
Information and Computation 294 (2023) 105068
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

A new class of string transformations for compressed text

indexing ✩

Raffaele Giancarlo a, Giovanni Manzini b, Antonio Restivo a, Giovanna Rosone b,
Marinella Sciortino a,∗
a University of Palermo, Italy
b University of Pisa, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 August 2022
Received in revised form 18 June 2023
Accepted 4 July 2023
Available online 11 July 2023

Keywords:
Data indexing and compression
Burrows-Wheeler transformation
Combinatorics on words

Introduced about thirty years ago in the field of data compression, the Burrows-Wheeler
Transform (BWT) is a string transformation that, besides being a booster of the performance
of memoryless compressors, plays a fundamental role in the design of efficient self-
indexing compressed data structures. Finding other string transformations with the same
remarkable properties of BWT has been a challenge for many researchers for a long time. In
this paper, we introduce a whole class of new string transformations, called local orderings-
based transformations, which have all the “myriad virtues” of BWT. As a further result, we
show that such new string transformations can be used for the construction of the recently
introduced r-index, which makes them suitable also for highly repetitive collections. In
this context, we consider the problem of finding, for a given string, the BWT variant that
minimizes the number of runs in the transformed string.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Michael Burrows and David Wheeler introduced in 1994 a reversible word transformation [2], denoted by BW T , that
turned out to have “myriad virtues”.1 At the time of its introduction in the field of text compression, the Burrows-Wheeler
Transform was perceived as a magic box: when used as a preprocessing step it would bring rather weak compressors to be
competitive in terms of compression ratio with the best ones available [4]. In the years that followed, many studies have
shown the effectiveness of BWT and its central role in the field of data compression, due to the fact that it can be seen as
a “booster” of the performance of memoryless compressors [5–7].

The importance of this transformation has been further increased when in [8] it was proven that, in addition to making
easier to represent a string in space close to its entropy, it also makes easier to search for pattern occurrences in the original
string. After this discovery, data transformations inspired by the BWT have been proposed for compactly representing and
searching other combinatorial objects such as: trees, graphs, finite automata, and even string alignments. See [9,10] for an
attempt to unify some of these results and [11] for an in-depth treatment of the field of compact data structures.

✩ A preliminary version of this paper appeared in [1].

* Corresponding author.
E-mail addresses: raffaele.giancarlo@unipa.it (R. Giancarlo), giovanni.manzini@unipi.it (G. Manzini), antonio.restivo@unipa.it (A. Restivo),

giovanna.rosone@unipi.it (G. Rosone), marinella.sciortino@unipa.it (M. Sciortino).
1 We are using the catch phrase “myriad virtues” as a tribute to Alberto Apostolico who first used this expression in the seminal paper [3].
https://doi.org/10.1016/j.ic.2023.105068
0890-5401/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

https://doi.org/10.1016/j.ic.2023.105068
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2023.105068&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:raffaele.giancarlo@unipa.it
mailto:giovanni.manzini@unipi.it
mailto:antonio.restivo@unipa.it
mailto:giovanna.rosone@unipi.it
mailto:marinella.sciortino@unipa.it
https://doi.org/10.1016/j.ic.2023.105068
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Going back to the original Burrows-Wheeler string transformation, we can summarize its salient features as follows: 1)
it can be computed and inverted in linear time, 2) it produces strings which are provably compressible in terms of the
high order entropy of the input, 3) it supports pattern search directly on the transformed string in time proportional to
the pattern length. It is the combination of these three properties that makes the BWT a fundamental tool for the design
of compressed self-indices. In Section 2 we review these properties and also the many attempts to modify the original
design. However, we recall that, despite more than twenty years of intense scrutiny, the only non trivial known BWT variant
that fully satisfies properties 1–3 is the Alternating BWT (ABWT). The ABWT has been introduced in [12] in the field of
combinatorics of words and its basic algorithmic properties have been described in [13,14].

In this paper we introduce a new whole family of transformations that satisfy properties 1–3 and can therefore replace
the BWT in the construction of compressed self-indices with the same time efficiency of the original BWT and the potential
of achieving better compression. We show that our family, supporting linear time computation, inversion, and search, is
a special case of a much larger class of transformations that also satisfy properties 1–3 except that, in the general case,
inversion and pattern search may take quadratic time. Our larger class includes as special cases also the BWT and the
ABWT and therefore it constitutes a natural candidate for the study of additional properties shared by all known BWT
variants.

More in detail, in Section 3 we describe a class of string transformations based on context adaptive alphabet orderings.
The main feature of the above class of transformations is that, in the rotation sorting phase, we use alphabet orderings that
depend on the context (i.e., the longest common prefix of the rotations being compared). We prove that such transforma-
tions are always invertible and provide a general inversion algorithm that runs in time quadratic with respect to the string
length. We consider also some subclasses of such transformations in which the permutations associated to each prefix are
defined by “simple” rules and we show that they have more efficient inversion algorithms.

In Section 4 we consider the subclass of transformations based on local orderings. In this subclass, the alphabet orderings
only depend on a constant portion of the context. We prove that local ordering transformations can be inverted in linear
time, and that pattern search in the transformed string takes time proportional to the pattern length. Thus, these transfor-
mations have the same properties 1–3 that were so far prerogative of the BWT and ABWT. We also show that it is always
possible to implement an r-index [15] on the top of a BWT based on a local ordering, thus making this transformation
suitable also for highly repetitive collections.

Having now at our disposal a wide class of string transformations with the same remarkable properties of the BWT, it
is natural to use them to improve BWT-based data structures by selecting the one more suitable for the task. In this paper
we initiate this study by considering the problem of selecting the BWT variant that minimizes the number of runs in the
transformed string. The motivation is that data centers often store highly repetitive collections, such as genome databases,
source code repositories, and versioned text collections. For such collections theoretical and practical evidence suggests that
entropy underestimates the compressibility of the collection and we can obtain much better compression ratios exploiting
runs of equal symbols in the BWT [15–26].

As we review in Section 2.2, run-minimization is a challenging and multifaceted problem: we believe the introduction of
a new class of string transformations makes it even more interesting. In Section 5 we contribute to this problem showing
that, for constant size alphabet, for the most general class of transformations considered in this paper, the BWT variant that
minimizes the number of runs can be found in linear time using a dynamic programming algorithm. Although such result
does not lead to a practical compression algorithm, such minimal number of runs constitutes a lower bound for the number
of runs achievable by the other variants described in this paper and therefore constitutes a baseline for further theoretical
or experimental studies.

A preliminary version of this paper appeared in [1]. In this new version we introduce and analyze new BWT variants, in
particular the ones described in Sections 3.3 and 3.4. We also added Section 4.1 where we show that the recently introduced
r-index [15] can be adapted to work with some of the proposed BWT variants. This result is particularly important since the
r-index is particularly suited to highly repetitive collections which are relevant for the run minimization problem discussed
in Section 5. Another new result is the characterization of local ordering transformations contained in Section 4.2. The
new version also includes a more in-depth discussion of the existing literature: Section 2.1 has been largely extended and
Section 2.2 is new. Finally, we have added some carefully designed examples in order to better illustrate some subtle points
of the exposition. All references have been updated, and new relevant results have been discussed in the paper.

2. Notation and background

Let � = {c1, c2, . . . , cσ } be a finite ordered alphabet of size σ with c1 < c2 < · · · < cσ , where < denotes the standard
lexicographic order. We denote by �∗ the set of strings over �. Given a string x = x1x2 · · · xn ∈ �∗ , we denote by |x| its
length n. We use ε to denote the empty string. A factor of x is written as x[i, j] = xi · · · x j with 1 ≤ i ≤ j ≤ n. A factor of
type x[1, j] is called a prefix, while a factor of type x[i, n] is called a suffix. The i-th symbol in x is denoted by x[i]. Two
strings x, y ∈ �∗ are called conjugate, if x = uv and y = vu, where u, v ∈ �∗ . We also say that x is a cyclic rotation of y.
A string x is primitive if all its cyclic rotations are distinct. Given a string x and c ∈ �, we write rankc(x, i) to denote the
number of occurrences of c in x[1, i], and selectc(x, j) to denote the position of the j-th c in x.

Given a primitive string s, we consider the matrix of all its cyclic rotations sorted in lexicographic order. Note that the
rotations are all distinct by the primitivity of s. The last column of the matrix is called the Burrows-Wheeler Transform of
2

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Fig. 1. The original BWT matrix for the string s = aabaaabac (left), and the ABWT matrix of cyclic rotations sorted using the alternating lexicographic order
(right). In both matrices the horizontal arrow marks the position of the original string s, and the last column L is the output of the transformation.

the string s and it is denoted by bwt(s) (see Fig. 1 (left)). It is shown in [2] that bwt(s) is always a permutation of s, and
that there exists a linear time procedure to recover s, given bwt(s) and the row index I of s in the rotations matrix (it is
I = 2 in Fig. 1 (left)).

In this paper we follow the assumption usually done for text indexing that the last symbol of s is a unique end-of-string
symbol. This guarantees the primitivity of s. In addition, this assumption implies that, if we compare two cyclic rotations
symbol-by-symbol, they differ as soon one of them reaches the end-of-string symbol (or sooner). This property ensures
that all families of transformations defined in this paper can be computed in linear time using a suffix tree as described in
Section 3 (note that the BWT and ABWT can be computed in linear time also for a generic primitive string [6,14,27]). The
reader will notice that the algorithms computing the inverse transformations provided in this paper do not make use of the
unique end-of-string symbol and therefore are valid for any primitive string.

The BWT has been introduced as a data compression tool: it was empirically observed that bwt(s) usually contains
long runs of equal symbols. This notion was later mathematically formalized in terms of the empirical entropy of the
input string [5,7]. For k ≥ 0, the k-th order empirical entropy of a string x, denoted as Hk(x), is a lower bound to the
compression ratio of any algorithm that encodes each symbol of x using a codeword that only depends on the k symbols
preceding it in x. The simplest compressors, such as Huffman coding, in which the code of a symbol does not depend on the
previous symbols, typically achieve a (modest) compression bounded in terms of the zeroth-order entropy H0. This class of
compressors are referred to as memoryless compressors. More sophisticated compressors, such as Lempel-Ziv compressors
and derivatives, use knowledge from the already seen part of the input to compress the incoming symbols. They are slower
than memoryless compressors but they achieve a much better compression ratio, which can be usually bounded in terms
of the k-th order entropy of the input string for a large k [28].

