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Abstract: A spin-boson-like model with two interacting qubits is analysed. The model turns out
to be exactly solvable since it is characterized by the exchange symmetry between the two spins.
The explicit expressions of eigenstates and eigenenergies make it possible to analytically unveil
the occurrence of first-order quantum phase transitions. The latter are physically relevant since
they are characterized by abrupt changes in the two-spin subsystem concurrence, in the net spin
magnetization and in the mean photon number.
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1. Introduction

Every realistic quantum physical system is unavoidably coupled to sources of deco-
herence and/or dissipation [1]. Open quantum systems are particularly intriguing since
their dynamic behaviour provides the platform to study the quantum-classical border.

A basic model exhibiting the quantum dissipation phenomenon is the spin-boson
model (SBM), which describes a single spin-1/2 coupled to a quantized bosonic field [2].
The SBM has been deeply investigated through several methods and techniques since the
1980s [2–10].

Because of zero-point fluctuations rather than thermal ones [11–13], the SBM exhibits
quantum phase transitions (QPTs) with respect to both the system-bath coupling and the
transverse field strength [4,6–8,14–20]. Despite of its apparent simplicity, the SBM has
spurred theoretical and experimental investigations which have successfully explored the
basic physics of open quantum systems, significantly contributing to the understanding
of different basic aspects that emerge experimentally in the behavior of such systems.
Moreover, thanks to its versatility and generality, the SBM is at the basis of numerous
applications in several fields, ranging from quantum information, quantum computation,
and quantum simulation, to quantum optics and condensed matter physics [21–25].

In the last years a growing attention has been focusing on the decoherent and dis-
sipative dynamics of the two-qubit SBM [17,26–29]. These models turn out to be useful
to describe physical systems consisting of a collection of bi-nuclear units [30,31]. In the
two-qubit SBMs until now analysed, either decoupled qubits or the simplest spin–spin
coupling have been considered [17,27,32]. The model we are going to investigate in the
following sections, instead, presents a non-trivial isotropic Heisenberg interaction between
the two spins. The inclusion of such an interaction term is of crucial importance for those
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systems where the spin–spin interaction cannot be neglected. In particular it plays a crucial
role in quantum computation [33,34] and, more generally, for those scenarios where the
spin–spin coupling is the key ingredient for both performing controlled gates [35,36] and
generating multipartite entangled states [37–39].

In this work we show that, thanks to the symmetries exhibited by the Hamiltonian, we
are able to find the analytical expressions of both eigenstates and (related) eigenenergies.
The dynamical problem can be exactly solved and this fact enables to bring to light the oc-
currence of first-order QPTs, characterized by abrupt changes of three physical quantities of
experimental interest: the level of entanglement between the two spins (estimated through
the concurrence [40]), the net two-spin magnetization, and the mean value of the number
of bosonic field excitations. In particular, the change from a vanishing to a non-vanishing
value of the mean photon number allows to speak of superradiant phase transition. The
paper is structured as follows. In Section 2 the general model introduced in Ref. [41]
and its symmetry properties are presented. In Section 3 the physical conditions which
realize the exchange symmetry between the two spins and which make the model exactly
solvable are considered. The analytical expressions of the eigenstates and eigenenergies
are further derived, with the occurrence of first-order QPTs with respect to the parameters
characterizing the Hamiltonian model. Final comments are reported in the last section.

2. Model and Symmetries

Let us consider the following open XYZ Heisenberg quantum model (in units of h̄)

H = Ω1σ̂z
1 + Ω2σ̂z

2 +
N

∑
j=1

ωj â†
j âj+

γxσ̂x
1 σ̂x

2 + γyσ̂
y
1 σ̂

y
2 + γzσ̂z

1 σ̂z
2 +

2

∑
k=1

N

∑
j=1

cij

(
â†

j + âj

)
σ̂z

i ,

(1)

describing two interacting spin-1/2’s subjected to local longitudinal (along the z direction)
fields and coupled to a common reservoir. A pictorial representation of the system is shown
in Figure 1.

Figure 1. Schematic representation of the two-qubit spin-boson model. The two central arrows
represent the two interacting qubits. The quantum harmonic oscillators constituting the bath are
represented by the blue circles.

