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Introduced about thirty years ago in the field of data compression, the Burrows-Wheeler 
Transform (BWT) is a string transformation that, besides being a booster of the performance 
of memoryless compressors, plays a fundamental role in the design of efficient self-
indexing compressed data structures. Finding other string transformations with the same 
remarkable properties of BWT has been a challenge for many researchers for a long time. In 
this paper, we introduce a whole class of new string transformations, called local orderings-
based transformations, which have all the “myriad virtues” of BWT. As a further result, we 
show that such new string transformations can be used for the construction of the recently 
introduced r-index, which makes them suitable also for highly repetitive collections. In 
this context, we consider the problem of finding, for a given string, the BWT variant that 
minimizes the number of runs in the transformed string.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Michael Burrows and David Wheeler introduced in 1994 a reversible word transformation [2], denoted by BW T , that 
turned out to have “myriad virtues”.1 At the time of its introduction in the field of text compression, the Burrows-Wheeler 
Transform was perceived as a magic box: when used as a preprocessing step it would bring rather weak compressors to be 
competitive in terms of compression ratio with the best ones available [4]. In the years that followed, many studies have 
shown the effectiveness of BWT and its central role in the field of data compression, due to the fact that it can be seen as 
a “booster” of the performance of memoryless compressors [5–7].

The importance of this transformation has been further increased when in [8] it was proven that, in addition to making 
easier to represent a string in space close to its entropy, it also makes easier to search for pattern occurrences in the original 
string. After this discovery, data transformations inspired by the BWT have been proposed for compactly representing and 
searching other combinatorial objects such as: trees, graphs, finite automata, and even string alignments. See [9,10] for an 
attempt to unify some of these results and [11] for an in-depth treatment of the field of compact data structures.

✩ A preliminary version of this paper appeared in [1].

* Corresponding author.
E-mail addresses: raffaele.giancarlo@unipa.it (R. Giancarlo), giovanni.manzini@unipi.it (G. Manzini), antonio.restivo@unipa.it (A. Restivo), 

giovanna.rosone@unipi.it (G. Rosone), marinella.sciortino@unipa.it (M. Sciortino).
1 We are using the catch phrase “myriad virtues” as a tribute to Alberto Apostolico who first used this expression in the seminal paper [3].
https://doi.org/10.1016/j.ic.2023.105068
0890-5401/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

https://doi.org/10.1016/j.ic.2023.105068
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2023.105068&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:raffaele.giancarlo@unipa.it
mailto:giovanni.manzini@unipi.it
mailto:antonio.restivo@unipa.it
mailto:giovanna.rosone@unipi.it
mailto:marinella.sciortino@unipa.it
https://doi.org/10.1016/j.ic.2023.105068
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Going back to the original Burrows-Wheeler string transformation, we can summarize its salient features as follows: 1) 
it can be computed and inverted in linear time, 2) it produces strings which are provably compressible in terms of the 
high order entropy of the input, 3) it supports pattern search directly on the transformed string in time proportional to 
the pattern length. It is the combination of these three properties that makes the BWT a fundamental tool for the design 
of compressed self-indices. In Section 2 we review these properties and also the many attempts to modify the original 
design. However, we recall that, despite more than twenty years of intense scrutiny, the only non trivial known BWT variant 
that fully satisfies properties 1–3 is the Alternating BWT (ABWT). The ABWT has been introduced in [12] in the field of 
combinatorics of words and its basic algorithmic properties have been described in [13,14].

In this paper we introduce a new whole family of transformations that satisfy properties 1–3 and can therefore replace 
the BWT in the construction of compressed self-indices with the same time efficiency of the original BWT and the potential 
of achieving better compression. We show that our family, supporting linear time computation, inversion, and search, is 
a special case of a much larger class of transformations that also satisfy properties 1–3 except that, in the general case, 
inversion and pattern search may take quadratic time. Our larger class includes as special cases also the BWT and the 
ABWT and therefore it constitutes a natural candidate for the study of additional properties shared by all known BWT 
variants.

More in detail, in Section 3 we describe a class of string transformations based on context adaptive alphabet orderings. 
The main feature of the above class of transformations is that, in the rotation sorting phase, we use alphabet orderings that 
depend on the context (i.e., the longest common prefix of the rotations being compared). We prove that such transforma-
tions are always invertible and provide a general inversion algorithm that runs in time quadratic with respect to the string 
length. We consider also some subclasses of such transformations in which the permutations associated to each prefix are 
defined by “simple” rules and we show that they have more efficient inversion algorithms.

In Section 4 we consider the subclass of transformations based on local orderings. In this subclass, the alphabet orderings 
only depend on a constant portion of the context. We prove that local ordering transformations can be inverted in linear 
time, and that pattern search in the transformed string takes time proportional to the pattern length. Thus, these transfor-
mations have the same properties 1–3 that were so far prerogative of the BWT and ABWT. We also show that it is always 
possible to implement an r-index [15] on the top of a BWT based on a local ordering, thus making this transformation 
suitable also for highly repetitive collections.

Having now at our disposal a wide class of string transformations with the same remarkable properties of the BWT, it 
is natural to use them to improve BWT-based data structures by selecting the one more suitable for the task. In this paper 
we initiate this study by considering the problem of selecting the BWT variant that minimizes the number of runs in the 
transformed string. The motivation is that data centers often store highly repetitive collections, such as genome databases, 
source code repositories, and versioned text collections. For such collections theoretical and practical evidence suggests that 
entropy underestimates the compressibility of the collection and we can obtain much better compression ratios exploiting 
runs of equal symbols in the BWT [15–26].

As we review in Section 2.2, run-minimization is a challenging and multifaceted problem: we believe the introduction of 
a new class of string transformations makes it even more interesting. In Section 5 we contribute to this problem showing 
that, for constant size alphabet, for the most general class of transformations considered in this paper, the BWT variant that 
minimizes the number of runs can be found in linear time using a dynamic programming algorithm. Although such result 
does not lead to a practical compression algorithm, such minimal number of runs constitutes a lower bound for the number 
of runs achievable by the other variants described in this paper and therefore constitutes a baseline for further theoretical 
or experimental studies.

A preliminary version of this paper appeared in [1]. In this new version we introduce and analyze new BWT variants, in 
particular the ones described in Sections 3.3 and 3.4. We also added Section 4.1 where we show that the recently introduced 
r-index [15] can be adapted to work with some of the proposed BWT variants. This result is particularly important since the 
r-index is particularly suited to highly repetitive collections which are relevant for the run minimization problem discussed 
in Section 5. Another new result is the characterization of local ordering transformations contained in Section 4.2. The 
new version also includes a more in-depth discussion of the existing literature: Section 2.1 has been largely extended and 
Section 2.2 is new. Finally, we have added some carefully designed examples in order to better illustrate some subtle points 
of the exposition. All references have been updated, and new relevant results have been discussed in the paper.

2. Notation and background

Let � = {c1, c2, . . . , cσ } be a finite ordered alphabet of size σ with c1 < c2 < · · · < cσ , where < denotes the standard 
lexicographic order. We denote by �∗ the set of strings over �. Given a string x = x1x2 · · · xn ∈ �∗ , we denote by |x| its 
length n. We use ε to denote the empty string. A factor of x is written as x[i, j] = xi · · · x j with 1 ≤ i ≤ j ≤ n. A factor of 
type x[1, j] is called a prefix, while a factor of type x[i, n] is called a suffix. The i-th symbol in x is denoted by x[i]. Two 
strings x, y ∈ �∗ are called conjugate, if x = uv and y = vu, where u, v ∈ �∗ . We also say that x is a cyclic rotation of y. 
A string x is primitive if all its cyclic rotations are distinct. Given a string x and c ∈ �, we write rankc(x, i) to denote the 
number of occurrences of c in x[1, i], and selectc(x, j) to denote the position of the j-th c in x.

