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Abstract Iron emissions from human activities, such as oil combustion and smelting, affect the Earth's
climate and marine ecosystems. These emissions are difficult to quantify accurately due to a lack of
observations, particularly in remote ocean regions. In this study, we used long‐term, near‐source observations in
areas with a dominance of anthropogenic iron emissions in various parts of the world to better estimate the total
amount of anthropogenic iron emissions. We also used a statistical source apportionment method to identify the
anthropogenic components and their sub‐sources from bulk aerosol observations in the United States. We find
that the estimates of anthropogenic iron emissions are within a factor of 3 in most regions compared to previous
inventory estimates. Under‐ or overestimation varied by region and depended on the number of sites,
interannual variability, and the statistical filter choice. Smelting‐related iron emissions are overestimated by a
factor of 1.5 in East Asia compared to previous estimates. More long‐term iron observations and the
consideration of the influence of dust and wildfires could help reduce the uncertainty in anthropogenic iron
emissions estimates.

Plain Language Summary Human activities, such as smelting and oil combustion, release smoke
and particles into the atmosphere. These particles often contain iron, which not only absorbs sunlight,
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Key Points:
• Anthropogenic total iron emissions are
constrained to a factor of 3 in most
global regions using long‐term aerosol
observations

• The number of sites, interannual
variability, and site selection filter can
affect the model‐observation compari-
son uncertainty by 15%–50%

• Smelting‐related emissions are con-
strained to a factor of 1.5 using iron
oxide observations from East Asia
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contributing to atmospheric warming, but also serves as a nutrient for phytoplankton in various ocean regions.
However, the precise extent of human‐induced iron emissions remains uncertain due to a lack of comprehensive
monitoring data. In this study, we leverage a global data set of iron observations to refine our estimates of iron
emissions attributed to human activities. Additionally, we examine other co‐released substances, such as carbon
and nickel, to identify specific emission sources of iron. We employ statistical techniques to distinguish human‐
caused iron emissions from those originating from natural sources like dust and wildfires. Moreover, we utilize
iron oxide observations to constrain emissions originating from East Asia and Norway, which are estimated to
originate largely from smelting emissions. Through the analysis of long‐term data sets, we provide lower and
upper bounds to human‐caused iron emissions. Furthermore, we investigate the impact of reduced observation
numbers and a sparse network on the range of estimated iron emissions. Our findings highlight the critical role
of observation quality in accurately assessing iron emissions from human activities.

1. Introduction
Iron‐containing aerosol particles affect the atmospheric chemistry of acids (Harris et al., 2012; Kotronarou &
Sigg, 1993), absorb and scatter solar radiation (Lafon et al., 2006), enhance biological growth in nutrient‐limited
waters after deposition (Martin et al., 1990), and are toxic to human health (Wang et al., 2020). Iron is emitted by
various sources including dust, wildfires, and anthropogenic combustion (Mahowald et al., 2018). Of these, the
anthropogenic component is suggested to exert about +0.5 Wm− 2 direct radiative forcing over regions with high
coal combustion and smelting (Rathod, Bond, et al., 2022; Rathod, Hamilton, et al., 2022). Anthropogenic soluble
iron deposition (defined as the sum of soluble iron at emission plus the additional solubilized fraction that is
gained during transport due to acidic and organic processing) can sustain over 10% of phytoplankton primary
productivity within iron‐limited North Pacific Ocean areas (Rathod, Bond, et al., 2022; Rathod, Hamilton,
et al., 2022). In other regions, the radiative effects, and effects on oceanic biogeochemistry from anthropogenic
sources are thought to be smaller than other iron aerosol sources, although there is a lot of uncertainty in remote
ocean regions due to a sparsity of observations (Hamilton et al., 2020). This study aims at constraining present‐
day anthropogenic total iron emissions using a wide suite of worldwide measurements and an atmospheric iron‐
transport model (Hamilton et al., 2019).

Chemical transport models are used to simulate the movement and deposition of aerosols and gases, which are
then used to estimate the global radiative forcing and ocean biogeochemical feedback. These models rely on
emission inventories of gases and aerosols as inputs, simulate their transport (including chemical and physical
transformations and deposition), and are evaluated using present‐day observations. To assess whether the models
are producing accurate results, the modeled concentrations of a species of interest are compared to the observed
concentrations (e.g., Mahowald et al., 2009). Model‐observation disagreement can be from a wide range of
factors, including the emission inventories used, aerosol transport and microphysics, and wet and dry deposition
processes (Menut et al., 2007; Smith et al., 2017). Current practice is to match observed concentrations by
adjusting the emissions (Hamilton et al., 2020; Matsui et al., 2018), but “correct” modeled concentrations can also
be achieved through inadvertent compensating errors in different model processes, such as overly high emissions
being offset by overly rapid deposition processes.

Currently, models that simulate the life cycle of iron in the atmosphere tend to underestimate total and soluble iron
concentrations over the Southern and Atlantic Oceans, potentially by over two orders of magnitude (Ito
et al., 2018, 2019; Myriokefalitakis et al., 2018; Rathod et al., 2020). Recently, Liu et al. (2022) and Ito and
Miyakawa (2023) obtained a closer model match with observations by identifying a missing anthropogenic
source, which most likely originates in Southern Africa. While the model underestimation in the Southern Ocean
has been attributed to underestimated wildfire and anthropogenic emissions, these factors alone do not fully
explain the discrepancy. Observations of iron oxide minerals that are largely derived from anthropogenic sources
suggest that current estimates of anthropogenic iron contributions in the Southern Ocean may be underestimated
by a factor of 5, in contrast to the North Pacific Ocean where estimates are more consistent with observations
using isotope markers (Kurisu et al., 2021; Liu et al., 2022; Pinedo‐González et al., 2020).

Iron, like many trace element species, has both anthropogenic and natural sources; sources which are expected to
evolve differently in the future (Hamilton et al., 2020; Rathod, Bond, et al., 2022; Rathod, Hamilton, et al., 2022).
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This work addresses the questions: What is the current bounded estimate of anthropogenic iron emissions?Which
specific emission sources or sectors can be constrained with observations to provide information about how those
influences might evolve in the future? How does the shorter duration or lower spatial coverage of observations in
some regions affect these estimates?

2. Methods
2.1. Overview

In studies of atmospheric chemistry, “constraining” refers to the process of adjusting a flux, either emission or
deposition, or a process to better match observations. It is also a useful exercise for establishing bounds to an
emission inventory. For constraining an emission inventory, this is typically done by supplying the inventory to an
atmospheric transport model and comparing simulated concentrations to available observations (Cakmur
et al., 2006; Martin et al., 2003; Zhu et al., 2013). A correction factor can then be calculated, often as a mean or
median of the model‐observation comparison and applied to the inventory to improve the match between the
model and observations. Some studies use the same inventory in multiple models to determine a universal, rather
than model specific, correction factor (Adebiyi et al., 2020; Samset et al., 2014), especially when atmospheric
processes dominate the simulated concentration. In this work, we determine an emission correction factor for each
region (defined as a continent‐level area in this work), including uncertainties. This regional correction factor is
defined as the inverse of the median of the model‐observation ratio for a single emission inventory. Available
observations are limited in time and space and disparate in nature, so we adapt comparison and adjustment
methods for each data set, as detailed below. Although the combination of dissimilar methods may appear
fragmented, this impression is a consequence of bringing all possible observations to bear on the problem of
constraining emissions.