It is proven in [5, Theorem 5.4] that the informal statement “the output of the BWT is highly compressible” can be
formally restated saying that bwt(s) can be compressed up to Hk(s), for any k > 0, using any tool able to compress up to the
zeroth-order entropy. In other words, after applying the BWT, we can achieve high order compression using a simple (and
fast) memoryless compressor. This property is often referred to as the “boosting” property of the BWT. Another remarkable
property of the BWT is that it can be used to build compressed indices. It is shown in [29] how to compute the number
of occurrences of a pattern x in s in O(tR |x|) time, where tR is the cost of executing a rank query over bwt(s). This result
has spurred a great interest in data structures representing compactly a string x and efficiently supporting the queries rank,
select, and access (return x[i] given i, which is a nontrivial operation when x is represented in compressed form) and there
are now many alternative solutions, with different trade-offs. In this paper, we assume a RAM model with word size w and
an alphabet of size σ = wO(1) . Under this assumption, we make use of the following result (Theorem 5.1 in [30]):

Theorem 2.1. Let s denote a string over an alphabet of size σ = wO(1) . We can represent s in |s|H0(s) + o(|s|) bits and support
constant time rank, select, and access queries.

The assumption σ = wO(1) is only required to ensure that rank, select, and access take constant time; we use it to
simplify the statements of our results. It is straightforward to verify that for larger alphabets our results still hold with the
bounds on the running times multiplied by the largest of the cost of the above operations over the larger alphabets.

The properties of the BWT of being compressible and searchable combine nicely to give us indexing capabilities in com-
pressed space. Indeed, combining a zeroth-order representation supporting rank, select, and access queries with the boosting
property of the BWT, we obtain a full text self-index for s that uses space bounded by |s|Hk(s) +o(|s|) bits for k = o(logσ (n)),
see [29,31,11,32] for further details on these results and on the field of compressed data structures and algorithms that orig-
inated from this area of research.

2.1. Known BWT variants

We observed that the salient features of the Burrows-Wheeler transformation can be summarized as follows: 1) it can
be computed and inverted in linear time, 2) it produces strings which are provably compressible in terms of the high order
3

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
entropy of the input, 3) it supports linear time pattern search directly on the transformed string. The combination of these
three properties makes the BWT a fundamental tool for the design of compressed self-indices. Over the years, many variants
of the original BWT have been proposed; in the following we review them, in roughly chronological order, emphasizing to
what extent they share the features 1–3 mentioned above.

The original BWT is defined by sorting in lexicographic order all the cyclic rotations of the input string. In [33] Schindler
proposes a bounded context transformation that differs from the BWT in the fact that the rotations are lexicographically
sorted considering only the first � symbols of each rotation. In [34,35] it has been shown that this variant satisfies properties
1–3, with the limitation that the compression ratio can reach at maximum the �-th order entropy and that it supports
searches of patterns of length at most �. Chapin and Tate [36] have experimented with computing the BWT using a different
alphabet order. This simple variant still satisfies properties 1–3, but it clearly does not bring any new theoretical insight. In
the same paper, the authors also propose a variant in which rotations are sorted following a scheme inspired by reflected
Gray codes. This variant shows some improvements in terms of compression, but it has never been analyzed theoretically
and it does not seem to support property 3.

A variant called Bijective BWT (BBWT), has been proposed in [37] as a transformation which is bijective even without
assuming that the input string s be primitive. In this variant, the output consists of the last characters of the lexicographi-
cally sorted cyclic rotations of all factors of the Lyndon Factorization [38] of s. This variant has been recently shown in [39]
to satisfy 1, but being based on the cyclic rotations of the Lyndon factors property 2 has not been studied. As for prop-
erty 3, searching a pattern P directly on the (compressed) transformed string takes O(|P | log |P |) time [40]. Note that the
related variant Extended BWT [41], which takes as input a collection of strings, supports search in linear O(|P |) time for
the problem of circular pattern matching [42–45,27,46].

More recently, some authors have proposed variants in which the lexicographic order is replaced by a different order
relation. The interested reader can find relevant work in a recent review [47]. It turns out that these variants satisfy property
1 in part but nothing is known with respect to properties 2 and 3 (an outline of a substring matching algorithm is given
in [48, Sec. 6] without any time analysis, but is based on substrings rather than single symbols). A major problem when
using ordering substantially different from the lexicographic order is that the rotations prefixed by the same substring
are not necessarily consecutive in the sorted matrix. For instance, if the cyclic rotations of Fig. 1 are sorted according to
the V-order [49], the two rotations prefixed by ab are not consecutive in the ordering. Since all the BWT-based searching
algorithms work by keeping track of the rows prefixed by larger and larger pattern substrings, the fact that these rows are
not consecutive makes the design of an efficient algorithm extremely difficult.

To the best of our knowledge, the only non trivial BWT variant that fully satisfies properties 1–3 is the Alternating BWT
(ABWT). This transformation has been derived in [12] starting from a result in combinatorics of words [50] characterizing
the BWT as the inverse of a known bijection between words and multisets of primitive necklaces [51]. The ABWT is defined
as the BWT except that when sorting rotation instead of the standard lexicographic order we use a different lexicographic
order, called the alternating lexicographic order. In the alternating lexicographic order, the first character of each rotation
is sorted according to the standard order of � (i.e., a < b < c). However, if two rotations start with the same character
we compare their second characters using the reverse ordering (i.e., c < b < a) and so on, alternating the standard and
reverse orderings in odd and even positions. Fig. 1 (right) shows how the rotations of an input string are sorted using the
alternating ordering and the resulting ABWT.

The algorithmic properties of the BWT and ABWT are compared in [13,14]. It is shown that they can be both computed
and inverted in linear time and that their main difference is in the definition of the LF-map, i.e. the correspondence between
the characters in the first and last column of the sorted rotations matrix. In the original BWT, the i-th occurrence of a
character c in the first column F corresponds to the i-th occurrence of c in the last column L, i.e., equal characters appear
in the same relative order in F and L. Instead, in the ABWT, equal characters appear in the reverse order in F and L. That is,
the i-th occurrence of c from the top in F corresponds to the i-th occurrence of c from the bottom in L. Since this modified
LF-map can still be computed efficiently using rank operations, the ABWT can replace the BWT for the construction of
self-indices. The experiments in [13] show that the ABWT has essentially the same compression performance of the BWT.
However, we are not aware of any experiment using the ABWT for indexing purposes.

Note that in [13,14] the ABWT has been studied within a larger class of transformations in which the alphabet ordering
depends on the position of the characters within any cyclic rotation. Although the “compression boosting” property holds
for all transformations in this class, in [14] it is shown that the algorithmic techniques, based on the computation of the
rank function on the transformed string, that allow us to invert BWT and ABWT in linear time cannot be applied to any
other transformation in that class [14, Theorem 5.9]. Indeed, apart from the BWT and ABWT, for all the transformations
studied in [14], the best inversion algorithm takes cubic time [14, Theorem 4.4]. In this paper we improve this result by
providing a quadratic time algorithm for a general class of string transformations that includes the one studied in [13,14]
(see Section 3.3).

2.2. Number of runs minimization

The problem of minimizing the number of runs in a transformed string has been studied initially for collections of
(relatively short) strings because of the relevance of this setting for bioinformatics applications [52,53]. String collections
are usually transformed with the Extended BWT [41] (EBWT) or with an EBWT variant in which a distinct end-marker is
4

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Fig. 2. The generalized BWT matrix for the string s = aabaaabac computed using the orderings πε = (b, a, c), πa = (c, a, b), πaa = (b, a, c), πaaba = (a, c, b),
and πx = (a, b, c) for every other substring x. The horizontal arrow marks the position of the original string s; the last column L is the output of the
transformation. The range R[aa] = [4, 3] of the three rows prefixed by aa are highlighted in gray.

appended to each string, making the collection ordered [54,55]. In [52] the authors introduce some heuristics for reordering
the strings on-the-fly during the EBWT construction in order to reduce the number of runs. Experiments show that these
heuristics yield a significant improvement in the overall compression. Recently, the authors of [56,57] extended these results
obtaining an offline linear time algorithm for finding the string reordering yielding the minimum number of runs, and
showing that the optimal reordering can reduce the number of runs by a factor �(logσ n), where n is the sum of the string
lengths and σ is the alphabet size. The authors in [58] present the first tool that guarantees to output a BWT of a string
collection with minimal number of runs, in terms of reordering of input strings. The authors of [59] consider instead the
case in which the same end-marker is appended to each string and for this setting provide an O(σn) time algorithm to
find the string reordering that minimize the number of BWT runs. See [60] for a recent review of BWT variants for string
collections and their properties with respect to the number of runs.

The problem of minimizing the number of runs in a single-string BWT has been studied in [57] where the authors
prove that the decision problem of finding the alphabet permutation that minimizes the number of runs in the BWT is
NP-complete and the optimization variant is APX-hard. Note that, by introducing new BWT variants, we are adding a new
dimension to the run minimization problem: in addition to minimizing over alphabet or string reorderings, we can also
minimize over a given class of BWT variants.

3. BWTs based on context adaptive alphabet orderings

In this section we introduce a class of string transformations that generalize the BWT in a very natural way. Given a
primitive string s, as in the original BWT definition, we consider the matrix containing all its cyclic rotations. In the original
BWT, the matrix rows are sorted according to the standard lexicographic order. We generalize this concept by sorting the
rows using an ordering that depends on their common context, i.e., their longest common prefix. Formally, for each string x
that prefixes two or more rows, we assume that an ordering πx is defined on the symbols of �. When comparing two rows
which are both prefixed by x, their relative rank is determined by the ordering πx . Once the matrix rows have been ordered
with this procedure, the output of the transformation is the last column of the matrix, as in the original BWT. Thus, these
BWT variants are based on context adaptive alphabet orderings. For simplicity, in the following, we call them context adaptive
BWTs.

