data. The data 

is then sent to the AI model which, after the correct 

preprocessing, is able to perform its predictions.  

 

The current visualisation shows a line chart which is developed 

from the various vibration values and the timestamp of 

measurement showing the range of vibrations for each sensor at 

the given time. Furthermore, the data from the AI model is shown 

in green whenever the model predicts that no leakage is present 

and in red if the model has detected a leakage. Overall, the 

dashboard gives the user the opportunity to visually identify any 

leakages present in the pipe and to take the appropriate measures 

in order to solve the problem. Two sample dashboard outputs are 

shown in Figure 5 and Figure 6; one with a leakage and one 

without. It is possible to notice that in the trace without leakage 

present (Figure 6) there are some false positives. This behaviour 

does not undermine the regular operation of the system as the 

final user can take action considering the majority of the output 

results and thus only when a clear red signal is persistent onto the 

dashboard. 

 

 

Figure 5 Dashboard when a leakage was simulated. 

 

Figure 6 Dashboard when a leakage wasn’t simulated. 

 

These dashboards currently visualize the data from all 10 sensors 

combined. In future work it would be possible to expand software 

features adding the capabilty to show data from each sensor 

separately, allowing the user to select the data from a specific 

sensor to be displayed.  
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This will have two potential benefits. On one hand, it would 

deploy the refinements of the model, described in Section 5.1. On 

the other hand, it would also allow for more sensors to be 

deployed at various locations, without necessarily being 

connected in the same set up as this one. Furthermore, this would 

allow the possibility of having one common interface for the 

entire region or city, overlaid with a map, showing the location 

of each sensor. 

Due to the limitations of this project timeframe, users must 

manually upload data corresponding to a 10-minute interval into 

the dashboard in order to display the graphs above. With the help 

of APIs this could be done automatically, allowing for continuous 

data monitoring and the issuance of an alert whenever a leakage 

is detected by the AI model. When the dashboard will be 

combined with an area map as described above, it will even give 

an approximate location of the leakage.  

5. Results

For each dataset, we consider two variants, the first comprising 

only the aggregated sensor values in non-overlapping intervals of 

0.1 seconds, and the second having in addition an extra value that 

contains the largest value read in the previous 10 seconds. From 

the results, it is obvious that when the aggregated data is not 

augmented with “memory values”, the classification accuracy is 

comparable to the toss of a coin. This is due to the fact that any 

value that is the simple aggregation of vibration amplitudes in an 

interval of 0.1 seconds is almost equally likely to appear in both 

possible scenarios of “leakage” or “no leakage”. In fact, by 

looking at the raw data, one sees that very often, in an interval of 

0.1 seconds, the amplitude of vibrations recorded by any sensor 

can often reach values whose absolute value exceeds 300, but 

appear with both positive and negative sign, so that the average 

can be in the order of 0 or 10; other complicating factors are 

heavy vehicles travelling across the road forcing the sensors to 

record very high vibrations without the presence of a leakage. On 

the other hand, when the dataset is augmented with “memory 

values” that maintain the largest value read in an immediate 

previous short time interval, the accuracy of all ML models 

increases dramatically and becomes usable in a real production 

setting. The three models tested include (a) RIPPER, a rule-

learner briefly described in section 4.1 (Cohen, 1995), (b) SVM, 

an implementation of Support Vector Machines (Vapnik, 1995) 

that are algorithms that attempt to find the hyperplane that best 

separates the two classes, leaving as much margin as possible 

from any point belonging to any class, and (c) ANN, an 

implementation of a one-hidden layer Neural Network with 

sigmoid nodes (Goodfellow, et al., 2016), that are networks of 

so-called perceptrons, “artificial neurons” inspired from the 

mammalian brain organisation, that combine their inputs via a 

dot-product operation with a set of weights and biases attached 

to each one, and then applying an activation function such as a 

sigmoid to this dot-product before sending it as output to the next 

layer of perceptrons. We chose these classifier algorithms as they 

are widely considered state-of-the-art in their specific domains, 

i.e. logic induction, wide-margin classifiers, and of course, neural

networks and deep learning.

In Table 3, we report on the results regarding accuracy from 

several ML algorithms on a number of different datasets: (a) data 

coming only from the sensor closest to the leakage (sensor #2), 

(b) data coming only from the sensor furthest away from the

leakage (sensor #11), and finally (c) combined data coming from

all installed sensors. When one compares the results from the

same classifier on the augmented datasets, it is clear that in all

cases, the sensor closest to the leakage provides better accuracy

to the sensor furthest from the leakage.

Finally, regarding the difference in performance of the three 

classifier algorithms (RIPPER-k, SVM, and ANN), the so-called 

No-Free-Lunch theorem (Wolpert & Macready, 1997) states that 

when averaged over all possible datasets the performance of any 

two classifiers is the same. However, in practice, this cannot be 

expected to hold, and in certain domains, one algorithm can 

obtain widely different performance than another. The high-

performance accuracy of the rule-extraction algorithm probably 

implies that the feature space of this problem is likely partitioned 

by the two classes of the problem in hyper-parallelepipeds which 

can be easily found by rule-extraction systems but not so easily 

by neural networks or support vector machines.   

When combining the 10 sensors’ features together (for a dataset 

having in total 20 features plus the target class), the same rule-

extraction algorithm (RIPPER-k) provides overall test accuracy 

on unseen test data of 99.88%. This test accuracy refers to 

leakage detection using only a single instance of pre-processed 

data, i.e. data corresponding to only 10 seconds of raw sensor 

readings. Given that leakages cannot cease without human 

intervention, a second “test of time” using contiguous data (e.g. 

5 minutes’ worth of data) to derive 30 consecutive “leakage/no-

leakage” decisions and take the majority vote of those 30 

decisions should be sufficient to remove any “false alarms” that 

could possibly be raised by test data (such as passing by heavy 

trucks.)  

Sensor Method Accuracy (%) 

2 (closest) no memory 

RIPPER 57,24 

SVM 55,88 

ANN 55,27 

2 (closest) 10s memory 

RIPPER 98,22 

SVM 96,33 

ANN 96,43 

11 (farthest) no memory 

RIPPER 59,60 

SVM 55,88 

ANN 54,60 

11 (farthest) 10s memory 

RIPPER 97,96 

SVM 55,88 

ANN 56,06 

All no memory 

RIPPER 77,64 

SVM 58,66 

ANN 75,00 

All 10s memory 

RIPPER 99,88 

SVM 96,74 

ANN 98,28 

Table 3: ML Models Accuracy on Leakage Detection 

6. Conclusions

The proposed solution combines vibration sensors, machine 

learning algorithms and a dashboard useful for water leakage 

detection in underground pipes. The system was tested in an 

urban area, showing high accuracies in leakage detection.  

This solution is competitive in terms of cost, continuous 

monitoring, and data accessibility. Nonetheless, it can be 

improved by adding more sensors to cover a longer distance, 

verify the robustness of the method for larger pipe diameters and 

better integrate the data with a local area map. A denser 

distribution of sensors network may also improve reliability of 

the overall monitoring system by compensating the possible 

malfunctions of single sensors, even if a thorough approach to 

increase resiliency of the proposed solution should be deeper 

studied in future work. 
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