Given a primitive string s, we consider the matrix of all its cyclic rotations sorted in lexicographic order. Note that the 
rotations are all distinct by the primitivity of s. The last column of the matrix is called the Burrows-Wheeler Transform of 
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Fig. 1. The original BWT matrix for the string s = aabaaabac (left), and the ABWT matrix of cyclic rotations sorted using the alternating lexicographic order 
(right). In both matrices the horizontal arrow marks the position of the original string s, and the last column L is the output of the transformation.

the string s and it is denoted by bwt(s) (see Fig. 1 (left)). It is shown in [2] that bwt(s) is always a permutation of s, and 
that there exists a linear time procedure to recover s, given bwt(s) and the row index I of s in the rotations matrix (it is 
I = 2 in Fig. 1 (left)).

In this paper we follow the assumption usually done for text indexing that the last symbol of s is a unique end-of-string 
symbol. This guarantees the primitivity of s. In addition, this assumption implies that, if we compare two cyclic rotations 
symbol-by-symbol, they differ as soon one of them reaches the end-of-string symbol (or sooner). This property ensures 
that all families of transformations defined in this paper can be computed in linear time using a suffix tree as described in 
Section 3 (note that the BWT and ABWT can be computed in linear time also for a generic primitive string [6,14,27]). The 
reader will notice that the algorithms computing the inverse transformations provided in this paper do not make use of the 
unique end-of-string symbol and therefore are valid for any primitive string.

The BWT has been introduced as a data compression tool: it was empirically observed that bwt(s) usually contains 
long runs of equal symbols. This notion was later mathematically formalized in terms of the empirical entropy of the 
input string [5,7]. For k ≥ 0, the k-th order empirical entropy of a string x, denoted as Hk(x), is a lower bound to the 
compression ratio of any algorithm that encodes each symbol of x using a codeword that only depends on the k symbols 
preceding it in x. The simplest compressors, such as Huffman coding, in which the code of a symbol does not depend on the 
previous symbols, typically achieve a (modest) compression bounded in terms of the zeroth-order entropy H0. This class of 
compressors are referred to as memoryless compressors. More sophisticated compressors, such as Lempel-Ziv compressors 
and derivatives, use knowledge from the already seen part of the input to compress the incoming symbols. They are slower 
than memoryless compressors but they achieve a much better compression ratio, which can be usually bounded in terms 
of the k-th order entropy of the input string for a large k [28].

It is proven in [5, Theorem 5.4] that the informal statement “the output of the BWT is highly compressible” can be 
formally restated saying that bwt(s) can be compressed up to Hk(s), for any k > 0, using any tool able to compress up to the 
zeroth-order entropy. In other words, after applying the BWT, we can achieve high order compression using a simple (and 
fast) memoryless compressor. This property is often referred to as the “boosting” property of the BWT. Another remarkable 
property of the BWT is that it can be used to build compressed indices. It is shown in [29] how to compute the number 
of occurrences of a pattern x in s in O(tR |x|) time, where tR is the cost of executing a rank query over bwt(s). This result 
has spurred a great interest in data structures representing compactly a string x and efficiently supporting the queries rank, 
select, and access (return x[i] given i, which is a nontrivial operation when x is represented in compressed form) and there 
are now many alternative solutions, with different trade-offs. In this paper, we assume a RAM model with word size w and 
an alphabet of size σ = wO(1) . Under this assumption, we make use of the following result (Theorem 5.1 in [30]):

Theorem 2.1. Let s denote a string over an alphabet of size σ = wO(1) . We can represent s in |s|H0(s) + o(|s|) bits and support 
constant time rank, select, and access queries.

The assumption σ = wO(1) is only required to ensure that rank, select, and access take constant time; we use it to 
simplify the statements of our results. It is straightforward to verify that for larger alphabets our results still hold with the 
bounds on the running times multiplied by the largest of the cost of the above operations over the larger alphabets.

The properties of the BWT of being compressible and searchable combine nicely to give us indexing capabilities in com-
pressed space. Indeed, combining a zeroth-order representation supporting rank, select, and access queries with the boosting 
property of the BWT, we obtain a full text self-index for s that uses space bounded by |s|Hk(s) +o(|s|) bits for k = o(logσ (n)), 
see [29,31,11,32] for further details on these results and on the field of compressed data structures and algorithms that orig-
inated from this area of research.

2.1. Known BWT variants

We observed that the salient features of the Burrows-Wheeler transformation can be summarized as follows: 1) it can 
be computed and inverted in linear time, 2) it produces strings which are provably compressible in terms of the high order 
3
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entropy of the input, 3) it supports linear time pattern search directly on the transformed string. The combination of these 
three properties makes the BWT a fundamental tool for the design of compressed self-indices. Over the years, many variants 
of the original BWT have been proposed; in the following we review them, in roughly chronological order, emphasizing to 
what extent they share the features 1–3 mentioned above.

The original BWT is defined by sorting in lexicographic order all the cyclic rotations of the input string. In [33] Schindler 
proposes a bounded context transformation that differs from the BWT in the fact that the rotations are lexicographically 
sorted considering only the first � symbols of each rotation. In [34,35] it has been shown that this variant satisfies properties
1–3, with the limitation that the compression ratio can reach at maximum the �-th order entropy and that it supports 
searches of patterns of length at most �. Chapin and Tate [36] have experimented with computing the BWT using a different 
alphabet order. This simple variant still satisfies properties 1–3, but it clearly does not bring any new theoretical insight. In 
the same paper, the authors also propose a variant in which rotations are sorted following a scheme inspired by reflected 
Gray codes. This variant shows some improvements in terms of compression, but it has never been analyzed theoretically 
and it does not seem to support property 3.

A variant called Bijective BWT (BBWT), has been proposed in [37] as a transformation which is bijective even without 
assuming that the input string s be primitive. In this variant, the output consists of the last characters of the lexicographi-
cally sorted cyclic rotations of all factors of the Lyndon Factorization [38] of s. This variant has been recently shown in [39]
to satisfy 1, but being based on the cyclic rotations of the Lyndon factors property 2 has not been studied. As for prop-
erty 3, searching a pattern P directly on the (compressed) transformed string takes O(|P | log |P |) time [40]. Note that the 
related variant Extended BWT [41], which takes as input a collection of strings, supports search in linear O(|P |) time for 
the problem of circular pattern matching [42–45,27,46].

More recently, some authors have proposed variants in which the lexicographic order is replaced by a different order 
relation. The interested reader can find relevant work in a recent review [47]. It turns out that these variants satisfy property
1 in part but nothing is known with respect to properties 2 and 3 (an outline of a substring matching algorithm is given 
in [48, Sec. 6] without any time analysis, but is based on substrings rather than single symbols). A major problem when 
using ordering substantially different from the lexicographic order is that the rotations prefixed by the same substring 
are not necessarily consecutive in the sorted matrix. For instance, if the cyclic rotations of Fig. 1 are sorted according to 
the V-order [49], the two rotations prefixed by ab are not consecutive in the ordering. Since all the BWT-based searching 
algorithms work by keeping track of the rows prefixed by larger and larger pattern substrings, the fact that these rows are 
not consecutive makes the design of an efficient algorithm extremely difficult.

To the best of our knowledge, the only non trivial BWT variant that fully satisfies properties 1–3 is the Alternating BWT 
(ABWT). This transformation has been derived in [12] starting from a result in combinatorics of words [50] characterizing 
the BWT as the inverse of a known bijection between words and multisets of primitive necklaces [51]. The ABWT is defined 
as the BWT except that when sorting rotation instead of the standard lexicographic order we use a different lexicographic 
order, called the alternating lexicographic order. In the alternating lexicographic order, the first character of each rotation 
is sorted according to the standard order of � (i.e., a < b < c). However, if two rotations start with the same character 
we compare their second characters using the reverse ordering (i.e., c < b < a) and so on, alternating the standard and 
reverse orderings in odd and even positions. Fig. 1 (right) shows how the rotations of an input string are sorted using the 
alternating ordering and the resulting ABWT.

