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Abstract. We consider a parametric double phase Dirichlet problem. In the re-
action there is a superlinear perturbation term which satisfies a weak Nehari-type
monotonicity condition. Using the Nehari manifold method, we show that for all pa-
rameters below a critical value, the problem has at least three nontrivial solutions all
with sign information. The critical parameter value is precisely identified in terms of
the spectrum of the lower exponent part of the differential operator.

1. Introduction

Let Ω ⊆ RN be a bounded domain with Lipschitz boundary ∂Ω. In this paper we
study the following parametric double phase Dirichlet problem{

−∆a
pu−∆qu = λ|u|q−2u+ f(z, u) in Ω,

u
∣∣∣
∂Ω

= 0, 1 < q < p, λ ∈ R.
(Pλ)

For a ∈ L∞(Ω) with a(z) ≥ 0 for a.a. z ∈ Ω, by ∆a
p we denote the weighted p-Laplace

differential operator defined by

∆a
pu = div (a(z)|∇u|p−2∇u).

In problem (Pλ) the differential operator is the sum of this weighted p-Laplacian with
a q-Laplace differential operator, where 1 < q < p. So, the differential operator of
problem (Pλ), is not homogeneous and this makes the analysis of the problem more
difficult. In the reaction (right hand side) of (Pλ), we have the combined effects of a
parametric term u→ λ|u|q−2u and of a Carathéodory perturbation f(z, x) (that is, for
all x ∈ R, z → f(z, x) is measurable and for a.a. z ∈ Ω, x→ f(z, x) is continuous). We
assume that f(z, ·) is (p−1)-superlinear as x→ ±∞. We point out that the exponent in
the parametric term equals that of the unweighted part of the differential operator. This
makes problem (Pλ) different from the well-known “concave-convex problem” where in
the reaction we encounter the competing effects of sublinear and superlinear terms.

The differential operator of (Pλ) is related to the so-called “double phase functional”
ρ̂(·) defined by

ρ̂(u) =

∫
Ω

[a(z)|∇u|p + |∇u|q]dz.

The integrand of this functional is ϑ(z, y) = a(z)|y|p + |y|q for all z ∈ Ω, all y ∈
RN . Since we do not assume that the weight a(·) is bounded away from zero (that is,
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ess inf
Ω

a = c > 0), the integrand ϑ(z, ·) exhibits unbalanced growth, namely we have

|y|q ≤ ϑ(z, y) ≤ c0[1 + |y|p] for all z ∈ Ω, all y ∈ RN , some c0 > 0.

Such functionals provide models describing strongly anisotropic materials. The mod-
ulating coefficient a(·) dictates the geometry of the composite made of two different
materials. Marcellini [10] and Zhikov [24], [25] were the first to study such function-
als in the context of problems of the calculus of variations and of nonlinear elasticity
theory. Recently the interest for such functionals was revived by the work of Mingione
and coworkers, who proved important local regularity results for the minimizers of such
functionals. We mention the paper of Baroni-Colombo-Mingione [1] and the references
therein. We also mention the recent work of Ragusa-Tachikawa [19], where the local
regularity results are extended to anisotropic double phase functionals. However, we
mention that a global regularity theory remains so far elusive and this is an additional
difficulty in the study of problems like (Pλ).

Let λ̂1(q) > 0 denote the principal eigenvalue of the operator (−∆q,W
1,q
0 (Ω)). Using

the Nehari manifold method along the lines of Szulkin-Weth [20] and Lin-Tang [8]

(semilinear problems driven by the Dirichlet Laplacian), we show that for all λ < λ̂1(q)
problem (Pλ) has at least three nontrivial solutions, all with sign information (positive,
negative and nodal (sign-changing)) and with least energy (ground state solutions).
Other existence and multiplicity results for different types of double phase equations,
can be found in the papers of Colasuonno-Squassina [2], Gasiński-Papageorgiou [3],
Gasiński-Winkert [4], [5], [6], Liu-Dai [9], Papageorgiou-Rădulescu-Repovš [11], [12],
Papageorgiou-Repovš-Vetro [14], Papageorgiou-Vetro-Vetro [15], [16], Rădulescu [18],
Zeng-Bai-Gasiński-Winkert [22], [23].

2. Mathematical Background - Hypotheses

The analysis of problem (Pλ), uses Musielak-Orlicz spaces. A comprehensive treat-
ment of such spaces can be found in the recent book of Harjulehto-Hästö [7].

Let ϑ : Ω× R+ → R+ (R+ = [0,∞)) be the integrand defined by

ϑ(z, x) = a(z)xp + xq.

Let M(Ω) = {u : Ω→ R measurable}. As usual we identify two such functions which
differ only on a Lebesgue-null set. Then the Musielak-Orlicz space Lϑ(Ω) is defined by

Lϑ(Ω) = {u ∈M(Ω) : ρϑ(u) <∞},
where ρϑ(u) =

∫
Ω

[a(z)|u|p + |u|q]dz. We equip Lϑ(Ω) with the so-called “Luxemburg
norm” defined by

‖u‖ϑ = inf

[
µ > 0 : ρϑ

(
u

µ

)
≤ 1

]
.

With this norm Lϑ(Ω) becomes a separable Banach space which is uniformly convex
(thus reflexive by the Milman-Pettis theorem, see Papageorgiou-Winkert [17], p. 225).

The corresponding Musielak-Orlicz-Sobolev space W 1,ϑ(Ω) is defined by

W 1,ϑ(Ω) = {u ∈ Lϑ(Ω) : |∇u| ∈ Lϑ(Ω)},
with ∇u denoting the weak gradient of u. We equip this space with the following norm

‖u‖1,ϑ = ‖u‖ϑ + ‖∇u‖ϑ for all u ∈ W 1,ϑ(Ω),

where ‖∇u‖ϑ = ‖ |∇u| ‖ϑ. Also, we set W 1,ϑ
0 (Ω) = C∞c (Ω)

‖·‖1,ϑ
.
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According to Theorem 6.2.8, p. 130, of Harjulehto-Hästö [7], the Poincaré inequality

holds for W 1,ϑ
0 (Ω) and so

‖u‖ = ‖∇u‖ϑ for all u ∈ W 1,ϑ
0 (Ω),

is an equivalent norm for W 1,ϑ
0 (Ω). Equipped with these norms, the spaces W 1,ϑ(Ω) and

W 1,ϑ
0 (Ω) are separable Banach spaces which are uniformly convex (hence reflexive).
We impose the following conditions on the exponents p, q and the weight a(·).

H0: 1 < q < p,
p

q
< 1 +

1

N
and a ∈ L∞(Ω), a(z) ≥ 0 for a.a. z ∈ Ω, a 6≡ 0.

