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Abstract: In dealing with the algorithmic aspects of intelligent systems, the analogy with the biologi-
cal brain has always been attractive, and has often had a dual function. On the one hand, it has been
an effective source of inspiration for their design, while, on the other hand, it has been used as the
justification for their success, especially in the case of Deep Learning (DL) models. However, in recent
years, inspiration from the brain has lost its grip on its first role, yet it continues to be proposed in its
second role, although we believe it is also becoming less and less defensible. Outside the chorus, there
are theoretical proposals that instead identify important demarcation lines between DL and human
cognition, to the point of being even incommensurable. In this article we argue that, paradoxically,
the partial indifference of the developers of deep neural models to the functioning of biological
neurons is one of the reasons for their success, having promoted a pragmatically opportunistic
attitude. We believe that it is even possible to glimpse a biological analogy of a different kind, in that
the essentially heuristic way of proceeding in modern DL development bears intriguing similarities
to natural evolution.

Keywords: brain–computer analogy; algorithmic explainability; incommensurable algorithmic
solutions; black-box

1. Introduction

The analogy between brain and computer has always been a driving force in the field
of Artificial Intelligence (AI), as a source of inspiration for the design of any algorithm
underlying intelligent systems on the one hand, and as a justification for why some
algorithmic technologies were able to achieve similar (or superior) performance to human
ones in solving certain tasks on the other.

Both of these accounts of the brain–computer analogy, however, seem to be called into
question by recent advances of modern AI based on deep learning techniques. On the one
hand, it has emerged that the adoption of algorithmic strategies other than those presumed
to be adopted in a biological brain has led to wider success, with results that significantly
exceed human performance; on the other hand, the analogy between modern artificial
neural models and biological ones appears increasingly inconsistent [1], in the physical
structure, in the type of abstraction operated on the input data and in the implemented
algorithmic solutions, so much so as to argue that the two cognitive models may be
incommensurable [2]. The term incommensurable is probably a problematic term in this
context, as it can be interpreted with multiple meanings, but we will cover the subject in
more detail in Section 3.

The weakening of the analogy between the brain and the computer, which could be
considered a value in itself in the design of the algorithmic aspects of neural networks,
changes things. With the abandonment of the analogy with the brain at all costs in the design
of the algorithms underlying a cognitive architecture, we have returned to an opportunistic
attitude, whereby the effectiveness of a cognitive model is measured again only based on
its performance: if it fulfills the task for which it was designed, then it is a good application
model, otherwise not.
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Regarding the second aspect, the need for a plausible explanation of the efficiency
of the method seems to be a purely theoretical instance, but there are also more practical
implications. For several applications there is a requirement that is known as “Explainable
AI” (XAI) [3–5], which implies that the results of the solution can be understood by
humans. This need for explanation has prompted research on automatic methods that
provide interpretations of individual predictions made by DL models. For example, Local
Interpretable Model-agnostic Explanations (LIME) [6] is a simplified approximation of the
original DL model, which is interpretable; SHapley Additive exPlanation (SHAP) [7] assigns
scores to the original model features that mostly contribute to an individual prediction.
Even if these methods provide interesting insights on DL model behavior, they are exposed
to the very same problem: how to ensure the faithfulness of the automatic generated
explanations for a prediction made by inherently opaque models. Despite their opacity [8],
the analogy with the functioning of a biological brain allowed the algorithms’ ancestors of
modern deep learning systems to be more acceptable, and not fully understanding them
could be justified by our limited knowledge of how a biological brain works [1].

Technically speaking, the crux of the XAI problem in deep learning lies in the fact that
artificial neural networks do not provide programmers with clear representations of their
algorithmic functioning [9–11]. Deep neural networks lack the interpretability of the model,
so when we consider why a computer makes a particular decision or prediction instead
of another, we remain ignorant about the reason for the decision. This lack of knowledge
about decisions made by an intelligent system has important implications, ranging from
the practical to the ethical to the legal.

In this work, we address the issue of providing some explanations of the reason for
the failure of the analogy between biological cognitive models and the algorithmic logics
adopted by modern deep learning systems, embracing the emerging thesis of incommensu-
rability of the two cognitive models proposed by the scholar Beatrice Fazi [2], which is in
contrast to the position of many scholars. Then, we also try to provide a justification for the
success of modern artificial cognitive systems despite their persistent opacity, highlighting
some aspects that make them closer to the biological cognitive model, more than what can
emerge from recent studies.

Specifically, we discuss the fact that modeling a successful cognitive system, biological
or artificial, can be the result of an opportunistic approach to design. After all, even nature,
in the implementation of the notion of adaptation, works in an opportunistic way: if a
biological model works better than another, it has more chances of surviving over time,
regardless of the elegance of the solution adopted for adaptation.

A cognitive system that self-adapts works opportunistically by providing solutions that
are not (necessarily) elegant and do not need to be explained by logical rules. Evolution,
through natural selection, therefore produces cognitive models that work, but which
nevertheless can remain opaque to any attempt at explainability.