The algorithmic properties of the BWT and ABWT are compared in [13,14]. It is shown that they can be both computed 
and inverted in linear time and that their main difference is in the definition of the LF-map, i.e. the correspondence between 
the characters in the first and last column of the sorted rotations matrix. In the original BWT, the i-th occurrence of a 
character c in the first column F corresponds to the i-th occurrence of c in the last column L, i.e., equal characters appear 
in the same relative order in F and L. Instead, in the ABWT, equal characters appear in the reverse order in F and L. That is, 
the i-th occurrence of c from the top in F corresponds to the i-th occurrence of c from the bottom in L. Since this modified 
LF-map can still be computed efficiently using rank operations, the ABWT can replace the BWT for the construction of 
self-indices. The experiments in [13] show that the ABWT has essentially the same compression performance of the BWT. 
However, we are not aware of any experiment using the ABWT for indexing purposes.

Note that in [13,14] the ABWT has been studied within a larger class of transformations in which the alphabet ordering 
depends on the position of the characters within any cyclic rotation. Although the “compression boosting” property holds 
for all transformations in this class, in [14] it is shown that the algorithmic techniques, based on the computation of the 
rank function on the transformed string, that allow us to invert BWT and ABWT in linear time cannot be applied to any 
other transformation in that class [14, Theorem 5.9]. Indeed, apart from the BWT and ABWT, for all the transformations 
studied in [14], the best inversion algorithm takes cubic time [14, Theorem 4.4]. In this paper we improve this result by 
providing a quadratic time algorithm for a general class of string transformations that includes the one studied in [13,14]
(see Section 3.3).

2.2. Number of runs minimization

The problem of minimizing the number of runs in a transformed string has been studied initially for collections of 
(relatively short) strings because of the relevance of this setting for bioinformatics applications [52,53]. String collections 
are usually transformed with the Extended BWT [41] (EBWT) or with an EBWT variant in which a distinct end-marker is 
4
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Fig. 2. The generalized BWT matrix for the string s = aabaaabac computed using the orderings πε = (b, a, c), πa = (c, a, b), πaa = (b, a, c), πaaba = (a, c, b), 
and πx = (a, b, c) for every other substring x. The horizontal arrow marks the position of the original string s; the last column L is the output of the 
transformation. The range R[aa] = [4, 3] of the three rows prefixed by aa are highlighted in gray.

appended to each string, making the collection ordered [54,55]. In [52] the authors introduce some heuristics for reordering 
the strings on-the-fly during the EBWT construction in order to reduce the number of runs. Experiments show that these 
heuristics yield a significant improvement in the overall compression. Recently, the authors of [56,57] extended these results 
obtaining an offline linear time algorithm for finding the string reordering yielding the minimum number of runs, and 
showing that the optimal reordering can reduce the number of runs by a factor �(logσ n), where n is the sum of the string 
lengths and σ is the alphabet size. The authors in [58] present the first tool that guarantees to output a BWT of a string 
collection with minimal number of runs, in terms of reordering of input strings. The authors of [59] consider instead the 
case in which the same end-marker is appended to each string and for this setting provide an O(σn) time algorithm to 
find the string reordering that minimize the number of BWT runs. See [60] for a recent review of BWT variants for string 
collections and their properties with respect to the number of runs.

The problem of minimizing the number of runs in a single-string BWT has been studied in [57] where the authors 
prove that the decision problem of finding the alphabet permutation that minimizes the number of runs in the BWT is 
NP-complete and the optimization variant is APX-hard. Note that, by introducing new BWT variants, we are adding a new 
dimension to the run minimization problem: in addition to minimizing over alphabet or string reorderings, we can also 
minimize over a given class of BWT variants.

3. BWTs based on context adaptive alphabet orderings

In this section we introduce a class of string transformations that generalize the BWT in a very natural way. Given a 
primitive string s, as in the original BWT definition, we consider the matrix containing all its cyclic rotations. In the original 
BWT, the matrix rows are sorted according to the standard lexicographic order. We generalize this concept by sorting the 
rows using an ordering that depends on their common context, i.e., their longest common prefix. Formally, for each string x
that prefixes two or more rows, we assume that an ordering πx is defined on the symbols of �. When comparing two rows 
which are both prefixed by x, their relative rank is determined by the ordering πx . Once the matrix rows have been ordered 
with this procedure, the output of the transformation is the last column of the matrix, as in the original BWT. Thus, these 
BWT variants are based on context adaptive alphabet orderings. For simplicity, in the following, we call them context adaptive 
BWTs.

We denote by M∗(s) the matrix obtained using this generalized sorting procedure, and by L = BW T∗(s) the last column 
of M∗(s). Clearly L depends on s and the ordering used for each common prefix. Since we can arbitrarily choose an alphabet 
ordering for any substring x of s, and there are σ ! orderings to choose from, our definition includes a very large number of 
string transformations.

Example 3.1. In Fig. 2, the generalized BWT matrix for the string s = aabaaabac is shown. The ordering associated to the 
empty string ε is πε = (b, a, c) so, among the rows that have no common prefix, first we have those starting with b, then 
those starting with a, and finally the one starting with c. Since πa = (c, a, b), among the rows which have a as their common 
prefix, first we have the ones in which c is the next letter, then the ones in which a is the next letter, followed by the ones 
in which b is the next letter. The complete ordering of the rows is established in a similar way on the basis of the orderings 
πx . In particular, the ordering between any pair of rows is determined by πx where x is their longest common prefix.

This class of transformations has been mentioned in [5, Sect. 5.2] under the name of string permutations realized by a Suffix 
Tree (the definition in [5] is slightly more general; for example it includes the bounded context BWT, which is not included 
in our class). Indeed, one can easily see that L = BW T∗(s) can also be obtained by visiting the suffix tree of s in depth first 
order, except that when we reach a node u (including the root), we sort its outgoing edges according to their first characters 
using the permutation associated to the string ux labeling the path from the root to u. During such a visit, each time we 
reach a leaf, we write the symbol associated to it: the resulting string is exactly L = BW T∗(s) (see Fig. 3 (right)).
5
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Fig. 3. Standard suffix tree for s = aabaaabac with the symbol c used as a string terminator (left), and suffix tree with edges reordered using the same 
orderings of Figure 2 (right). To each leaf it is associated the symbol preceding in s the suffix spelled by that leaf. Note that reading left to right the symbols 
associated to each leaf gives bwt(s) (left) and BW T∗(s) (right).

Although in [5] the authors could not prove the invertibility of context adaptive transformations, which we do in Sec-
tion 3.2, they observed that their relationship with the suffix tree has two important consequences: 1) they can be computed 
in O(n logσ) time, and 2) they provably produce highly compressible strings, i.e., they have the “boosting” property of trans-
forming a zeroth order compressor into a k-th order compressor.

Summing up, context adaptive transformations generalize the BWT in two important aspects: efficient computation (lin-
ear time in n) and compressibility. In [5], the only known instances of reversible suffix tree induced transformations were 
the original BWT and the bounded context BWT. In the following, we prove that all context adaptive BWTs defined above 
are invertible. Interestingly, to prove invertibility we first establish another important property of these transformations, 
namely that they can be used to count the number of occurrences of a pattern in s, which is another fundamental property 
of the original BWT.