σ̂x
k , σ̂

y
k and σ̂z

k (k = 1, 2) are the Pauli matrices, and aj and a†
j are the annihilation and

creation boson operators of the j-th field mode. Ωi and ωj are the characteristic frequencies
of the two spin-qubits (i = 1, 2) and the j-th field mode, respectively, and γk (k = x, y, z) are
the three real parameters characterizing the spin–spin anisotropic Heisenberg interaction.

The Hamiltonian is invariant when each spin is rotated by π around the ẑ-axis. The
unitary operator accomplishing such a transformation is [41–45]

eiπσ̂z
1 /2 ⊗ eiπσ̂z

2 /2 = −σ̂z
1 σ̂z

2 = cos
(π

2
Σ̂z

)
, (2)
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where Σ̂z ≡ σ̂z
1 + σ̂z

2 . Thus σ̂z
1 σ̂z

2 is a constant of motion, which in turn implies the existence
of two dynamically invariant subspaces (Ha andHb) related to its two eigenvalues (±1).
It is possible to see that the two effective Hamiltonians, governing the dynamics of the
two-qubit/bath system in each subspace, read [41]

Ha = Ωaσ̂z
a + γaσ̂x

a + γz1̂a +
N

∑
j=1

ωj â†
j âj +

N

∑
j=1

ca
j

(
â†

j + âj

)
σ̂z

a , (3)

for σz
1 σz

2 = 1, and

Hb = Ωbσ̂z
b + γbσ̂x

b + γz1̂b +
N

∑
j=1

ωj â†
j âj +

N

∑
j=1

cb
j

(
â†

j + âj

)
σ̂z

b , (4)

for σz
1 σz

2 = −1, with

Ωa/b = Ω1 ±Ω2, γa/b = γx ± γy, ca/b
j = c1j ± c2j. (5)

The original Hamiltonian can be then written as H = Ha ⊕ Hb. Thus, the dynamics of the
two-spin/bath system in each subspace can be simulated by that of an effective single-
impurity spin-boson model (SISBM), that is a fictitious two-level system immersed in a
fictitious magnetic field and coupled with a reservoir through effective coupling constants.
In this case, the role of the effective transverse field is played by the coupling existing
between the two spin-1/2’s. It is important to underline that, although the two effective
Hamiltonians are qualitatively similar, they can deeply differ under specific physical
conditions, leading to a remarkably different dynamics of the physical system described by
Equation (1) in the two different subspaces of the two-spin/bath system.

The subspace a related to the eigenvalue +1 of σ̂z
1 σ̂z

2 is spanned by

{|++〉, |−−〉} ⊗N
j=1 {|nj〉}∞

n=0, (6)

with σ̂z|±〉 = ±|±〉, and âj
† âj|nj〉 = nj|nj〉 (j = 1, . . . , N). It means that the two states

{|++〉, |−−〉} are mapped into the states {|+〉a, |−〉a} of the fictitious two-level system a.
So, in this case, by studying the dynamics of the fictitious spin-1/2 a effectively coupled to
a bath, we study the dynamics of the two-spin/bath system within the subspaceHa ruled
by the effective Hamiltonian (3). Analogously, the subspaceHb related to the eigenvalue
−1 of σ̂z

1 σ̂z
2 is spanned by the two-spin/bath states

{|+−〉, |−+〉} ⊗N
j=1 {|nj〉}∞

n=0, (7)

and the effective Hamiltonian ruling the dynamics is that given in Equation (4). In this
case, the two states {|+〉b, |−〉b} of the fictitious spin-1/2 b are the mapping images of the
two two-spin states {|+−〉, |−+〉}, respectively. Thanks to such a dynamic separation,
the time evolution from initial conditions involving the two invariant subspaces can be
easily achieved.

Finally, it is worth pointing out that, being each subdynamics ruled by an effective
spin-boson Hamiltonian, all the results obtained for the spin-boson model can be applied to
each subdynamics and interpreted in terms of the two interacting spin-1/2’s. Then, we can
disclose the dynamics of the two-spin/bath system by separately solving the two effective
spin-boson dynamical problems and ‘merging’ the obtained results.
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3. Exactly Solvable Case

In this section we specialize the model (1) making it invariant under the two spin
exchange. The simplest way to reach this goal is to introduce the following physically
transparent links between the parameters appearing in H:

Ω1 = Ω2 = Ω/2, γx = γy = γ/2, c1j = c2j = cj/2 (∀j). (8)

For this exchange-symmetry case the Hamiltonian of the two-spin/bath system reads

H =
Ω
2
(σ̂z

1 + σ̂z
2) +

N

∑
j=1

ωj â†
j âj+

γ

2
(σ̂x

1 σ̂x
2 + σ̂

y
1 σ̂

y
2 ) + γzσ̂z

1 σ̂z
2 +

N

∑
j=1

cj

2

(
â†

j + âj

)
(σ̂z

1 + σ̂z
2).