Remark 2.1. The second inequality is common in double phase problems and guarantees
that W 1,ϑ

0 (Ω) ↪→ Lq(Ω) compactly and densely.

In general we have the following embeddings. Recall that q∗ =


Nq

N − q
if q < N

+∞ if N ≤ q

(the critical Sobolev exponent corresponding to q > 1).

Proposition 2.1. If hypotheses H0 hold, then

(a) Lϑ(Ω) ↪→ Lr(Ω), W 1,ϑ
0 (Ω) ↪→ W 1,r

0 (Ω) continuously and densely for all 1 ≤ r ≤
q∗;

(b) W 1,ϑ
0 (Ω) ↪→ Lr(Ω) continuously (resp. compactly) and densely for all 1 ≤ r ≤ q∗

(resp. all 1 ≤ r < q∗);
(c) Lp(Ω) ↪→ Lϑ(Ω) continuously and densely.

There is a close relation between the norm ‖ · ‖ϑ and the modular function ρϑ(·).

Proposition 2.2. If hypotheses H0 hold, then

(a) ‖u‖ϑ = µ ⇔ ρϑ

(
u

µ

)
= 1;

(b) ‖u‖ϑ < 1 (resp. = 1, > 1) ⇔ ρϑ(u) < 1 (resp. = 1, > 1);
(c) if ‖u‖ϑ < 1, then ‖u‖pϑ ≤ ρϑ(u) ≤ ‖u‖qϑ,

if ‖u‖ϑ > 1, then ‖u‖qϑ ≤ ρϑ(u) ≤ ‖u‖pϑ;
(d) ‖un‖ϑ → 0 (resp. →∞) ⇔ ρϑ(un)→ 0 (resp. →∞).

Let 〈·, ·〉 denote the duality brackets for the pair (W 1,ϑ
0 (Ω),W 1,ϑ

0 (Ω)∗) and let A :

W 1,ϑ
0 (Ω)→ W 1,ϑ

0 (Ω)∗ be the nonlinear operator defined by

〈A(u), h〉 =

∫
Ω

(a(z)|∇u|p−2∇u+ |∇u|q−2∇u,∇h)RNdz for all u, h ∈ W 1,ϑ
0 (Ω).

This operator has the following properties (see Liu-Dai [9]).

Proposition 2.3. If hypotheses H0 hold, then the operator A : W 1,ϑ
0 (Ω) → W 1,ϑ

0 (Ω)∗

is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone
(hence maximal monotone too) and of type (S)+ (that is, A(·) has the following property:

un
w−→ u in W 1,ϑ

0 (Ω), lim sup
n→∞

〈A(un), un − u〉 ≤ 0 imply that un → u in W 1,ϑ
0 (Ω)).

The hypotheses on the perturbation f(z, x) are the following:

H1: f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω,
and
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(i) |f(z, x)| ≤ a(z)[1 + |x|r−1] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω), p < r < q∗

(see hypotheses H0);

(ii) if F (z, x) =
∫ x

0
f(z, s)ds, then lim

x→±∞

F (z, x)

|x|p
= +∞ uniformly for a.a. z ∈ Ω

and if e(z, x) = f(z, x)x− pF (z, x), then

0 < ĉ ≤ lim inf
x→±∞

e(z, x)

|x|p
uniformly for a.a. z ∈ Ω;

(iii) lim
x→0

f(z, x)

|x|q−2x
= 0 uniformly for a.a. z ∈ Ω;

(iv) for a.a. z ∈ Ω, the quotient function x → f(z, x)

|x|p−1
is increasing on R̊+ = (0,∞)

and on R̊− = (−∞, 0).

Remark 2.2. Hypothesis H1(ii) implies that for a.a. z ∈ Ω, f(z, ·) is (p−1)-superlinear
as x → ±∞. Hypothesis H1(iv) is weaker than the usual Nehari-type monotonicity

condition which requires that the quotient function x→ f(z, x)

|x|p−1
is strictly increasing on

R̊+ and on R̊− (see Gasiński-Winkert [4] and Liu-Dai [9]).

For any function u ∈ W 1,ϑ
0 (Ω), we set

u± = max{±u, 0}.

We know that u± ∈ W 1,ϑ
0 (Ω), u = u+ − u− and |u| = u+ + u−.

We introduce the energy (Euler) functional ϕλ : W 1,ϑ
0 (Ω) → R for problem (Pλ)

defined by

ϕλ(u) =
1

p
ρa(∇u) +

1

q
‖∇u‖qq −

λ

q
‖u‖qq −

∫
Ω

F (z, u)dz

for all u ∈ W 1,ϑ
0 (Ω), with ρa(∇u) =

∫
Ω
a(z)|∇u|pdz. We know that ϕλ ∈ C1(W 1,ϑ

0 (Ω)).
Also, in order to produce constant sign solutions, we introduce the positive and

negative truncations of ϕλ(·), namely the C1-functionals defined by

ϕ±λ (u) =
1

p
ρa(∇u) +

1

q
‖∇u‖qq −

λ

q
‖u±‖qq −

∫
Ω

F (z,±u±)dz

for all u ∈ W 1,ϑ
0 (Ω). We introduce the following Banach manifolds:

N = {u ∈ W 1,ϑ
0 (Ω) : 〈ϕ′λ(u), u〉 = 0, u 6= 0},

N+ = {u ∈ W 1,ϑ
0 (Ω) : 〈(ϕ+

λ )′(u), u〉 = 0, u ≥ 0, u 6= 0},
N− = {u ∈ W 1,ϑ

0 (Ω) : 〈(ϕ−λ )′(u), u〉 = 0, u ≤ 0, u 6= 0},
N0 = {u ∈ W 1,ϑ

0 (Ω) : 〈ϕ′λ(u), u+〉 = 〈ϕ′λ(u), u−〉 = 0, u± 6= 0}.

We see that N is the Nehari manifold for the energy functional ϕλ(·) and N+, N−, N0

are submanifolds of N . Evidently every nontrivial solution of (Pλ) is in N . Similarly N+

(resp. N−) includes the positive (resp. negative) solutions of (Pλ), while N0 contains
the nodal (sign-changing) solutions of (Pλ).
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In the next section we will prove a multiplicity theorem for (Pλ) under the strong
Nehari-type monotonicity condition and then in Section 4 using an approximation argu-
ment, we will prove the multiplicity theorem under the relaxed monotonicity condition.

For this reason we introduce the following more restrictive set of hypotheses on the
perturbation f(z, x).