Several factors can impact the accuracy of constraining emissions using model‐measurement comparisons, as
shown in Figure 1. The locations of observations can affect howmuch the simulated concentrations are influenced
by emission versus transport processes. Observations may be sparse in space and time and may not represent the
temporal and spatial aspects of regional concentrations. Although species such as black carbon (Lee et al., 2013)

Figure 1. A schematic of the sources, observations, and spatial range covered in this work to evaluate anthropogenic iron
emissions. Prior work focused on constraining emissions by only looking at iron concentrations in remote regions, where
observations are generally scarce and model errors may be more influenced by deposition and transport than by emissions.
This work focuses on the source regions with a multi‐species approach using long‐term observations. n is the number of
daily‐averaged observations in each site in that observation group. IMPROVE is the US‐EPA network of fine aerosol
measurements in remote/rural areas in the USA. COARSEMAP is the compilation of global aerosol observations.
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or dust (Mahowald et al., 2002) are often evaluated using long‐term land‐based data, modeled iron concentrations
have more commonly been compared to observations from ship‐based measurements taken over just a few days
(Baker & Croot, 2010; Myriokefalitakis et al., 2018), except Ito and Miyakawa (2023) who used 3 months of
observations to evaluate modeled iron oxides in Japan. These short sampling periods may not adequately capture
the temporal variability of aerosol concentrations, which can vary by many orders of magnitude (Smith
et al., 2017). Another challenge in constraining the influence of anthropogenic iron on the Earth system is
isolating the anthropogenic component from observed concentrations. Exploring the relationship between co‐
emitted species can aid in isolating individual source contributions (e.g., Miyakawa et al., 2023).

Figure 1 also shows how near‐source observations are emphasized in this study. We evaluate constraints on total
anthropogenic iron emissions and their sub‐sources. We first describe the emission inventories, atmospheric
transport model, and observations used in the study. We identify regions where the simulated anthropogenic
contribution to soluble iron affects iron‐limited ocean basins because the inputs of anthropogenic sources may be
particularly important in these regions. We then compare the anthropogenic subset of iron emissions against
observations using two methods: a model filter to identify locations where anthropogenic contributions are
predicted to dominate, and Positive Matrix Factorization to quantify the anthropogenic contribution in the ob-
servations. We also compare simulated iron oxide concentrations to iron oxide observations from Japan to
evaluate smelting emissions in East Asia. Finally, we examine how uncertainties in the representativeness of the
observations affect the correction factor and its uncertainty. The observations and analysis methods are sum-
marized in Table 1.

2.2. Emission Inventory

2.2.1. Total Anthropogenic Iron Emissions

Total anthropogenic iron emissions are used directly from Rathod et al. (2020). The global emissions of fine
(PM1) and coarse (PM1‐10) mass of anthropogenic iron in Rathod et al. (2020) were 1.1 (0.08–4.6, 95% Confi-
dence Interval) and 1.1 (0.15–6.5, 95% Confidence Interval) Tg/yr, respectively. The fine iron emissions were
about an order of magnitude higher than in most previous studies, while the coarse emissions were within the
range of most previous studies (Ito, 2015; Matsui et al., 2018; Wang et al., 2015). These emissions were tested in
an atmospheric transport model and yielded improvements in model skill for simulating ambient total iron
concentrations compared to previous studies (Rathod et al., 2020).

2.2.2. Sector‐Specific Emissions

We use the emission output from Rathod et al. (2020) who segregated emissions into major sectors based on
source characteristics and solubility. The emission groups are: “Coal”: combustion of coal and other solid fuels
and were 200 (30–800 95% Confidence Interval) Gg Fe/yr in 2010 in the PM1 fraction. “Smelt”: Emissions from
iron and steel, copper, aluminum, zinc, and lead production, including both smelting and sintering, and were 820

Table 1
Description of the Analyses Used to Constrain Anthropogenic Iron Emissions in This Paper

Quantity constrained Observations
Number of
locations Time period Regions

Distance
from
source Analysis

Anthropogenic total iron
emissions

COARSEMAPa 685 (PM2.5)
and 185
(PM10)

1988–2019 Most in N. America, Europe,
Asia, Africa, S. America,

Australia

Near Point‐to‐point
comparisons

Anthropogenic total iron
emissions and its
sub‐sources

US‐IMPROVE 171 (PM2.5) 1988‐2019 (for COARSEMAP;
varying by site) 2011–2019

(for PMF)

USA Near Positive Matrix
Factorization; Point‐to‐
point comparison

Smelting‐related iron
oxide emissions

Ohata
et al. (2018);
Yoshida
et al. (2020)

5 2017 Japan Downwind
1000 km

Point‐to‐point
comparison

aincludes US‐IMPROVE.
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(45–3,500) Gg Fe/yr in 2010 in the PM1 fraction. ‘Oil’: combustion of heavy fuel oil (HFO), gasoline, diesel, and
natural gas emissions; dominated by HFO in boilers and ships. Iron emissions from these sources were 20 (6–55)
Gg Fe/yr in 2010 in the PM1 fraction “Wood”: combustion of wood and solid waste and were 55 (2–330) Gg Fe/yr
in 2010 in the PM1 fraction.

2.2.3. Iron Oxide Emissions

Rathod et al. (2020) segregated anthropogenic combustion‐iron minerals from coal, wood, oil, and smelting
emissions into iron oxides (hematite and magnetite), clays (illite and kaolinite), and iron‐sulfates. To estimate
hematite (Fe2O3) and magnetite (Fe3O4) emissions for comparison with the observed iron oxide (FeOx, sum of
hematite and magnetite) mass reported by Yoshida et al. (2018, 2020), we normalized the Fe‐as‐Fe2O3 and Fe‐as‐
Fe3O4 masses in the inventory using the chemical mass fractions of Fe/Fe2O3 = 0.7 and Fe/Fe3O4 = 0.723.

2.2.4. Natural Sources of Total Iron

Non‐anthropogenic sources of iron, dust and wildfires, emit a large amount of total and soluble iron. These two
sources affect the locations where anthropogenic contribution to iron dominates and thus affect the model
evaluation, as further described in Section 2.5. We model dust and wildfire‐related total iron emissions following
Hamilton et al. (2019). Dust‐iron is estimated by multiplying the emitted mass of dust, which is tracked online in
the model, by an iron fraction that depends on the mineralogy of the dust source location (global mean ∼3%).
Wildfire‐iron is estimated by multiplying the wildfire‐related black carbon emissions (used from Global Fire
Emissions Database version 4s, GFED4s, van der Werf et al. (2017) by observed black carbon‐to‐iron ratios from
various biomes (Hamilton et al., 2019).