(9)

With respect to Hamiltonian (1), where only the square of Σ̂z is a constant of motion,
Hamiltonian (9) exhibits a higher symmetry, being also the z-component of the total spin a
constant of motion. The two effective Hamiltonians, which now rule the dynamics of the
two-spin/bath system in the two invariant subspaces (still definable), become

Ha = Ωσ̂z
a + γz1̂a +

N

∑
j=1

ωj â†
j âj +

N

∑
j=1

cj

(
â†

j + âj

)
σ̂z

a ,

Hb = γσ̂x
b − γz1̂b +

N

∑
j=1

ωj â†
j âj.

(10)

We underline that, under the particular physical conditions in Equation (8), Hb presents an
effective decoupling of the fictitious two-level system b (which simulates the behaviour
of the two actual spins within the subspace b) from the relative bosonic bath. This means
that the subspace b is a decoherence-free subspace, or, in other words, that any initial state
of the two-spin system belonging to such a subspace evolves as if the coupling between
the two spins and the bath were absent [46–48]. The physical reason at the basis of this
occurrence relies on the equal coupling of the two spins to the bath, i.e., c1j = c2j, ∀j.
The two couplings in a certain sense compensate each other, canceling out the effective
spin-bath interaction in the subspaceHb.

Moreover, we note that both Hamiltonians in Equation (10) result to be exactly diag-
onalizable. The homogeneity of the longitudinal magnetic field applied to the spin pair,
namely Ω1 = Ω2, causes σ̂z

a to be a constant of motion of Ha. Thanks to the isotropy of the
spin–spin coupling strength, i.e., γx = γy, σ̂x

b is instead a constant of motion of Hb. The
subspace Ha (Hb) can be then separated in two invariant subspaces, H±a (H±b ), labeled
by the two eigenvalues (±1) of the corresponding constant of motion σ̂z

a (σ̂x
b ). Therefore,

the total Hilbert spaceH is the direct sum of these four infinite-dimensional, dynamically
invariant Hilbert subspaces, namely

H = H+
a ⊕H−a ⊕H+

b ⊕H
−
b . (11)

We underline that these four orthogonal invariant subspaces are identified and charac-
terized by constant values of physical variables related only to the two-spin system. A
consequence of Equation (11) is that, preparing the two-spin/bath system in a factorized
spin-bath state belonging to one out of the four invariant subspaces given in Equation (11),
the evolved state is still in a factorized form and the two-spin factor is stationary.

The two Hamiltonians

H±a = ±Ω + γz1̂a +
N

∑
j=1

ωj â†
j âj ±

N

∑
j=1

cj

(
â†

j + âj

)
, (12)
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corresponding to the two eigenvalues of σ̂z
a , must be intended as the effective Hamiltonians

governing the dynamics of the two-spin/bath system within the subspace H+
a and H−a ,

respectively. The eigenstates (written in terms of the two-qubit/bath states, in view of
the mapping discussed in Section 2) and eigenenergies of these two Hamiltonians can be
written, respectively, as

|ψa±
{nj}
〉 = |±±〉 ⊗N

j=1 D(∓αj)
(â†

j )
nj√

nj!
|0j〉,

Ea±
{nj}

= ±Ω + γz +
N

∑
j=1

(nj − α2
j )ωj

(13)

with D(αj) (αj = cj/ωj) and |0j〉 being the displacement operator and the vacuum state
of the j-th quantized bosonic mode, respectively [49]. Considering an infinite number of
harmonic oscillators of the bath (N → ∞), the last term in the expression of the eigenener-
gies diverges. In order to obtain a finite esteem of this energy contribution, we consider
an Ohmic spectral density, that is J(ω) = ∑j c2

j δ(ω − ωj) ≡ αωeω/ωc (α and ωc are the
dimensionless parameter accounting for the spin-bath coupling strength and the cut-off
energy of the bath, respectively). With this choice the energy contribution under scrutiny
is finite and can be exactly derived, namely ∑j α2

j ωj → αωc (the sum is replaced by the
integral, namely ∑j →

∫
J(ω)dω [50,51]). In this case the lowest-energy states and the

corresponding energies of the two Hamiltonians are uniquely defined and read

|ψa±
{0j}
〉 ≡ |ψa±

0 〉 = |±±〉 ⊗
N
j=1 D(∓αj)|0j〉,

Ea±
{0j}
≡ Ea±

0 = ±Ω + γz − αωc.
(14)