We denote by M∗(s) the matrix obtained using this generalized sorting procedure, and by L = BW T∗(s) the last column
of M∗(s). Clearly L depends on s and the ordering used for each common prefix. Since we can arbitrarily choose an alphabet
ordering for any substring x of s, and there are σ ! orderings to choose from, our definition includes a very large number of
string transformations.

Example 3.1. In Fig. 2, the generalized BWT matrix for the string s = aabaaabac is shown. The ordering associated to the
empty string ε is πε = (b, a, c) so, among the rows that have no common prefix, first we have those starting with b, then
those starting with a, and finally the one starting with c. Since πa = (c, a, b), among the rows which have a as their common
prefix, first we have the ones in which c is the next letter, then the ones in which a is the next letter, followed by the ones
in which b is the next letter. The complete ordering of the rows is established in a similar way on the basis of the orderings
πx . In particular, the ordering between any pair of rows is determined by πx where x is their longest common prefix.

This class of transformations has been mentioned in [5, Sect. 5.2] under the name of string permutations realized by a Suffix
Tree (the definition in [5] is slightly more general; for example it includes the bounded context BWT, which is not included
in our class). Indeed, one can easily see that L = BW T∗(s) can also be obtained by visiting the suffix tree of s in depth first
order, except that when we reach a node u (including the root), we sort its outgoing edges according to their first characters
using the permutation associated to the string ux labeling the path from the root to u. During such a visit, each time we
reach a leaf, we write the symbol associated to it: the resulting string is exactly L = BW T∗(s) (see Fig. 3 (right)).
5

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Fig. 3. Standard suffix tree for s = aabaaabac with the symbol c used as a string terminator (left), and suffix tree with edges reordered using the same
orderings of Figure 2 (right). To each leaf it is associated the symbol preceding in s the suffix spelled by that leaf. Note that reading left to right the symbols
associated to each leaf gives bwt(s) (left) and BW T∗(s) (right).

Although in [5] the authors could not prove the invertibility of context adaptive transformations, which we do in Sec-
tion 3.2, they observed that their relationship with the suffix tree has two important consequences: 1) they can be computed
in O(n logσ) time, and 2) they provably produce highly compressible strings, i.e., they have the “boosting” property of trans-
forming a zeroth order compressor into a k-th order compressor.

Summing up, context adaptive transformations generalize the BWT in two important aspects: efficient computation (lin-
ear time in n) and compressibility. In [5], the only known instances of reversible suffix tree induced transformations were
the original BWT and the bounded context BWT. In the following, we prove that all context adaptive BWTs defined above
are invertible. Interestingly, to prove invertibility we first establish another important property of these transformations,
namely that they can be used to count the number of occurrences of a pattern in s, which is another fundamental property
of the original BWT.

We conclude this section by observing that both the BWT and ABWT belong to the class we have just defined. To get
the BWT, we trivially define πx to be the standard � ordering for every x, and to get the ABWT, we define πx to be the
standard � ordering for every x with |x| even, and the reverse ordering for � for every x with |x| odd.

3.1. Counting occurrences of patterns in context adaptive BWTs

Let L = BW T∗(s) denote a context adaptive BWT. In the following, we assume that L is enriched with data structures
supporting constant time rank queries as in Theorem 2.1. In this section we show that, given L and the set of alphabet
permutations used to build M∗(s), then we can determine in O(σ |x|2) time the set of M∗(s) rows prefixed by x, for any
string x. We preliminarily observe that, by construction, this set of rows, if non-empty, form a contiguous range inside
M∗(s). This observation justifies the following definitions.

Definition 3.2. Given a string x, we denote by R[x] = [bx, �x] the range of rows of M∗(s) prefixed by x. More precisely, if
R[x] = [bx, �x], then row i is prefixed by x if and only if it is bx ≤ i < bx + �x . If no rows are prefixed x, we set R[x] = [0, 0].
Note that �x is the number of occurrences of x in the circular string s.

For technical reasons, given x, we are also interested in the set of rows prefixed by the strings xc as c varies in �. Clearly,
these sets of rows are consecutive in M∗(s) and their union coincides with R[x].

Definition 3.3. Given a string x, we denote by R∗[x] the set of σ + 1 integers [bx, �1, �2, . . . , �σ] such that bx is the lower
extreme of R[x] and, for i = 1, . . . , σ , �i is the number of rows of M∗(s) prefixed by xci .

Since R[x] is the union of the ranges R[xc], for c ∈ �, we have that, if R∗[x] = [bx, �1, �2, . . . , �σ], then R[x] = [bx,
∑

i �i].
Note also that the ordering of the ranges R[xc] within R[x] is determined by the permutation πx . As observed in Section 2,
we can assume that L supports constant time rank queries. This implies that, in constant time, we are also able to count
the number of occurrences of a symbol c inside a substring L[i, j].

Example 3.4. Let us consider the string s = aabaaabab and the generalized BWT matrix illustrated in Fig. 2. Since πaa =
(b, a, c), we have that R∗[aa] = [4, 2, 1, 0], therefore R[aa] = [4, 2 + 1 + 0] = [4, 3].

Lemma 3.5. Given R∗[x] and the permutation πx, the set of values R[xci] for all ci ∈ � can be computed in O(σ) time.
6

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Proof. If R∗[x] = [bx, �1, �2, . . . , �σ], then R[xci] = [b, �] with

b = bx +
∑

j:c j<πx ci

� j, � = �i (1)

where the summation in (1) is done over all j ∈ {1, 2, . . . , σ } such that c j is smaller than ci , according to the permutation
πx . �
Lemma 3.6. Let x = x1x2 · · · xm be any length-m string with m > 1. Then, given R∗[x1 · · · xm−1] and R∗[x2 · · · xm], the set of values
R∗[x1 · · · xm] can be computed in O(σ) time.

Proof. By Lemma 3.5, given R∗[x1 · · · xm−1] and xm , we can compute R[x1 · · · xm] = [bx, �x]. In order to compute R∗[x1 · · · xm],
we additionally need the number of rows prefixed by x1x2 · · · xmc, for any c ∈ �. These numbers can be obtained by first
computing the ranges R[x2 · · · xmc] using again Lemma 3.5. The number of rows prefixed by x1x2 · · · xmc can be obtained by
counting the number of x1 in the portions of L corresponding to each range R[x2 · · · xmc]. The counting takes O(σ) time
since we are assuming L supports constant time rank as in Theorem 2.1. �
Theorem 3.7. Suppose we are given BW T∗(s) with constant time rank support, and the set of permutations used to compute the
matrix M∗(s). Then, given any string x = x1x2 · · · xp , the range of rows R[x] prefixed by x can be computed in O(σ p2) time and
O(σ p) space.

Proof. We need to compute R[x1x2 · · · xp]. To this end we consider the following scheme, inspired by the Newton finite
difference formula:

R∗[x1] R∗[x1x2] R∗[x1x2x3] · · · R∗[x1x2 · · · xp−1] R∗[x1x2 · · · xp]
R∗[x2] R∗[x2x3] R∗[x2x3x4] · · · R∗[x2 · · · xp]
R∗[x3] R∗[x3x4] · · ·

...

R∗[xp]
Using Lemma 3.6, we can compute R∗[xi · · · x j] given R∗[xi · · · x j−1] and R∗[xi+1 · · · x j]. Thus, from two consecutive entries in
the same column, we can compute one entry in the following column. To compute R[x1x2 · · · xp] we can for example perform
the computation bottom-up, proceeding row by row. In this case, we are essentially computing the ranges corresponding to
xp , xp−1xp , xp−2xp−1xp and so on, in a sort of backward search. However, we can also perform the computation top down,
diagonal by diagonal, and in this case, we are computing the ranges corresponding to x1, x1x2, and so on, up to x1 · · · xp .
In both cases, the information one needs to store from one iteration to the next is O(p) R∗[·] values, which take O(σ p)

words. By Lemma 3.6, the computation of each value takes O(σ) time, so the overall complexity is O(σ p2) time. �
Example 3.8. For the transformation described in Fig. 2, the computation of Theorem 3.7 for computing R[aba] works as
follows

R∗[a] = [3,1,3,2] R∗[ab] = [7,2,0,0] R∗[aba] = [7,1,0,1]
R∗[b] = [1,2,0,0] R∗[ba] = [1,1,0,1]
R∗[a] = [3,1,3,2]

Finally, since R∗[aba] = [7, 1, 0, 1], we have R[aba] = [7, 1 + 0 + 1] = [7, 2].

Note that our scheme for the computation of R[x] is based on the computation of R∗[y] for O(p2) substrings y of x. If
x has many repetitions, the overall cost could be less than quadratic. In the extreme case, x = ap , R[x] can be computed in
O(σ p) time.

3.2. Inverting context adaptive BWTs

We now show that the machinery we set up for counting occurrences can be used to retrieve s given BW T∗(s), thus to
invert any context adaptive BWT.

Lemma 3.9. Given R∗[x] = [bx, �1, �2, . . . , �σ] and a row index i with bx ≤ i < bx + ∑σ
j=1 � j , the (|x| + 1)-st character of row i can

be computed in O(σ) time.
7

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Fig. 4. The BW T K matrix for the string s = aabaaabac computed using the triple of alphabet permutations K = {(c, a, b), (b, c, a), (b, a, c)}. The horizontal
arrow marks the position of the original string s; the last column L is the output of the transformation.

Proof. Let ρ1, . . . , ρσ denote the alphabet symbols reordered according to permutation πx , and let �′
1, . . . , �

′
σ denote the

values �1, . . . , �σ reordered according to the same permutation. Since i ∈ R[x], row i is prefixed by x. Since the rows prefixed
by x are sorted in their (|x| + 1)-st position according to πx , the (|x| + 1)-st symbol of row i is the symbol ρ j such that

bx +
∑

1≤h< j

�′
h ≤ i < bx +

∑

1≤h≤ j

�′
h �

Theorem 3.10. Given BW T∗(s) with constant time rank support, the permutations πx used to build the matrix M∗(s), and the row
index I containing s in M∗(s), the original string s can be recovered in O(σ |s|2) time and O(σ |s|) working space.