We conclude this section by observing that both the BWT and ABWT belong to the class we have just defined. To get 
the BWT, we trivially define πx to be the standard � ordering for every x, and to get the ABWT, we define πx to be the 
standard � ordering for every x with |x| even, and the reverse ordering for � for every x with |x| odd.

3.1. Counting occurrences of patterns in context adaptive BWTs

Let L = BW T∗(s) denote a context adaptive BWT. In the following, we assume that L is enriched with data structures 
supporting constant time rank queries as in Theorem 2.1. In this section we show that, given L and the set of alphabet 
permutations used to build M∗(s), then we can determine in O(σ |x|2) time the set of M∗(s) rows prefixed by x, for any 
string x. We preliminarily observe that, by construction, this set of rows, if non-empty, form a contiguous range inside 
M∗(s). This observation justifies the following definitions.

Definition 3.2. Given a string x, we denote by R[x] = [bx, �x] the range of rows of M∗(s) prefixed by x. More precisely, if 
R[x] = [bx, �x], then row i is prefixed by x if and only if it is bx ≤ i < bx + �x . If no rows are prefixed x, we set R[x] = [0, 0]. 
Note that �x is the number of occurrences of x in the circular string s.

For technical reasons, given x, we are also interested in the set of rows prefixed by the strings xc as c varies in �. Clearly, 
these sets of rows are consecutive in M∗(s) and their union coincides with R[x].

Definition 3.3. Given a string x, we denote by R∗[x] the set of σ + 1 integers [bx, �1, �2, . . . , �σ ] such that bx is the lower 
extreme of R[x] and, for i = 1, . . . , σ , �i is the number of rows of M∗(s) prefixed by xci .

Since R[x] is the union of the ranges R[xc], for c ∈ �, we have that, if R∗[x] = [bx, �1, �2, . . . , �σ ], then R[x] = [bx, 
∑

i �i]. 
Note also that the ordering of the ranges R[xc] within R[x] is determined by the permutation πx . As observed in Section 2, 
we can assume that L supports constant time rank queries. This implies that, in constant time, we are also able to count 
the number of occurrences of a symbol c inside a substring L[i, j].

Example 3.4. Let us consider the string s = aabaaabab and the generalized BWT matrix illustrated in Fig. 2. Since πaa =
(b, a, c), we have that R∗[aa] = [4, 2, 1, 0], therefore R[aa] = [4, 2 + 1 + 0] = [4, 3].

Lemma 3.5. Given R∗[x] and the permutation πx, the set of values R[xci] for all ci ∈ � can be computed in O(σ ) time.
6
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Proof. If R∗[x] = [bx, �1, �2, . . . , �σ ], then R[xci] = [b, �] with

b = bx +
∑

j:c j<πx ci

� j, � = �i (1)

where the summation in (1) is done over all j ∈ {1, 2, . . . , σ } such that c j is smaller than ci , according to the permutation 
πx . �
Lemma 3.6. Let x = x1x2 · · · xm be any length-m string with m > 1. Then, given R∗[x1 · · · xm−1] and R∗[x2 · · · xm], the set of values 
R∗[x1 · · · xm] can be computed in O(σ ) time.

Proof. By Lemma 3.5, given R∗[x1 · · · xm−1] and xm , we can compute R[x1 · · · xm] = [bx, �x]. In order to compute R∗[x1 · · · xm], 
we additionally need the number of rows prefixed by x1x2 · · · xmc, for any c ∈ �. These numbers can be obtained by first 
computing the ranges R[x2 · · · xmc] using again Lemma 3.5. The number of rows prefixed by x1x2 · · · xmc can be obtained by 
counting the number of x1 in the portions of L corresponding to each range R[x2 · · · xmc]. The counting takes O(σ ) time 
since we are assuming L supports constant time rank as in Theorem 2.1. �
Theorem 3.7. Suppose we are given BW T∗(s) with constant time rank support, and the set of permutations used to compute the 
matrix M∗(s). Then, given any string x = x1x2 · · · xp , the range of rows R[x] prefixed by x can be computed in O(σ p2) time and 
O(σ p) space.

Proof. We need to compute R[x1x2 · · · xp]. To this end we consider the following scheme, inspired by the Newton finite 
difference formula:

R∗[x1] R∗[x1x2] R∗[x1x2x3] · · · R∗[x1x2 · · · xp−1] R∗[x1x2 · · · xp]
R∗[x2] R∗[x2x3] R∗[x2x3x4] · · · R∗[x2 · · · xp]
R∗[x3] R∗[x3x4] · · ·

...

R∗[xp]
Using Lemma 3.6, we can compute R∗[xi · · · x j] given R∗[xi · · · x j−1] and R∗[xi+1 · · · x j]. Thus, from two consecutive entries in 
the same column, we can compute one entry in the following column. To compute R[x1x2 · · · xp] we can for example perform 
the computation bottom-up, proceeding row by row. In this case, we are essentially computing the ranges corresponding to 
xp , xp−1xp , xp−2xp−1xp and so on, in a sort of backward search. However, we can also perform the computation top down, 
diagonal by diagonal, and in this case, we are computing the ranges corresponding to x1, x1x2, and so on, up to x1 · · · xp . 
In both cases, the information one needs to store from one iteration to the next is O(p) R∗[·] values, which take O(σ p)

words. By Lemma 3.6, the computation of each value takes O(σ ) time, so the overall complexity is O(σ p2) time. �
Example 3.8. For the transformation described in Fig. 2, the computation of Theorem 3.7 for computing R[aba] works as 
follows

R∗[a] = [3,1,3,2] R∗[ab] = [7,2,0,0] R∗[aba] = [7,1,0,1]
R∗[b] = [1,2,0,0] R∗[ba] = [1,1,0,1]
R∗[a] = [3,1,3,2]

Finally, since R∗[aba] = [7, 1, 0, 1], we have R[aba] = [7, 1 + 0 + 1] = [7, 2].

Note that our scheme for the computation of R[x] is based on the computation of R∗[y] for O(p2) substrings y of x. If 
x has many repetitions, the overall cost could be less than quadratic. In the extreme case, x = ap , R[x] can be computed in 
O(σ p) time.

3.2. Inverting context adaptive BWTs

We now show that the machinery we set up for counting occurrences can be used to retrieve s given BW T∗(s), thus to 
invert any context adaptive BWT.

Lemma 3.9. Given R∗[x] = [bx, �1, �2, . . . , �σ ] and a row index i with bx ≤ i < bx + ∑σ
j=1 � j , the (|x| + 1)-st character of row i can 

be computed in O(σ ) time.
7
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Fig. 4. The BW T K matrix for the string s = aabaaabac computed using the triple of alphabet permutations K = {(c, a, b), (b, c, a), (b, a, c)}. The horizontal 
arrow marks the position of the original string s; the last column L is the output of the transformation.

Proof. Let ρ1, . . . , ρσ denote the alphabet symbols reordered according to permutation πx , and let �′
1, . . . , �

′
σ denote the 

values �1, . . . , �σ reordered according to the same permutation. Since i ∈ R[x], row i is prefixed by x. Since the rows prefixed 
by x are sorted in their (|x| + 1)-st position according to πx , the (|x| + 1)-st symbol of row i is the symbol ρ j such that

bx +
∑

1≤h< j

�′
h ≤ i < bx +

∑

1≤h≤ j

�′
h �

Theorem 3.10. Given BW T∗(s) with constant time rank support, the permutations πx used to build the matrix M∗(s), and the row 
index I containing s in M∗(s), the original string s can be recovered in O(σ |s|2) time and O(σ |s|) working space.