We underline that the assumption of the Ohmic spectral density has been done only to ob-
tain a finite esteem of the energy contribution of the bath (composed of an infinite number
of quantum harmonic oscillators, N → ∞). However, this choice does not affect the exact
solvability of our model. Indeed, if we had considered a finite number of harmonic oscilla-
tors the expressions of the eigenenergies would have been the same, and the assumption of
the Ohmic spectral density would not has been necessary, since the energy contribution of
the bath would result finite.

The eigenstates (mapped into the two-qubit/bath language) and the corresponding
eigenenergies of the two Hamiltonians H±b related to the two eigenvalues of σ̂x

b read instead

|ψb±
{nj}
〉 = |+−〉 ± |−+〉√

2
⊗N

j=1

(â†
j )

nj√
nj!
|0j〉,

Eb±
{nj}

= ±γ− γz + ∑
j

njωj,
(15)

with lowest-energy states and corresponding energies given by

|ψb±
{0j}
〉 ≡ |ψb±

0 〉 =
|+−〉 ± |−+〉√

2
⊗N

j=1 |0j〉,

Eb±
{0j}
≡ Eb±

0 = ±γ− γz.
(16)

Finally, it is worth noticing that, although the two effective Hamiltonians Ha and
Hb simplify under the considered conditions (resulting to be analytically diagonalizable),
the original two-spin/bath Hamiltonian does not acquire a trivial form, from which it
is easy to understand the exact solvability of the model. Rather, it is the decomposition
procedure and the effective description in terms of fictitious systems which allow to easily
read and recognize simple structures, leading to the solution of the dynamical problem.
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Quantum Phase Transitions

Thanks to the analytical solutions we can investigate and exactly derive the occurrence
of quantum phase transitions. We consider the case of full isotropy in the spin–spin
coupling, that is assuming γz = γx = γy = γ/2 in the Hamiltonian (9). In this instance the
four lowest energies within each invariant subspace read

Ea+
0 = Ω + γ/2− αωc, Ea−

0 = −Ω + γ/2− αωc, Eb+
0 = γ/2, Eb−

0 = −3γ/2. (17)

In Figure 2a–c the dependence of the above four eigenenergies is plotted as a function of the
spin–spin coupling γ, the spin-bath coupling α, and the externally applied magnetic field
Ω, respectively. It is possible to see that several level crossings occur. In particular, the one
appearing between the two eigenenergies Ea−

0 (dotted green line) and Eb−
0 (solid black line)

is of remarkable importance since it involves the ground state of the two-spin/bath system,
giving rise to a first-order QPT.

0.0 0.2 0.4
/ c

0.8

0.6

0.4

0.2

0.0

0.2
(a)

Ea +
0 / c

Ea
0 / c

Eb +
0 / c

Eb
0 / c

0.0 0.2 0.4

0.4

0.2

0.0

0.2
(b)

Ea +
0 / c

Ea
0 / c

Eb +
0 / c

Eb
0 / c

0.0 0.2 0.4
/ c

0.6

0.4

0.2

0.0

0.2

(c)

Ea +
0 / c

Ea
0 / c

Eb +
0 / c

Eb
0 / c

Figure 2. Dependence of the eigenenergies Ea+
0 (dashed red line), Ea−

0 (dotted green line), Eb+
0

(dot-dashed blue line), and Eb−
0 (solid black line) on the dimensionless (a) spin–spin coupling γ/ωc,

(b) spin–bath coupling α, and (c) the (classical) magnetic field strength Ω/ωc.

Specifically, in Figure 2a we see that Ea−
0 < Eb−

0 for γ < γc, while Ea−
0 > Eb−

0 for
γ > γc (γc being the crossing point, that is, the critical value of γ for which the ground
state is degenarate and then not uniquely defined). Therefore, the ground state corresponds
to |ψa−

0 〉 for γ < γc and to |ψb−
0 〉 for γ > γc. It means that, in this case, the ground

state ‘moves’ from H−a to H−b by increasing the spin–spin coupling γ and crossing the
critical point corresponding to the critical value γc. This fact suggests that the ground state
can belong to different invariant subspaces with respect to the parameter-space region
we consider.