Proof. Let s = s1s2 · · · sn . From BW T∗(s), in O(n) time we retrieve the number of occurrences of each character in s and
hence the ranges R[c1], R[c2], . . . , R[cσ]. From those and the row index I , we retrieve the first character of s, i.e. s1.
Next, counting the number of occurrences of s1 in the ranges of BW T∗(s) corresponding to R[c1], R[c2], . . . , R[cσ], we
compute R∗[s1]. Finally, we show by induction that, for m = 1, . . . , n − 1, given R∗[s1s2 · · · sm], we can retrieve sm+1 and
R∗[s1s2 · · · sm+1] in O(mσ) time. By using Lemma 3.9, from R∗[s1s2 · · · sm] and i we retrieve sm+1. Next, assuming we
maintained the ranges R∗[s j · · · sm], for j = 1, . . . , m we can compute R∗[s j · · · sm+1] adding one diagonal to the scheme
shown in the proof of Theorem 3.7. By Lemma 3.6, the overall cost is O(σ |s|2) time as claimed. �

The above theorem establishes that all context adaptive BWTs are invertible. Note that in our definition, the alphabet
ordering πx associated to x can depend on the whole string x; in this sense the context has full memory. We consider
this an important conceptual result. However, from a practical point of view, a transformation whose definition requires
the specification of O(|s|) alphabet permutations appears rather cumbersome. For this reason, in the following, we consider
some subclasses of transformations in which the permutations associated to each prefix are defined by “simple” rules. We
show that, in some cases, nontrivial generalized BWTs have simpler and more efficient inversion algorithms.

3.3. Special case: ordering based on context length

In [13], the authors introduced a set of generalized transformations that turns out to be a subclass of context adaptive
BWTs. Given a k-tuple of alphabet permutations K = (π0, π1, . . . , πk−1), using the notation of this paper, the transformation
BW T K in [13] is defined as the context adaptive BWT in which the permutation πx associated to the string x is π�

where � = |x| mod k. Hence, the permutation associated to each string only depends on its depth, and the k-tuple K =
(π0, π1, . . . , πk−1) completely determines the transformation. In [13,14], it was shown that for every K the transformation
BW T K can be inverted in O(|s|3) time; Theorem 3.10 therefore constitutes an alternative faster inversion algorithm. To our
knowledge, no faster algorithm is known, even for k = 2, when the whole transformation depends on just two alphabet
permutations.

Example 3.11. Let us consider k = 3 and the k-tuple of alphabet permutations K = (π0, π1, π2), where π0 = (c, a, b), π1 =
(b, c, a) and π2 = (b, a, c). The BW T K matrix for the string s = aabaaabac is shown in Fig. 4. If x is the longest common
prefix between two rows, their ordering depends on the respective characters at the (|x| + 1)-th position, according to the
permutation π|x| mod 3. For instance, abacaabaa < abaaabaca, since aba is the longest common prefix and c < a, according to
π0.

3.4. Special case: ± ordering

Given a permutation π of the alphabet �, we denote by π R the reversal of π , that is, the permutation such that, for
each pair of symbols ci , c j in �,
8

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Fig. 5. Example of a transformation based on a ± ordering. Let π = (b, a, c) so that π R = (c, a, b). The generalized BWT matrix M∗(s) for the string
s = aabaaabac is computed using the following permutations πε = π , πa = π R , πaa = π , πaaba = π R , and πx = π for every other substring x. The horizontal
arrow marks the position of the original string s; the last column L is the output of the transformation. The range R[aba] = [7, 2] of the rows prefixed by
aba, i.e. 7 and 8, are colored in cyan. In light brown, the row 2 of the range R[bac] = [2, 1]. (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

π R(ci) < π R(c j) ⇐⇒ π(ci) > π(c j).

Let π denote an arbitrary permutation of �. We consider the subclass of context adaptive transformations in which the
permutation πx associated to each substring x can be either π or its reversal π R . Once π is established, for each string x
we only need an additional bit to specify the ordering πx . So, for every string x and character c, checking if πx = πxc can
be done in constant time. For this subclass we say that the matrix M∗(s) is based on a ± ordering (see example in Fig. 5).
In this section, we show that, for the transformations in this subclass, the space and time for inversion can be reduced by
a factor σ .

Lemma 3.12. Let M∗(w) be based on a ± ordering, and let x = x1x2 · · · xm be any length-m string, with m > 1. Then, given
R[x1 · · · xm−1], R[x2 · · · xm] and R[x2 · · · xm−1], we can compute R[x1 · · · xm] in O(1) time assuming the permutation π or π R as-
sociated to each substring is known, and BW T∗(s) has constant time rank support.

Proof. Let y = x1 · · · xm−1 and z = x2 · · · xm−1. Recall that there is a bijection between the rows in R[y] and the rows in
R[z] whose last symbol is x1. We exploit this bijection to find R[yxm] given R[zxm]. The size of R[yxm] is equal to the
number of rows in R[zxm] ending with x1, so to completely determine R[yxm] we just need to compute how many rows
in R[y] precede R[yxm]. If πy = πz this number is equal to the number of rows in R[z] above R[zxm] and ending with x1.
If πy 	= πz , since necessarily πy = π R

z , this number is equal to the number of rows in R[z] below R[zxm] and ending with
x1. Since counting the number of rows ending in x1 in a given range can be done using rank operations on BW T∗(s), the
lemma follows. �
Example 3.13. Consider again the example of Fig. 5. Let x = abac, so y = aba and z = ba. It is R[y] = [7, 2], R[z] = [1, 2]
and R[zc] = [2, 1]. The rows of R[y] are highlighted in cyan, the rows of R[zc] are highlighted in light brown in Fig. 5.
The number of rows in R[zc] = [2, 1] ending with a is 1. This a number gives the size of R[yc] = R[abac]. Moreover, since
πy = πz = π , we need to count the number of rows in R[z] = [1, 2] above R[zc] = [2, 1] and ending with a. This a number
is 1. This means that one row in R[y] = [7, 2] precedes R[yc] = R[abac]. Hence, R[abac] = [8, 1]. If we consider x = aa, it
is y = a and z = ε , R[y] = R[a] = R[za] = [3, 6], R[z] = R[ε] = [1, 9]. The number of rows in R[za] = [3, 6] ending with a
is 3. So, 3 is the size of R[aa]. Since πa 	= πε , we have to count the number of rows in R[z] = [1, 9] below R[za] = [3, 6]
and ending with a. Such a number is 1. This means that there is 1 row in R[y] = R[a] = [3, 6] that precedes R[ya] = R[aa],
hence R[aa] = [4, 3].

Lemma 3.14. Suppose M∗(s) is based on a ± ordering. Given BW T∗(s) with constant time rank support, and any string x =
x1x2 · · · xp , we can compute the range of rows prefixed by x in O(p2) time and O(p) space.

Proof. We reason as in the proof of Theorem 3.7, except that because of Lemma 3.12 we work with R[·] instead of R∗[·].
The thesis follows observing that each entry takes O(1) space and can be computed in O(1) time. �
Theorem 3.15. Suppose M∗(s) is based on a ± ordering. Given BW T∗(s) with constant time rank support and the row index i con-
taining s in M∗(s), we can retrieve the original string s in O(|s|2) time and O(|s|) working space.
9

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Fig. 6. The local ordering BWT matrix for the string s = aabaaabac computed using the orderings πε = (b, c, a), πa = (b, a, c), πb = πc = (a, b, c). Here, the
alphabet orderings associated to each non-empty string depend only on the last symbol of the string, i.e. k = 1. The horizontal arrow marks the position of
the original string s; the last column L is the output of the transformation. The rows starting with ba (highlighted in cyan and light brown, respectively)
are in a order-preserving correspondence to the rows starting with a and ending with b. The last character of each BWT-run is underlined.

4. BWTs based on local orderings

In this section, we consider the context adaptive transformations in which the alphabet ordering πx associated to each
string x only depends on the last k symbols of x, where k is fixed. In the following, we refer to these string transfor-
mations as BWTs based on local orderings. We show that local ordering transformations have properties very similar to the
original BWT, since they can be inverted in linear time and also support the search of a pattern in the original text in time
proportional to the pattern length.

We start by analyzing the case k = 1. For such local ordering transformations, the matrix M∗(s) depends on only σ + 1
alphabet orderings: one for each symbol plus the one used to sort the first column of M∗(s). See Fig. 6 for an example. The
following lemma establishes an important property of local ordering transformations.

Lemma 4.1. If M∗(s) is based on a local ordering with k = 1, then for any pair of characters x1 and x2 , there is an order-preserving
bijection between the set of rows starting with x1x2 and the set of rows starting with x2 and ending with x1 .

Proof. Note that both sets of rows contain a number of elements equal to the number of occurrences of x1x2 in the circular
string s. In the following, we write s[i · · ·] to denote the cyclic rotation of s starting with s[i]. Assume that rotations s[i · · ·]
and s[j · · ·] both start with x2 and end with x1 and let h > 1 denote the first column in which the two rotations differ.
Rotation s[i · · ·] precedes s[j · · ·] in M∗(s) if and only if s[i + h − 1] is smaller than s[j + h − 1] according to the alphabet
ordering associated to symbol s[i + h − 2] = s[j + h − 2]. The two rotations s[i − 1 · · ·] and s[j − 1 · · ·] both start with x1x2
and their relative position also depends on the relative ranks of s[i + h − 1] and s[j + h − 1] according to the alphabet
ordering associated to symbol s[i + h − 2] = s[j + h − 2]. Hence the relative order of s[i − 1 · · ·] and s[j − 1 · · ·] is the same
as the one of s[i · · ·] and s[j · · ·]. �
Example 4.2. Consider the string s = aabaaabac and the local ordering BWT computed using the orderings πε = (b, c, a),
πa = (b, a, c), πb = πc = (a, b, c) by using k = 1. As proved in Lemma 4.1, the bijection between the set of rows 1 and 2
starting with ba (highlighted in cyan and light brown, respectively) and the set of rows 8 and 9 starting with a and ending
with b is order-preserving. Analogously, the bijection mapping the rows 5, 6, and 7 starting with aa to the rows 4, 5, and
7, respectively.

