LEAST ENERGY SOLUTIONS WITH SIGN INFORMATION FOR
PARAMETRIC DOUBLE PHASE PROBLEMS

NIKOLAOS S. PAPAGEORGIOU, CALOGERO VETRO AND FRANCESCA VETRO

ABSTRACT. We consider a parametric double phase Dirichlet problem. In the re-
action there is a superlinear perturbation term which satisfies a weak Nehari-type
monotonicity condition. Using the Nehari manifold method, we show that for all pa-
rameters below a critical value, the problem has at least three nontrivial solutions all
with sign information. The critical parameter value is precisely identified in terms of
the spectrum of the lower exponent part of the differential operator.

1. INTRODUCTION

Let Q € RY be a bounded domain with Lipschitz boundary 9. In this paper we
study the following parametric double phase Dirichlet problem
{—Agu — Aju = Nu|"?u+ f(z,u) inQ,

u‘ —0,1<q<p AER.
o0

For a € L>*(Q2) with a(z) > 0 for a.a. z € Q, by A7 we denote the weighted p-Laplace
differential operator defined by

Aty = div (a(2)|VulP*Vu).

(P)

In problem (P,) the differential operator is the sum of this weighted p-Laplacian with
a g-Laplace differential operator, where 1 < ¢ < p. So, the differential operator of
problem (Py), is not homogeneous and this makes the analysis of the problem more
difficult. In the reaction (right hand side) of (Py), we have the combined effects of a
parametric term u — Au|?"?u and of a Carathéodory perturbation f(z,z) (that is, for
all z € R, 2 — f(z,x) is measurable and for a.a. z € Q, x — f(z,z) is continuous). We
assume that f(z,-) is (p—1)-superlinear as x — +o0o0. We point out that the exponent in
the parametric term equals that of the unweighted part of the differential operator. This
makes problem (P,) different from the well-known “concave-convex problem” where in
the reaction we encounter the competing effects of sublinear and superlinear terms.

The differential operator of (Py) is related to the so-called “double phase functional”
p(+) defined by

Plu) = / (a(2)[VulP + |Vul7]dz.

The integrand of this functional is ¥(z,y) = a(z)|y|P + |y|? for all z € Q, all y €
R¥Y. Since we do not assume that the weight a(-) is bounded away from zero (that is,
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essQinf a = ¢ > 0), the integrand J(z, -) exhibits unbalanced growth, namely we have

ly|? < I(z,y) < o[l + |ylF] forall z € Q, all y € RY, some ¢y > 0.

Such functionals provide models describing strongly anisotropic materials. The mod-
ulating coefficient a(-) dictates the geometry of the composite made of two different
materials. Marcellini [10] and Zhikov [24], [25] were the first to study such function-
als in the context of problems of the calculus of variations and of nonlinear elasticity
theory. Recently the interest for such functionals was revived by the work of Mingione
and coworkers, who proved important local regularity results for the minimizers of such
functionals. We mention the paper of Baroni-Colombo-Mingione [1] and the references
therein. We also mention the recent work of Ragusa-Tachikawa [19], where the local
regularity results are extended to anisotropic double phase functionals. However, we
mention that a global regularity theory remains so far elusive and this is an additional
difficulty in the study of problems like (Py).

Let A1(g) > 0 denote the principal eigenvalue of the operator (=A,, W,%(R2)). Using
the Nehari manifold method along the lines of Szulkin-Weth [20] and Lin-Tang [8]
(semilinear problems driven by the Dirichlet Laplacian), we show that for all A < Xl(q)
problem (P,) has at least three nontrivial solutions, all with sign information (positive,
negative and nodal (sign-changing)) and with least energy (ground state solutions).
Other existence and multiplicity results for different types of double phase equations,
can be found in the papers of Colasuonno-Squassina [2], Gasiniski-Papageorgiou [3],
Gasinski-Winkert [4], [5], [6], Liu-Dai [9], Papageorgiou-Radulescu-Repovs [11], [12],
Papageorgiou-Repovs-Vetro [14], Papageorgiou-Vetro-Vetro [15], [16], Radulescu [18],
Zeng-Bai-Gasinski-Winkert [22], [23].

2. MATHEMATICAL BACKGROUND - HYPOTHESES

The analysis of problem (P)), uses Musielak-Orlicz spaces. A comprehensive treat-
ment of such spaces can be found in the recent book of Harjulehto-Hasto [7].
Let ¥ : Q2 x Ry — Ry (R4 =[0,00)) be the integrand defined by

V(z,x) = a(z)x? + 29,

Let M(Q) = {u: Q — R measurable}. As usual we identify two such functions which
differ only on a Lebesgue-null set. Then the Musielak-Orlicz space L?() is defined by

L°(Q) = {u € M(Q) : pg(u) < oo},
where pg(u) = [,,la(z)|uP + |u]?]dz. We equip L”(2) with the so-called “Luxemburg

norm” defined by
[ulls = inf {u >0:py (%) < 1} :