2.3. Atmospheric Transport Modeling

2.3.1. Model Setup

Aerosol emissions are transported in the Community Earth System Model's Community Atmosphere Model v6
(“CAM6,” Hamilton et al., 2019; Hurrell et al., 2013). The model resolution is 0.94° × 1.25° (latitude x longitude)
and has 56 hybrid‐sigma pressure levels from 1,000 hPa (ground) to 2 hPa. Emissions of anthropogenic species,
such as aerosol precursor vapors and primary carbonaceous carbon, are taken from the Coupled Model Inter-
comparison Project‐5 (CMIP5) emission data set (Lamarque et al., 2010), and dust and sea‐spray emissions are
calculated online. The model is nudged using Modern‐Era Retrospective analysis for Research and Applications
(MERRA2, Rienecker et al., 2011) offline meteorology so that the different representations of anthropogenic
iron‐containing aerosol can be compared without a feedback on the meteorology. Unless otherwise specified,
each model simulation was run for 18 months starting in 2009 with the first 6 months discarded as the spin‐up.

2.3.2. Aerosol Size Treatment

CAM6 uses the Modal Aerosol Module‐4 (MAM4, Liu et al., 2016) to track the evolution of aerosol size and
composition during its life cycle. Anthropogenic iron emissions are segregated by mass into PM1 (fine) and PM1‐
10 (coarse). At the time of emission, 10% and 90% of the anthropogenic PM1 iron mass are allocated to the Aitken
mode and the accumulation modes, respectively, while all PM1‐10 is allocated to the coarse mode. As the aerosol
particle population grows or shrinks during transport, for example, due to coagulation and condensation/evap-
oration of vapors, they are reallocated to suitable aerosol size modes.

2.3.3. Solubility Treatment

We run the CAM6 model with the Rathod et al. (2020) total and soluble anthropogenic iron emissions with an
updated atmospheric solubility treatment (CAM6‐MIMI) module (Rathod et al., 2020). MIMI simulates the at-
mospheric reactions of iron with atmospheric acids and ligands to estimate the conversion of insoluble to soluble
iron during transport (Hamilton et al., 2019). Most soluble iron deposition occurs via wet deposition (Rathod
et al., 2020). For the sector‐specific solubility simulation described below, we used the Rathod et al. (2020)
central fuel solubility.
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2.3.4. Simulations

We performed three simulations to estimate the concentrations of anthropogenic total and soluble iron, determine
the contribution of anthropogenic sub‐sources to these concentrations, and evaluate the contribution of coal
combustion and smelting emissions to anthropogenic iron oxide concentrations. The first simulation utilized the
CAM6 model with Rathod et al. (2020) anthropogenic iron emissions and the CAM6‐MIMI module for all other
iron emissions to identify areas where the anthropogenic supply of soluble iron is important in iron‐limited ocean
waters, defined as those with surface NO3

− concentrations greater than 4 μM for the central bound and 2 μM for
the upper bound (Okin et al., 2011). The soluble iron deposition and iron‐limited maps were then overlaid. The
total iron concentrations from this simulation, including contributions from dust, wildfires, and anthropogenic
sources, were used to compare with observations in Section 2.5.1. In the second simulation, anthropogenic
source‐specific emissions were transported using CAM6 to identify the sources that contribute most to surface‐
level concentrations of total and soluble iron, as well as the regions where they have the greatest impact. In the
third simulation, the CAM6 model was run with anthropogenic iron oxide emissions to evaluate the contribution
of coal combustion and smelting emission sources to total anthropogenic iron, as described in Section 2.5.2.

2.4. Observations

This section summarizes the observations available to constrain anthropogenic iron emissions in various details.
Their spatio‐temporal coverage and applications are summarized in Table 1.

2.4.1. US‐IMPROVE

The US‐IMPROVE (Interagency Monitoring of Protected Visual Environments, http://vista.cira.colostate.edu/
Improve/improve‐data/) network collects and analyzes various metals, organic, and inorganic species using a
Teflon filter and X‐ray fluorescence (XRF). The network collects 24‐hr samples every third day, frommidnight to
midnight local time (Hand et al., 2012). We use 1988–2019 data for comparison against total iron (Sec-
tion 2.5.1.1), and only 2011–2019 for comparison against anthropogenic sub‐sources (Section 2.5.1.2) to avoid
changes in analytical protocols that were implemented starting in 2011 (Solomon et al., 2014).

2.4.2. COARSEMAP

COARSEMAP is a global data set of voluntary contributions (http://www.geo.cornell.edu/eas/PeoplePlaces/
Faculty/mahowald/COARSEMAP/), consisting mainly of land‐based observations of particulate iron at daily to
monthly resolution for periods of more than 1 year. The aerosol samples were analyzed using various methods
such as inductively coupled plasma mass spectrometry (ICP‐MS) and X‐ray fluorescence (XRF), which may lead
to differences between samples. Many of the observations in COARSEMAP come from country‐ or state‐level
agencies such as the US Environmental Protection Agency, while the rest come from individual research
groups. COARSEMAP has global coverage, but most observations are in the USA for PM2.5‐Fe and in Europe for
PM10‐Fe (Tables S1, S2, and Table S3 in Supporting Information S1). The following groups and studies
contributed to this work (Alastuey et al., 2016; Arimoto et al., 2003, 2006; Artaxo et al., 2002; Barraza
et al., 2017; Bergametti et al., 1989; Bozlaker et al., 2019; Bozlaker et al., 2013; Y. Chen et al., 2006; Chuang
et al., 2005; Cohen et al., 2004; Dongarrà et al., 2007; Fuzzi et al., 2007; Hand et al., 2017; Hueglin et al., 2005;
Kyllönen et al., 2020; Laing et al., 2014; Mackey et al., 2013; Maenhaut, De Ridder et al., 2002; Maenhaut
et al., 1996, 2005, 2011; Maenhaut, Fernández‐Jiménez, et al., 2002; Maenhaut & Cafmeyer, 1998; Malm
et al., 2007; McNeill et al., 2020; Mkoma, Maenhaut, et al., 2009; Mkoma, Wang, & Maenhaut, 2009; Morera‐
Gómez et al., 2018; Putaud et al., 2010; Putaud et al., 2004; Rodríguez et al., 2011; Salma et al., 1997; Savoie
et al., 1993; da Silva et al., 2008; Smichowski et al., 2004; Van Dingenen et al., 2004; Virkkula et al., 1999).

2.4.3. Yoshida et al. (2020) Iron Oxide

Atmospheric iron oxide observations were made using a modified single‐particle soot photometer (SP2) (Matsui
et al., 2018; Moteki et al., 2017; Ohata et al., 2018; Yoshida et al., 2018) to detect light‐absorbing refractory
aerosols. The values tabulated by Yoshida et al. (2020) represent emissions from high‐temperature combustion
activities, mainly smelting and coal combustion (Moteki et al., 2017; Ohata et al., 2018; Yoshida et al., 2018), in
East Asian continental outflow plumes (site Hedo, and Fukue), fresh urban pollution (Tokyo and Chiba), and
pristine Arctic air (Ny‐Ålesund).
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2.5. Model Evaluation and Uncertainties

2.5.1. Contribution of Anthropogenic Sources

2.5.1.1. Model Site Selection Filter

We evaluate the anthropogenic total iron concentrations using two site selection filters. The first filter, known as
the “dominant‐source filter,” compares the model to observations only at sites where the modeled anthropogenic
iron concentrations in the PM2.5 or PM10 size range, surpass all other iron sources (i.e., wildfires and dust). This
filter ensures that the evaluation is primarily influenced by the anthropogenic component. However, to estimate
the uncertainty introduced by this filter selection, we also perform a model evaluation using a more stringent filter
requiring a 90% modeled anthropogenic contribution. Although this filter would produce a comparison less
influenced by external factors, it applies to only a small number of sites. The uncertainty due to the site selection
filter is estimated by comparing the median model‐to‐observation ratio of the sites selected with the 90% cut‐off to
the ratio of the sites selected with the dominant‐source filter. In both evaluations, we compare modeled surface
total iron concentrations from anthropogenic sources, dust, and wildfires to observations of PM2.5‐Fe and PM10‐
Fe, using specific mass contributions based on particle size for each case.