Armed with the above lemma, we now show that for local ordering transformations we can establish much stronger
results than the ones provided in Section 3.1.

Lemma 4.3. Suppose BW T∗(s) is based on a local ordering with k = 1 and supports constant time rank queries. Let x = x1x2 · · · xm

be any length-m string with m > 1. Then, given R[x1x2], R[x2] and R[x2 · · · xm], the value R[x1 · · · xm] can be computed in O(1) time.

Proof. By Lemma 4.1, there is an order preserving bijection between the rows in R[x1x2] and those in R[x2] ending with
x1. In this bijection, the rows in R[x1 · · · xm] correspond to those in R[x2 · · · xm] ending with x1. Because of this bijection, if,
among the ordered set of rows starting with x2 and ending with x1, those prefixed by x2 · · · xm are in positions r +1, . . . , r +
h, then, among the rows starting with x1x2, those prefixed by x1x2 · · · xm are consecutive and in positions r + 1, . . . , r + h.
The lemma follows since if R[x2] = [b, �] and R[x2 · · · xm] = [b′, �′], we have

r = rankx1(L,b′ − 1) − rankx1(L,b − 1), h = rankx1(L,b′ + �′ − 1) − rankx1(L,b′ − 1),

and, if R[x1x2] = [b̄, �̄], it is R[x1 · · · xm] = [b̄ + r, h]. �

10

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Theorem 4.4. Suppose BW T∗(s) is based on a local ordering with k = 1 and supports constant time rank queries. After a O(σ 2) time
preprocessing, given any string x = x1x2 · · · xp , the range of rows prefixed by x can be computed in O(p) time and O(σ 2 + p) space.

Proof. We reason as in the proof of Theorem 3.7, except that because of Lemma 4.3 we can work with R[·] instead of R∗[·]
and we only need to compute the first two columns and the diagonal. In the preprocessing step, we compute R[ci] and
R[cic j] for any pair (ci, c j) ∈ �2. During the search phase, we compute each diagonal entry in constant time. �

Another immediate consequence of Lemma 4.1 is that we can efficiently “move back in the text” as in the original BWT.
Note this operation is the base for BWT inversion and for snippet extraction and locate operations on FM-indices [29].

Lemma 4.5. Suppose BW T∗(s) is based on a local ordering with k = 1 and supports constant time rank and access queries. Then, after
a O(σ 2) time preprocessing, given a row index i we can compute in O(1) time the index of the row obtained from the i-th row with a
circular right shift by one position.

Proof. It suffices to compute the first and last symbol of row i and then apply Lemma 4.1. �
Corollary 4.6. If BW T∗(s) is based on a local ordering with k = 1 and supports constant time rank and access queries, BW T∗(s) can
be inverted in O(σ 2 + |s|) time and O(σ 2) working space.

The notion of local ordering can be generalized to contexts of size k > 1. The resulting transformations depend on
1 + σ + σ 2 + · · · + σ k alphabet permutations, one for each string over � of length at most k. Once these permutations
have been chosen, with the notation of Section 3, we consider the context adaptive transformations in which the alphabet
ordering πx associated to each string x only depends on the last k symbols of x, or to the last |x| symbols if |x| < k.
Lemma 4.1 can be generalized to show that, for any (k +1)-tuple x1, . . . , xk+1, there is an order preserving bijection between
the rows prefixed by x2 · · · xk+1 and ending with x1 and the rows prefixed by x1 · · · xk+1. As a consequence, search and
inversion can still be performed in linear time with the only difference that the preprocessing phase now takes O(σ k+1)

time and space, since we need to compute and store the values R[x] for all strings x of length up to k + 1.

4.1. Local orderings and r-index

The r-index [15] is a recent variant of the FM-index, still based on the BWT, introduced to efficiently support the locate
operation on highly repetitive collections. The locate operation is the task of determining the positions, in the original input
s, of all the occurrences of the pattern. This is usually done storing a subset of the Suffix Array entries (these are called
Suffix Array samples). The main feature of the r-index is that it supports the locate operation using a number of Suffix Array
samples equal to the number of runs in the BWT. If the input contains many repetitions such number is much smaller than
the number of Suffix Array samples used by the standard FM-index, usually 	(n/ logc n) for some constant c > 1.

In this section we show that it is possible to implement an r-index also on the top of a BWT based on a local ordering.
We start considering the case k = 1. The crucial ingredient of the r-index is the so called Toehold Lemma: this result ensures
that when we search for a pattern x, in addition to the range of rows prefixed by x, we also obtain the position in s of at
least one occurrence of x (assuming such occurrence exists). To prove the Toehold Lemma for local orderings, we proceed as
in Lemma 2 in [61] and we logically mark every character in L which is the last character in a BWT-run, and we store the
position in s of the marked characters. In addition, for each character c, we store the position in s of the last row prefixed
by c. This means that the last character of each run in F is augmented with the position in s of that suffix representing this
character.

Lemma 4.7. Let x = x1 · · · xp be a string that occurs in s. Then, using a BWT based on local ordering, in O(p) time we can compute, in
addition to the range R[x1 · · · xp] of rows prefixed by x, the position in s of the last row in such a range.

Proof. We proceed by induction on j = p, p − 1, . . . , 1. For j = p the position in s of the last row prefixed by xp is obtained
by R[xp], which is computed in the preprocessing phase of Theorem 4.4. For j < p, assume that we know the range
R[x j+1 · · · xp] and the position pos j+1 in s of the last row in that range. Since there is an order preserving bijection between
the rows in R[x j+1 · · · xp] ending with x j and the rows in R[x j · · · xp], the last row in R[x j · · · xp] corresponds to the last row
in R[x j+1 · · · xp] ending with x j . If the latter coincides with the last row in R[x j+1 · · · xp], i.e. x j is the last symbol in the
portion of L corresponding to R[x j+1 · · · xp], then the position of the last row in R[x j · · · xp] in s is simply pos j+1 − 1. If x j
is not the last symbol in the portion of L corresponding to R[x j+1 · · · xp], then the last x j in that range will be the last of a
BWT-run and therefore will be a marked position. Its position in s will be among the ones we stored, and this will coincide
with the position of the last row in R[x j · · · xp]. �
Example 4.8. Let us consider the following string s and the column L of its local ordering BWT-matrix, as shown in Fig. 6.
The column F of the matrix is here also reported.
11

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Fig. 7. The generalized BWT matrix for the string s = baaabaabaac (left) computed using the orderings πε = (a, c, b), πbaa = (c, a, b), and πx = (a, b, c)
for every other substring x. The local ordering BWT matrix for the same string (right) using the orderings πε = (a, c, b), πa = πb = πc = (a, b, c). In both
matrices the horizontal arrow marks the position of the original string s, and the last column L is the output of the transformation.

F = b b c a a a a a a

s = a a b a a a b a c

L = a a a a a c a b b
1 2 3 4 5 6 7 8 9

The local ordering BWT matrix for s is computed using the ordering πε = (b, c, a), πa = (b, a, c), πb = πc = (a, b, c),
as reported in Fig. 6. The last character of each BWT-run in L is underlined. They are L[5], L[6], L[7] and L[9], and the
corresponding positions in s are 5, 9, 4 and 7, respectively. The correspondence between each underlined symbol in L and
its position in L is represented by an arrow. In addition, for each character c, we store the position in s of the last row
prefixed by c. For each of such rows, the correspondent position in s is highlighted by a dashed arrow from the column F
to s. Such positions in s are 7 (row 2), 9 (row 3), and 8 (row 9).

Let us consider the string x = baa. For j = 3, the position p3 = 8 in s of the last row prefixed by x3 = a is obtained by
R[a] = [4, 6] (i.e., the row 9). For j = 2, we know that there is an order preserving bijection between the rows in R[a] = [4, 6]
ending with a and the rows in R[aa] = [6, 3]. Since x2 = a is not the last symbol in the portion of L corresponding to R[a],
then the last a in that range (i.e., L[7]) is in a marked position since it is the last symbol of a BWT-run, and its position
p2 = 4 in s is precisely the position in s of the last row of the range R[aa]. For j = 1, we know that there is an order
preserving bijection between the row in R[aa] = [6, 3] ending with b and the row in R[baa] = [1, 1]. Since x3 = b is the last
symbol in the portion of L corresponding to R[aa] (i.e. L[8]), then its position in s is p1 = p2 − 1 = 4 − 1 = 3, which is also
the position of the last, although unique, row in the range R[baa].

In addition to the Toehold Lemma, the only other ingredients of the r-index are 1) the predecessor data structure P±
from Lemma 3.5 in [15], which is not related to the BWT, and 2) the property that if two consecutive rows of the BWT
matrix start and end with the same symbols, then rotating them rightward by one position we get two new rows which are
still consecutive and in the same relative order. This property is valid for local orderings, even if it not valid for the general
class of context adaptive alphabet orderings, as shown in the following example.

Example 4.9. Fig. 7 shows a generalised BWT matrix based on context adaptive alphabet orderings (on the left) and a local
ordering BWT matrix (on the right) for the string s = baaabaabaac. Let us consider the rows 3 and 4 of the generalised
BWT matrix on the left, both starting with a and ending with b, highlighted in cyan and light brown, respectively. It can
be verified that, if we rotate them rightward we get rows 11 and 9, respectively, which are no longer consecutive nor in
the same relative order. Instead, let consider the rows 3 and 4 of the local ordering BWT matrix, both starting with a and
ending with b, highlighted in cyan and light brown, respectively. If we rotate them rightward we obtain the rows 10 and
11, respectively, which are consecutive and in the same relative order.