2. Deep Learning and the Explainability Problem

The most striking change in AI in recent years is due to the family of algorithmic
techniques used in modern deep learning systems [12]. These techniques represent the
latest evolution of artificial neural networks organized in layers [13]. Deep learning is
responsible for the current resurgence of AI [14] after several decades of slow and unsatis-
factory progress. Thanks to efficient algorithmic techniques, together with their enormous
computing capabilities, modern computers seem able to act without being explicitly pro-
grammed, modifying their underlying mathematical functions and defining their behavior
on the basis of the data provided in input and producing decisions or forecasts.

The levels of efficiency achieved by intelligent systems based on deep learning were
completely unexpected, given that they are based on algorithmic techniques that derive
from artificial neural networks, an approach to AI that was stagnant at the beginning of
this century. After decades of intense development, artificial neural networks seemed to
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have exhausted their potential. However, applying minor tweaks to the initial design led
to a resurrection so impressive that it remained largely inexplicable.

Deep learning actually works well from an engineering point of view; so good that it is
difficult to understand why [9]. The decision-making of quasi-autonomous artificial agents
powered by deep learning affects millions of people every day. The range of decisions
covered by deep learning is vast. Thus there are certainly sociological and marketing
factors contributing to the current fortunate period of deep learning, but this is obviously
not sufficient to justify the effectiveness of such algorithmic techniques. For this reason, in
recent years, there has been growing attention on finding valid explanations for this success.
The main two explanations generally point to hardware performance and neuroscience [9],
but scholars have long agreed that both of these explanations are not adoptable. First,
there is a lot of skepticism about attributing the success of deep learning to computing
power alone.

The second justification, that traces the effectiveness of such systems to their con-
nection with neuroscience, has been very common in the past and is often stated as an
undisputed fact. More recently, however, the role of neuroscience in explaining the efficacy
of deep learning appears to have failed in its goal [1].

Technically, this aspect is referred to as the opacity of an algorithm, a widespread prob-
lem in modern computer science that can be associated with many widely used algorithms,
such as social classification and positioning mechanisms, spam filters, credit card fraud
detection, results listings in a search engine, market segmentation and advertising, just to
name a few, and it is no coincidence that these classification mechanisms are in many cases
based on deep learning and machine learning algorithms.

The scholar Jenna Burrel, in her work [8], distinguishes three forms of opacity: opacity
as a business secret or intentional state, opacity as technical illiteracy and an opacity that
derives from a lack of explainability of the algorithm. The latter is the one that interests
us most in this work, a form of opacity that derives, for example, from the mismatch
between the characteristic mathematical optimization of machine learning and the needs
of reasoning on a human scale and of semantic interpretation styles. It is a form of opacity
that is often confused with the latter as part of the general sense that algorithms and code
are very technical, complex and difficult to understand [8].

Explainability is a key word for present and future algorithmic cultures, raising equally
unique social and ethical challenges. (Jenna Burrel [8])

However, it is interesting to note that what makes deep learning techniques powerful
often also makes their theoretical support opaque. In this context, deep learning algorithms
can be traced back to black boxes [15], tools that appear to work very well but for which it
is not as clear how and why they work. The knowledge generated and encapsulated in
these models remains, in part, implicit due to the very nature of these tools: the non-linear
structure of the hidden mathematical functions, the abstraction of the data they produce,
the distributed character of the network representations, and the presence of numerous
configurations of its large sets of variables.

Thus, strange as it may seem, there is still no formal explanation for why deep learning
math is so effective. Perhaps, the domain that appears most appropriate for a justification
of the functioning of deep learning is that of mathematics [1]. In a recent paper, Berner
et al. [16] describe the new field of mathematical analysis of deep learning, giving partial
answers to some relevant questions concerning such techniques: the outstanding general-
ization power of overparametrized neural networks, the role of depth in deep architectures,
the apparent absence of the curse of dimensionality, the surprisingly successful optimiza-
tion performance despite the non-convexity of the problem, understanding what features
are learned, why deep architectures perform exceptionally well in physical problems, and
which fine aspects of an architecture affect the behavior of a learning task in which way.
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3. Incommensurable Cognitive Models

The brain provides animals with a behavioral flexibility that is unmatched in our most
sophisticated digital computers. Biological brains are constantly adapting to the uncertain,
noisy and rapidly changing world they find themselves immersed in. It is therefore not
surprising that the idea of drawing inspiration from biological neural architectures both
for the design of microprocessors—the so-called brain in silicon [17]—and for the design of
artificial intelligent systems, has been a driving force since the birth of the first computers.