2.5.1.2. Positive Matrix Factorization

Measurements can provide an elemental composition that might be used to quantify the contribution of
anthropogenic sources. Positive Matrix Factorization (PMF) is a receptor‐only, statistical model that seeks groups
of associated species (factors) based on the association of elements in the observations, attributes concentration to
each factor, and, in the best case, associates each factor with a source or sources (Paatero, 1997; Paatero &
Tapper, 1994). It uses no previous information about sources or their characteristics (e.g., Kim et al., 2003), but it
must assume that each factor, or that group of associated species, is constant across time scales. PMF has been
applied to various real‐world cases (Ramadan et al., 2000). Several factors can influence the way species are
grouped into factors, and therefore the results of the PMF. One factor is the atmospheric processing of species,
such as the oxidation of SO2 to produce SO4, which has the effect of altering factors depending on the air‐mass
age (Yuan et al., 2006). The co‐location of emission sources may also result in a factor that combines multiple
sources (Chueinta et al., 2000; Clements et al., 2017; Yin et al., 2015). Additionally, PMF is generally used for
small air basins rather than an entire continent, and source profiles may vary regionally (e.g., Vecchi et al., 2008),
making clear identification of profiles difficult over a large region. For example, emissions linked to heavy fuel oil
may have the same spatial distribution as sea salt in coastal areas but be collocated with SO4 emissions and
industrial PM emissions in inland areas.

In this work, we explore the possibility that continental‐scale PMF with speciated data could be used to constrain
classes of iron emissions within large‐scale models. For such an endeavor, it would be unsuitable and compu-
tationally expensive to identify factors for individual sites. Rather, PMF was run on the combined data from all
IMPROVE sites in the United States. Such combination of sites with likely disparate profiles can often lead to
unintelligible results. The selection and processing of IMPROVE observations are described in Text S1 and Table
S4 in Supporting Information S1. The final data set consisted of approximately 176,000 observations from 148
sites in the United States. To determine the optimal number of factors for the analysis, the second derivative
maximum of the ratio of Q/Qexp was used (Ulbrich et al., 2009); also see Text S1.

2.5.2. Smelting‐Related Iron Oxide Emissions

Inventories of iron aerosol that include metal smelting identify it as the largest anthropogenic source of iron
aerosol to the atmosphere (Ito &Miyakawa, 2023; Rathod et al., 2020), and most of the material is emitted as iron
oxides due to high‐temperature oxidation (Rathod et al., 2020). We compare modeled and observed aerosol iron
oxide concentrations at four observation sites in Japan and one site in Norway where models and observations
indicate that anthropogenic iron oxide sources dominate iron concentrations (Ohata et al., 2018; Yoshida
et al., 2018); these iron oxide concentrations, in turn, are dominated by smelting and coal combustion activities.
Measured concentrations are limited to the PM1 fraction and are compared with the sum of modeled Aitken and
accumulation‐mode iron oxide (hematite and magnetite, Section 2.2).

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040332

RATHOD ET AL. 7 of 20

 21698996, 2024, 17, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040332, W
iley O

nline L
ibrary on [29/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.5.3. Uncertainties

The model‐observation comparison to obtain a single correction factor by region for the inventory includes many
uncertainties. In this section, we describe four uncertainties that affect the correction factor: site selection factor
(discussed in Section 2.5.1.1), number of sites, interannual variability, and inter‐model variability. We then
describe the procedure to combine these uncertainties.

2.5.3.1. Number of Sites

The COARSEMAP data set contains fewer than 20 observation sites for both PM2.5 and PM10 iron in many
regions, except North America and Europe. To estimate the uncertainty introduced by having fewer sites in many
regions, we perform a sensitivity analysis on the North American COARSEMAP PM2.5‐Fe observations, which
consist of 527 sites that pass the dominant‐source filter. We simulate a lower number of sites by randomly
selecting a certain number of sites (n) from the entire data set for that region, determining the median model‐to‐
observation ratio for this subset, and comparing it to the ratio for the whole data set. This process is repeated 500
times for each value of n, and the uncertainty in the median model‐to‐observation ratio is estimated as the 5th and
95th percentiles. The values of n explored are geometrically spaced in 14 intervals, from n = 1 to n = 527.

2.5.3.2. Interannual Variability

The model was run for the year 2010, and comparison with observations from other years or a long‐term average
may introduce bias due to interannual variability (IAV). To estimate the IAV bias, we use the yearly‐averaged
data from the IMPROVE network for the years 2006–2014 (four years before and after 2010) and compare
the modeled 2010 concentrations to each yearly average and the 2006–2014 observed mean. The IAV bias is then
calculated as the ratio of the median model‐observation ratio for each year to the median model‐observation ratio
for the 2006‐2014 mean. The uncertainty due to IAV is presented as the 5th and 95th percentiles of the obtained
ratios for all years. This IAV bias is only applied to regions where more than 20% of the sites have a temporal
coverage of 1 year or less. This cut‐off is arbitrary but follows an intermediate finding that having at least 2 years
of data reduces the IAV bias to 50% of the bias due to having 1 year of data.

2.5.3.3. Inter‐Model Variability

We used the Community Earth System Model's CAM6 atmospheric transport model to evaluate the emission
inventory. However, selecting any other model (such as GEOS‐Chem) would lead to a different model‐
observation bias because of different aerosol representations and model resolutions (Hamilton et al., 2019;
Tsigaridis et al., 2014). To estimate the uncertainty due to different model outputs, we refer to literature where
different atmospheric transport models were fed the same aerosol emission inventory and meteorological con-
ditions. Chen et al. (2019) found the inter‐model standard deviation to be about 20% of the mean for near‐source
regions for PM2.5 in China. Thus, we assume that about 20% of the model difference from observations can be
attributed to model selection.

2.5.3.4. Combined Uncertainty

We assume that the uncertainties discussed above are independent of each other, and combine them in quadrature
(e.g., Streets et al., 2003). For the model‐observation comparison, we use the inverse of the median of the model‐
observation comparison as the base correction factor and the 5th and 95th percentiles in its distribution as the 90%
Confidence Intervals of the correction factor. We use the same method for the PMF model‐observation com-
parison. For the site selection filter parameter, we use the ratio of the median model‐to‐observation comparisons
in the two filters (dominant source and 90% anthropogenic contribution) filters as is, without using uncertainty
bounds to the obtained values. For the number of sites parameter, since the distribution is from 500 random
samples, we assume the 5% and 95% percentiles to represent the 90% Confidence Interval of the mean. For the
interannual variability parameter, since we compare each year's median model‐observation ratio to the 10‐year’
median model‐observation, we perform a bootstrapping analysis and use the 5th and 95th percentiles as the 90%
confidence intervals. For the model selection parameter, we use 0.8 and 1.2 as the 5th and 95th percentiles. We
then calculate the low and high bounds of the confidence intervals individually based on the low and high es-
timates of the uncertainties in the individual parameters.