Proof. Let s = s1s2 · · · sn . From BW T∗(s), in O(n) time we retrieve the number of occurrences of each character in s and 
hence the ranges R[c1], R[c2], . . . , R[cσ ]. From those and the row index I , we retrieve the first character of s, i.e. s1. 
Next, counting the number of occurrences of s1 in the ranges of BW T∗(s) corresponding to R[c1], R[c2], . . . , R[cσ ], we 
compute R∗[s1]. Finally, we show by induction that, for m = 1, . . . , n − 1, given R∗[s1s2 · · · sm], we can retrieve sm+1 and 
R∗[s1s2 · · · sm+1] in O(mσ) time. By using Lemma 3.9, from R∗[s1s2 · · · sm] and i we retrieve sm+1. Next, assuming we 
maintained the ranges R∗[s j · · · sm], for j = 1, . . . , m we can compute R∗[s j · · · sm+1] adding one diagonal to the scheme 
shown in the proof of Theorem 3.7. By Lemma 3.6, the overall cost is O(σ |s|2) time as claimed. �

The above theorem establishes that all context adaptive BWTs are invertible. Note that in our definition, the alphabet 
ordering πx associated to x can depend on the whole string x; in this sense the context has full memory. We consider 
this an important conceptual result. However, from a practical point of view, a transformation whose definition requires 
the specification of O(|s|) alphabet permutations appears rather cumbersome. For this reason, in the following, we consider 
some subclasses of transformations in which the permutations associated to each prefix are defined by “simple” rules. We 
show that, in some cases, nontrivial generalized BWTs have simpler and more efficient inversion algorithms.

3.3. Special case: ordering based on context length

In [13], the authors introduced a set of generalized transformations that turns out to be a subclass of context adaptive 
BWTs. Given a k-tuple of alphabet permutations K = (π0, π1, . . . , πk−1), using the notation of this paper, the transformation 
BW T K in [13] is defined as the context adaptive BWT in which the permutation πx associated to the string x is π�

where � = |x| mod k. Hence, the permutation associated to each string only depends on its depth, and the k-tuple K =
(π0, π1, . . . , πk−1) completely determines the transformation. In [13,14], it was shown that for every K the transformation 
BW T K can be inverted in O(|s|3) time; Theorem 3.10 therefore constitutes an alternative faster inversion algorithm. To our 
knowledge, no faster algorithm is known, even for k = 2, when the whole transformation depends on just two alphabet 
permutations.

Example 3.11. Let us consider k = 3 and the k-tuple of alphabet permutations K = (π0, π1, π2), where π0 = (c, a, b), π1 =
(b, c, a) and π2 = (b, a, c). The BW T K matrix for the string s = aabaaabac is shown in Fig. 4. If x is the longest common 
prefix between two rows, their ordering depends on the respective characters at the (|x| + 1)-th position, according to the 
permutation π|x| mod 3. For instance, abacaabaa < abaaabaca, since aba is the longest common prefix and c < a, according to 
π0.

3.4. Special case: ± ordering

Given a permutation π of the alphabet �, we denote by π R the reversal of π , that is, the permutation such that, for 
each pair of symbols ci , c j in �,
8
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Fig. 5. Example of a transformation based on a ± ordering. Let π = (b, a, c) so that π R = (c, a, b). The generalized BWT matrix M∗(s) for the string 
s = aabaaabac is computed using the following permutations πε = π , πa = π R , πaa = π , πaaba = π R , and πx = π for every other substring x. The horizontal 
arrow marks the position of the original string s; the last column L is the output of the transformation. The range R[aba] = [7, 2] of the rows prefixed by 
aba, i.e. 7 and 8, are colored in cyan. In light brown, the row 2 of the range R[bac] = [2, 1]. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

π R(ci) < π R(c j) ⇐⇒ π(ci) > π(c j).

Let π denote an arbitrary permutation of �. We consider the subclass of context adaptive transformations in which the 
permutation πx associated to each substring x can be either π or its reversal π R . Once π is established, for each string x
we only need an additional bit to specify the ordering πx . So, for every string x and character c, checking if πx = πxc can 
be done in constant time. For this subclass we say that the matrix M∗(s) is based on a ± ordering (see example in Fig. 5). 
In this section, we show that, for the transformations in this subclass, the space and time for inversion can be reduced by 
a factor σ .

Lemma 3.12. Let M∗(w) be based on a ± ordering, and let x = x1x2 · · · xm be any length-m string, with m > 1. Then, given 
R[x1 · · · xm−1], R[x2 · · · xm] and R[x2 · · · xm−1], we can compute R[x1 · · · xm] in O(1) time assuming the permutation π or π R as-
sociated to each substring is known, and BW T∗(s) has constant time rank support.

Proof. Let y = x1 · · · xm−1 and z = x2 · · · xm−1. Recall that there is a bijection between the rows in R[y] and the rows in 
R[z] whose last symbol is x1. We exploit this bijection to find R[yxm] given R[zxm]. The size of R[yxm] is equal to the 
number of rows in R[zxm] ending with x1, so to completely determine R[yxm] we just need to compute how many rows 
in R[y] precede R[yxm]. If πy = πz this number is equal to the number of rows in R[z] above R[zxm] and ending with x1. 
If πy 	= πz , since necessarily πy = π R

z , this number is equal to the number of rows in R[z] below R[zxm] and ending with 
x1. Since counting the number of rows ending in x1 in a given range can be done using rank operations on BW T∗(s), the 
lemma follows. �
Example 3.13. Consider again the example of Fig. 5. Let x = abac, so y = aba and z = ba. It is R[y] = [7, 2], R[z] = [1, 2]
and R[zc] = [2, 1]. The rows of R[y] are highlighted in cyan, the rows of R[zc] are highlighted in light brown in Fig. 5. 
The number of rows in R[zc] = [2, 1] ending with a is 1. This a number gives the size of R[yc] = R[abac]. Moreover, since 
πy = πz = π , we need to count the number of rows in R[z] = [1, 2] above R[zc] = [2, 1] and ending with a. This a number 
is 1. This means that one row in R[y] = [7, 2] precedes R[yc] = R[abac]. Hence, R[abac] = [8, 1]. If we consider x = aa, it 
is y = a and z = ε , R[y] = R[a] = R[za] = [3, 6], R[z] = R[ε] = [1, 9]. The number of rows in R[za] = [3, 6] ending with a
is 3. So, 3 is the size of R[aa]. Since πa 	= πε , we have to count the number of rows in R[z] = [1, 9] below R[za] = [3, 6]
and ending with a. Such a number is 1. This means that there is 1 row in R[y] = R[a] = [3, 6] that precedes R[ya] = R[aa], 
hence R[aa] = [4, 3].

Lemma 3.14. Suppose M∗(s) is based on a ± ordering. Given BW T∗(s) with constant time rank support, and any string x =
x1x2 · · · xp , we can compute the range of rows prefixed by x in O(p2) time and O(p) space.

Proof. We reason as in the proof of Theorem 3.7, except that because of Lemma 3.12 we work with R[·] instead of R∗[·]. 
The thesis follows observing that each entry takes O(1) space and can be computed in O(1) time. �
Theorem 3.15. Suppose M∗(s) is based on a ± ordering. Given BW T∗(s) with constant time rank support and the row index i con-
taining s in M∗(s), we can retrieve the original string s in O(|s|2) time and O(|s|) working space.
9



R. Giancarlo, G. Manzini, A. Restivo et al. Information and Computation 294 (2023) 105068
Fig. 6. The local ordering BWT matrix for the string s = aabaaabac computed using the orderings πε = (b, c, a), πa = (b, a, c), πb = πc = (a, b, c). Here, the 
alphabet orderings associated to each non-empty string depend only on the last symbol of the string, i.e. k = 1. The horizontal arrow marks the position of 
the original string s; the last column L is the output of the transformation. The rows starting with ba (highlighted in cyan and light brown, respectively) 
are in a order-preserving correspondence to the rows starting with a and ending with b. The last character of each BWT-run is underlined.