For the local orderings with k > 1 the above arguments can be generalized with the limitation that the length of the
searched pattern must be at least k. The main modification is that we need to store the range R[y] for all strings y of
length k that occur in s. For each such range we also store the suffix array sample for the last row in the range for an
overall extra space of O(σ k). To search a pattern x = x1 · · · xp we consider the length-k suffix x′ = xp−k+1 · · · xp and we
retrieve its range R[x′] and the position in s of the last row in the range. With this information we then use Lemma 4.7 to
retrieve in p − k steps the range R[x1 · · · xp] and the position in s of the last row of such range.
12

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Fig. 8. The BWT matrix for the string S = aa ab ba aa aa ab ba ac ca computed using the ordering
 based on the local orderings πε = (b, c, a), πa = (b, a, c),
πb = πc = (a, b, c). The concatenation of the pairs in the last column of the matrix gives bwt(S) = ab ab ac aa aa ca aa ba ba. The string obtained by concate-
nating the first symbol of each pair in bwt(S) = L (colored in red) is BW T∗(s) = aaaaacabb, where s = aabaaabac, as shown in Fig. 6.

4.2. An alternative view of local orderings

We conclude this section showing an alternative way to derive transformations based on local orderings. Consider for
simplicity the case k = 1 and assume the transformation BW T∗ is defined by the σ + 1 orderings πε and πc for c ∈ �.
Consider now the ordering
 over �2 = � × � defined as follows: Given the pairs x1x2, y1 y2 in �2 it is (x1x2 <
 y1 y2)

iff (x1 	= y1, x1 <πε y1), or (x1 = y1 = c, x2 <πc y2). We now show that BW T∗ is equivalent to the original BWT over the
alphabet �2 ordered according to
. To each string s, we associate a new string S over �2, defined by S[i] = s[i]s[i + 1]
with indices taken modulo |s|. Such an approach is described in Example 4.10 in which the strings s = aabaaabac and
S = aa ab ba aa aa ab ba ac ca are considered.

There is a natural correspondence between rotations of s and S , and because of the definition of
, the ordering of s’s
rotations in M∗(s) coincides with the ordering of the corresponding rotations of S in M(S). As a consequence, if bwt(S) (the
last column of M(S)) has the form bwt(S) = x1 y1 x2 y2 · · · xn yn , we have that BW T∗(s) = x1x2 · · · xn , and the first column
of M∗(s) is y1 y2 · · · yn . The LF-map applied to M(S) establishes an order preserving bijection between rows ending with
α ∈ �2 and rows starting with α. If α = x1x2, this translates in M∗(s) to an order preserving bijection between rows starting
with x2 and ending with x1 and rows starting with x1x2: this establishes an alternative proof of Lemma 4.1.

The above alternative view of local orderings has probably no practical interest: there is no need to work with the
alphabet �2 to emulate something we can easily do working over �. However, from the theoretical point of view, it is
intriguing, and deserving further investigation, that a family of BWT variants can be obtained by first transforming the
string and the alphabet and then applying the standard BWT followed by the string back-transformation.

Example 4.10. Let us consider the string s = aabaaabac. The local ordering BWT matrix for s computed using the ordering
πε = (b, c, a), πa = (b, a, c), πb = πc = (a, b, c) is reported in Fig. 6. Instead, Fig. 8 shows the BWT matrix M(S) of the
string S = aa ab ba aa aa ab ba ac ca by using the ordering
 over the alphabet {aa, ab, ac, ba, bb, bc, ca, cb, cc}. The last column
of M(S) is bwt(S) = ab ab ac aa aa ca aa ba ba. One can verify that there is correspondence between the rows of the local
ordering BWT matrix described in Fig. 6 and the rows of M(S). Moreover, the string obtained by concatenating the first
symbol (colored in red) of each element in bwt(S) is BW T∗(s) = aaaaacabb. Finally the string obtained by concatenating
the last symbol of each element in bwt(S) gives the first column of the local ordering BWT matrix.

5. Run minimization problem

We consider the following problem: given a string s and a class of BWT variants, find the variant that minimizes the
number of runs in the transformed string. As we mentioned in the introduction, this problem is relevant for the compression
of highly repetitive collections. Depending on the class of BWT variants, finding the exact minimum could be a difficult
problem, so one may want to resort to heuristics. In this context, any lower bound to the minimum number of runs
achievable by a class of transformations would be useful to assess the quality of the solutions found.

In this section we describe an efficient algorithm to determine a lower bound on the number of runs in the transformed
string which is valid for all BWT variants discussed in this paper. The lower bound is established by computing the minimal
number of runs for the most general class we considered: the class of context adaptive BWTs described in Section 3. In this
class we can select an alphabet ordering πx independently for every substring x. It is easy to see that the only orderings
that influence the output of the transform are those associated to strings corresponding to the internal nodes of the suffix
tree of s. Nevertheless, the number of possible choices is ≈ (σ !)O(|s|) which is exponential even for constant alphabets.

Given a suffix tree node v , we denote by bw(v) the multiset of symbols associated to the leaves in the subtree rooted
at v (see Fig. 3). We say that a string zv is a feasible arrangement of bw(v) if we can reorder the nodes in the subtree
rooted at v so that zv is obtained by reading left to right the symbols in the reordered subtree. For example, in the suffix
tree of Fig. 3 (left), if v is the internal node with upward path aa, it is bw(v) = {a, b, c} and bac, bca, acb, cab are feasible
13

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
arrangements of bw(v), while abc and cba are not feasible arrangements. If τ is the suffix tree root, using the above
notation our problem becomes that of finding the feasible arrangement of bw(τ) with the minimal number of runs. The
following theorem shows that, for constant alphabets, the optimal arrangement can be found in linear time using dynamic
programming.

Theorem 5.1. Given a string s over an alphabet of size σ =O(1), the context adaptive transformation minimizing the number of runs
in BW T∗(s) can be found in O(|s|) time.

Proof. Let Opt denote the minimal number of runs. We show how to compute Opt with a dynamic programming algo-
rithm; the computation of the alphabet orderings giving Opt is done using standard techniques. For each suffix tree node
v and pairs of symbols ci , c j let ρ(v, ci, c j) denote the minimal number of runs among all feasible arrangements of bw(v)

starting with ci and ending with c j . Clearly, if τ is the suffix tree root, then Opt = mini, j ρ(τ , ci, c j).
For each leaf �, it is ρ(�, ci, c j) = 1 if ci = c j = bw(�) and ρ(�, ci, c j) = ∞ otherwise. We need to show how to compute,

for each internal node v , the σ 2 values ρ(v, ci, c j) for ci , c j in �, given the, up to σ 3 values, ρ(wk, c�, cm), k = 1, . . . , h,
where w1, . . . , wh are the children of v . To this end, we show that for each ordering π of w1, . . . , wh we can compute in
constant time the minimal number of runs among all the feasible arrangements of bw(v) starting with ci and ending with
c j and with the additional constraint that v ’s children are ordered according to π .

To simplify the notation, assume w1, . . . , wh have been already reordered according to π . For k = 1, . . . , h, let
Mπ [k, c�, cm] denote the minimal number of runs among all strings x such that x = y1 · · · yk , where yt , for t = 1, . . . , k,
is a feasible arrangement of bw(wt), and with the additional constraints that y1 starts with c� and yk ends with cm (by
construction every such x is a feasible arrangement of bw(v))). We have

Mπ [1, c�, cm] = ρ(w1, c�, cm)

and for k = 2, . . . , h

Mπ [k, c�, cm] = min
i, j

(
Mπ [k − 1, c�, ci] + ρ(wk, c j, cm) − δi j

)
(2)

where δi j = 1 if i = j and 0 otherwise. Essentially, (2) states that to find the minimal number of runs for w1, . . . , wk we
consider all possible ways to combine an optimal solution for w1, . . . , wk−1 followed by a feasible arrangement of bw(wk).
The δi j term comes from the fact that the number of runs in the concatenation of two strings is equal to the sum of the
runs in each string, minus one if the last symbol of the first string is equal to the first symbol of the second string. Once
we have the values Mπ [h, ci, c j], the desired values ρ(v, ci, c j) are obtained taking the minimum over all possible alphabet
ordering π . �
Example 5.2. The run minimization algorithm described in Theorem 5.1 is applied to the standard suffix tree, depicted in
Fig. 3 (left), for the string s = aabaaabac, where the symbol c used as a string terminator. In Fig. 9 (left) the new tree is
shown. It is obtained from the standard suffix tree of s by reordering the children of the internal node with upward path
to the root labeled by a. Here, we denote this node by v . It is easy to see that bw(v) = {a, a, a, b, b, c} and that bbcaaa is
a feasible arrangement of bw(v), obtained by moving the third child (with upward path ac) to the left. Leaving all other
edges unchanged, it is easy to verify that the number of runs remains minimized. The ordering π so obtained is defined
as πa = (c, a, b) and πx = (a, b, c) for every other substring x. The generalized BWT matrix of the correspondent context
adaptive BWT which minimizes the number of runs is described in Fig. 9 (right).

6. Conclusions and future directions of research

In this paper we introduced a new class of string transformations and showed that they have the same remarkable
properties of the BWT: they can be computed and inverted in linear time, they support linear time pattern search directly
in the compressed text, and they can transform a zeroth order compressor into a k-th order compressor (“compression
boosting” property). This implies that such transformations can replace the BWT in the design of self-indices without any
asymptotic loss of performance. Given the crucial role played by the BWT even outside the area of string algorithms, we
believe that expanding the number of efficient BWT variants can lead to theoretical and practical advancements. A natural
consequence will be the design of “personalized” transformations, where one will choose the “best” alternative to the BWT
according to costs and benefits dictated by application domains. As an example, motivated by the problem of compressing
highly repetitive string collections that arises in areas such as bioinformatics, we considered the problem of determining
the BWT variant that minimizes the number of runs in the transformed string.