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040332
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3. Results
In this section, we first identify the simulated regions where a high anthropogenic contribution to atmospheric
soluble iron overlaps with iron‐limited oceanic phytoplankton growth areas (Section 3.1.1). This identification is
done to identify the regions where the emissions are originating and constrain emissions in those regions,
although we present global comparison as well for broader implications of anthropogenic iron as recent studies
suggest that they can have a bigger role in the Southern Ocean than previously thought. We then show simulated
anthropogenic source‐specific contributions to total and soluble iron (Section 3.1.2). In Section 3.2, we evaluate
the modeled values against observations for various anthropogenic emission sources in multiple regions. In
Section 3.3, we show the influence of various model‐observation comparison parameters on the uncertainty in
constraining the inventory.

3.1. Regions Where the Anthropogenic Contribution Is Important

3.1.1. Regionality

Figure 2 shows the annual average contribution of anthropogenic soluble iron to total atmospheric soluble iron
(dust, wildfires, and anthropogenic) concentration, with dots and hatches representing the central and upper
bounds of the area of iron limitation for oceanic phytoplankton growth (see Section 2.3 for the definition of iron
limitation). The Rathod et al. (2020) inventory and the CAM6‐MIMI model estimate that anthropogenic sources
supply 15%–50% of atmospheric soluble iron to the iron‐limited North Pacific, Equatorial Pacific, and North
Atlantic waters. The westward increasing trend in the percentage of anthropogenic soluble iron across the tropical
North Atlantic (from off North Africa, to the Caribbean and Southeastern United States) agrees with observations
(Rodríguez et al., 2021). The anthropogenic contribution to atmospheric soluble iron in Fe‐limited areas such as
the Southern Ocean is less than 15%. We thus focus on North America and East Asia from where anthropogenic
emissions originate and influence the iron‐limited ocean basins of the North Atlantic and North Pacific oceans,
respectively.

3.1.2. Dominant Anthropogenic Sources

Figure 3 shows the simulated contributions of specific anthropogenic sources to surface concentrations of total
and soluble iron in the PM10 fraction. Smelting and coal combustion are less soluble due to the higher iron oxide

Figure 2. The background shows the percentage anthropogenic contribution to present‐day atmospheric soluble iron
concentration, and the dots and hatches show central and upper bounds, respectively, of the annual average iron‐limitation
area.
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content in them compared to the higher iron sulfate content in oil and wood
combustion aerosols (Rathod et al., 2020). Smelting‐related emissions are the
dominant source of anthropogenic total iron globally, with contributions to
atmospheric surface total iron concentration exceeding 60% in many regions
(Ito & Miyakawa, 2023; Rathod et al., 2020). Coal combustion is another
significant source of anthropogenic total iron in industrial areas of North
America, East Asia, and Europe. Heavy fuel oil and other liquid‐fuel com-
bustion in industrial and shipping sectors and wood combustion in industrial
and residential sectors are the main contributors to soluble iron, particularly
over iron‐limited ocean waters. Other studies suggest either oil and wood
(Wang et al., 2015) or smelting (Ito & Miyakawa, 2023; Liu et al., 2022) as
dominant soluble iron sources. Further information on the solubility of
emissions from these sources would aid in reducing this uncertainty.

3.2. Comparison With Observations

3.2.1. Anthropogenic Total Iron Emissions

3.2.1.1. Global: Model‐Observation Comparison at Sites With High
Anthropogenic Influence

We first discuss the model‐observation comparison using the “dominant
source” filter in which sites are used for comparison only where the modeled
anthropogenic contribution is the highest among the sum of all sources (i.e.,
anthropogenic combustion, wildfires, and dust). Figures 4a and 4b show

boxplots of the model‐observation comparison for PM2.5 and PM10 fractions, respectively. Over 90% of the
modeled values are within an order of magnitude of the observations for both PM sizes, with over 50% of sites
within a factor of 5. Maps of modeled concentrations and observation locations are shown in Figures S1 and S2 in
Supporting Information S1 for PM2.5 and PM10, respectively. Table S3 in Supporting Information S1 defines the
continent boundaries used for model‐observation comparison. Most of the PM2.5‐Fe observations are in North
America, while most of the PM10‐Fe observations are in Europe. Observations of coarse mass, which represents
50% of emissions and 30% of concentration over remote oceans in the model (Rathod et al., 2020), are relatively
poorly represented, with only 20% of the number of PM2.5‐measuring sites. In Europe, the modeled concentra-
tions of PM2.5‐Fe were overestimated by a factor of 1.2, while the PM10‐Fe was underestimated by a factor of 2.

Figure 3. Simulated percentage contributions to PM2.5‐Fe total (left panel)
and soluble (right panel) anthropogenic iron surface concentration by its sub‐
sources. Note that these maps do not include contributions from dust and
wildfire sources of iron.

Figure 4. Model‐observation comparison of PM2.5‐Fe (a) and PM10‐Fe (b) annual average iron concentration in various
regions. Comparison is performed and shown only for sites where the anthropogenic contribution in each size range is the
highest of the three classes of atmospheric sources (dust, wildfires, and anthropogenic combustion). Each dot represents the
ratio of the modeled 2010 mean concentration to the observed temporal mean concentration for each site. Values below the
region name show the number of observation sites used in the evaluation. Values in brackets show the total number of sites in
each region. Whisker length shows the 5th to 95th percentiles.
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Two continental emission regions contribute to most of the soluble iron deposition in the North Atlantic and North
Pacific Oceans: North America and East Asia, respectively (Hamilton et al., 2019). Shipping emissions within
these oceanic regions also contribute to deposition (e.g., Ito, 2015). Emissions from western South America
contribute about 15% of total atmospheric soluble iron to the iron‐limited Equatorial Pacific Ocean, with higher
soluble iron fractions close to the continent. Of the three source regions discussed here, South America and Asia
have many fewer sites (2 and 29, respectively) that passed the dominant source filter compared to North America
with 527 sites. The model underestimates concentrations over North America by a factor of 2 and overestimates
concentrations by a factor of 1.1 over Asia for PM2.5‐Fe and a factor of 5 and 2 respectively for PM10‐Fe. We infer
the following correction factors and their uncertainties as the median and 5th and 95th percentiles of the inverse of
the model‐observation ratio: 1.9 (0.6–6.6) for North America, 0.7 (0.4–1.25) for South America, 0.6 (0.4–1.1) for
Africa, 0.9 (0.3–4.6) for Europe, 1 (0.1–9.1) for Asia, and 2.8 (1.2–33.0) for Australia/New Zealand.