H ′1: f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω,
hypotheses H ′1(i), (ii), (iii) are the same as the corresponding hypotheses H1(i), (ii), (iii)
and

(iv) for a.a. z ∈ Ω, the quotient function x → f(z, x)

|x|p−1
is strictly increasing on R̊+

and on R̊−.

Finally recall that λ̂1(q) denotes the first eigenvalue of (−∆q,W
1,q
0 (Ω)). We know

that λ̂1(q) > 0, it is isolated and simple and

λ̂1(q) = inf

[‖∇u‖qq
‖u‖qq

: u ∈ W 1,q
0 (Ω), u 6= 0

]
. (1)

The infimum on (1) is realized on the corresponding one dimensional eigenspace, the
nontrivial elements of which have constant sign. If the boundary ∂Ω is a C2-manifold,

then the eigenfunctions of λ̂1(q) > 0 belong in C1
0(Ω).

3. Multiple Solutions - Strong Monotonicity

In this section we prove a multiplicity theorem for least energy solutions with sign
information, using the strong Nehari-type monotonicity condition (see hypotheses H ′1).

Actually, for the first results, we do not need this stronger monotonicity condition.

In what follows β(s) =
1− sq

q
− 1− sp

p
for all s ≥ 0.

Proposition 3.1. If hypotheses H0, H1 hold, then for all u ∈ W 1,ϑ
0 (Ω) and all τ, t ≥ 0,

we have

ϕλ(u) ≥ ϕλ(τu
+ − tu−) +

1− τ p

p
〈ϕ′λ(u), u+〉 − 1− tp

p
〈ϕ′λ(u), u−〉

+ β(τ)
[
‖∇u+‖qq − λ‖u+‖qq

]
+ β(t)

[
‖∇u−‖qq − λ‖u−‖qq

]
.

Proof. Let u ∈ W 1,ϑ
0 (Ω) and τ, t ≥ 0. We have

ϕλ(u)− ϕλ(τu+ − tu−)

= ϕλ(u
+)− ϕλ(τu+) + ϕλ(−u−)− ϕλ(t(−u−))

=
1− τ p

p
ρa(∇u+) +

1− τ q

q

[
‖∇u+‖qq − λ‖u+‖qq

]
−
∫

Ω

[
F (z, u+)− F (z, τu+)

]
dz

+
1− tp

p
ρa(∇u−) +

1− tq

q

[
‖∇u−‖qq − λ‖u−‖qq

]
−
∫

Ω

[
F (z,−u−)− F (z, t(−u−))

]
dz.

(2)

For ϑ ≥ 0 and x 6= 0, we have

1− ϑp

p
f(z, x)x+ F (z, ϑx)− F (z, x)
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=

∫ 1

ϑ

f(z, x)xsp−1ds−
∫ 1

ϑ

d

ds
F (z, sx)ds

=

∫ 1

ϑ

f(z, x)xsp−1ds−
∫ 1

ϑ

f(z, sx)xds (using the chain rule)

=

∫ 1

ϑ

[
f(z, x)

|x|p−1
− f(z, sx)

(s|x|)p−1

]
x|x|p−1sp−1ds

≥ 0 (see hypothesis H1(iv)),

⇒ 1− ϑp

p
f(z, x)x ≥ F (z, x)− F (z, ϑx) (3)

for a.a. z ∈ Ω, all x 6= 0 and all ϑ ≥ 0.

Returning to (2) and using (3), we obtain

ϕλ(u)− ϕλ(τu+ − tu−)

≥ 1− τ p

p
ρa(∇u+) +

1− τ q

q

[
‖∇u+‖qq − λ‖u+‖qq

]
− 1− τ p

p

∫
Ω

f(z, u+)u+dz

+
1− tp

p
ρa(∇u−) +

1− tq

q

[
‖∇u−‖qq − λ‖u−‖qq

]
− 1− tp

p

∫
Ω

f(z,−u−)(−u−)dz

=
1− τ p

p
〈ϕ′λ(u), u+〉+ β(τ)

[
‖∇u+‖qq − λ‖u+‖qq

]
− 1− tp

p
〈ϕ′λ(u),−u−〉+ β(t)

[
‖∇u−‖qq − λ‖u−‖qq

]
.

�

In a similar fashion, we show the same inequality for the functionals ϕ±λ (·).

Proposition 3.2. If hypotheses H0, H1 hold, then for all u ∈ W 1,ϑ
0 (Ω) and all τ, t ≥ 0,

we have

ϕ±λ (u) ≥ ϕ±λ (τu+ − tu−) +
1− τ p

p
〈(ϕ±λ )′(u), u+〉 − 1− tp

p
〈(ϕ±λ )′(u), u−〉

+ β(τ)
[
‖∇u+‖qq − λ‖u+‖qq

]
+ β(t)

[
‖∇u−‖qq − λ‖u−‖qq

]
.

Note that β(s) ≥ β(1) = 0 for all s ≥ 0 and ϕλ(u) = ϕλ(u
+ − u−). Then using the

above propositions and (1), we infer the following corollaries.

Corollary 3.1. If hypotheses H0, H1 hold, u ∈ N0 and λ < λ̂1(q), then ϕλ(u) =
max
τ,t≥0

ϕλ(τu
+ − tu−).

Corollary 3.2. If hypotheses H0, H1 hold, u ∈ N and λ < λ̂1(q), then ϕλ(u) =
max
τ≥0

ϕλ(τu).

Corollary 3.3. Suppose that hypotheses H0, H1 hold. We have

(a) if u ∈ N+ and λ < λ̂1(q), then ϕ+
λ (u) = max

τ≥0
ϕ+
λ (τu);

(b) if u ∈ N− and λ < λ̂1(q), then ϕ−λ (u) = max
t≥0

ϕ−λ (tu).

The next two propositions establish the nonemptiness of the Nehari manifolds. Now
we bring in the picture the stronger hypotheses H ′1.
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Proposition 3.3. If hypotheses H0, H ′1 hold, λ < λ̂1(q) and u ∈ W 1,ϑ
0 (Ω), then there

exist unique τu, tu > 0 such that τuu
+ − tuu− ∈ N0.

Proof. We consider the fibering function

ξ+(t) = ϕλ(tu
+) for all t > 0.

Using the chain rule, we see that

ξ′+(t) = 0

⇔ ρa(∇(tu+)) + ‖∇(tu+)‖qq = λ‖tu+‖qq +

∫
Ω

f(z, tu+)(tu+)dz

⇔ ρa(∇u+) +
1

tp−q
[
‖∇u+‖qq − λ‖u+‖qq

]
=

∫
Ω

f(z, tu+)(tu+)

tp
dz. (4)

In (4) the left hand side is strictly decreasing in t > 0 (recall that q < p), while on
account of hypothesis H ′1(iv) the right hand side is strictly increasing in t > 0.