4. BWTs based on local orderings

In this section, we consider the context adaptive transformations in which the alphabet ordering πx associated to each 
string x only depends on the last k symbols of x, where k is fixed. In the following, we refer to these string transfor-
mations as BWTs based on local orderings. We show that local ordering transformations have properties very similar to the 
original BWT, since they can be inverted in linear time and also support the search of a pattern in the original text in time 
proportional to the pattern length.

We start by analyzing the case k = 1. For such local ordering transformations, the matrix M∗(s) depends on only σ + 1
alphabet orderings: one for each symbol plus the one used to sort the first column of M∗(s). See Fig. 6 for an example. The 
following lemma establishes an important property of local ordering transformations.

Lemma 4.1. If M∗(s) is based on a local ordering with k = 1, then for any pair of characters x1 and x2 , there is an order-preserving 
bijection between the set of rows starting with x1x2 and the set of rows starting with x2 and ending with x1 .

Proof. Note that both sets of rows contain a number of elements equal to the number of occurrences of x1x2 in the circular 
string s. In the following, we write s[i · · · ] to denote the cyclic rotation of s starting with s[i]. Assume that rotations s[i · · · ]
and s[ j · · · ] both start with x2 and end with x1 and let h > 1 denote the first column in which the two rotations differ. 
Rotation s[i · · · ] precedes s[ j · · · ] in M∗(s) if and only if s[i + h − 1] is smaller than s[ j + h − 1] according to the alphabet 
ordering associated to symbol s[i + h − 2] = s[ j + h − 2]. The two rotations s[i − 1 · · · ] and s[ j − 1 · · · ] both start with x1x2
and their relative position also depends on the relative ranks of s[i + h − 1] and s[ j + h − 1] according to the alphabet 
ordering associated to symbol s[i + h − 2] = s[ j + h − 2]. Hence the relative order of s[i − 1 · · · ] and s[ j − 1 · · · ] is the same 
as the one of s[i · · · ] and s[ j · · · ]. �
Example 4.2. Consider the string s = aabaaabac and the local ordering BWT computed using the orderings πε = (b, c, a), 
πa = (b, a, c), πb = πc = (a, b, c) by using k = 1. As proved in Lemma 4.1, the bijection between the set of rows 1 and 2
starting with ba (highlighted in cyan and light brown, respectively) and the set of rows 8 and 9 starting with a and ending 
with b is order-preserving. Analogously, the bijection mapping the rows 5, 6, and 7 starting with aa to the rows 4, 5, and 
7, respectively.

Armed with the above lemma, we now show that for local ordering transformations we can establish much stronger 
results than the ones provided in Section 3.1.

Lemma 4.3. Suppose BW T∗(s) is based on a local ordering with k = 1 and supports constant time rank queries. Let x = x1x2 · · · xm

be any length-m string with m > 1. Then, given R[x1x2], R[x2] and R[x2 · · · xm], the value R[x1 · · · xm] can be computed in O(1) time.

Proof. By Lemma 4.1, there is an order preserving bijection between the rows in R[x1x2] and those in R[x2] ending with 
x1. In this bijection, the rows in R[x1 · · · xm] correspond to those in R[x2 · · · xm] ending with x1. Because of this bijection, if, 
among the ordered set of rows starting with x2 and ending with x1, those prefixed by x2 · · · xm are in positions r +1, . . . , r +
h, then, among the rows starting with x1x2, those prefixed by x1x2 · · · xm are consecutive and in positions r + 1, . . . , r + h. 
The lemma follows since if R[x2] = [b, �] and R[x2 · · · xm] = [b′, �′], we have

r = rankx1(L,b′ − 1) − rankx1(L,b − 1), h = rankx1(L,b′ + �′ − 1) − rankx1(L,b′ − 1),

and, if R[x1x2] = [b̄, �̄], it is R[x1 · · · xm] = [b̄ + r, h]. �
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Theorem 4.4. Suppose BW T∗(s) is based on a local ordering with k = 1 and supports constant time rank queries. After a O(σ 2) time 
preprocessing, given any string x = x1x2 · · · xp , the range of rows prefixed by x can be computed in O(p) time and O(σ 2 + p) space.

Proof. We reason as in the proof of Theorem 3.7, except that because of Lemma 4.3 we can work with R[·] instead of R∗[·]
and we only need to compute the first two columns and the diagonal. In the preprocessing step, we compute R[ci] and 
R[cic j] for any pair (ci, c j) ∈ �2. During the search phase, we compute each diagonal entry in constant time. �

Another immediate consequence of Lemma 4.1 is that we can efficiently “move back in the text” as in the original BWT. 
Note this operation is the base for BWT inversion and for snippet extraction and locate operations on FM-indices [29].

Lemma 4.5. Suppose BW T∗(s) is based on a local ordering with k = 1 and supports constant time rank and access queries. Then, after 
a O(σ 2) time preprocessing, given a row index i we can compute in O(1) time the index of the row obtained from the i-th row with a 
circular right shift by one position.

Proof. It suffices to compute the first and last symbol of row i and then apply Lemma 4.1. �
Corollary 4.6. If BW T∗(s) is based on a local ordering with k = 1 and supports constant time rank and access queries, BW T∗(s) can 
be inverted in O(σ 2 + |s|) time and O(σ 2) working space.

The notion of local ordering can be generalized to contexts of size k > 1. The resulting transformations depend on 
1 + σ + σ 2 + · · · + σ k alphabet permutations, one for each string over � of length at most k. Once these permutations 
have been chosen, with the notation of Section 3, we consider the context adaptive transformations in which the alphabet 
ordering πx associated to each string x only depends on the last k symbols of x, or to the last |x| symbols if |x| < k. 
Lemma 4.1 can be generalized to show that, for any (k +1)-tuple x1, . . . , xk+1, there is an order preserving bijection between 
the rows prefixed by x2 · · · xk+1 and ending with x1 and the rows prefixed by x1 · · · xk+1. As a consequence, search and 
inversion can still be performed in linear time with the only difference that the preprocessing phase now takes O(σ k+1)

time and space, since we need to compute and store the values R[x] for all strings x of length up to k + 1.

4.1. Local orderings and r-index

The r-index [15] is a recent variant of the FM-index, still based on the BWT, introduced to efficiently support the locate 
operation on highly repetitive collections. The locate operation is the task of determining the positions, in the original input 
s, of all the occurrences of the pattern. This is usually done storing a subset of the Suffix Array entries (these are called 
Suffix Array samples). The main feature of the r-index is that it supports the locate operation using a number of Suffix Array 
samples equal to the number of runs in the BWT. If the input contains many repetitions such number is much smaller than 
the number of Suffix Array samples used by the standard FM-index, usually 	(n/ logc n) for some constant c > 1.

In this section we show that it is possible to implement an r-index also on the top of a BWT based on a local ordering. 
We start considering the case k = 1. The crucial ingredient of the r-index is the so called Toehold Lemma: this result ensures 
that when we search for a pattern x, in addition to the range of rows prefixed by x, we also obtain the position in s of at 
least one occurrence of x (assuming such occurrence exists). To prove the Toehold Lemma for local orderings, we proceed as 
in Lemma 2 in [61] and we logically mark every character in L which is the last character in a BWT-run, and we store the 
position in s of the marked characters. In addition, for each character c, we store the position in s of the last row prefixed 
by c. This means that the last character of each run in F is augmented with the position in s of that suffix representing this 
character.

Lemma 4.7. Let x = x1 · · · xp be a string that occurs in s. Then, using a BWT based on local ordering, in O(p) time we can compute, in 
addition to the range R[x1 · · · xp] of rows prefixed by x, the position in s of the last row in such a range.