With this norm L?(€) becomes a separable Banach space which is uniformly convex
(thus reflexive by the Milman-Pettis theorem, see Papageorgiou-Winkert [17], p. 225).
The corresponding Musielak-Orlicz-Sobolev space W1¥(€) is defined by

Wh(Q) = {u e L?(Q) : |Vu| € LY(Q)},
with Vu denoting the weak gradient of u. We equip this space with the following norm

lullio = ulls + [|[Vulls for all u € WH?(Q),
where | Vully = || [Vu] ||g. Also, we set W7 (Q) = mﬂ'llw‘
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According to Theorem 6.2.8, p. 130, of Harjulehto-Hé&sto [7], the Poincaré inequality
holds for W’ (Q) and so

ul| = |Vullg for all u e Wy"(Q),

is an equivalent norm for VVO1 ’ﬂ(Q). Equipped with these norms, the spaces W¥(£2) and
Wy’ (9) are separable Banach spaces which are uniformly convex (hence reflexive).
We impose the following conditions on the exponents p, ¢ and the weight a(-).

1
Hy: 1<q<p,]—)<1+NandaGLm(Q),a(z)ZOfora.a. z€0,a#0.
q

Remark 2.1. The second inequality is common in double phase problems and guarantees
that Wo" (Q) < LI() compactly and densely.

Ngq
— ifg< N
In general we have the following embeddings. Recall that ¢* = ¢ N —¢q nd

400 if N <q
(the critical Sobolev exponent corresponding to ¢ > 1).
Proposition 2.1. If hypotheses Hy hold, then
(a) LP(Q) — L7(Q), Wy (Q) — Wy (Q) continuously and densely for all 1 < r <

(b) W3 (Q) — L™(Q) continuously (resp. compactly) and densely for all1 < r < ¢*
(resp. all 1 <r < q*);
(c) LP(Q)) — L?(Q) continuously and densely.

There is a close relation between the norm || - ||y and the modular function py(-).

Proposition 2.2. If hypotheses Hy hold, then

u
@ o =1 = o (4) =1
(0) fJulls <1 (resp. =1, >1) < pg(u) <1 (resp. =1, >1);
(@) if lullo < 1, then [[u]f, < po(u) < [l
if fully > 1, then |ull§ < po(u) < |lullg;
(d) ||un|lo = 0 (resp. — o0) < py(u,) — 0 (resp. — ).

Let (-,-) denote the duality brackets for the pair (W, (Q), Wy’(Q)*) and let A
Wy’ () — W7 (Q)* be the nonlinear operator defined by

(A(u), h) = /(a(z)|Vu|p_2Vu + |Vu|"?Vu, Vh)gxdz  for all u, h € Wy (Q).
Q

This operator has the following properties (see Liu-Dai [9]).

Proposition 2.3. If hypotheses Hy hold, then the operator A : Wy (Q) — Wy (Q)*
is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone
(hence mazimal monotone too) and of type (S)4 (that is, A() has the following property:

U =5 win WP (), limsup(A(up), ty — u) < 0 imply that u, — u in Wy (Q)).

n—o0

The hypotheses on the perturbation f(z,x) are the following:

Hy: f: QxR — Ris a Carathéodory function such that f(z,0) = 0 for a.a. z €
and
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(@) |f(z,2)] < alz)[1+]|z|"7] for a.a. 2 € Q,allz € R, witha € L®(Q), p <71 < ¢*
(see hypotheses Hy);

F
(i) if F(z,x) = [ f(z,s)ds, then hmm

S o

and if e(z,z) = f(z,z)x — pF(z,x), then

0 < ¢ < liminf ez,
r—+o0 ‘x’

= +oo uniformly for a.a. z €

uniformly for a.a. z € {2;

(771) lim f(z,7) = 0 uniformly for a.a. z € ;
20 |z|17 2z

f(z,2)

o is increasing on R, = (0, 00)

(1) for a.a. z € 2, the quotient function z —
and on R_ = (—o0,0).

Remark 2.2. Hypothesis Hy(ii) implies that for a.a. z € Q, f(z,-) is (p—1)-superlinear
as x — =+oo. Hypothesis Hi(iv) is weaker than the usual Nehari-type monotonicity

f(z,x)

x|p~t

condition which requires that the quotient function x — 18 strictly increasing on

|
R and on R_ (see Gasinski-Winkert [4] and Liu-Dai [9]).
For any function u € Wy (), we set
u* = max{+u,0}.