Note that because of hypotheses H ′1(i), (iii), we see that given ε > 0, we can find
c1 = c1(ε) > 0 such that

F (z, x) ≤ ε

q
|x|q + c1|x|r for a.a. z ∈ Ω, all x ∈ R. (5)

Then we have

ξ+(t) = ϕλ(tu
+)

≥ tp

p
ρa(∇u+) +

tq

q

[
‖∇u+‖qq − (λ+ ε)‖u+‖qq

]
− c1t

r‖u+‖rr (see (5)).

Choosing ε ∈ (0, λ̂1(q)− λ) (recall that λ < λ̂1(q)), we have

ξ+(t) ≥ c2t
p − c3t

r for some c2, c3 > 0, all t ≥ 0,

⇒ ξ+(t) > 0 for all t ∈ (0, 1) small (since p < r).

On the other hand, hypotheses H ′1(i), (ii) imply that given any η > 0, we can find
c4 = c4(η) > 0 such that

F (z, x) ≥ η

p
|x|p − c4 for a.a. z ∈ Ω, all x ∈ R.

We have

ξ+(t) = ϕλ(tu
+)

≤ tp

p
ρa(∇u+) +

tq

q

[
‖∇u+‖qq − λ‖u+‖qq

]
− ηtp

p
‖u+‖pp + c4|Ω|N

(by | · |N we denote the Lebesgue measure on RN)

=
tp

p

[
ρa(∇u+)− η‖u+‖pp

]
+
tq

q

[
‖∇u+‖qq − λ‖u+‖qq

]
+ c4|Ω|N .

Since η > 0 is arbitrary, choosing η > 0 big and recalling that λ < λ̂1(q), we obtain

ξ+(t) ≤ c5t
q − c6t

p + c4|Ω|N for some c5, c6 > 0, all t ≥ 0.

Since q < p, it follows that for t > 0 big we have

ξ+(t) < 0.
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Therefore we infer that there exists unique τu > 0 such that

ξ+(τu) = max
R+

ξ+.

Similarly working this time with the fibering function

ξ−(t) = ϕλ(t(−u−)) for all t > 0,

we produce a unique tu > 0 such that

ξ−(tu) = max
R+

ξ−.

Then from Corollary 3.1, we conclude that

τuu
+ − tuu− ∈ N0.

�

In a similar fashion we prove the analogous results for the functionals ϕ±λ (·).

Proposition 3.4. Suppose that hypotheses H0, H ′1 hold. We have

(a) if u ∈ W 1,ϑ
0 (Ω), u+ 6≡ 0 and λ < λ̂1(q), then there exists unique τ+

u > 0 such
that τ+

u u
+ ∈ N+;

(b) if u ∈ W 1,ϑ
0 (Ω), u− 6≡ 0 and λ < λ̂1(q), then there exists unique t−u > 0 such that

t−u (−u−) ∈ N−.

We set
m̂0
λ = inf

N0

ϕλ, m̂+
λ = inf

N+

ϕ+
λ , m̂−λ = inf

N−
ϕ−λ .

Also we introduce the following subsets of W 1,ϑ
0 (Ω):

W 1,ϑ
n (Ω) = {u ∈ W 1,ϑ

0 (Ω) : u± 6≡ 0} (the nodal elements of W 1,ϑ
0 (Ω)),

W 1,ϑ
+ (Ω) = {u ∈ W 1,ϑ

0 (Ω) : u+ 6≡ 0},
W 1,ϑ
− (Ω) = {u ∈ W 1,ϑ

0 (Ω) : u− 6≡ 0}.
Using these sets we can have minimax characterizations of m̂0

λ and m̂±λ .

Proposition 3.5. If hypotheses H0, H ′1 hold and λ < λ̂1(q), then

(a) m̂0
λ = inf

u∈W 1,ϑ
n (Ω)

max
τ,t≥0

ϕλ(τu
+ − tu−);

(b) m̂+
λ = inf

u∈W 1,ϑ
+ (Ω)

max
τ≥0

ϕ+
λ (τu);

(c) m̂−λ = inf
u∈W 1,ϑ

− (Ω)

max
t≥0

ϕ−λ (tu).

Proof. (a): Let µλ = inf
u∈W 1,ϑ

n (Ω)

max
τ,t≥0

ϕλ(τu
+ − tu−). Since N0 ⊆ W 1,ϑ

n (Ω) on account of

Corollary 3.1 we have

µλ ≤ inf
u∈N0

max
τ,t≥0

ϕλ(τu
+ − tu−) = m̂0

λ. (6)

On the other hand, if u ∈ W 1,ϑ
n (Ω), then

max
τ,t≥0

ϕλ(τu
+ − tu−) ≥ ϕλ(τuu

+ − tuu−) (see Proposition 3.3)

≥ m̂0
λ (since τuu

+ − tuu− ∈ N0),

⇒ µλ ≥ m̂0
λ. (7)
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From (6) and (7) we conclude that µλ = m̂0
λ.

(b) and (c): These parts are proved similarly using this time the functionals ϕ+
λ (·),

ϕ−λ (·), Corollary 3.3 and Proposition 3.4. �

The Nehari manifold N is much smaller that W 1,ϑ
0 (Ω) and so the functional ϕλ(·)

restricted on N exhibits properties which fail to be true globally.

Proposition 3.6. If hypotheses H0, H ′1 hold and λ < λ̂1(q), then ϕλ
∣∣
N

is coercive.

Proof. We argue by contradiction. So, suppose that the assertion of the proposition is
not true. Then we can find {un}n∈N ⊆ N such that

ϕλ(un) ≤ c7 for some c7 > 0, all n ∈ N,

‖un‖ → ∞.
(8)

Let vn =
un
‖un‖

, n ∈ N. Then ‖vn‖ = 1, n ∈ N, and so we may assume that

vn
w−→ v in W 1,ϑ

0 (Ω) and vn → v in Lr(Ω) (9)

(recall that W 1,ϑ
0 (Ω) ↪→ Lr(Ω) compactly, see Proposition 2.1).