Proof. We proceed by induction on j = p, p − 1, . . . , 1. For j = p the position in s of the last row prefixed by xp is obtained 
by R[xp], which is computed in the preprocessing phase of Theorem 4.4. For j < p, assume that we know the range 
R[x j+1 · · · xp] and the position pos j+1 in s of the last row in that range. Since there is an order preserving bijection between 
the rows in R[x j+1 · · · xp] ending with x j and the rows in R[x j · · · xp], the last row in R[x j · · · xp] corresponds to the last row 
in R[x j+1 · · · xp] ending with x j . If the latter coincides with the last row in R[x j+1 · · · xp], i.e. x j is the last symbol in the 
portion of L corresponding to R[x j+1 · · · xp], then the position of the last row in R[x j · · · xp] in s is simply pos j+1 − 1. If x j
is not the last symbol in the portion of L corresponding to R[x j+1 · · · xp], then the last x j in that range will be the last of a 
BWT-run and therefore will be a marked position. Its position in s will be among the ones we stored, and this will coincide 
with the position of the last row in R[x j · · · xp]. �
Example 4.8. Let us consider the following string s and the column L of its local ordering BWT-matrix, as shown in Fig. 6. 
The column F of the matrix is here also reported.
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Fig. 7. The generalized BWT matrix for the string s = baaabaabaac (left) computed using the orderings πε = (a, c, b), πbaa = (c, a, b), and πx = (a, b, c)
for every other substring x. The local ordering BWT matrix for the same string (right) using the orderings πε = (a, c, b), πa = πb = πc = (a, b, c). In both 
matrices the horizontal arrow marks the position of the original string s, and the last column L is the output of the transformation.

F = b b c a a a a a a

s = a a b a a a b a c

L = a a a a a c a b b
1 2 3 4 5 6 7 8 9

The local ordering BWT matrix for s is computed using the ordering πε = (b, c, a), πa = (b, a, c), πb = πc = (a, b, c), 
as reported in Fig. 6. The last character of each BWT-run in L is underlined. They are L[5], L[6], L[7] and L[9], and the 
corresponding positions in s are 5, 9, 4 and 7, respectively. The correspondence between each underlined symbol in L and 
its position in L is represented by an arrow. In addition, for each character c, we store the position in s of the last row 
prefixed by c. For each of such rows, the correspondent position in s is highlighted by a dashed arrow from the column F
to s. Such positions in s are 7 (row 2), 9 (row 3), and 8 (row 9).

Let us consider the string x = baa. For j = 3, the position p3 = 8 in s of the last row prefixed by x3 = a is obtained by 
R[a] = [4, 6] (i.e., the row 9). For j = 2, we know that there is an order preserving bijection between the rows in R[a] = [4, 6]
ending with a and the rows in R[aa] = [6, 3]. Since x2 = a is not the last symbol in the portion of L corresponding to R[a], 
then the last a in that range (i.e., L[7]) is in a marked position since it is the last symbol of a BWT-run, and its position 
p2 = 4 in s is precisely the position in s of the last row of the range R[aa]. For j = 1, we know that there is an order 
preserving bijection between the row in R[aa] = [6, 3] ending with b and the row in R[baa] = [1, 1]. Since x3 = b is the last 
symbol in the portion of L corresponding to R[aa] (i.e. L[8]), then its position in s is p1 = p2 − 1 = 4 − 1 = 3, which is also 
the position of the last, although unique, row in the range R[baa].

In addition to the Toehold Lemma, the only other ingredients of the r-index are 1) the predecessor data structure P±
from Lemma 3.5 in [15], which is not related to the BWT, and 2) the property that if two consecutive rows of the BWT 
matrix start and end with the same symbols, then rotating them rightward by one position we get two new rows which are 
still consecutive and in the same relative order. This property is valid for local orderings, even if it not valid for the general 
class of context adaptive alphabet orderings, as shown in the following example.

Example 4.9. Fig. 7 shows a generalised BWT matrix based on context adaptive alphabet orderings (on the left) and a local 
ordering BWT matrix (on the right) for the string s = baaabaabaac. Let us consider the rows 3 and 4 of the generalised 
BWT matrix on the left, both starting with a and ending with b, highlighted in cyan and light brown, respectively. It can 
be verified that, if we rotate them rightward we get rows 11 and 9, respectively, which are no longer consecutive nor in 
the same relative order. Instead, let consider the rows 3 and 4 of the local ordering BWT matrix, both starting with a and 
ending with b, highlighted in cyan and light brown, respectively. If we rotate them rightward we obtain the rows 10 and 
11, respectively, which are consecutive and in the same relative order.

For the local orderings with k > 1 the above arguments can be generalized with the limitation that the length of the 
searched pattern must be at least k. The main modification is that we need to store the range R[y] for all strings y of 
length k that occur in s. For each such range we also store the suffix array sample for the last row in the range for an 
overall extra space of O(σ k). To search a pattern x = x1 · · · xp we consider the length-k suffix x′ = xp−k+1 · · · xp and we 
retrieve its range R[x′] and the position in s of the last row in the range. With this information we then use Lemma 4.7 to 
retrieve in p − k steps the range R[x1 · · · xp] and the position in s of the last row of such range.
12
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Fig. 8. The BWT matrix for the string S = aa ab ba aa aa ab ba ac ca computed using the ordering 
 based on the local orderings πε = (b, c, a), πa = (b, a, c), 
πb = πc = (a, b, c). The concatenation of the pairs in the last column of the matrix gives bwt(S) = ab ab ac aa aa ca aa ba ba. The string obtained by concate-
nating the first symbol of each pair in bwt(S) = L (colored in red) is BW T∗(s) = aaaaacabb, where s = aabaaabac, as shown in Fig. 6.

4.2. An alternative view of local orderings

We conclude this section showing an alternative way to derive transformations based on local orderings. Consider for 
simplicity the case k = 1 and assume the transformation BW T∗ is defined by the σ + 1 orderings πε and πc for c ∈ �. 
Consider now the ordering 
 over �2 = � × � defined as follows: Given the pairs x1x2, y1 y2 in �2 it is (x1x2 <
 y1 y2)

iff (x1 	= y1, x1 <πε y1), or (x1 = y1 = c, x2 <πc y2). We now show that BW T∗ is equivalent to the original BWT over the 
alphabet �2 ordered according to 
. To each string s, we associate a new string S over �2, defined by S[i] = s[i]s[i + 1]
with indices taken modulo |s|. Such an approach is described in Example 4.10 in which the strings s = aabaaabac and 
S = aa ab ba aa aa ab ba ac ca are considered.

There is a natural correspondence between rotations of s and S , and because of the definition of 
, the ordering of s’s 
rotations in M∗(s) coincides with the ordering of the corresponding rotations of S in M(S). As a consequence, if bwt(S) (the 
last column of M(S)) has the form bwt(S) = x1 y1 x2 y2 · · · xn yn , we have that BW T∗(s) = x1x2 · · · xn , and the first column 
of M∗(s) is y1 y2 · · · yn . The LF-map applied to M(S) establishes an order preserving bijection between rows ending with 
α ∈ �2 and rows starting with α. If α = x1x2, this translates in M∗(s) to an order preserving bijection between rows starting 
with x2 and ending with x1 and rows starting with x1x2: this establishes an alternative proof of Lemma 4.1.

The above alternative view of local orderings has probably no practical interest: there is no need to work with the 
alphabet �2 to emulate something we can easily do working over �. However, from the theoretical point of view, it is 
intriguing, and deserving further investigation, that a family of BWT variants can be obtained by first transforming the 
string and the alphabet and then applying the standard BWT followed by the string back-transformation.