Regarding the design of the neuromorphic hardware, Plebe and Grasso [17] identify
three main periods during which this idea was transformed into practical projects. The
first neural hardware was designed by Marvin Minsky in 1951 [18], based on the logical
interpretation of the neural activity of McCulloch and Pitts [19], and was followed by a few
other attempts. After a long period of an almost total lack of progress, a renewed interest
sparked in the late 1980s, driven by the success of neural algorithms in software [13], with
several funded projects in Europe, the United States and Japan [20]. However, by the
beginning of this century, almost none of the results of all that effort had reached maturity.
In recent years, a new wave of enthusiasm for neural hardware has spread, driven by some
large projects funded in Europe and the United States for realistic brain simulations [21].
In this case, a revolution in the design of microprocessors was also foreseen, in terms that
closely resemble those of the previous two periods. A revolution that has never happened.
Although we are not currently able to predict the future of neuromorphic hardware, the
principles used to promote this venture appear theoretically wrong, and therefore the
premises for the success of this approach are weak [17].

On the other hand, the discourse relating to algorithmic aspects of neural networks is
different, even if the conclusions seem to go in the same direction.

Initially, the similarity with the functioning of a biological brain was considered a use-
ful cue for the efficacy of the purpose: if the analogy worked then it was considered a good
thing, otherwise different ways of dealing with the problem were investigated. However,
this way of thinking had become less popular over the past two or three decades. More
recently, however, with the success of deep neural networks, things seem to have changed
again and the initial opportunistic attitude seems to be back in vogue again. The resonance
of the successes of deep learning has sparked intense reflections and discussions within
the cognitive sciences and philosophy [9,22–26] and the analogy between the biological
brain and the artificial cognitive models has been even more heavily questioned, mainly
because of the persistent opacity of such models [8,15].

Yet deep learning is by no means a perspective that conflicts with the idea of designing
a certain cognitive architecture in a biologically inspired way. On the contrary, we argue it
ultimately derives from the central role that connectionism has given to learning and this,
in turn, is an idea that is based on the way the brain’s learning works and that comes from
the biological environment.

However, recent achievements in deep learning have provided some surprising
counter-proofs of the biological-brain analogy, in which the adoption of strategies other
than those adopted by the brain is successful.

Perconti and Plebe [1] suggest two possible justifications for the XAI problem. The first
justification is linked to the opacity of the biological cognitive model and therefore to the
fact that our knowledge of how the brain deals with certain problems is incomplete. From
this follows our inability to translate this solution into the correct algorithmic approach for
an artificial agent. An alternative justification is that the algorithmic solutions adopted by a
biological brain are not the most effective to be implemented in an artificial cognitive model.

It should be added that there are neural models that attempt to adhere much more rig-
orously than DL to brain mechanisms and processes that have been functionally identified
and are empirically justified. One of the best example is SPAUN [27], based on the Neural
Engineering Framework [28], the functional and anatomical architecture of which broadly
matches the organization of the cortex and of several subcortical nuclei. Models of this sort
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are excellent for the exploration of cognitive abilities, but they are not at all competitive
with DL in application fields.

Here we argue a third justification that embraces the recent hypothesis of the incom-
mensurability of the two cognitive models advanced by the researcher Beatrice Fazi [2].
Specifically, we discuss how the mechanisms put in place by biological evolution, linked
to the specific constraints of an organic system that imposes more tortuous paths, have
led to solutions that are not comparable to the solutions taken in the modeling of digital
cognition. However, it is important to underline that the solutions adopted by biological
systems cannot be defined as better or worse than the solutions implemented in an artificial
cognitive model: they are simply incommensurable.

The key idea is that recognizing the incommensurability between the way nature
and machines construct cognitive models implies recognizing the ontological and episte-
mological disparity between the way humans and computational agents make decisions.
Thus, inevitably, this discrepancy is reflected in the way such decisions might be told or
represented by humans and artificial algorithmic agents, respectively.

In defense of the this thesis, we highlight some of the profound differences between
the two cognitive models by evaluating, in the following sections, the physical struc-
ture of the models, the differences in the learning paradigm and the differences in the
abstraction model.

3.1. Structural Issues

It is self-evident that, when comparing brains and computers, the first difference that
stands out is at a structural level, although some similarities can be observed.

We can observe that both biological brain and a computer base their functioning
on electricity, but this analogy is ephemeral. The electrical energy for digital comput-
ing is in fact conducted by metals, such as copper, the fastest conductor available, and
semiconductors, such as silicon and germanium, which allow the flow of electrons to be
controlled at the maximum possible speed. The biological model has instead faced a huge
disadvantage in dealing with electricity, compared to human-made devices, as metals and
semiconductors cannot be used inside living organisms. Given the abundant availability of
sodium in the marine environment during the Paleozoic, nature opted for the use of ions,
the only electrical conductors compatible with organic materials available at that time. The
biophysical breakthrough in the exploitation of electricity in animals was in fact the ion
channel, a sort of natural electrical device, which first appeared as a potassium channel
about three billion years ago in bacteria, then evolved into the sodium channel 650 million
years ago, which is currently the most important neural channel [29].

Of course, evolution has had its problems in allowing biological cognitive models to
deal with electricity, but it has also had much more imagination in designing such models.
In fact, neurons are not all the same. There are hundreds of different types of neurons
that have been identified in the mammalian brain. Neurons can range in size from few
micrometers up to several centimeters in length [30]. The number of inputs to a cell can
range from around 500 or less (in the retina) to well over 200,000 (Purkinje cells in the
cerebellum). Even in the new era of three-dimensional semiconductors, which could adapt
to the density of a massive connection pool in the nervous system, technology would not
be sufficient as a basis for engineering the layered structure of a biological brain.