3.2.1.2. Positive Matrix Factorization Results for IMPROVE Sites

PMF Factors: PMF produces factor profiles, or groups based on the association of elements in the observations.
The analysis of the optimal number of factors (Section 2.5.1.2) suggested that either 9 or 10 factors were optimal.
We tentatively assigned each factor to a source group based on existing knowledge about its contribution to key,
representative species (Figures S3 and S4 in Supporting Information S1). For example, a factor with a dominant
contribution of crustal elements such as Al, Si, and Ti was identified as “Dust.” The PMF analysis identified a dust
source profile that was relatively constant regardless of site selection, and consistent with observed dust source
profiles (Table S7 in Supporting Information S1). However, the PMF analysis was not as successful in identifying
consistent profiles for other sources across the entire United States as would be expected given the diversity of
profiles from the likely source types. For example, we identified and labeled a potential “biomass burning” factor
based on richness in K; and an “oil combustion” factor due to contributions from V, Ni, and SO4. However, the
composition of these factors was not consistent across the entire USA, and the ratio between elements in each
factor and iron was dissimilar to that in measured source profiles (Tables S5 and S6 in Supporting Informa-
tion S1). This discrepancy may be due to the inability of PMF to generalize source profiles across the country.
Although SO4 is often used to identify the influence of coal combustion in PMF, the spatial distribution of the
factor contributing most to SO4 was dissimilar to that of iron emissions from coal combustion, possibly because
SO4 occurs through secondary formation in the atmosphere and iron occurs in primary aerosol.

In summary, the nationwide PMF analysis of iron emissions in the United States resulted in one distinct factor
from dust, while other sources could not be clearly separated (Table S8). Although PMF can aid in identifying
sources in specific air basins, it was less useful for constraining source contributions on the continental scales
required for biogeochemical impacts. Non‐dust iron separated by PMF includes both anthropogenic combustion
sources and natural wildfires, and we used this group for comparison with the modeled concentrations. We find
that the modeled concentrations of both anthropogenic and anthropogenic + wildfire emissions were higher than
the non‐dust‐Fe concentrations in PMF for about 85% of the sites in the United States, and about 97% of the sites
were within an order of magnitude (Figure 5). The simulated wildfire contribution was approximately 30% of the
anthropogenic component in the United States (Hamilton et al., 2019; S. D. Rathod et al., 2020). The median
model‐to‐observation ratio was 1.7 for the anthropogenic case and 2.3 for the anthropogenic + wildfire case.

3.2.1.3. Total Iron and PMF Comparison

The modeled concentrations underestimate the overall amount of PM2.5‐Fe, or the sum of anthropogenic com-
bustion, wildfires, and dust when compared to total iron from the COARSEMAP data set (Figure 4a). However,
the model overestimates the anthropogenic combustion and wildfire components compared to the PMF analysis in
the IMPROVE data set (Figure 5). There are several potential reasons for this contrast in North America. First,
dust dominates total iron, and prior research (e.g., Kok et al., 2021) has shown that models may underestimate fine
and coarse dust over North America and thus potentially dust‐iron, so that total iron would be underestimated and
anthropogenic iron would be overestimated (Figure S5 in Supporting Information S1). Second, the filter used in
the analysis does not completely eliminate the influence of iron from dust and wildfires, which could lead to a bias
in the estimates of the anthropogenic component. Using a site‐selection filter that more confidently isolates sites
with high anthropogenic contributions (“Anthro >90%”) reduces the model underestimation of total‐iron ob-
servations and narrows the gap between the median model‐observation ratio in COARSEMAP and PMF (Sec-
tion 2.5.1.1 and Section 3.3.1). Finally, there is a possibility that PMF may misattribute a non‐trivial amount of
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anthropogenic and wildfire iron to dust, leading to a higher dust contribution
and lower anthropogenic contribution in the observations than in the model.
Overall, while the model is likely underestimating dust compared to obser-
vations, it may have a smaller uncertainty in representing the anthropogenic
contribution.

3.2.2. Anthropogenic Iron Oxide Emissions

Smelting contributes about 80% of global anthropogenic emissions of iron
oxide, which are estimated as 1.4 Tg/yr (0.1–6.0 Tg/yr, 95% confidence in-
terval (CI), Rathod et al., 2020). For consistency with the only observations,
which are made by the SP2 instrument (Yoshida et al., 2020), we compare the
PM1 fraction instead of PM2.5 as discussed earlier. The fine iron oxide
emissions from East Asia (China, Taiwan, Hong Kong, S. Korea, and N.
Korea) were about 0.6 Tg/yr (central estimate), which is near the upper es-
timate of 0.5 Tg/yr in previous estimates (Ohata et al., 2018; Yoshida
et al., 2018) made using the observed relationship between iron oxide and
Black Carbon in the outflow from that region.

Anthropogenic sources dominate the surface iron oxide concentration in East
Asia's industrial regions (Figure 6a. Electron microscope analyses of particle
morphology by Yoshida et al. (2020) and Moteki et al. (2017) identified
submicron particles as being of anthropogenic origin, primarily occurring as

magnetite. Magnetite is a form of iron oxide that is produced only during high‐temperature oxidation of iron, a
process typically found in smelting and coal power plants. Furthermore, the small size (<0.3 μm) of these par-
ticles and their co‐emission with species like black carbon and carbon monoxide corroborate their anthropogenic
origins. The model overestimates iron oxide concentration (Figure 6b) near sources by a factor of 3 at Fukue, a
factor of 1.5 at all other Japanese sites, and underestimates by an order of magnitude in Ny‐Ålesund, which is the
only location outside of Japan and is in the Arctic North Atlantic. The modeled values in Figure 6b include only
anthropogenic iron oxides, but the difference from total iron oxide, including dust, is negligible (Figure S6 in
Supporting Information S1). The overestimation factors of 1.5–3 are within the range determined for total iron
(Section 3.2.1). However, the distance between the emission region and the observation sites is greater than in the
IMPROVE and COARSEMAP data sets (which are country‐level) for this comparison, and largest for the Ny‐
Ålesund site, so uncertainties in deposition and transport are also greater for the comparison of iron oxide.

Our best estimate of anthropogenic iron oxide (hematite and magnetite) emissions from East Asia is 0.4 Tg/yr,
determined as the a priori estimate of 0.6 Tg/yr divided by 1.5, the factor of overestimation. If an equal

Figure 5. Model anthropogenic (black) or model anthropogenic + wildfire
(red) and observed (non‐dust Fe in PMF) iron concentrations in the PM2.5
size fraction. Each dot represents a USA‐IMPROVE site used for PMF
analysis. The non‐dust‐Fe component is identified as the total minus the
dust‐Fe component and is used here instead of individual PMF factors
because of the higher confidence in PMF dust‐Fe than other factors.

Figure 6. (a) Percentage contribution of fine anthropogenic iron oxides to total fine (anthropogenic + dust) iron oxides. Yellow markers show the observation locations
and (b) Model‐observation comparison of fine iron oxides at monthly averages in five ground‐based sites. Observations are from Yoshida et al. (2020).
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overestimation factor is applied to the subcategory of smelting and coal combustion, the anthropogenic iron
emissions from smelting and coal combustion are around 0.3 Tg/yr, accounting for the fact that iron oxides are
72% iron.

3.3. Adjusted Inventory With Uncertainties

In this section, we develop a new best estimate for the inventory, considering all available observations. Table 2
summarizes central adjustments to the inventory and their uncertainties in each region for PM2.5‐Fe, and these
adjustments are detailed in the following sections. We quantify each adjustment using a Correction Factor, or the
factor by which scaling the inventory would yield a median model‐observation ratio of 1 in that region. Un-
certainties of 5% and 95% percentiles are given in the table as multipliers to the Correction Factor. The Base
Correction Factor, obtained from Figure 4a, is the median of the model‐observation ratios by region. The un-
certainty in the Base Correction Factor is then calculated by adding the uncertainties due to model‐observation
spread, site selection criteria, interannual variability, number of sites, and atmospheric model selection in
quadrature. Each of these uncertainties is presented in the table as a value to be multiplied by the Base Correction
Factor. The resulting combined uncertainty in the correction factor is shown as an absolute range.