We know that u* € Wi(Q), u=u" —u~ and |u| = u" +u .
We introduce the energy (Euler) functional oy : Wy (Q) — R for problem (P))
defined by

1 1 A
ea(u) = 20u (V) + £Vl = 2y - / Pz u)dz

for all u € Wy’ (Q), with pa(Vu) = [, a(2)|Vu[Pdz. We know that ¢y € C'(W,"(Q)).
Also, in order to produce constant sign solutions, we introduce the positive and
negative truncations of ¢,(+), namely the C 1—functionals defined by

1 1 A
P (1) = —pa(Vu) + —[|Vullf — =[lu™|§ — / F(z, £u™)dz
p q q Q

for all u € W,"’(€). We introduce the following Banach manifolds:
N = {ue W5"(Q) : (#(u),u) = 0, u # 0},
Ny = {u e Wy (Q) : ((o})'(w),u) = 0, u = 0, u # 0},
N- = {ue Wy () : ((g3) (w),u) =0, u <0, u# 0},
No = {u € Wy() = (A\(u),u™) = (h(u),u”) =0, u* #0}.

We see that N is the Nehari manifold for the energy functional ¢, () and Ny, N_, Ny
are submanifolds of N. Evidently every nontrivial solution of (P,) isin N. Similarly N,
(resp. N_) includes the positive (resp. negative) solutions of (Py), while Ny contains
the nodal (sign-changing) solutions of (Py).
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In the next section we will prove a multiplicity theorem for (Py) under the strong
Nehari-type monotonicity condition and then in Section 4 using an approximation argu-
ment, we will prove the multiplicity theorem under the relaxed monotonicity condition.

For this reason we introduce the following more restrictive set of hypotheses on the
perturbation f(z,x).

Hi: f: QxR — Ris a Carathéodory function such that f(z,0) = 0 for a.a. z € Q,
hypotheses H] (i), (i), (i77) are the same as the corresponding hypotheses H (i), (i), (iii)

and
J|C i’;i) is strictly increasing on ]f%+

(1) for a.a. z € Q, the quotient function = —

and on R_.

Finally recall that Xl(q) denotes the first eigenvalue of (—A,, W, 9(Q)). We know
that A1(q) > 0, it is isolated and simple and

[Vullg
lullg

The infimum on (1) is realized on the corresponding one dimensional eigenspace, the
nontrivial elements of which have constant sign. If the boundary 99 is a C?-manifold,
then the eigenfunctions of A;(g) > 0 belong in CZ(Q).

M (q) = inf uweWrHQ), u+0|. (1)

3. MULTIPLE SOLUTIONS - STRONG MONOTONICITY

In this section we prove a multiplicity theorem for least energy solutions with sign
information, using the strong Nehari-type monotonicity condition (see hypotheses H7).

Actually, for the first results, we do not need this stronger monotonicity condition.
1—s7 1-—45P

In what follows 5(s) = — for all s > 0.
q p
Proposition 3.1. If hypotheses Hy, Hy hold, then for all u € Wol’ﬁ(Q) and all 7,t > 0,
we have
1—7? 11—t

pa(u) = ex(ru’ —tu”) + (Ph(u),u’) — (o3 (u),u”)
B(r) IVt (lg = MutlIg] + B(t) [V [lf — Au]lg] -
Proof. Let u € W () and 7,¢ > 0. We have

oa(u) — oa(Tu® —tu”)
= pa(ut) — oa(Tu™) + oa(—u") — ea(t(—u
= —prPa(VW) L= [[[Vu*]|d — /\||u+|| / F(z,mu")] dz

1—tP

+

pa(V) + % (Va2 — Al 2] / (2 —u) = Pz t(—u )] d=.
(2)
For ¢ > 0 and = # 0, we have
| op
p

f(z,x)x + F(z,92) — F(z,2)
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1 1 d
= / f(z,z)zs"tds — / —F(z,sz)ds
9 9 ds

1 1
= / f(z,2)xs? ds — / f(z,sx)xds (using the chain rule)
9 9

) / [ﬂz,x) _ fes0) ] N—

x|~ (sfaf)p?
>0 (see hypothesis H;(iv)),
11—

f(z,x)x > F(z,x2) — F(z,9x) (3)
for a.a. 2 € Q, all z # 0 and all ¥ > 0.
Returning to (2) and using (3), we obtain
pa(u) — oa(Tu’ —tu”)

1 — 7P 1 — 74 1 — 7P
> T (V) + [Vt = Alutg) = 2= [ eyt
Q
1—tP B B _ _ 1= _ _
(V) = [Vl = M ] = )
q p Q
L=, + +||a +|e
= T ) + A0 [V~ Nl ]
-, - —11q -4
~ ) =) + 50 [19u g = Al

g

In a similar fashion, we show the same inequality for the functionals ¢3(-).

Proposition 3.2. If hypotheses Hy, Hy hold, then for allu € Wy’ (Q) and all 7,t > 0,
we have

() .0t = () ()00)

+8(r) [IVe 11§ = Allw™1g] + B(0) [V llF = Mllw ] -

Note that 8(s) > B(1) = 0 for all s > 0 and ¢, (u) = @r(u™ — u~). Then using the
above propositions and (1), we infer the following corollaries.

gof(u) > gpf(ﬂﬁ —tu”) +

Corollary 3.1. If hypotheses Hy, Hy hold, uw € Ny and N\ < Xl(q), then @y(u) =
max ox(Tut —tu™).