From (8) we have

ρa(∇vn)+
p

q‖un‖p−q
[
‖∇vn‖qq − λ‖vn‖qq

]
−
∫

Ω

pF (z, un)

‖un‖p
dz ≤ pc7

‖un‖p
for all n ∈ N. (10)

Since un ∈ N , we have

−ρa(∇vn)− 1

‖un‖p−q
[
‖∇vn‖qq − λ‖vn‖qq

]
+

∫
Ω

f(z, un)un
‖un‖p

dz = 0 for all n ∈ N. (11)

Adding (10) and (11) and recalling that λ < λ̂1(q) (see (1)), q < p, we obtain∫
Ω

f(z, un)un − pF (z, un)

‖un‖p
dz ≤ εn with εn ↓ 0,

⇒
∫

Ω

f(z, un)un − pF (z, un)

upn
vndz ≤ ε. (12)

We claim that v 6= 0. To see this, suppose that v = 0. Then for ` > 0, on account of
Corollary 3.2, we have

c7 ≥ ϕλ(un)

≥ ϕλ

(
`

‖un‖
un

)
(recall un ∈ N)

=
`p

p
ρa(∇vn) +

`q

q

[
‖∇vn‖qq − λ‖un‖qq

]
−
∫

Ω

F (z, `vn)dz

≥ `p

p
−
∫

Ω

F (z, `vn)dz

(recall that λ < λ̂1(q), ‖vn‖ = 1 and see Proposition 2.2).
Passing to the limit as n → ∞, using (9) and recalling that we have assumed that

v = 0, we obtain

`p ≤ pc7.
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But ` > 0 is arbitrary. So, we let ` → ∞ and have contradiction. This proves that
v 6= 0.

Let Ω̂ = {z ∈ Ω : v(z) 6= 0}. We know that |Ω̂|N > 0. Then from (12), passing to the
limit as n→∞ and using Fatou’s lemma and hypothesis H ′1(ii), we obtain

0 < ĉ

∫
Ω

|v|pdz ≤ 0,

a contradiction. This proves that ϕλ
∣∣
N

is coercive. �

With minor modifications in the above proof we can prove the same result for ϕ+
λ

∣∣
N+

,

ϕ−λ
∣∣
N−

(λ < λ̂1(q)).

Proposition 3.7. If hypotheses H0, H ′1 hold and λ < λ̂1(q), then ϕ±λ
∣∣
N±

are both

coercive.

Proof. We do the proof for ϕ+
λ

∣∣
N+

, the proof for ϕ−λ
∣∣
N−

being similar. Again we proceed

indirectly. So, suppose that ϕ+
λ

∣∣
N+

is not coercive. Then we can find {un}n∈N ⊆ N+

such that
ϕ+
λ (un) ≤ c8 for some c8 > 0, all n ∈ N,

‖un‖ → ∞.
(13)

Freom (13) we have

ρa(∇u+
n ) +

p

q

[
‖∇u+

n ‖qq − λ‖u+
n ‖qq
]
−
∫

Ω

pF (z, u+
n )dz ≤ pc8 for all n ∈ N. (14)

Moreover, since un ∈ N+, we have

ρa(∇u+
n ) +

[
‖∇u+

n ‖qq − λ‖u+
n ‖qq
]

=

∫
Ω

f(z, u+
n )u+

n dz for all n ∈ N. (15)

From (14), (15) and since q < p, we infer that∫
Ω

e(z, u+
n )dz =

∫
Ω

[f(z, u+
n )u+

n − pF (z, u+
n )]dz ≤ pc8. (16)

Suppose that ‖u+
n ‖ → ∞ and set vn =

u+
n

‖u+
n ‖

, n ∈ N. Then we may assume that

vn
w−→ v in W 1,ϑ

0 (Ω) and vn → v in Lr(Ω) (see Proposition 2.1).

From (16) we have∫
Ω

f(z, u+
n )u+

n − pF (z, u+
n )

‖u+
n ‖p

dz ≤ ε′n with ε′n ↓ 0. (17)

As in the proof of Proposition 3.6 and using the fact that for all y ∈ W 1,ϑ
0 (Ω),

ϕ+
λ (y+) ≤ ϕ+

λ (y), we show that v 6= 0 and from that we derive a contradiction as in the

proof of Proposition 3.6. Therefore {u+
n }n∈N ⊆ W 1,ϑ

0 (Ω) is bounded. This fact and (13)

imply that {u−n }n∈N ⊆ W 1,ϑ
0 (Ω) is bounded (see Proposition 2.2 and hypothesis H ′1(i)).

Therefore {un}n∈N ⊆ W 1,ϑ
0 (Ω) is bounded and this contradicts (13). Hence ϕ+

λ

∣∣
N+

is

coercive. Similarly we show that ϕ−λ
∣∣
N−

is coercive. �

Using Propositions 3.6 and 3.7 we will show that m̂0
λ is realized on N0, while m̂±λ are

realized on N±.
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Proposition 3.8. If hypotheses H0, H ′1 hold and λ < λ̂1(q), then

(a) there exists y0 ∈ N0 such that ϕλ(y0) = inf
N0

ϕλ = m̂0
λ > 0;

(b) there exists u0 ∈ N+ such that ϕ+
λ (u0) = inf

N+

ϕλ = m̂+
λ > 0;

(c) there exists v0 ∈ N− such that ϕ−λ (v0) = inf
N−

ϕλ = m̂−λ > 0.

Proof. (a): Let {yn}n∈N ⊆ N0 be a minimizing sequence for inf
N0

ϕλ, that is,

ϕλ(yn) ↓ m̂0
λ as n→∞.

From Proposition 3.6, we know that {yn}n∈N ⊆ W 1,ϑ
0 (Ω) is bounded. So, we may

assume that

yn
w−→ y0 in W 1,ϑ

0 (Ω) and yn → y0 in Lr(Ω), (18)

⇒ y±n
w−→ y±0 in W 1,ϑ

0 (Ω) and y±n → y±0 in Lr(Ω). (19)

Recall that yn ∈ N0 for all n ∈ N. So, we have

〈ϕ′λ(yn), y+
n 〉 = 0,

⇒ ρa(∇y+
n ) +

[
‖∇y+

n ‖qq − λ‖y+
n ‖qq
]

=

∫
Ω

f(z, y+
n )y+

n dz,

⇒ ρa(∇y+
n ) + c9‖∇y+

n ‖qq ≤
∫

Ω

f(z, y+
n )y+

n dz, (20)

for some c9 > 0, all n ∈ N (recall that λ < λ̂1(q)).

On account of hypotheses H ′1(i), (iii), given ε > 0, we can find c10 = c10(ε) > 0 such
that

f(z, x)x ≤ ε|x|q + c10|x|r for a.a. z ∈ Ω, all x ∈ R. (21)

We use (21) in (20) and choosing ε > 0 small, we obtain

ρa(∇y+
n ) + c11‖∇y+

n ‖qq ≤ c10‖y+
n ‖rr for some c11 > 0, all n ∈ N,

⇒ ρa(∇y+
n ) ≤ c12‖y+

n ‖rr for some c12 > 0, all n ∈ N.