Our efficient BWT variants are a special case of a more general class of transformations that have the same properties of
the BWT but for which we could not devise efficient (linear time) inversion and search algorithms. We believe this larger
class of transformation should be further investigated: we have shown that some of them do have more efficient inversion
and search algorithms and this suggests that there could be other subclasses of practical interest. Another possible avenue
of further research would be the generalizations of our variants to the recently introduced extension of the BWT in the
areas of graphs, languages and automata [9,10,62].
14

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Fig. 9. Suffix tree for s = aabaaabac, with edges reordered using the run minimization algorithm described in Theorem 5.1 (left). The generalized BWT
matrix for the string s computed using the orderings πa = (c, a, b), πx = (a, b, c) for every other substring x. The horizontal arrow marks the position of
s (right). Each leaf of the tree is associated with the symbol preceding the suffix in s spelled by that leaf. Note that reading left to right the symbols
associated to each leaf gives BW T∗(s).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Funding

GM and GR are partially supported by PNRR ECS00000017 Tuscany Health Ecosystem, Spoke 6 “Precision medicine &
personalized healthcare”, CUP I53C22000780001, funded by the European Commission under the NextGeneration EU pro-
gramme. GM is partially supported by the ICSC – Centro Nazionale di Ricerca in High-Performance Computing, Big Data
and Quantum Computing, Spoke 1 “FutureHPC & BigData”, Flagship 3, funded by European Union, NextGeneration EU pro-
gramme. MS is partially supported by the PNRR project Italian Strengthening of ESFRI RI RESILIENCE (ITSERR) funded by the
European Union, NextGeneration EU programme, CUP B53C22001770006 and by “FFR-Sciortino”. GR and MS are partially
supported by INdAM-GNCS Project 2022 “Metodi combinatori per indicizzare e confrontare collezioni di testi altamente
ripetitivi”, CUP E55F22000270001. GM, GR and MS are partially supported by INdAM-GNCS Project 2023 “Linguaggi rego-
lari ordinati, indicizzazione e confronto di collezioni di stringhe, con applicazioni”, CUP E53C22001930001. RG is partially
supported by INDAM-GNCS Project 2023 “Approcci computazionali per il supporto alle decisioni nella Medicina di Preci-
sione”, CUP E53C22001930001. RG and GM are partially supported by MIUR-PRIN project “Multicriteria Data Structures and
Algorithms: from compressed to learned indexes, and beyond” grant n. 2017WR7SHH.

References

[1] R. Giancarlo, G. Manzini, G. Rosone, M. Sciortino, A new class of searchable and provably highly compressible string transformations, in: CPM, in:
LIPIcs, vol. 128, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2019, pp. 12:1–12:12.

[2] M. Burrows, D.J. Wheeler, A block sorting data compression algorithm, Tech. Rep., DIGITAL System Research Center, 1994.
[3] A. Apostolico, The myriad virtues of subword trees, in: A. Apostolico, Z. Galil (Eds.), Combinatorial Algorithms on Words, Springer Berlin Heidelberg,

Berlin, Heidelberg, 1985, pp. 85–96.
[4] P. Fenwick, The Burrows-Wheeler transform for block sorting text compression: principles and improvements, Comput. J. 39 (9) (1996) 731–740.
[5] P. Ferragina, R. Giancarlo, G. Manzini, M. Sciortino, Boosting textual compression in optimal linear time, J. ACM 52 (4) (2005) 688–713.
[6] R. Giancarlo, A. Restivo, M. Sciortino, From first principles to the Burrows and Wheeler transform and beyond, via combinatorial optimization, Theor.

Comput. Sci. 387 (2007) 236–248.
[7] G. Manzini, An analysis of the Burrows-Wheeler transform, J. ACM 48 (3) (2001) 407–430.
[8] P. Ferragina, G. Manzini, Opportunistic data structures with applications, in: FOCS 2000, IEEE Computer Society, Washington, DC, USA, 2000,

pp. 390–398.
[9] J. Alanko, G. D’Agostino, A. Policriti, N. Prezza, Wheeler languages, Inf. Comput. 281 (2021) 104820.

[10] T. Gagie, G. Manzini, J. Sirén, Wheeler graphs: a framework for BWT-based data structures, Theor. Comput. Sci. 698 (2017) 67–78.
[11] G. Navarro, Compact Data Structures – A Practical Approach, Cambridge University Press, Cambridge, U.K., 2016.
[12] I.M. Gessel, A. Restivo, C. Reutenauer, A bijection between words and multisets of necklaces, Eur. J. Comb. 33 (7) (2012) 1537–1546.
[13] R. Giancarlo, G. Manzini, A. Restivo, G. Rosone, M. Sciortino, Block sorting-based transformations on words: beyond the magic BWT, in: DLT, in: LNCS,

vol. 11088, Springer, Cham, 2018, pp. 1–17.
[14] R. Giancarlo, G. Manzini, A. Restivo, G. Rosone, M. Sciortino, The alternating BWT: an algorithmic perspective, Theor. Comput. Sci. 812 (2020) 230–243.
[15] T. Gagie, G. Navarro, N. Prezza, Fully-functional suffix trees and optimal text searching in BWT-runs bounded space, J. ACM 67 (1) (2020) 2.
15

http://refhub.elsevier.com/S0890-5401(23)00071-8/bib7868B8EBBE06EE2EBB3018064950A73Bs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib7868B8EBBE06EE2EBB3018064950A73Bs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib3BA214C95E11EAE9A8510AA5D44ADEE5s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib55BEDD1F7A9F957F8D36ABFB5921C9F4s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib55BEDD1F7A9F957F8D36ABFB5921C9F4s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibB302B24ED98D193B3CA5CF158FE4A770s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibF584E93FAA1D6997530A40E276202DC4s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib73B01BE9353084891FE9885D2A5BDA80s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib73B01BE9353084891FE9885D2A5BDA80s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib7B479A5A4FB0FA9CEC35F89A4D18D8D7s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibDD2DE8FA92C01A64B2225FEF18D1431Es1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibDD2DE8FA92C01A64B2225FEF18D1431Es1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib6336FCB8E98D36DF3A95CEB6EE1A3B60s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib5B225D117E231D30863712300D267FAFs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibAB025E9218B7EFEE219D0150FF9D266As1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibED57E8C9C57BE686302425B876F19A30s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibF65AE5F05D7E77CFD7891F8BD1391BC3s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibF65AE5F05D7E77CFD7891F8BD1391BC3s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibDE29798038CCFD9D337F5AE1980B4CB5s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib60394006C335A7DEC9A03243F1853068s1

R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
[16] H. Kaplan, E. Verbin, Most Burrows–Wheeler based compressors are not optimal, in: CPM, in: LNCS, vol. 4580, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007, pp. 107–118.

[17] V. Mäkinen, G. Navarro, J. Sirén, N. Välimäki, Storage and retrieval of highly repetitive sequence collections, J. Comput. Biol. 17 (3) (2010) 281–308.
[18] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, Burrows-Wheeler transform and run-length enconding, in: WORDS, in: LNCS, vol. 10432, Springer, 2017,

pp. 228–239.
[19] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, L. Versari, Measuring the clustering effect of BWT via RLE, Theor. Comput. Sci. 698 (2017) 79–87.
[20] G. Navarro, Indexing highly repetitive string collections, part I: repetitiveness measures, ACM Comput. Surv. 54 (2) (2021) 29:1–29:31.
[21] G. Navarro, Indexing highly repetitive string collections, part II: compressed indexes, ACM Comput. Surv. 54 (2) (2021) 26:1–26:32.
[22] A. Restivo, G. Rosone, Balancing and clustering of words in the Burrows-Wheeler transform, Theor. Comput. Sci. 412 (27) (2011) 3019–3032.
[23] A. Frosini, I. Mancini, S. Rinaldi, G. Romana, M. Sciortino, Logarithmic equal-letter runs for BWT of purely morphic words, in: DLT, in: LNCS, vol. 13257,

Springer, 2022, pp. 139–151.
[24] V. Guerrini, F.A. Louza, G. Rosone, Lossy compressor preserving variant calling through extended BWT, in: BIOSTEC/BIOINFORMATICS, INSTICC,

SciTePress, 2022, pp. 38–48.
[25] G. Fici, G. Romana, M. Sciortino, C. Urbina, On the impact of morphisms on BWT-runs, in: CPM, in: LIPIcs, vol. 259, Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, Dagstuhl, Germany, 2023, pp. 10:1–10:18.
[26] S. Giuliani, S. Inenaga, Z. Lipták, G. Romana, M. Sciortino, C. Urbina, Bit catastrophes for the Burrows-Wheeler transform, in: DLT, in: LNCS, vol. 13911,

Springer, 2023, pp. 86–99.
[27] C. Boucher, D. Cenzato, Z. Lipták, M. Rossi, M. Sciortino, Computing the original eBWT faster, simpler, and with less memory, in: SPIRE, in: LNCS,

vol. 12944, Springer International Publishing, Cham, 2021, pp. 129–142.
[28] R. Kosaraju, G. Manzini, Compression of low entropy strings with Lempel–Ziv algorithms, SIAM J. Comput. 29 (3) (1999) 893–911.
[29] P. Ferragina, G. Manzini, Indexing compressed text, J. ACM 52 (2005) 552–581.
[30] D. Belazzougui, G. Navarro, Optimal lower and upper bounds for representing sequences, ACM Trans. Algorithms 11 (4) (2015) 31:1–31:21.
[31] V. Mäkinen, D. Belazzougui, F. Cunial, A. Tomescu, Genome-Scale Algorithm Design, Cambridge University Press, Cambridge, U.K., ISBN 978-1-107-

07853-6, 2015.
[32] G. Navarro, V. Mäkinen, Compressed full-text indexes, ACM Comput. Surv. 39 (1) (2007).
[33] M. Schindler, A fast block-sorting algorithm for lossless data compression, in: DCC, IEEE Computer Society, Washington, DC, USA, 1997, p. 469.
[34] J.S. Culpepper, M. Petri, S.J. Puglisi, Revisiting bounded context block-sorting transformations, Softw. Pract. Exp. 42 (8) (2012) 1037–1054.
[35] M. Petri, G. Navarro, J.S. Culpepper, S.J. Puglisi, Backwards search in context bound text transformations, in: CCP, IEEE Computer Society, Washington,

DC, USA, 2011, pp. 82–91.
[36] B. Chapin, S. Tate, Higher compression from the Burrows-Wheeler transform by modified sorting, in: DCC, IEEE Computer Society, Washington, DC,