Corollary 3.2. If hypotheses Hy, Hy hold, v € N and A\ < Xl(q), then py(u) =

max px(Tu).

Corollary 3.3. Suppose that hypotheses Hy, Hy hold. We have
(a) ifu € Ny and A < A\ (q), then oF (u) = max o5 (Tu);

(b) ifue N_ and A < /Xl(q), then ¢y (u) = max ¢, (tu).

t>0

The next two propositions establish the nonemptiness of the Nehari manifolds. Now
we bring in the picture the stronger hypotheses Hj.
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Proposition 3.3. If hypotheses Hy, H, hold, A < Ai(q) and u € W°(Q), then there
exist unique Ty, t, > 0 such that T,u™ — t,u~ € Ny.

Proof. We consider the fibering function
i (t) = pa(tu™) for all t > 0.

Using the chain rule, we see that

€.(=0
o V) + IVt = Al 13+ [ et )
Q
Y (40, F
& V) + o (19— At = [ LB gy

In (4) the left hand side is strictly decreasing in ¢t > 0 (recall that ¢ < p), while on
account of hypothesis Hj(iv) the right hand side is strictly increasing in ¢ > 0.

Note that because of hypotheses H{ (i), (iii), we see that given ¢ > 0, we can find
c1 = c1(€) > 0 such that

F(z,z) < E]:(:|q +clz|” for a.a. z € Q, all x € R. (5)
q

Then we have

E+(t) = ea(tu™)
tr + ¢ +|q +|9 ™t
=~ pa(VuT) + IVur]ls = A+ a)llu 7] — et"llu™ 7 (see (5)).
Choosing ¢ € (0, Xl(q) — A) (recall that A < Xl(q)), we have
£ (t) > ot — cgt”  for some cp,c3 >0, all t > 0,
= &i(t) >0 forallte (0,1)small (since p <r).

On the other hand, hypotheses H/ (i), (i¢) imply that given any n > 0, we can find
¢y = ¢4(n) > 0 such that

F(z,z) > g|w|p —cy foraa. z€Q,allz eR.
We have
£4(t) = paltu’)

¢ o v +19 +ipa] — T
;pa(Vu )+ 7 IVt g = AMlutg] - ?Hu 15+ calQw

IN

(by | - | ¥ we denote the Lebesgue measure on RY)
tP 4
= [pa(Vu®) = nllutp] + " IVur g = Ml 17] + cal Q.
Since 1 > 0 is arbitrary, choosing n > 0 big and recalling that A\ < Xl(q), we obtain
£+ (1) < est? — ct? 4 ¢4 for some c5,c6 > 0, all t > 0.
Since ¢ < p, it follows that for ¢ > 0 big we have

&+ (t) <0.
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Therefore we infer that there exists unique 7, > 0 such that

& (Tu) = I%ax@.

+
Similarly working this time with the fibering function
E_(t) = a(t(—u™)) forall t >0,
we produce a unique ¢, > 0 such that

§-(tu) = max g

Then from Corollary 3.1, we conclude that

T uT —tyu” € Np.

In a similar fashion we prove the analogous results for the functionals (3 (-).

Proposition 3.4. Suppose that hypotheses Hy, H| hold. We have

(a) if u e W3'(Q), ut £ 0 and )\ < M (q), then there exists unique 77 > 0 such
that fut € Ny;

(b) if ue Wy (Q), u= # 0 and X < M\ (q), then there exists unique t; > 0 such that

t,(—u~) e N_.

u

We set
my =ity My =ifey, My =infe,.
Also we introduce the following subsets of W, (Q):
WE(Q) = {u e W' (Q) : u* £ 0} (the nodal elements of Wy (Q2)),
W (Q) = {u € Wy () s u' # 0},
Wh(Q) = {u e Wy (Q) 1 u™ #0}.
Using these sets we can have minimax characterizations of m3 and ﬁﬁ

Proposition 3.5. If hypotheses Hy, H hold and \ < Xl(q), then

>0 : f + —tu7):
(@) mj‘r uev;g’ﬁ((z) %%%@);(TU w);
b) miy = inf maxy, (Tu);
= gm0
m, = inf \ (tu).
(c) my weriE o E s (tu)
Proof. (a): Let uy = inf maxpy(rut — tu™). Since Ny € W1?(Q) on account of

ueWw?(Q) 7t20
Corollary 3.1 we have

< i Tt ) =m°
< ulenj\ff0 max oa(Tu™ —tu”) = mj. (6)

On the other hand, if u € W}?(Q), then

max ox(tut —tu”) > pa(rout —t,u”)  (see Proposition 3.3)

>mYy (since Tut —t,u” € Ny),



LEAST ENERGY SOLUTIONS WITH SIGN INFORMATION ... 9

From (6) and (7) we conclude that uy = m3.

(b) and (c): These parts are proved similarly using this time the functionals ¢y (-),
¢, (+), Corollary 3.3 and Proposition 3.4. ]

The Nehari manifold N is much smaller that W, (Q) and so the functional @, (-)
restricted on N exhibits properties which fail to be true globally.