It has been a traditionally held view that the ways of exploiting electricity in the brain
and in the computer lead to two different kind of computation: analogical and digital. This
is undoubtedly an important differentiation, but its actual scope has been widely reviewed
in the light of advances in philosophy of computation. There is currently a convergence on
a broader notion of computation, which Piccinini and Bahar [31] call generic computation that
can encompass brains, computers, and possibly other physical devices. It is defined as the
processing of vehicles—entities or variables that can change state according to rules that are
sensitive to certain properties of the vehicle and, in particular, to then differences between
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different portions of the vehicles [32]. Assuming that brains process medium-independent
vehicles, it follows that both computers and brains are generic computation devices.

3.2. The Learning Paradigm

Learning is the behavioral modification that follows, or is induced by, an interaction
with the environment and is the result of experiences that lead to the establishment of
new response configurations to external stimuli. It is one of the fundamental cognitive
phenomena for evolution and involves many animal species in addition to man; the
development and survival of individuals is based on their ability to learn.

The learning paradigm is also one of the most successful loans from the mind and
brain to the world of digital computing, a loan that has accompanied the design of artificial
intelligent systems since their inception. Alan Turing [33] himself, with extraordinary fore-
sight, imagined the creation of artificial brains which, instead of being rigidly programmed
in their tasks, could learn them on their own through a series of experiences. Inspired by
neuroscience, he also imagined the presence of distributed interconnected elements and
the possibility of organizing the system by strengthening or cutting connections based
on experience.

From a simple idea, the learning paradigm became a reality about 30 years after the
appearance of the first digital computers with the invention of the first artificial neural
networks. Today, the “deep” version of those early neural networks is responsible for the
astonishing resurgence of artificial intelligence.

One might therefore think that the analogy with the learning of a biological brain has
paid off. Once again, however, this analogy seems illuminating, but only at an appropri-
ate distance.

The success of the artificial neural network [13] has in fact nothing to do with neu-
roscience, and instead derives from the gradient methods, developed in mathematics for
the minimization of the continuously differentiable function [34]. The resulting learning
algorithm is very efficient and is called the backpropagation algorithm. This method,
conceived by Geoffrey Hinton [35], the father of deep learning, however drastically differs
from biological learning.

If w is the vector of all the learnable parameters in a network, and L(x, w) is the
measure of the error of the network with parameters w when applied to sample x, the
back-propagation updates the parameters iteratively, according to the following formula:

wt+1 = wt − η5w L(xt, wt), (1)

where t spans all available samples xt, and η is the learning rate.
Today, deep neural networks can still learn with algorithms quite close to the good old

backpropagation, even if this term has fallen into disuse, replaced by Stochastic Gradient
Descent (SGD) [36]. Its basic formulation is as follows:

wt+1 = wt − η5w
1
M

M

∑
i
L(xi, wt), (2)

and the similarity with the standard backpropagation equation is immediately noticed.
Instead of calculating the gradients on a single sample t, in Equation (1) a stochastic

estimate is made on a random subset of dimension M of the entire dataset and at each
iteration step t a different subset is sampled, with the same size.

There have been attempts to more closely reproduce the learning mechanisms put
in place by the biological brain, but every time we try to copy biological learning tech-
niques in more detail, the advantages have disappeared [1]. Hinton himself, despite his
fundamental contribution in the invention of the back-propagation algorithm, worked on
an alternative neural model called the Boltzmann Machine, which used a more plausible
learning method [37]. However, the performances obtained by these models have never
been up to those obtained with the learning of networks with back propagation. Even
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today, Hinton continues to test whether there are variations in the SGD in the direction
of some sort of biological plausibility, but the results on large-scale benchmarks are well
below those of the SGD [38].

Despite wide efforts, the effectiveness of SGD in deep learning remains elusive. There
are, indeed, theoretical results on the convergence of SGD [39]. Let w∗ be the best possible
vector of parameters, selected by those with a norm less than a scalar B > 0, W =
{w| ‖w‖ ≤ B}:

w∗ = min
w∈W

{
1
N

N

∑
i
L(xi, w),

}
(3)

where N is the number of available samples, in the general case w∗ is unknown. Further
let ρ > 0, and assume Equation (2) is run for T iterations with learning rate η = B

ρ
√

T
. Then:

1
N

N

∑
i
L(xi, wT) −

1
N

N

∑
i
L(xi, w∗) ≤ Bρ√

T
. (4)

Therefore, it is possible to achieve an arbitrary convergence with a large enough
number T of iterations. This result, however, has been demonstrated only for the case where
the loss function is convex in w, and this assumption is rarely met in deep learning models.