3.3.1. Site Selection Filter

We used a “dominant‐source” filter to select sites for comparison in the evaluation of anthropogenic total iron
emissions. However, this filter does not exclude sites with considerable iron concentrations from dust and
wildfires, which could affect the model‐observation ratio for total iron if those sources are overestimated or
underestimated in the model. We compared the distribution of model‐observation ratios for PM2.5‐Fe in the North
America observational data using a stricter filter where the modeled anthropogenic contribution was more than
90% of atmospheric iron. The results showed that the median model‐observation ratio for the “90% cutoff” filter is
a factor of 1.3 higher than that obtained using the dominant‐source filter, indicating that the underestimation of
dust and wildfire emissions most likely influenced the comparison (Figure 7a). However, using the stricter filter
excluded 60% of the sites in the United States and 70% of the sites outside the United States. Thus, to reflect the
influence of dust and wildfire emissions on the model‐observation comparison, the overall model‐observation
ratio (obtained using the dominant source filter) for North America should be increased by a factor of 1.3. We
also apply the same factor of 1.3 to other regions assuming that dust and wildfire influence is similar.

Table 2
Summary of Regional Model Evaluation for PM2.5‐Fe

Region Filter n
Base correction

factor

Uncertainty (as multipliers to the scale factor)
Combined uncertainty in
correction factor (absolute,

90th CI)
Mod/Obs
spread IAV

# Of
sites

Atm.
Modela

Site selection
filter

North America Dominant source 527 1.84 0.3–3.59 1.00 1.00 0.8–1.2 1.30 1.33–6.65

>90%Anthro 220 1.22 0.36–4.15 1.00 1.00 “ 1.00 0.82–5.07

PMF 148 0.45 0.31–4.38 1.00 0.95–1.05 “ 1.00 0.32–1.97

South America Dominant source 2 0.65 0.68–1.92 0.85–1.20 0.30–2.50 “ 1.30 0.53–1.83

Africa Dominant source 4 0.63 0.62–1.71 0.85–1.20 0.50–2.00 “ 1.30 0.41–1.45

Europe Dominant source 21 0.87 0.36–5.32 1.00 0.75–1.40 “ 1.30 0.63–4.66

Asia Dominant source 20 1.02 0.14–8.99 1.00 0.75–1.40 “ 1.30 0.93–9.19

Aus/NZ Dominant source 7 2.81 0.43–11.74 1.00 0.50–2.00 “ 1.30 2.21–33.15

Note.Uncertainties are absolute multipliers and are shown as 5–95th percentiles. The Correction Factor is the factor by which scaling the inventory in that region should
lead to a better model‐observation comparison. The cumulative uncertainty in the Correction Factor is shown as 90% CI. Parameters representing the highest uncertainty
in a region are in bold. IAV = Interannual variability. Atm. Model = Uncertainty due to using only one atmospheric model for the simulations. aApplied to all regions,
from Chen et al. (2019).
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3.3.2. Number of Sites

Figure 7b analyzes uncertainty caused by a limited number of regional observation sites, using the COARSEMAP
data set over North America. Each dot represents the ratio between the median model‐to‐observation ratio from a
random selection of n sites, simulating a smaller network, and the median model‐to‐observation ratio of all sites.
The data and boxplot for each value of n show the results of 500 such simulations. When the number of sites is
below 3, the inferred model‐to‐observation ratios vary by as much as a factor of 3 (5–95th percentiles); however,
the uncertainty diminishes rapidly with an increasing number of sites, falling to about 30% for about 20 sites. We
apply the following uncertainty factors (as 5th and 95th percentiles) based on the number of sites in each region: 1
for North America (n = 527), 0.3–2.5 for South America (n = 2), 0.5–2 for Africa (n = 4), 0.75–1.4 for Europe
(n = 21), 0.75–1.4 for Asia (n = 20), and 0.5–2 for Australia/New Zealand (n = 7). This finding assumes that the
spatial variability in different regions is like the variability in North America.

3.3.3. Interannual Variability

Observed concentrations of iron may not accurately reflect long‐term averages if the measurement period is short.
The effect of duration can be seen in Figure 7c, which shows the ratio of the median model‐to‐observation ratio

Figure 7. (a) Distribution of the model‐observation ratios in the North American COARSEMAP sites for PM2.5 total iron concentrations with the two filters
described in Section 2.5.1.1. (b) Distributions of total iron concentrations shown as the ratio of the median model‐to‐observation ratio from a random selection
of n sites and the median model‐to‐observation ratio of all sites Distribution is shown from 500 simulations. (c) Comparison of modeled 2010 values against
individual years from 2006 to 2014 and the mean of those years for North America IMPROVE PM2.5‐Fe observations. The whisker length in all the plots is
5th‐95th percentiles.
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for each year and the median model‐to‐observation ratio of the mean of 2006–2014 for sites in North America
IMPROVE PM2.5‐Fe observations. This distribution demonstrates the uncertainty of comparing any given year to
a long‐term average using the model. The median model‐to‐observation ratio in a year's comparison can range
from a factor of 0.85–1.2 compared to the median model‐to‐observation in of long‐term comparison. In North
America, South America, Africa, Europe, Asia, and Aus/NZ, there are 3%, 25%, 43%, 18%, 10%, and 13%,
respectively, of PM2.5‐Fe sites with one or fewer years of temporal coverage. We apply an uncertainty range of
0.85–1.2 (as the 5th and 95th percentiles) only to South America and Africa, due to their higher fraction of sites
with limited temporal coverage. For other regions, this uncertainty range is not applied.

3.3.4. Combined Uncertainty

The Correction Factor range in Table 2 represents the combined effect of all uncertainties and is given as a 90%
confidence interval around the Base Correction Factor. The model‐observation spread is the largest uncertainty in
North America, Europe, Asia, and Australia/New Zealand while the number of sites is the largest uncertainty in
South America and Africa. The site selection uncertainty is the second largest uncertainty in all regions. In all
regions except North America and Australia/New Zealand (where the inventory is underestimated even with
uncertainty), the Correction Factor range varies from less than one to above one, indicating that the initial estimate
is usually within the range of uncertainty.

The variability in model‐observation spread has many unknown causes including spatial misrepresentations in the
inventory or model (Cakmur et al., 2006; Martin et al., 2003; Zhu et al., 2013). Regions with few sites do not
capture this variability and thus the uncertainty attributed to the model‐observation spread appears to be low in
those regions. The “number of sites” uncertainty offsets this model‐observation variability in those regions.
However, other regions might have more spatial heterogeneity in emission sources and contributions than the US,
which was used to determine these uncertainties. For example, while 10 sites can capture the USA's spatial
variability to about 20% uncertainty, 10 sites might not be able to capture the same amount of variability for all of
Asia (that includes the Middle East, Russia, India, and China) or Africa. Thus, our treatment of these two un-
certainties may still underestimate the total uncertainty.