Proposition 3.6. If hypotheses Hy, H{ hold and X\ < Xl(q), then x|y is coercive.

Proof. We argue by contradiction. So, suppose that the assertion of the proposition is
not true. Then we can find {u, },eny € N such that

ox(u,) < e for some ¢7 > 0, all n € N,

(8)

| un|| — oc.
Let v, = Hu—nH, n € N. Then ||v,|| =1, n € N, and so we may assume that
Unp
vp 2 v in Wp¥(Q) and v, — v in L7(Q) (9)

(recall that W,""(Q) < L™(Q) compactly, see Proposition 2.1).
From (8) we have

P pE(z, un) per
Pa(Vu)+———— ||V, ||2 — A||va]| —/ ———dz < for all n € N. (10)
ql[un [P~ [ ! d o uall? [[wn P
Since u,, € N, we have
f 2, Uy U,

pa(Vn) — IVolld = Moal] Do g — 0 foralln e N, (11)

[[enlP= n||” ‘

[l P

Adding (10) and (11) and recalling that A < )\1( ) (see (1)), ¢ < p, we obtain
/ f(z, up)u, — pF (2, uy)

[[en 7

dz <e, with e, |0,

N /fzun n—pF(z,uy) vds < e (12)

We claim that v # 0. To see this, suppose that v = 0. Then for £ > 0, on account of
Corollary 3.2, we have

Cr Z @A(un)
> 0y (ﬁun> (recall u,, € N)
oP 01 . ‘
= —pa(VUn) +— [||an|| — Mlun[|2] = QF(Zaﬁvn)dZ
gp
> — —/F(z,évn)dz
p Q

(recall that A < A\ (q), ||vn|l = 1 and see Proposition 2.2).
Passing to the limit as n — oo, using (9) and recalling that we have assumed that
v = 0, we obtain
P < pcy.
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But ¢ > 0 is arbitrary. So, we let ¢ — oo and have contradiction. This proves that

v # 0.
Let Q ={z € Q:v(z) # 0}. We know that |Q|x > 0. Then from (12), passing to the
limit as n — oo and using Fatou’s lemma and hypothesis H/(ii), we obtain

0 <5/ lv|Pdz <0,
Q
a contradiction. This proves that <P,\| v s coercive. U

With minor modifications in the above proof we can prove the same result for ¢y ‘ N,

ox |y (A< Xi(9)).

Proposition 3.7. If hypotheses Hy, H| hold and N\ < Xl(q), then ¢y
coercive.

| N, Te both
Proof. We do the proof for QOXF ‘ Ny

indirectly. So, suppose that ¢} | N, is not coercive. Then we can find {u,}neny € Ny
such that

the proof for ¢ |, being similar. Again we proceed

o5 (u,) < cg for some cg >0, all n € N, (13)
||tn|| — oc.

Freom (13) we have
P
pa(Vul) + p (VU |8 = A1) — /QpF(z,u:{)dz <pcg foralln € N. (14)

Moreover, since u,, € N, we have

pa(Vu) + [V 12 = At | / feuttds forallneN. (1)
From (14), (15) and since ¢ < p, we infer that
/Qe(z,u:{)dz = /Q[f(z,u;';)uz — pF(z,u})]dz < pes. (16)
Suppose that ||u,}]| — oo and set v, = HZ:JL:H, n € N. Then we may assume that

vy = v in Wy'(Q) and v, — v in L"(Q) (see Proposition 2.1).

From (16) we have

/ /2 PRG M) 0 < o with & | 0. (17)

WH”

As in the proof of Proposition 3.6 and using the fact that for all y € VVO1 ’ﬂ(Q),
o5 (y") < ¢ (y), we show that v # 0 and from that we derive a contradiction as in the

proof of Proposition 3.6. Therefore {u;} },ew € Wy (Q) is bounded. This fact and (13)
imply that {u; }nen € Wy (€) is bounded (see Proposition 2.2 and hypothesis H/(i)).
Therefore {uy, }nen € Wy’ (Q) is bounded and this contradicts (13). Hence ¢} | i

coercive. Similarly we show that ¢}

|y, is

| N 1S coercive. O

Using Propositions 3.6 and 3.7 we will show that m is realized on Ny, while fr\Lf\E are
realized on N..
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Proposition 3.8. If hypotheses Hy, H{ hold and )\ < Xl(q), then
(a) there ezists yo € No such that px(yo) = 1]{[10f oy =m{ > 0;
(b) there exists ug € Ny such that o3 (ug) = 1]{715 or = my > 0;
(c) there exists vy € N_ such that ¢, (vo) = 1]{[1; oy =m, > 0.

Proof. (a): Let {yn}nen € Np be a minimizing sequence for i]{flf ©a, that is,
0

ox(yn) L MY as n — oo.