Furthermore, the sharp advantage of deep over shallow networks remains puzzling,
given that a higher number of layers is likely to lead to complex, non-convex loss functions.
Partial answers to this questions are coming from topological analysis. Bianchini and
Scarselli [40,41] used Betti numbers to investigate the topological properties of the space
of functions generated by neural networks. The term “Betti number” was introduced by
Henri Poincaré after the work of Enrico [42], and, informally, refers to the number of holes
on a topological surface, in a given dimension. Bianchini and Scarselli found different
asymptotic expressions for the Betti numbers of the topology generated by all functions in
neural networks for shallow and deep networks. The analysis is limited to networks with
a single binary output, and the topology is investigated for the set of all ~x for which the
output of the network is positive, as is typical in a binary classifier. Calling such a set Sn
for shallow networks, and Dn for deep ones, with n the overall number of units, the sum
of Betti numbers B() is ruled by the following equations:

B(Sn) ∈ O
(

nD
)

, (5)

B(Dn) ∈ Ω(2n), (6)

where D is the dimension of the input vector. Equation (5) states that for shallow networks
Betti numbers grows at most polynomially with respect to the number of the hidden units
n, while from Equation (6) it turns out that for deep architectures Betti numbers can grow
exponentially in the number of the hidden units. Therefore, by increasing the number of
hidden units, more complex functions can be generated when the architectures are deep.

Betti numbers based complexity has been later extended to more general neural
models, as classifiers into c classes [43]. For a modelM the sum of Betti numbers can have
the following complexity:

B(Mn) ∈ O
(
(c(h− 1) + 1)c+n

)
, (7)

where n is the total number of the hidden units as in the previous equations, and h is the
number of hidden layers. Equation (7) indicates that, for multi-class neural models too,
the Betti numbers based complexity grows with the increasing depth h. In [44] there is
the demonstration that a simple family of functions on Rd is expressible by a feedforward
neural network with two hidden layers and not by a network with one hidden layer,
unless its width will grow with O(ed). The same group later extended [45] the results to
hyperspherical and hyperellittical functions. In the end, whatever the essential reason why
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SGD works so well for deep networks, these studies clearly show that this reason lies in
mathematical intricacies, which have very little to do with the functioning of brain neurons.

3.3. Information Abstraction

In analyzing the analogy between the biological brain and its digital counterpart, it is
therefore also necessary to pay attention to how a human being (or an animal) receives and
processes stimuli and information, and how it can be said that a digital machine can do
the same. There is also a significant difference between the abstraction choices adopted by
man and those adopted by a computer. As we will see also in this respect, the two models
appear immeasurable because they cannot be measured against each other or compared
with a common standard.

This difference not only concerns the different capacity at which the two models have
to receive input data, but also concerns a specifically computational relationship with the
intelligible, that is, with what is apprehensible only through forms of abstract activity.

Using the metaphor of vision, since much of the most successful scientific research
on deep learning has focused on computer vision, we can say that artificial cognitive
agents see and process inputs differently. Indeed, relatively simple and immediate human
intuitions on how to identify shapes, structures and geometric primitives are not easily
expressed in computational terms.

Here we return to an example reported by Beatrice Fazi [2] relating to the automatic
recognition of human handwriting, a task notoriously difficult to perform computationally
and for which the more traditional programming techniques do not work well but where,
however, deep learning algorithms succeed very well. Suppose we want a program to
recognize a handwritten digit, such as zero. In the case of supervised learning, thousands
of scans of handwritten zeros are sent to the machine as training examples. The program
then learns to recognize the digit, not as a human might do (e.g., by determining that a
zero resembles a vertical oval), but by mechanically detecting complex patterns of darker
and lighter pixels expressed as arrays of numbers.

This is certainly a different form of perception or reception of the input data. However,
beyond the physical reception of data, we are also seeing a specific form of abstractive
ability, similar to an automated mode of conceptualization, that is, an automated mode
of forming internal representations intended to generalize while abstracting from ob-
served facts.

For example, returning to the case of algorithmic recognition of handwritten zeros,
the deep learning model identifies and constructs more relevant representations than any
human programmer could have identified and given to the machine. In fact, these are
representations that a human would not have (and could not have) abstracted in the first
place. The way in which the program extracts and organizes information in terms of
characteristics and then generalizes this information to form the desired “concept”—or, in
computational terms, the representation of the desired output of zero—is therefore entirely
and exclusively computational.

4. A Role for Evolution, and an Artificial Metaphor for It

From what has been discussed in the previous sections, it is evident that the attempts
to compare biological brain models and modern artificial cognitive models have failed
except in specific sectors such as models related to computer vision.

This certainly had repercussions on the explainability of the functioning of artificial
cognitive models. At present, progress in understanding some computational activities is
achieved by trial and error, and operations are often rationalized retrospectively. To put it
differently, “many algorithms used in artificial neural networks are understood only at the
heuristic level, where scientists know empirically that certain training protocols employing
large datasets will result in excellent performance” [46].