Using Proposition 2.2 and the fact that W 1,ϑ
0 (Ω) ↪→ Lr(Ω) (see Proposition 2.1), we

obtain

min
{
‖y+

n ‖pr, ‖y+
n ‖qr
}
≤ c13‖y+

n ‖rr for some c13 > 0, all n ∈ N,

⇒ c14 ≤ ‖y+
n ‖r for some c14 > 0, all n ∈ N (recall q < p < r).

Passing to the limit as n→∞ and using (19), we obtain

c14 ≤ ‖y+
0 ‖r,

⇒ y+
0 6= 0 and in a similar way we show that y−0 6= 0. (22)

Since yn ∈ N0, n ∈ N, we have

〈ϕ′λ(yn), y+
n 〉 = 0 for all n ∈ N,

⇒ ρa(∇y+
n ) + ‖∇y+

n ‖qq = λ‖y+
n ‖qq +

∫
Ω

f(z, y+
n )y+

n dz for all n ∈ N.



12 N.S. PAPAGEORGIOU, C. VETRO AND F. VETRO

Note that the modular function ρa(·) is continuous, convex, hence sequentially weakly
lower semicontinuous. Therefore if we pass to the limit as n → ∞ and use (19), we
obtain

ρa(∇y+
0 ) + ‖∇y+

0 ‖qq ≤ λ‖y+
0 ‖qq +

∫
Ω

f(z, y+
0 )y+

0 dz,

⇒ 〈ϕ′λ(y0), y+
0 〉 ≤ 0. (23)

In a similar fashion, we show that

ϕ′λ(y0),−y−0 〉 ≤ 0. (24)

Since yn ∈ N0 ⊆ N , we have

m̂0
λ = lim

n→∞

[
ϕλ(yn)− 1

p
〈ϕ′λ(yn), yn〉

]
= lim

n→∞

[(
1

q
− 1

p

)(
‖∇yn‖qq − λ‖yn‖qq

)
+

∫
Ω

(
1

p
f(z, yn)yn − F (z, yn)

)
dz

]
≥
(

1

q
− 1

p

)(
‖∇y0‖qq − λ‖y0‖qq

)
+

∫
Ω

(
1

p
f(z, y0)y0 − F (z, y0)

)
dz (see (18))

= ϕλ(y0)− 1

p
〈ϕ′λ(y0), y0〉

≥ ϕλ(τ0y
+
0 − t0y−0 ) +

1− τ p0
p
〈ϕ′λ(y0), y+

0 〉 −
1− tp0
p
〈ϕ′λ(y0), y−0 〉 −

1

p
〈ϕ′λ(y0), y0〉

with τ0 = τy0 , t0 = ty0 (see Propositions 3.1, 3.3 and recall that β ≥ 0, λ < λ̂1(q))

≥ m̂0
λ −

τ p0
p
〈ϕ′λ(y0), y+

0 〉+
tp0
p
〈ϕ′λ(y0), y−0 〉 (see Proposition 3.3)

≥ m̂0
λ (see (23), (24)).

It follows that

〈ϕ′λ(y0), y+
0 〉 = 〈ϕ′λ(y0), y−0 〉 = 0,

⇒ y0 ∈ N0 (see (22)). (25)

From the sequential weak lower semicontinuity of ϕλ(·), we have

ϕλ(y0) ≤ lim
n→∞

ϕλ(yn) = m̂0
λ,

⇒ ϕλ(y0) = m̂0
λ (see (25)).

Moreover, we have

m̂0
λ = ϕλ(y0) =

1

p
ρa(∇y0) +

1

q

[
‖∇y0‖qq − λ‖y0‖qq

]
−
∫

Ω

F (z, y0)dz

>
1

p

[
ρa(∇y0) + ‖∇y0‖qq − λ‖y0‖qq −

∫
Ω

f(z, y0)y0dz

]
= 0.

Here first we have used (3) with ϑ = 0 and with the remark that if H ′1(iv) holds, then
the inequality is strict (see the proof of Proposition 3.1).
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Then we used that q < p, λ < λ̂1(q) and y0 ∈ N0 ⊆ N (see (25)). So, finally we
conclude that m̂0

λ > 0.

(b) and (c): These parts are proved in a similar fashion. �

Remark 3.1. The above proof also shows that there exists c15 > 0 such that

0 < c15 ≤ ‖u‖ for all u ∈ N . (26)

Indeed, if u ∈ N , ‖u‖ ≤ 1, from (21) and Proposition 2.1, we have

εc16‖u‖q + c17‖u‖r

≥
∫

Ω

f(z, u)udz for some c16, c17 > 0

= ρa(∇u) +
[
‖∇u‖qq − λ‖u‖qq

]
(since u ∈ N)

≥ ρa(∇u) + c18‖∇u‖qq for some c18 > 0 (recall that λ < λ̂1(q) and see (1))

≥ c19‖u‖q for some c19 > 0 (see Proposition 2.2),

⇒ c20‖u‖q ≤ ‖u‖r for some c20 > 0 (choosing ε > 0 small).

So, (26) holds, since q < p < r.

Next following the arguments of Willem [21] (p. 74) and of Szulkin-Weth [20] (p.
612), we show that N0 is a natural constraint for the functional ϕλ(·) (see Papageorgiou-
Rădulescu-Repovš [13], Definition 5.5.11, p. 425). This way we can show that y0 ∈ N0

from Proposition 3.8 is a nodal solution of (Pλ) where λ < λ̂1(q).

Proposition 3.9. If hypotheses H0, H ′1 hold, λ < λ̂1(q) and y0 ∈ N0 is as in Proposition

3.8 (a), then y0 ∈ Kϕλ = {y ∈ W 1,ϑ
0 (Ω) : ϕ′λ(y) = 0} and so y0 ∈ W 1,ϑ

0 (Ω) ∩ L∞(Ω) is a
nodal solution of (Pλ).