From Proposition 3.6, we know that {y,}nen C Wow(Q) is bounded. So, we may
assume that

Yn — Yo in WOW(Q) and y, — yo in L"(Q), (18)
= yF 5 yF in W' (Q) and yF — oy in L7(Q). (19)
Recall that vy, € Ny for all n € N. So, we have
(O5\(Yn), Y ) =0,
= (V) + IV 1~ My | / Fedutd
> VD) +al Vil < [ fea (20)

for some ¢g > 0, all n € N (recall that A < Ay(q)).

On account of hypotheses H{ (i), (i), given € > 0, we can find ¢19 = ¢10(¢) > 0 such
that

f(z,x)x < elx|! + co|lz|” for aa. z € Q, all z € R. (21)
We use (21) in (20) and choosing £ > 0 small, we obtain
Pa(Vy) + e[| Vyi |2 < cwolly ||y for some ¢11 > 0, all n € N,
= pa(Vyh) <cpollyt]ll  for some cjp > 0, all n € N.

Using Proposition 2.2 and the fact that W, (Q) < L"(Q) (see Proposition 2.1), we
obtain

min { [y, ]2, |y |2} < cusllyf[l for some ¢13 > 0, all n € N,
= cu <|y'll, forsome cyy >0, allneN (recall ¢ <p <r).

Passing to the limit as n — oo and using (19), we obtain

C14 < Hy(—)i_”h
= 1y #0 and in a similar way we show that y, # 0. (22)

Since v, € Ny, n € N, we have
<90/\(?/n) > =0 forallnéeN,

= pa(Vy) + VG = Ay 2+ / f(zyyrdz forall ne N,
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Note that the modular function p,(-) is continuous, convex, hence sequentially weakly
lower semicontinuous. Therefore if we pass to the limit as n — oo and use (19), we
obtain

pa(V5) + IV 12 < Ml + / Fad it d

= (W), yy) <0, (23)
In a similar fashion, we show that
P5(o), =y ) < 0. (24)

Since v, € Ng C N, we have

70 = lim {sm(yn) - %(w&(yn)’y">]

n—o0

= [G - 5) (17l = Al ll3) +/Q (]%f(z,yn)yn - F(z,yn)> dz]

(;—;) (1930012 — Migoll2) + / (gﬂz,yo)yo_m,yo)) i (sce (18))

3

v

= oa(yo) — %(SO/,\(ZIOL Yo)

L= m (o (yo), g ) — L1y (\(mo)swo) — %w&(yo),y&

> ox(Toyg — toyy ) +

with 79 = Tyo, to = ty, (see Propositions 3.1, 3.3 and recall that § >0, A < Xl(q))
. to - .
> iy — ) (%(yo) o) + i(@&(yo), Yo) (see Proposition 3.3)

>my  (see (23), (24)).
It follows that

(er(wo) w0) = (eA(wo) %o ) =0,
= yo € Ny (see (22)). (25)
From the sequential weak lower semicontinuity of ,(-), we have
pa(yo) < lim @x(yn) = ms,
= @aly) =7y (see (25)).

Moreover, we have
. 1 1
= o) = 2pa(V) + [Vl = Molz] - / Fz, o)z

1
> = oa(T0) + 19301 = Al ~ / f(z,yomdz}
= 0.

Here first we have used (3) with ¢ = 0 and with the remark that if Hj(iv) holds, then
the inequality is strict (see the proof of Proposition 3.1).
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Then we used that ¢ < p, A < A(¢) and yo € Ng € N (see (25)). So, finally we
conclude that m > 0.

(b) and (c): These parts are proved in a similar fashion. d

Remark 3.1. The above proof also shows that there exists c15 > 0 such that
0<cis <|ul| forallueN. (26)
Indeed, if u € N, ||u|| <1, from (21) and Proposition 2.1, we have

ecigllul|? + carllull”

> / f(z,w)udz  for some cyg,c17 > 0
Q

= pa(Vu) + [[[Vul|§ = Aul|2]  (since u € N)
> pa(Vu) + cig||Vul|l  for some ci1g > 0 (recall that A < M (q) and see (1))
> co||ul|? for some c19 > 0 (see Proposition 2.2),
= coollul|? < ||u||”  for some cog > 0 (choosing € > 0 small).
So, (26) holds, since g <p <.

Next following the arguments of Willem [21] (p. 74) and of Szulkin-Weth [20] (p.
612), we show that Ny is a natural constraint for the functional ¢,(-) (see Papageorgiou-
Radulescu-Repovs [13], Definition 5.5.11, p. 425). This way we can show that yo € Ny

from Proposition 3.8 is a nodal solution of (Py) where A < A;(q).

Proposition 3.9. If hypotheses Hy, H| hold, A < Xl(q) and yo € Ny is as in Proposition
3.8 (a), then yo € K,, ={y € W (Q) : P (y) = 0} and so yy € Wy (Q) N L®(Q) is a
nodal solution of (Py).