However, one must always keep in mind that neural networks share a general cog-
nitive principle that is fundamental to biological neural circuits as well. They are both
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formidable devices for learning sophisticated functions based on experience. Organisms
whose brain circuits have the highest capacity to learn, such as man, owe it to natural
evolution. The ability of neural models to learn, despite the efficiency of deep learning,
does not come for free, nor is there a natural evolution that helps. However, we argue
that the patient and painstaking effort of deep neural model designers can be framed as a
metaphor for natural evolution.

The basic idea of biological evolution is that populations and species of organisms
change over time. The British naturalist Charles Darwin, in his most influential and
controversial book entitled “The Origin of Species” [47], was the first to propose the idea
that living species can evolve and to suggest a mechanism for evolution: natural selection
and genetic drift, that is, the change in the frequency of an existing genetic variant. Based
on this mechanism, hereditary traits that help organisms survive and reproduce become
more common in a population over time.

Such mechanisms of evolution work with the random variation generated by the
mutation of the genetic code of organisms in the passage from one generation to the
next. Although environmental factors are thought to influence the mutation rate, scholars
agree that they are unable to influence the direction of the mutation. Hence, for example,
exposure to harmful chemicals can increase the mutation rate, but it will not be able to
stimulate those mutations that make the body resistant to those chemicals. For this reason
the mutations are random, that is, the fact that specific mutations occur or not is not related
to the usefulness of the mutation itself.

Here, we argue that biological and artificial cognitive models have a lot in common
regarding the process of evolution whereby such models are modified until they converge
to a successful version in solving certain problems. In this context, it is necessary to take into
account the right differences in carrying out this analogy. The metaphor of evolution should
be considered not in the strict sense but serves to help us understand how certain dynamics
can coincide, as well as the results obtained in the process of building a cognitive model.

For instance, one of the interesting thing is that evolution, in its general sense, does
not necessarily converge to the same solution nor the optimal solution but, based on the
conditions and contexts in which it operates, it can produce significantly different solutions
to the same problem. Such solutions, although different, are shaped by the same forces and
are produced by the same laws and, at times, may have nothing in common and can hardly
be compared, therefore they are incommensurable.

4.1. Variable Tuning and Natural Selection

The cognitive model of a living species, such as man, is defined at birth and is written
in its genetic code, the DNA, inherited from the parents. We are talking about a complex
and particularly large piece of code. The human genome, for instance, is made of 3.2 billion
bases but other organisms have different genome sizes, and even much simpler living
beings are characterized by a very complex genetic code: the Sars-Cov-2 virus, for example,
with over 29 million bases is one of the RNA viruses with the longest and most complex
genetic code.

We refer to it as a piece of code since it contains instructions needed to make the proteins
and molecules essential for the growth, development and health of the organism. However,
it also contains the parameters of the biological system (which are the indicators of the
features of the living organism) including the brain, indicating which cells it will contain,
the number of each cell, the size of those cells or how they will interact, just to enumerate a
few of these parameters.

However, if we think of the various changes that occurred in the brain from the first
mammals to the appearance of homo sapiens, we can see how this model has evolved
into the very complex version that we (partially) know today. This took place not only
through changes that made it possible to converge to the current version of the model, but
also through a series of trials and errors implemented by the evolutionary process and
by natural selection. This is a phenomenon known as genetic drift in which some genes
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may occasionally change randomly as they pass from one generation to the next. If these
mutations lead to changes in the model that make it more environmentally friendly then
they are more likely to consolidate in subsequent generations. Evolution then proceeds by
applying random modifications to the biological parameters encoded in the genome and
natural selection chooses which of the proposed mutations is the most suitable for survival
in the environment.

Similarly to what happens in the evolution of a biological cognitive model, we can say
that the modeling of an artificial cognitive system follows a similar path. Neural network
modeling can often involve tuning many different hyperparameters, which are typically
external to the model, which means that they cannot be learned and modified by the
network itself through data processing. They are referred to as optimization parameters
because there is no analytical formula available to compute their appropriate values [48].

For this reason, such values must often be specified by the programmer. Their defini-
tion is based, in most cases, on experience or through the setting of some initial values and,
subsequently, proceeding by trials and errors to modify them until the identification of a
satisfactory solution for a given problem.

Often one of the most painful aspects of Deep Neural Networks modeling and training
is the large number of hyperparameters you are dealing with. These could be, for instance,
the learning rate α, the discount factor ρ and the epsilon ε if the RMSprop optimizer is
used [49,50], or the exponential decay rates β1 and β2 if the Adam optimizer [51] is used. It
is also necessary to define the number of levels in the network or the number of hidden
units for each level. In addition it may be possible to use learning rate planners. However,
those just exposed are just some of the hyperparameters that may need to be configured
when modeling a neural network.

Usually, it can help to classify hyperparameters into two groups: hyperparameters
used for training and those used for model design. A correct choice of hyperparameters
related to model training would allow neural networks to learn faster and achieve improved
performance making the optimization process definitely something you would like to
worry about. Hyperparameters for model design are more related to the structure of neural
networks. A trivial example is the number of hidden layers and the width of these layers.

A really useful summary of the order of importance of hyperparameters was compiled
by Tong Yu and Hong Zhu in their paper [52].