Proof. Since y0 ∈ N0 (see (25)), we have

〈ϕ′λ(y+
0 ), y+

0 〉 = 0 = 〈ϕ′λ(−y−0 ),−y−0 〉.
For τ, t ∈ R̊+ \ {1} (recall R̊+ = (0,∞)), we have

ϕλ(τy
+
0 − ty−0 ) = ϕλ(τy

+
0 ) + ϕλ(t(−y−0 ))

≤ ϕλ(y
+
0 ) + ϕλ(−y−0 ) (see Corollary 3.3)

= ϕλ(y0) = m̂0
λ (see Proposition 3.8). (27)

Arguing by contradiction, suppose that ϕ′λ(y0) 6= 0. Consider the parallelogram

P =

(
1

2
,
3

2

)2

and the function γ(τ, t) = τy+
0 − ty−0 , τ, t ≥ 0. From (27), we have

µ = max[ϕλ(γ(τ, t)) : (τ, t) ∈ ∂P ] < m̂0
λ. (28)

We apply Lemma 2.3, p. 38, of Willem [21] (the quantitative deformation lemma),

with ε = min

{
m̂0
λ − µ
4

,
ηδ

8

}
and S = Bδ(y0) = {y ∈ W 1,ϑ

0 (Ω) : ‖y− y0‖ ≤ δ}, for some

δ > 0 and η > 0, and obtain a deformation h0(s, u) such that

h0(1, u) = u for all u ∈ ϕ−1
λ ([m̂0

λ − 2ε, m̂0
λ + 2ε]),

h0(1, ϕ
m̂0
λ+ε

λ ∩Bδ(y0)) ⊆ ϕ
m̂0
λ−ε

λ
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where for every c ∈ R, ϕcλ = {u ∈ W 1,ϑ
0 (Ω) : ϕλ(u) ≤ c}, ϕλ(h0(1, u)) ≤ ϕλ(u) for all

u ∈ W 1,ϑ
0 (Ω).

From the above properties of the deformation, we infer that

max[ϕλ(h0(1, γ(τ, t))) : (τ, t) ∈ P ] < m̂0
λ. (29)

Let k(τ, t) = h0(1, γ(τ, t)) and set

ϑ0(τ, t) =
(
〈ϕ′λ(τy0), y+

0 〉, 〈ϕ′λ(ty0),−y−0 〉
)
,

ϑ1(τ, t) =

(
1

τ
〈ϕ′λ(k(τ, t)), k(τ, t)+〉, 1

t
〈ϕ′λ(k(τ, t)),−k(τ, t)−〉

)
for all (τ, t) ∈ P .

By d̂B(·, ·, ·) we denote the Brouwer degree. From the proof of Proposition 3.3 and
the homotopy invariance property of the degree, we have

d̂B(ϑ0, P, 0) = 1. (30)

Note that γ
∣∣
∂P

= k
∣∣
∂P

(see (28), (29) and recall the choice of ε). Then using the
properties of the Brouwer degree (see [13], p. 178), we have

d̂B(ϑ0, P, 0) = d̂B(ϑ1, P, 0),

⇒ d̂B(ϑ1, P, 0) = 1 (see (30)),

⇒ h0(t, γ(P )) ∩N0 6= ∅.

But this contradicts (29). Therefore y0 ∈ Kϕλ and so we have that y0 ∈ W 1,ϕ
0 (Ω) is

a nodal solution of problem (Pλ). Moreover, from Gasiński-Winkert [4] (Theorem 3.1),
we have that y0 ∈ L∞(Ω). �

Next using the functionals ϕ+
λ and ϕ−λ , we will produce two nontrivial, bounded,

constant sign solutions of (Pλ) (a positive solution and a negative solution). The proof
follows the arguments used in the proof of Proposition 3.9.

Proposition 3.10. If hypotheses H0, H ′1 hold, λ < λ̂1(q) and u0 ∈ N+, v0 ∈ N− are as

in Proposition 3.5 (b), (c) respectively, then u0 ∈ Kϕ+
λ

= {u ∈ W 1,ϑ
0 (Ω) : (ϕ+

λ )′(u) = 0},
v0 ∈ Kϕ−

λ
= {v ∈ W 1,ϑ

0 (Ω) : (ϕ−λ )′(v) = 0} and so u0 ∈ W 1,ϑ
0 (Ω) ∩ L∞(Ω) is a positive

solution of (Pλ) and v0 ∈ W 1,ϑ
0 (Ω) ∩ L∞(Ω) is a negative solution of (Pλ).

Proof. We do the proof for u0 ∈ N+, the proof for v0 ∈ N− being similar. As we already
mentioned, we follow the reasoning in the proof of Proposition 3.9. So, we proceed
indirectly and assume that (ϕ+

λ )′(u0) 6= 0. Then we can find δ > 0 and η > 0 such that

‖u− u0‖ ≤ 3δ ⇒ ‖(ϕ+
λ )′(u)‖ ≥ η > 0.

Let D =

(
1

2
,
3

2

)
and consider the function γ+(τ) = τu+

0 , τ ≥ 0. We know that

ϕ+
λ (γ+(τ)) = m̂+

λ if and only if τ = 1 and ϕ+
λ (γ+(τ)) < m̂+

λ for all τ ∈ R+ \ {1}.
Therefore

µ = max
∂D

ϕ+
λ (γ+(τ)) < m̂+

λ .

As before, we use the quantitative deformation lemma of Willem [21] (p. 38), with

ε = min

{
m̂+
λ − µ
4

,
ηδ

8

}
and S = Bδ(u0). We obtain a transformation h+(t, u) such
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that

h+(1, u) = u for all u ∈ (ϕ+
λ )−1([m̂+

λ − 2ε, m̂+
λ + 2ε]),

h+(1, (ϕ+
λ )m̂

+
λ+ε ∩Bδ(u0)) ⊆ (ϕ+

λ )m̂
+
λ−ε,

ϕ+
λ (h+(t, u)) ≤ ϕ+

λ (h+(s, u)) for all 0 ≤ s ≤ t ≤ 1, all u ∈ W 1,ϑ
0 (Ω).

It follows that

max
τ∈D

ϕλ(h+(1, γ+(τ))) < m̂+
λ . (31)

We introduce the following functions

k(τ) = h+(1, γ+(τ)),

ϑ0(τ) = 〈(ϕ+
λ )′(τu+

0 ), u+
0 〉,

ϑ1(τ) =
1

τ
〈(ϕ+

λ )′(k(τ)), k(τ)+〉 for all τ ∈ D.

We know that

d̂B(ϑ0, D, 0) = 1,

d̂B(ϑ1, D, 0) = d̂B(ϑ0, D, 0) = 1 (since γ+

∣∣
∂D

= k
∣∣
∂D

),

⇒ h+(t, γ+(D)) ∩N+ 6= ∅,

wich contradicts (31). Therefore u0 ∈ Kϕ+
λ

. Similarly we show that v0 ∈ Kϕ−
λ

.

We have

〈(ϕ+
λ )′(u0), h〉 = 0 for all h ∈ W 1,ϕ

0 (Ω).

We choose h = −u−0 ∈ W
1,ϕ
0 (Ω) and obtain

ρa(∇u−0 ) +
[
‖∇u−0 ‖qq − λ‖u−0 ‖qq

]
= 0,

⇒ c21ρa(∇u−0 ) ≤ 0 for some c21 > 0,

⇒ u0 ≥ 0, u0 6= 0 (see Proposition 2.2).