USA, 1998, p. 532.
[37] J.Y. Gil, D.A. Scott, A bijective string sorting transform, CoRR, arXiv:1201.3077 [abs], 2012.
[38] K.T. Chen, R.H. Fox, R.C. Lyndon, Free differential calculus. IV. The quotient groups of the lower central series, Ann. Math. (2) 68 (1958) 81–95.
[39] H. Bannai, J. Kärkkäinen, D. Köppl, M. Piatkowski, Constructing the bijective and the extended Burrows-Wheeler transform in linear time, in: CPM, in:

LIPIcs, vol. 191, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2021, pp. 7:1–7:16.
[40] H. Bannai, J. Kärkkäinen, D. Köppl, M. Piatkowski, Indexing the bijective BWT, in: N. Pisanti, S.P. Pissis (Eds.), CPM, in: LIPIcs, vol. 128, Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2019, pp. 17:1–17:14.
[41] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, An extension of the Burrows-Wheeler transform, Theor. Comput. Sci. 387 (3) (2007) 298–312.
[42] L. Egidi, G. Manzini, Lightweight merging of compressed indices based on BWT variants, Theor. Comput. Sci. 812 (2020) 214–229.
[43] P. Ferragina, R. Venturini, The compressed permuterm index, ACM Trans. Algorithms 7 (1) (2010) 10:1–10:21.
[44] W. Hon, C. Lu, R. Shah, S.V. Thankachan, Succinct indexes for circular patterns, in: ISAAC, in: LNCS, vol. 7074, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2011, pp. 673–682.
[45] W. Hon, T. Ku, C. Lu, R. Shah, S.V. Thankachan, Efficient algorithm for circular Burrows-Wheeler transform, in: CPM, in: LNCS, vol. 7354, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2012, pp. 257–268.
[46] C. Boucher, D. Cenzato, Z. Lipták, M. Rossi, M. Sciortino, r-indexing the eBWT, in: SPIRE, in: LNCS, vol. 12944, Springer International Publishing, Cham,

2021, pp. 3–12.
[47] J. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre, M. Léonard, É. Prieur-Gaston, A survey of string orderings and their application to the Burrows-

Wheeler transform, Theor. Comput. Sci. (2017).
[48] J.W. Daykin, N. Mhaskar, W.F. Smyth, Computation of the suffix array, Burrows-Wheeler transform and FM-index in V-order, Theor. Comput. Sci. 880

(2021) 82–96.
[49] J. Daykin, C. Iliopoulos, W. Smyth, Parallel RAM algorithms for factorizing words, Theor. Comput. Sci. 127 (1) (1994) 53–67.
[50] M. Crochemore, J. Désarménien, D. Perrin, A note on the Burrows-Wheeler transformation, Theor. Comput. Sci. 332 (2005) 567–572.
[51] I.M. Gessel, C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Comb. Theory, Ser. A 64 (2) (1993) 189–215.
[52] A.J. Cox, M.J. Bauer, T. Jakobi, G. Rosone, Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform, Bioinformatics

28 (11) (2012) 1415–1419, availability: Code is part of the BEETL library, available as a github repository at https://github .com /BEETL /BEETL.
[53] H. Li, Fast construction of FM-index for long sequence reads, Bioinformatics 30 (22) (2014) 3274–3275, source code: https://github .com /lh3 /ropebwt2.
[54] M.J. Bauer, A.J. Cox, G. Rosone, Lightweight BWT construction for very large string collections, in: CPM, in: LNCS, vol. 6661, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2011, pp. 219–231.
[55] M.J. Bauer, A.J. Cox, G. Rosone, Lightweight algorithms for constructing and inverting the BWT of string collections, Theor. Comput. Sci. 483 (0) (2013)

134–148, availability: Code is part of the BEETL library, available as a github repository at https://github .com /BEETL /BEETL.
[56] J.W. Bentley, D. Gibney, S.V. Thankachan, On the complexity of BWT-runs minimization via alphabet reordering, CoRR, arXiv:1911.03035 [abs], 2019.
[57] J.W. Bentley, D. Gibney, S.V. Thankachan, On the complexity of BWT-runs minimization via alphabet reordering, in: ESA, in: LIPIcs, vol. 173, Schloss

Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2020, pp. 15:1–15:13.
[58] D. Cenzato, V. Guerrini, Z. Lipták, G. Rosone, Computing the optimal BWT of very large string collections, in: Data Compression Conference, DCC 2023,

IEEE, Snowbird, UT, 2023, pp. 71–80.
[59] B. Cazaux, E. Rivals, Linking BWT and XBW via aho-corasick automaton: applications to run-length encoding, in: CPM, in: LIPIcs, vol. 128, Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2019, pp. 24:1–24:20.
[60] D. Cenzato, Z. Lipták, A theoretical and experimental analysis of BWT variants for string collections, in: CPM, in: LIPIcs, vol. 223, Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2022, pp. 25:1–25:18.
[61] H. Bannai, T. Gagie, T. I, Refining the r-index, Theor. Comput. Sci. 812 (2020) 96–108.
[62] N. Cotumaccio, N. Prezza, On indexing and compressing finite automata, in: SODA, SIAM, USA, 2021, pp. 2585–2599.
16

http://refhub.elsevier.com/S0890-5401(23)00071-8/bibEE19B7E313FED0A082BDE1F36DA7161Bs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibEE19B7E313FED0A082BDE1F36DA7161Bs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib100E484EEA170717FAC6250B73111D52s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib4C37579E3415B096E16ED47492A5873Fs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib4C37579E3415B096E16ED47492A5873Fs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibE52D78948389D72116D8141577219C15s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib157077A65D90A8A92A8DA12A68BB2D7Bs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib3801F7F7B535BC37FECE163E3ED5547As1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib11E4D82AD00606DA8BCFF8C1E6EFBC30s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib0BC4D93FD284BF30396A242337CA6F28s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib0BC4D93FD284BF30396A242337CA6F28s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib591CFEE6C4164D538CC5F1392F401DA0s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib591CFEE6C4164D538CC5F1392F401DA0s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib7050624B21FE0403183D8BB343470A6As1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib7050624B21FE0403183D8BB343470A6As1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib513142B3557BF4E0F79650689B5D47FCs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib513142B3557BF4E0F79650689B5D47FCs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib48A2654F0A0AC5AD87B9A940F0D02C2Es1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib48A2654F0A0AC5AD87B9A940F0D02C2Es1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibCD051EF01850B28B690E8ACD3C0C5ABCs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib1E3F97FFEFD58F88213FB7E0370D0AF2s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib369780F5FFECA0A1AE20E5BE2A5201CAs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib173760B8BC3D46E25FDC02AC21402DC1s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib173760B8BC3D46E25FDC02AC21402DC1s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib679CF3D1AF5960DB6EAA2FD3B8C53B8Ds1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib6592B0C1ED9C55159852D9EF9E62F52Bs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibB77DDC832E9D67956C622E7FCC7DEFD6s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib1D9886F5A60E6F3F8927F1FEE9940DF5s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib1D9886F5A60E6F3F8927F1FEE9940DF5s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibC46048E6E101539143DDB9BFB6E4E786s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibC46048E6E101539143DDB9BFB6E4E786s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib9D455D8E47917941847843E3332010EBs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibEF68426906425E9985822785882D86FCs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib2B050BF9FA4F5CE93A8878CEB9738097s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib2B050BF9FA4F5CE93A8878CEB9738097s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibCC451FE540AD003FD5C63FDEA0164BCFs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibCC451FE540AD003FD5C63FDEA0164BCFs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib5CCF0B558CB10797E4A24CFB7044830Fs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib60CA6CCF8CC9A5E9C8BDE5260EB721A0s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibEF3F3C967A155E611AE27330D384C2C9s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibD22FFAA7B6F707B90F6F4FFF865EDFC8s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibD22FFAA7B6F707B90F6F4FFF865EDFC8s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibD09546DB1FCF20313A207526C0AFCEDCs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibD09546DB1FCF20313A207526C0AFCEDCs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib1735BC62849FD916BF37650CE085CCFAs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib1735BC62849FD916BF37650CE085CCFAs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib60CB6F764053736B7041377216D62E56s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib60CB6F764053736B7041377216D62E56s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib8FD28C818CE464368AC44995DF43C7A7s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib8FD28C818CE464368AC44995DF43C7A7s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib8517F5C7C08D2EA7C57F380C651EA044s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib625A4135778BD3B85025197FF4CFC4D5s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib6A20C078216B61185F1766D7C400DE85s1
https://github.com/BEETL/BEETL
https://github.com/lh3/ropebwt2
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib4D90617F1E7714C0CCB2BFABF34A4783s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib4D90617F1E7714C0CCB2BFABF34A4783s1
https://github.com/BEETL/BEETL
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib02260166520005C7645302C9F2AA5A5Ds1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib699D06A05D354E7114277F6805B06129s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib699D06A05D354E7114277F6805B06129s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibF103589603EC608B75EF0013AA0F7DBCs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibF103589603EC608B75EF0013AA0F7DBCs1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib7019C4FED42F0DE8333D7240C1270A09s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bib7019C4FED42F0DE8333D7240C1270A09s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibB01408AD7F9CAD21EC1BAC5FB0083C32s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibB01408AD7F9CAD21EC1BAC5FB0083C32s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibC208A493EFB5C1B9147F394E5C4AC632s1
http://refhub.elsevier.com/S0890-5401(23)00071-8/bibDEF52803EAEBC948F875776C454E8E85s1

	A new class of string transformations for compressed text indexing
	1 Introduction
	2 Notation and background
	2.1 Known BWT variants
	2.2 Number of runs minimization

	3 BWTs based on context adaptive alphabet orderings
	3.1 Counting occurrences of patterns in context adaptive BWTs
	3.2 Inverting context adaptive BWTs
	3.3 Special case: ordering based on context length
	3.4 Special case: ± ordering

	4 BWTs based on local orderings
	4.1 Local orderings and r-index
	4.2 An alternative view of local orderings

	5 Run minimization problem
	6 Conclusions and future directions of research
	Declaration of competing interest
	Data availability
	Funding
	References