Proof. Since yy € Ny (see (25)), we have
(Ao ), w0 ) = 0= (%) —¥0 ).
For 7,t € R, \ {1} (recall R, = (0,00)), we have
PA(Tys —tyy ) = oa(Tyy) + oalt(—uy))
< oalyd) + oa(—yy) (see Corollary 3.3)
= pa(yo) = M3 (see Proposition 3.8). (27)
Arguing by contradiction, suppose that ¢)(yo) # 0. Consider the parallelogram

1 3)\?
P = (5, 5) and the function y(7,t) = Tys — ty,, 7,t > 0. From (27), we have

p = max[py(y(7,1)) : (1,t) € IP] < M. (28)
We apply Lemma 2.3, p. 38, of Willem [21] (the quantitative deformation lemma),

ml —p nd —
XK 77_} and S = Bs(yo) = {y € Wa"(Q) : |ly — ol < 6}, for some

with € = min 13
d > 0 and 7 > 0, and obtain a deformation hg(s,u) such that
ho(1,u) = u for all u € 3 '([MY — 2, MY + 2¢)),

~0_
my—¢€

0 +e —_—
ho(1, 03> N Bs(yo)) C )
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where for every ¢ € R, ¢5 = {u € W"(Q) : pa(u) < ¢}, oa(ho(1, 1)) < @a(u) for all
ue Wy (Q).
From the above properties of the deformation, we infer that
max[px(ho(1,7(7,1))) : (1,1) € P} <. (29)
Let k(7,t) = ho(1,~v(7,t)) and set
Jo(7. 1) = ({£5(T0), 53 ), (¥4 (ty0), =35 )

9y (1) = (1< ( (k(r ), k(. t)*),%(ap;(k(r, 1), —k(r, t)_>) for all (r.1) € P.

ﬂ

By C/Z\B(', -,-) we denote the Brouwer degree. From the proof of Proposition 3.3 and
the homotopy invariance property of the degree, we have

(Y, P,0) = 1. (30)
Note that ’V}ap = k‘ap (see (28), (29) and recall the choice of €). Then using the
properties of the Brouwer degree (see [13], p. 178), we have
dp(0y, P,0) = dg(vy, P,0),
= dp(9,P,0)=1 (see (30)),
= ho(t,v(P)) N Ny # 0.
But this contradicts (29). Therefore yy € K, and so we have that yo € Wy (Q) is

a nodal solution of problem (Py). Moreover, from Gasinski-Winkert [4] (Theorem 3.1),
we have that yy € L>®(2). O

Next using the functionals ¢} and ¢, we will produce two nontrivial, bounded,
constant sign solutions of (Py) (a positive solution and a negative solution). The proof
follows the arguments used in the proof of Proposition 3.9.

Proposition 3.10. If hypotheses Hy, H; hold, A < :\\1(q) and uy € Ny, vg € N_ are as
in Proposition 3.5 (b), (¢) respectively, then uy € K+ = {u e Wy (Q) : (1) (u) =0},
v € K- = {v e Wy"(Q) : (¢5) (v) = 0} and so ug € Wy’ (Q) N L=() is a positive
solution of (Py) and vy € Wy (Q) N L*®(Q) is a negative solution of (Py).

Proof. We do the proof for uy € N, , the proof for vy € N_ being similar. As we already

mentioned, we follow the reasoning in the proof of Proposition 3.9. So, we proceed
indirectly and assume that (o)) (ug) # 0. Then we can find 6 > 0 and 7 > 0 such that

lu = uoll <36 = [[(&X)' (w)l| = 7> 0.

13
Let D = 3 5) and consider the function v, (7) = 7uf, 7 > 0. We know that
o3 (y4(7)) = mi if and only if 7 = 1 and ¢ (14(7)) < m) for all 7 € Ry \ {1}
Therefore
p=max ol (v (7)) < MY
As before, we use the quantitative deformation lemma of Willem [21] (p. 38), with
my — p no

=
£ = min{ 1 ,g} and S = Bs(ug). We obtain a transformation h(¢,u) such
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that

hi(l,u) =u forall u € (1) *([m — 2e,my + 2¢]),

P (1, (3)™ % N Bi(uo)) € ()™,

i (hy(t,u) < @f(hy(s,u)) forall0<s<t<1,allue W’ (Q).
It follows that

max o5 (h (1, 74(7))) < 7y
We introduce the following functions
k(7) = hy(1,74(7)),

Do(7) = ((x ) (Tug ), ug ),

91(7) = %<(gp;)'(/§(7)), k(r)*) forall 7 € D,

We know that

dg(¥9, D,0) =1,
C/Z\B(ﬁhDaO):gl\B(ﬂOaD)O) =1 (Since 7+|8D:k|8D)’
= hy(t, (D)) NN+ # 0,
wich contradicts (31). Therefore uy € Kwi’ Similarly we show that vy € K‘p;.

We have
(1) (uo), h) =0 for all h € W, *(Q).

We choose h = —ug € W,#(€2) and obtain
pu(Vu) + (195 [ = Al 1] =0,
= c21pa(Vuy ) <0 for some cgp > 0,
= ug>0,uy#0 (see Proposition 2.2).