Thus, the evolution of a cognitive model can be seen (in all contexts) as a tuning prob-
lem of the model variables. It is therefore an engineering problem and not an algorithmic
design problem.

However, unlike what happens in the design of algorithms operating in intelligent
artificial systems, biological cognitive models are not driven by a programmer or any higher
entity. There is no grand plan or design of nature. Evolution has no purpose and there are
a lot of mutations in genes that are neutral and have absolutely no positive or negative
effect on survival, and they just happen to be passed on and it is easy to understand how
these neutral aspects are the ones that most resist explainability, both in a biological system
and in an artificial one.

In fact, it is a very common misconception about natural selection, that over time,
evolution selects the characteristics of an organism that are most perfectly suited to its
environment, just as a programmer selects the values of the hyperparameters that allow
for better performance of the neural network. The misunderstanding may be partly due to
the term natural selection itself which conjures up parallels with, for example, a dog breeder
“selecting” the desirable traits in their animals. Indeed, nature is not actually “selecting”
anything: natural selection is a process, not a conscious force. For this reason, there are
good reasons why the natural selection process may not always lead to a “perfect” solution.
First, selection can only act on the available genetic variation. A cheetah, for example,
cannot evolve to run faster if a genetic variant is not available that allows for greater speed.
Secondly, the biological cognitive model is limited in working with the tools that nature
has made available to it. This means that an artificial cognitive system is able to converge
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in a more targeted and faster way to a version capable of obtaining good results in solving
certain tasks. However, there are already some first attempts to leave the evolution of
artificial models to chance by implementing neural networks that automatically modify
their hyperparameters assisted by genetic algorithms [53,54].

Thus, another aspect that disagrees with this analogy could be the fact that, in an
artificial system, evolution is a relatively fast process, unlike what happens in the evolution
of biological models which require unfathomable times. However, it might come as a
surprise to know that biological evolution can also be very fast. We can also see it happen
in real time, if we’re lucky (or unlucky).

Let us take some very small life forms like bacteria, for example, which are actively
becoming resistant to antibiotics. Some have become resistant to so many drugs that
they are rapidly becoming nearly impossible to treat. Mutations in the genes of a virus
responsible for a pandemic, such as that of COVID-19, can occur within a few weeks, giving
rise to several new variants. There is a similar situation even in the not so small life forms.
Just to cite an example, we spend a lot of money on pesticides and herbicides to eradicate
pests and weeds, but both have created all sorts of adaptations over the past half century
to escape death and continue to thrive.

4.2. A World of Different Cognitive Models

The idea of the existence of very different (or even incommensurable) cognitive
models is not something that only shapes the comparison between the biological and the
artificial brains. The world we live in could already provide us with notable examples of
significantly different cognitive models, each with its own peculiar features, each of which
offers different solutions to the same problems, sometimes impenetrable to explainability.

Charles Darwin’s idea that man is essentially a “big-brain ape” and the basic mam-
malian brain uniformity theory was abandoned in the 1990s when the turn to microscopic
study of the human brain [55] highlighted significant differences in the very structure of
the various cognitive models. It was discovered, for example, that in one layer of man’s
primary visual cortex, nerve cells are organized in a complex mesh pattern that is very
different even from that of primates, our closest relatives.

Obviously, the fact that man is an animal implies that his brain has a lot in common
with that of many other animals, for example the components that allow us to manage
movement, thought and the perception of the world around us. However, every animal’s
brain does something a little different and special. For example, cats have very good
eyesight and have more brain capacity for their sense of sight. Likewise, dogs have a
very good sense of smell, so the part of their brain that can identify different smells is
very powerful compared to other animals. However, these examples concern senses that
are familiar to us even if they are considerably more sensitive. Thus it is possible to give
a sort of explanation of the cognitive abilities of these animals, even if they are hardly
imaginable for us.

Taking a step further towards our thesis, we can observe that the cognitive models
developed by other animals make it possible to process information that humans are unable
to perceive. Bats, for example, are able to map their surroundings through sound, thanks
to a sonar system used also in other animals such as dolphins and whales. It has been
discovered that the sounds produced by these species allow them to form a mental map
of their surroundings in three dimensions. More recently it has been discovered that this
ability is even more incredible: the sound waves emitted can penetrate through certain
objects and soft tissues, providing the animal with a kind of X-ray vision. Even electricity,
invisible to us, represents for some animal species a signal that guides them towards
their goal. Sharks and other fish can detect it thanks to a series of channels filled with a
gelatinous material, which open outward through the pores of the skin.

In these specific cases it is much more difficult for us to give an understandable
interpretation of how these species manage to solve certain problems thanks to their
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perceptual models. There is a scientific interpretation but explaining it to those unfamiliar
with the language of science is particularly difficult.

In nature there are cognitive models that are even less penetrable to explainability. For
example, it has recently been discovered that some insects, and also other animals such as
octopus, thanks to the dorsal edge of their eyes, are able to distinguish polarized light, that
is, light that has a specific vector orientation in space. This cognitive ability appears to be
also used by ants and bees to travel great distances to return to their burrows.