Example 4.10. Let us consider the string s = aabaaabac. The local ordering BWT matrix for s computed using the ordering 
πε = (b, c, a), πa = (b, a, c), πb = πc = (a, b, c) is reported in Fig. 6. Instead, Fig. 8 shows the BWT matrix M(S) of the 
string S = aa ab ba aa aa ab ba ac ca by using the ordering 
 over the alphabet {aa, ab, ac, ba, bb, bc, ca, cb, cc}. The last column 
of M(S) is bwt(S) = ab ab ac aa aa ca aa ba ba. One can verify that there is correspondence between the rows of the local 
ordering BWT matrix described in Fig. 6 and the rows of M(S). Moreover, the string obtained by concatenating the first 
symbol (colored in red) of each element in bwt(S) is BW T∗(s) = aaaaacabb. Finally the string obtained by concatenating 
the last symbol of each element in bwt(S) gives the first column of the local ordering BWT matrix.

5. Run minimization problem

We consider the following problem: given a string s and a class of BWT variants, find the variant that minimizes the 
number of runs in the transformed string. As we mentioned in the introduction, this problem is relevant for the compression 
of highly repetitive collections. Depending on the class of BWT variants, finding the exact minimum could be a difficult 
problem, so one may want to resort to heuristics. In this context, any lower bound to the minimum number of runs 
achievable by a class of transformations would be useful to assess the quality of the solutions found.

In this section we describe an efficient algorithm to determine a lower bound on the number of runs in the transformed 
string which is valid for all BWT variants discussed in this paper. The lower bound is established by computing the minimal 
number of runs for the most general class we considered: the class of context adaptive BWTs described in Section 3. In this 
class we can select an alphabet ordering πx independently for every substring x. It is easy to see that the only orderings 
that influence the output of the transform are those associated to strings corresponding to the internal nodes of the suffix 
tree of s. Nevertheless, the number of possible choices is ≈ (σ !)O(|s|) which is exponential even for constant alphabets.

Given a suffix tree node v , we denote by bw(v) the multiset of symbols associated to the leaves in the subtree rooted 
at v (see Fig. 3). We say that a string zv is a feasible arrangement of bw(v) if we can reorder the nodes in the subtree 
rooted at v so that zv is obtained by reading left to right the symbols in the reordered subtree. For example, in the suffix 
tree of Fig. 3 (left), if v is the internal node with upward path aa, it is bw(v) = {a, b, c} and bac, bca, acb, cab are feasible 
13
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arrangements of bw(v), while abc and cba are not feasible arrangements. If τ is the suffix tree root, using the above 
notation our problem becomes that of finding the feasible arrangement of bw(τ ) with the minimal number of runs. The 
following theorem shows that, for constant alphabets, the optimal arrangement can be found in linear time using dynamic 
programming.

Theorem 5.1. Given a string s over an alphabet of size σ =O(1), the context adaptive transformation minimizing the number of runs 
in BW T∗(s) can be found in O(|s|) time.

Proof. Let Opt denote the minimal number of runs. We show how to compute Opt with a dynamic programming algo-
rithm; the computation of the alphabet orderings giving Opt is done using standard techniques. For each suffix tree node 
v and pairs of symbols ci , c j let ρ(v, ci, c j) denote the minimal number of runs among all feasible arrangements of bw(v)

starting with ci and ending with c j . Clearly, if τ is the suffix tree root, then Opt = mini, j ρ(τ , ci, c j).
For each leaf �, it is ρ(�, ci, c j) = 1 if ci = c j = bw(�) and ρ(�, ci, c j) = ∞ otherwise. We need to show how to compute, 

for each internal node v , the σ 2 values ρ(v, ci, c j) for ci , c j in �, given the, up to σ 3 values, ρ(wk, c�, cm), k = 1, . . . , h, 
where w1, . . . , wh are the children of v . To this end, we show that for each ordering π of w1, . . . , wh we can compute in 
constant time the minimal number of runs among all the feasible arrangements of bw(v) starting with ci and ending with 
c j and with the additional constraint that v ’s children are ordered according to π .

To simplify the notation, assume w1, . . . , wh have been already reordered according to π . For k = 1, . . . , h, let 
Mπ [k, c�, cm] denote the minimal number of runs among all strings x such that x = y1 · · · yk , where yt , for t = 1, . . . , k, 
is a feasible arrangement of bw(wt), and with the additional constraints that y1 starts with c� and yk ends with cm (by 
construction every such x is a feasible arrangement of bw(v))). We have

Mπ [1, c�, cm] = ρ(w1, c�, cm)

and for k = 2, . . . , h

Mπ [k, c�, cm] = min
i, j

(
Mπ [k − 1, c�, ci] + ρ(wk, c j, cm) − δi j

)
(2)

where δi j = 1 if i = j and 0 otherwise. Essentially, (2) states that to find the minimal number of runs for w1, . . . , wk we 
consider all possible ways to combine an optimal solution for w1, . . . , wk−1 followed by a feasible arrangement of bw(wk). 
The δi j term comes from the fact that the number of runs in the concatenation of two strings is equal to the sum of the 
runs in each string, minus one if the last symbol of the first string is equal to the first symbol of the second string. Once 
we have the values Mπ [h, ci, c j], the desired values ρ(v, ci, c j) are obtained taking the minimum over all possible alphabet 
ordering π . �
Example 5.2. The run minimization algorithm described in Theorem 5.1 is applied to the standard suffix tree, depicted in 
Fig. 3 (left), for the string s = aabaaabac, where the symbol c used as a string terminator. In Fig. 9 (left) the new tree is 
shown. It is obtained from the standard suffix tree of s by reordering the children of the internal node with upward path 
to the root labeled by a. Here, we denote this node by v . It is easy to see that bw(v) = {a, a, a, b, b, c} and that bbcaaa is 
a feasible arrangement of bw(v), obtained by moving the third child (with upward path ac) to the left. Leaving all other 
edges unchanged, it is easy to verify that the number of runs remains minimized. The ordering π so obtained is defined 
as πa = (c, a, b) and πx = (a, b, c) for every other substring x. The generalized BWT matrix of the correspondent context 
adaptive BWT which minimizes the number of runs is described in Fig. 9 (right).

6. Conclusions and future directions of research

In this paper we introduced a new class of string transformations and showed that they have the same remarkable 
properties of the BWT: they can be computed and inverted in linear time, they support linear time pattern search directly 
in the compressed text, and they can transform a zeroth order compressor into a k-th order compressor (“compression 
boosting” property). This implies that such transformations can replace the BWT in the design of self-indices without any 
asymptotic loss of performance. Given the crucial role played by the BWT even outside the area of string algorithms, we 
believe that expanding the number of efficient BWT variants can lead to theoretical and practical advancements. A natural 
consequence will be the design of “personalized” transformations, where one will choose the “best” alternative to the BWT 
according to costs and benefits dictated by application domains. As an example, motivated by the problem of compressing 
highly repetitive string collections that arises in areas such as bioinformatics, we considered the problem of determining 
the BWT variant that minimizes the number of runs in the transformed string.

Our efficient BWT variants are a special case of a more general class of transformations that have the same properties of 
the BWT but for which we could not devise efficient (linear time) inversion and search algorithms. We believe this larger 
class of transformation should be further investigated: we have shown that some of them do have more efficient inversion 
and search algorithms and this suggests that there could be other subclasses of practical interest. Another possible avenue 
of further research would be the generalizations of our variants to the recently introduced extension of the BWT in the 
areas of graphs, languages and automata [9,10,62].
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Fig. 9. Suffix tree for s = aabaaabac, with edges reordered using the run minimization algorithm described in Theorem 5.1 (left). The generalized BWT 
matrix for the string s computed using the orderings πa = (c, a, b), πx = (a, b, c) for every other substring x. The horizontal arrow marks the position of 
s (right). Each leaf of the tree is associated with the symbol preceding the suffix in s spelled by that leaf. Note that reading left to right the symbols 
associated to each leaf gives BW T∗(s).
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