It would be ideal to perform a similar analysis for coarse iron particles (PM10 minus PM2.5) to estimate the
uncertainty in these emissions. Coarse particles contain about 50% of total anthropogenic iron emissions and 30%
of soluble anthropogenic iron emissions (Rathod et al., 2020). However, there are few measurements of iron in
coarse particles, making it difficult to estimate the uncertainty in PM10‐Fe using observational data. Even if
measurements were available, the uncertainty in the comparison is likely to be higher than the uncertainty in
PM2.5‐Fe due to the uncertain contribution of dust and wildfires that dominate the coarse iron mass (Hamilton
et al., 2019; Myriokefalitakis et al., 2018). Nevertheless, the contribution of coarse iron to the remote ocean is
lower than that of PM2.5‐Fe due to its limited ability to be transported over long distances (Rathod et al., 2020).

3.4. Implications

The constraining exercise described above suggests bounds for the anthropogenic total iron emissions in several
regions. Total iron is important for direct radiative forcing, and soluble iron for oceanic biogeochemistry. Since
the radiative and biogeochemistry impacts of anthropogenic iron are dominant over East Asia, and the North
Pacific and North Atlantic, respectively (Rathod, Bond, et al., 2022; Rathod, Hamilton, et al., 2022), we discuss
the implications of the constraining procedure for emissions from source regions of East Asia and North America.
We compare the constrained emission estimates, in which a Correction Factor with uncertainty is applied to the
central estimate of emission rate in each region, with a priori emission estimates. We did not apply the Correction
Factor to other regions. Even though the model might over‐ or underestimate in some sub‐regions, we discuss the
continent‐wide uncertainty to focus on the broader implications of this work on biogeochemical and radiative
effects.

The estimated uncertainty in the anthropogenic total iron emissions in the PM2.5 fraction from Asia, which in-
cludes the Middle East, Russia, India, China, East Asia, and Southeast Asia, is 0.72–7.2 Tg/yr (90% CI) with a
median estimate of 0.8 Tg/yr. The a priori estimates of anthropogenic total iron emissions from Asia are about 0.8
(0.15–4) Tg/yr, or around 75% of the global total (Rathod et al., 2020). The uncertainty based on observational
constraints suggests that the probable lower and upper bounds could be higher than estimated in the a priori
inventory. However, iron oxide observations suggest that the central bound could be lower by a factor of 1.5 for
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East Asian smelting and coal combustion emissions, which dominate the radiative effects. This is consistent with
the model‐observation comparison at the two sites in China, where the model overestimates by a factor of 2. This
suggests that the direct radiative effect in East Asia could be lower than the estimated 0.5Wm− 2 averaged over the
region (S. D. Rathod, Bond, et al., 2022; Rathod, Hamilton, et al., 2022). Although the East Asian soluble iron
flux is believed to support about 10% of North Pacific Ocean phytoplankton productivity, it was not possible to
determine the dominant sources (heavy fuel oil and wood combustion) due to a lack of speciated data.

The estimated anthropogenic iron emissions over North America could be 0.18 (0.1–0.6, 90% CI) Tg/yr, a factor
of 1.8 higher compared to the a priori estimates of 0.1 (0.02–0.5, 90% CI) Tg/yr when the dominant source filter is
used. For the “>90% Anthropogenic” filter, the base correction factor is 1.22, which reinforces that the model
currently underestimates anthropogenic emissions. The a posteriori central estimate could be as low as 0.05 Tg/yr
based on the PMF comparison. Since the direct radiative effects of anthropogenic combustion iron in the USA are
small (<0.1 Wm− 2), the uncertainty of a factor of 2 in its total iron emissions does not significantly impact the
overall radiative effects compared to those from other anthropogenic species such as black carbon and sulfur
dioxide. However, the North American contribution to soluble iron in the North Atlantic Ocean is non‐trivial and
supports 5%–10% of phytoplankton productivity (Rathod, Bond, et al., 2022; Rathod, Hamilton, et al., 2022). The
sources of soluble iron emissions such as heavy fuel oil and wood combustion were not constrained due to the
relatively small (<1%) contribution of these sources to total iron, as well as the limitations of PMF in resolving
site‐specific source contributions in a large data set like IMPROVE.

4. Summary
Anthropogenic iron forms an integral part of the input to the models that estimate iron's present‐day atmospheric
and oceanic cycling, yet its emission estimates remain unconstrained (Ito & Miyakawa, 2023; Rathod, Bond,
et al., 2022; Rathod, Hamilton, et al., 2022). In this work, we used an atmospheric transport model, an anthro-
pogenic iron emission inventory, and long‐term near‐source observations from various regions along with
Positive Matrix Factorization to evaluate the modeled concentrations. The major findings of this work are:

• The modeling finding suggests that among anthropogenic sources, coal and smelting are the main contributors
to total iron, while oil and wood combustion are the main sources of soluble iron. However, accurate source
apportionment is required to better understand source contributions in different regions (e.g., Miyakawa
et al., 2023).

• The model underestimates total iron concentration (dominated by anthropogenic contribution) compared to
observations of PM2.5‐Fe over Australia/NZ and overestimates in South America, Africa, Europe, and Asia.
Over North America, a comparison with IMPROVE and other observations suggests that the anthropogenic
emissions could be between a factor of 0.5 and 2 compared to the a priori estimates.

• Anthropogenic PM2.5‐Fe iron emissions are constrained (median correction factor) to a factor of 2 in all re-
gions except in Australia/NZ where it is within a factor of 3.

• The dominant cause of uncertainty in anthropogenic PM2.5‐Fe varies by region: model‐observation spread is
the dominant uncertainty in North America, Europe, Asia, and Australia/New Zealand, whereas the number‐
of‐sites parameter is the dominant uncertainty in South America and Africa.

• PMF was able to reproduce robust dust source profiles when data from 148 sites from the contiguous USA
were lumped. However, performing PMF on continent‐wide observational data did not provide a robust
resolution of anthropogenic sources among the non‐dust aerosol. Thus, combining data from sites likely to
have significantly different characteristics is generally not recommended.

• Simulated anthropogenic total iron concentrations are overestimated by about a factor of 2 when compared
with non‐dust‐Fe (Total‐Fe minus dust‐Fe) values from PMF over the USA.

• As few as 10 sites in a continent can aid in constraining simulated concentrations over that region to a factor of
2, assuming the regional variability in iron concentrations is similar to that in the USA.

• East Asian iron oxide emissions, dominated by smelting, are overestimated by a factor of about 1.5 (upper
bound of 3), suggesting that radiative forcing attributable to these emissions is also overestimated.

• The total‐iron component affects direct radiative forcing, and the soluble component affects biogeochemistry.
However, because the soluble iron component is emitted from sources (oil and wood combustion) that do not
emit considerable total iron (coal combustion and smelting), they could not be isolated and identified even in
speciated observations.
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Data Availability Statement
The following data are uploaded to Zenodo.org (Rathod, 2023): (a) Anthropogenic, dust, and wildfire concen-
tration and deposition fields for particulate total and soluble iron (as netCDF), (b) Anthropogenic sectoral con-
centration and deposition fields for total and soluble iron (as netCDF), (c) PMF‐derived total and dust‐Fe factors
by site (as CSV), and (d) Anthropogenic and dust iron oxide concentration fields (as netCDF).
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