So, u0 is a nontrivial positive solution of (Pλ) and u0 ∈ W 1,ϕ
0 (Ω) ∩ L∞(Ω) (see [4]).

Similarly for v0 using this time the functional ϕ−λ (·). �

4. Multiple Solutions - Relaxed Monotonicity

In this section, we relax the strong Nehari-type monotonicity condition H ′1(iv) and
use hypothesis H1(iv). Via an approximation argument, we show that we still have three

nontrivial bounded solutions of (Pλ) (λ < λ̂1(q)), all with sign information (positive,
negative and nodal).

As we already mentioned, our approach is based on an approximation of the super-
linear perturbation f(z, ·). So, for every ε > 0, we consider the function

fε(z, x) = f(z, x) + εr|x|r−2x.

This is a Carathéodory function which satisfies the strong Nehari-type monotonicity
condition H ′1(iv). We set Fε(z, x) =

∫ x
0
fε(z, s)ds and for every λ > 0, we introduce the

C1-functional ϕελ : W 1,ϑ
0 (Ω)→ R defined by

ϕελ(u) =
1

p
ρa(∇u) +

1

q
‖∇u‖qq −

λ

q
‖u‖qq −

∫
Ω

Fε(z, u)dz for all u ∈ W 1,ϑ
0 (Ω).
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Evidently, we have

ϕελ(u) = ϕλ(u)− ε‖u‖rr for all u ∈ W 1,ϑ
0 (Ω). (32)

As before, we also consider the positive and negative truncations of ϕελ(·), denoted by
(ϕελ)

±(·). For these functionals, we consider the corresponding Nehari-type manifolds
denoted by N ε, N ε

+, N ε
−, N ε

0 .

Proposition 4.1. If hypotheses H0, H1 hold, ε ∈ (0, 1] and λ < λ̂1(q), then ϕελ(u) ≥
δ0 > 0 for all u ∈ N ε.

Proof. On account of hypotheses H1(i), (iii), given any ϑ > 0, we can find c22 = c22(ϑ) >
0 such that

F (z, x) ≤ ϑ

q
|x|q + c22|x|r for a.a. z ∈ Ω, all x ∈ R (see also (21)). (33)

From Corollary 3.2, we know that for all u ∈ N ε, we have

ϕελ(u) = max
τ≥0

ϕελ(τu)

≥ max
τ≥0

[
τ p

p
ρa(∇u) +

τ q

q

(
‖∇u‖qq − (λ+ ϑ)‖u‖qq

)
− c23τ

r‖u‖r
]

for some c23 > 0 (see (33)).

Choosing ϑ > 0 small (recall that λ < λ̂1(q)) and using the fact that q < p < r, we
obtain that

ϕελ(u) ≥ max
0≤τ≤1

[
τ p

p
ρa(∇u)− c23τ

r‖u‖r
]

≥ δ0 > 0 (see Proposition 2.2).

�

Now we are ready to produce nodal and constant sign solutions for problem (Pλ)

(λ < λ̂1(q)) under the relaxed Nehari-type monotonicity condition.

Theorem 4.1. If hypotheses H0, H1 hold and λ < λ̂1(q), then problem (Pλ) has at
least three nontrivial solutions u0 ∈ N+ ∩ L∞(Ω), v0 ∈ N− ∩ L∞(Ω), y0 ∈ N0 ∩ L∞(Ω)
(nodal).

Proof. First we produce the nodal solution y0.
Let εn ↓ 0. From Proposition 3.9 we know that there exists yn ∈ N εn ∩ L∞(Ω) such

that
m̂εn
λ = ϕεnλ (yn) > 0 and (ϕεnλ )′(yn) = 0 for all n ∈ N. (34)

Let u ∈ N0. For every n ∈ N, we can find unique τn, tn > 0 such that

τnu
+ − tnu− ∈ N εn

0 (see Proposition 3.3).

Then we have

ϕλ(u) ≥ ϕλ(τnu
+ − tnu−) (see Corollary 3.1)

≥ ϕεnλ (τnu
+ − tnu−) (see (32))

≥ m̂εn
λ .

Since u ∈ N0 is arbitrary, it follows that

m̂0
λ ≥ m̂εn

λ ≥ δ0 > 0 (see Proposition 4.1).
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So, we may assume that

m̂εn
λ → m̂∗λ > 0 as n→∞, m̂0

λ ≥ m̂∗λ. (35)

A contradiction argument as in the proof of Proposition 3.6 shows that {yn}n∈N ⊆
W 1,ϑ

0 (Ω) is bounded. So, we may assume that

yn
w−→ y0 in W 1,ϑ

0 (Ω) and yn → y0 in Lr(Ω). (36)

From (34) we have

〈A(yn), h〉 = λ

∫
Ω

|yn|q−2ynhdz +

∫
Ω

f(z, yn)hdz for all h ∈ W 1,ϑ
0 (Ω). (37)

In (37) we choose h = yn − y0 ∈ W 1,ϑ
0 (Ω), pass to the limit as n → ∞ and use (36).

We obtain

lim
n→∞
〈A(yn), yn − y0〉 = 0,

⇒ yn → y0 in W 1,ϑ
0 (Ω) (see Proposition 2.3),

⇒ y±n → y±0 in W 1,ϑ
0 (Ω). (38)

Then we have

ϕλ(y
±
0 ) = lim

n→∞
ϕεnλ (y±n ) ≥ δ0 > 0 (see Proposition 4.1 and (32)),

⇒ y±0 6= 0.

Also since yn ∈ N εn
0 , n ∈ N, we have

〈ϕεnλ (yn), y+
n 〉 = 0 = 〈ϕεnλ (yn), y−n 〉 for all n ∈ N,

⇒ 〈ϕλ(y0), y+
0 〉 = 0 = 〈ϕλ(y0), y−0 〉 (see (38)).

Therefore we have

y0 ∈ N0 and m̂∗λ = ϕλ(y0) ≥ m̂0
λ,

⇒ y0 ∈ N0 and m̂∗λ = m̂0
λ = ϕλ(y0), ϕ′λ(y0) = 0 (see (34) and (35)),

⇒ y0 is a nodal solution of (Pλ) and y0 ∈ L∞(Ω).

Similarly working with {(ϕ+
λ )εn , ϕ+

λ }n∈N we obtain a positive solution u0 ∈ N+ ∩
L∞(Ω), ϕ+

λ (u0) = m̂+
λ , while working with {(ϕ−λ )εn , ϕ−λ }n∈N we obtain a negative solution

v0 ∈ N− ∩ L∞(Ω), ϕ−λ (v0) = m̂−λ . �
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