15

(31)

So, g is a nontrivial positive solution of (Py) and ug € Wy#(Q) N L>(Q) (see [4]).

Similarly for vy using this time the functional ¢ (-).

4. MULTIPLE SOLUTIONS - RELAXED MONOTONICITY

g

In this section, we relax the strong Nehari-type monotonicity condition Hj(iv) and
use hypothesis H;(iv). Via an approximation argument, we show that we still have three

nontrivial bounded solutions of (Py) (A < Xl(q)), all with sign information (positive,

negative and nodal).

As we already mentioned, our approach is based on an approximation of the super-

linear perturbation f(z,-). So, for every € > 0, we consider the function

fo(z,2) = f(z,2) + er|z| 2.

This is a Carathéodory function which satisfies the strong Nehari-type monotonicity
condition Hi(iv). We set F.(z,z) = [; f-(z,s)ds and for every A > 0, we introduce the

C'-functional ¢5 : Wy (Q) — R defined by
1

1 A
) = —pu(Vu) + <[ Full = Sl - / F(zu)dz for all u € W) (Q).
Q
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Evidently, we have
o5 (u) = pa(u) —ellul]l.  for all u € WOM(Q). (32)

As before, we also consider the positive and negative truncations of ¢5(+), denoted by
(¢5)%(-). For these functionals, we consider the corresponding Nehari-type manifolds
denoted by N¢, N%, N, N§.

Proposition 4.1. If hypotheses Hy, Hy hold, ¢ € (0,1] and A < /Xl(q), then 5 (u) >
do > 0 for all u € N*=.

Proof. On account of hypotheses Hi (), (ii7), given any ¥ > 0, we can find cgy = coa (1)) >
0 such that

¥
F(z,x) < —|z|"+ coo|z|” for a.a. z € Q, all z € R (see also (21)). (33)
q

From Corollary 3.2, we know that for all u € N¢, we have
Pi(u) = max i (Tu)
P 74
> g | =0 (Va) + = (17l = O D)) — ol
for some co3 > 0 (see (33)).

Choosing ¥ > 0 small (recall that A < Xl(q)) and using the fact that ¢ < p < r, we
obtain that

Tp T T
At = g | 70 (V) = car” |

> 0p >0 (see Proposition 2.2).
U

Now we are ready to produce nodal and constant sign solutions for problem (P))
(A < A1(g)) under the relaxed Nehari-type monotonicity condition.

Theorem 4.1. If hypotheses Hy, Hy hold and A < Xl(q), then problem (Py) has at
least three nontrivial solutions ug € N1 N L>®(2), vg € N_ N L>®(Q), yo € Ny N L®(Q)
(nodal).

Proof. First we produce the nodal solution .
Let €, | 0. From Proposition 3.9 we know that there exists y,, € N N L*(2) such
that
m5* = ¢ (yn) > 0 and (¢5") (yn) = 0 for all n € N. (34)
Let u € Ny. For every n € N, we can find unique 7,,t, > 0 such that
ut —t,u” € Ng*  (see Proposition 3.3).
Then we have
oxa(u) > pr(rut —t,u”)  (see Corollary 3.1)
> (ot —tuT)  (see (32))
> my.
Since u € Ny is arbitrary, it follows that
fﬁg >m§" > 6y >0 (see Proposition 4.1).
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So, we may assume that
mi* — ms >0 asn— oo, m§ > m; (35)
A A y My Z M.

A contradiction argument as in the proof of Proposition 3.6 shows that {y,}nen C
Wy’ (€2) is bounded. So, we may assume that

Yn — Yo in Wol’ﬂ(Q) and y, — yo in L"(£2). (36)
From (34) we have

(A(yn), h) = /\/ Y| 2y hdz + / f(z,yn)hdz for all h € Wol’ﬂ(ﬂ). (37)
Q Q

In (37) we choose h = y, — yo € W' (Q), pass to the limit as n — oo and use (36).
We obtain

lim <A(yn)> Yn — yO) = O:

n—o0
=  Yp —> Yo In Wol’ﬁ(Q) (see Proposition 2.3),
=yt =y in WyU(Q). (38)

Then we have

oa(yy) = lim ¢ (yf) > do >0 (see Proposition 4.1 and (32)),
n—oo

=y #0.

Also since y,, € N5, n € N, we have

(3 Wn) yn) = 0= (3" (yn),y,) foralln €N,
= (oa(w0),u3) = 0= (ea(wo),y5) (see (38)).

Therefore we have

Yo € No and M} = @ (yo) > MY,
= yo € Ny and m5 = m{ = (o), ©5(¥0) = 0 (see (34) and (35)),
= 1o is a nodal solution of (Py) and yg € L>(£2).
Similarly working with {(¢1)®, ¢1},en we obtain a positive solution uy € Ny N

L>(9Q), o5 (ug) = my, while working with {(} )", ¥} }nen We obtain a negative solution
vo € NN LX(Q), ¢y (vo) =m, . O
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