Finally there are some cases that still resist explainability. We cite the tendency of
certain animals to align their bodies with the north–south axis of the earth’s magnetic field
during movement. Scientists have been observing this phenomenon for a decade, but have
found no explanation for this ability, which, according to what has been confirmed, is
present in many creatures, from bacteria to vertebrates.

Scientists argue that different species use different systems to do so. For example, there
is a type of pigment called cryptochrome that is present in the eye of some species and is
activated with blue light by a magnetism-sensitive quantum mechanism. It is thought that
this would allow these animals to see the Earth’s magnetic field in the form of a blue trail.

5. Discussion

In order for the algorithmic aspects of a cognitive model, biological or artificial, to
be effectively explained and therefore expressed and shared, there must be a common
experience between the communicator and the recipient of the communication. It is clear
that this is not possible in the case of interactions between man and a computer, since there
is no common phenomenological or existential ground between human abstractions and
those of a computational agent.

The same can be said in the case of interactions between animal species that perceive
the environment differently. Although scientists are able to give an explanation of why
certain cognitive and perceptual models can work, it is not possible to allow an experiential
sharing of the algorithmic aspects that characterize the cognitive model. Physics tells
us how bats see the world around us, but we are unable to imagine or share that kind
of perception.

We must therefore be careful when dealing with, on the one hand, how a human being
receives and processes stimuli or information, and how, on the other, it can be said that
an artificial system (or another animal species) does the same. It is therefore important to
speak of incommensurability between abstract choices made by different cognitive models.

The confirmation of what has been said can be found in the analysis of artificial
cognitive systems capable of self-training without the use of training datasets provided
in input. Let us take the example of AlphaGo Zero, a version of DeepMind’s AlphaGo
software developed in 2017 [56] and created without using training data. AlphaGo Zero
was stronger than any previous version and reached the level of AlphaGo Master in
21 days. The interesting thing is that this software was successful not because it behaved
like a human player, but because it played differently to a human. This condition is
particularly interesting from both a philosophical and a socio-cultural point of view. The
cognitive model has autonomously developed its own completely personal sensitivity in
playing games, far exceeding human performance in this task.

If we accept the fact that artificial cognitive models are incommensurable compared to
the human cognitive model and, consequently, that they are able to develop independent
solutions significantly divergent from those adopted by a biological brain, we could be
able to exploit them as a source of inspiration to guide human investigation.

For example, in her recent work “In Defense of the Black Box”, scholar Elizabeth Holm
reports that in an innovative medical imaging study, scientists trained a deep learning sys-
tem to diagnose diabetic retinopathy, achieving performance that has outdated a committee
of ophthalmological experts, exploiting a variety of factors including cardiological risk, age
and sex. Interestingly, no one had ever noticed gender differences in human retinas before,
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so the results from the artificial cognitive model inspired researchers to investigate how
and why male and female retinas differ.

Alternative cognitive models available in nature (implemented in different animal
species) have often inspired our technology and science in general. For example, the dual
frequency band biosonar of bats inspired scientists to develop a new processing technique
to improve geophysical observations based on the interpretation of two-dimensional radar
images of the subsoil [57].

It follows therefore that incommensurable cognitive models, precisely because they
are such, can contribute substantially and productively to science, technology, engineering
and mathematics to “provide value, optimize results and stimulate inspiration” [15].

6. Conclusions

We have tried to assess the relation between the so-called “neurons” in DL—the
most successful family of algorithms nowadays—and their biological counterparts in
the brain. We found that the common explanation of the outstanding efficiency of DL
thanks to brain inspiration is largely unwarranted. Indeed, DL inherits from brains the
paradigm of learning, bringing models to work by the modification of parameters induced
by experience, but the ways to actually modify the parameters are profoundly different
in the brain and DL models. The lack of a sound mathematical explanation of how
learning works efficiently in DL models is one reason for the mostly heuristic search for
improvements. Sometimes the tuning of the hyperparameters that rule the modification of
parameters during learning proceeds so tentatively as to deserve an analogy with natural
selection. A critical consequence of our analysis is that the glaring opacity of DL models
cannot be justified—therefore accepted—with the excuse of mimicking the brain, which is
inherently opaque. We have discussed a position outside the chorus that highlights the
gap between DL and the human mind, to the point of even being incommensurable. We
suggested that designing DL models without pursuing biological plausibility, even being
incommensurable with human cognition, is a component of their success.

In the end, even the fact that we are unable to provide a logical explanation for why
the algorithms underlying state-of-the-art DL systems work so well should not in itself be
a problem with the applicability of such tools.

Author Contributions: Both authors has contributed equally to this work. Both authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Perconti, P.; Plebe, A. Brain Inspiration Is Not Panacea. In Brain-Inspired Cognitive Architectures for Artificial Intelligence; Advances

in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2021; Volume 1310, pp. 359–364.
2. Fazi, M.B. Beyond Human: Deep Learning, Explainability and Representation. Theory Cult. Soc. 2020, 1–23, [CrossRef]
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