On the other side, by increasing the spin-bath coupling α, the opposite change occurs:
Ea−

0 > Eb−
0 and Ea−

0 < Eb−
0 before and after, respectively, the crossing point αc (see

Figure 2b). The same transition is observed by varying the parameter Ω around its critical
values Ωc (see Figure 2c). The ground state is thus placed inH−b (being |ψb−

0 〉) for α < αc
and Ω < Ωc. Then, it ‘moves’ toH−a (becoming |ψa−

0 〉), after crossing the critical values of
the two parameters, that is for α > αc and Ω > Ωc (see Figure 2b and 2c, respectively).

These crossings are of course accompanied by relevant physical changes in the ground
state properties of the system. The two states |ψa−

0 〉 and |ψb−
0 〉 are indeed characterized by

different values of three relevant physical observables, namely: (i) the level of entanglement
between the two spins estimated through the concurrence Cx−

0 [40] which, in case of a
general two-qubit state

|ψ〉 = c++|++〉+ c+−|+−〉+ c−+|−+〉+ c−−|−−〉, (18)

with |c++|2 + |c+−|2 + |c−+|2 + |c−−|2 = 1, reads

C = 2|c++c−− − c+−c−+|; (19)

(ii) the net two-spin magnetization Mx−
0 ≡ 〈ψx−

0 |Σ̂z|ψx−
0 〉; (iii) the mean number of photons

(or excitations) Nx−
0 ≡ 〈ψx−

0 |â† â|ψx−
0 〉 of the boson field (x = a, b).
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By explicitly calculating on |ψa−
0 〉 the average values of the three physical observable

listed above, we obtain:

{Ca−
0 = 0, Ma−

0 = −1, Na−
0 =

N

∑
j=1

α2
j }. (20)

The same calculation performed for the state |ψb−
0 〉 gives

{Cb−
0 = 1, Mb−

0 = 0, Nb−
0 = 0}. (21)

We see that the three physical quantities considered show different values for the two states
which alternately result to be the ground state of the two-spin/bath system, depending
on the parameter-space region taken into account. These observables then undergo an
abrupt change in correspondence of the level-crossings occurring at the critical values of the
control parameters. Therefore, we can speak of two different phases and then of first-order
QPTs (at the crossing points) characterized by: (i) γ, α, and Ω as control parameters; (ii) the
three physical quantities C0, M0, and N0 as order parameters; (iii) the two states |ψa−

0 〉 and
|ψb−

0 〉 as ground states of the two-spin/bath system in the two different phases.
We point out that the thermodynamic limit is not necessary, in general, for first-order

QPTs [11]. In Refs. [52–56] the authors, studying the quantum Rabi model, make clear
the difference between first-order QPTs occurring in the thermodynamic (classical) limit
(vanishing frequencies for the bosonic field) and the first-order QPTs occurring in the fully
quantum regime (that is, at finite frequencies). Precisely, they bring to light how the phase
diagram (and then the physical feature) of the ground state of the system is substantially
and remarkably different in the two regimes [52–56]. This circumstance clearly shows how
few-body first-order QPTs offer a rich field of study to understand both semiclassical and
fully quantum physical characteristics of microscopic light-matter systems.

In our case, however, the system is constituted by two interacting qubits and a multi-
mode bosonic field. We underline that the bath is not a reservoir playing a passive role in
the dynamics of the system. Its state is indeed not fixed and constantly equal to a thermal
state, as in the case of a reservoir. We have indeed different states for the bath in the two
ground states of the system related to the two different phases. Further, since the bath
consists of an infinite number of quantum harmonic oscillators, the size of the system is
then not finite. To esteem the energy contribution of the bath we have indeed taken the
limit N → ∞, after assuming an Ohmic spectral density. In this case thus the QPTs brought
to light can be intended occurring in the thermodynamic limit.

It is particularly worth pointing out the different level of entanglement between the spins,
which characterizes the two phases: the two spins are in a disentangled state in the space
H−a , while exhibit a maximally entangled state in the space H−b . Furthermore, the (abrupt)
change from a vanishing to a non-vanishing value (or vice versa) of the mean photon number
suggests the occurrence of a superradiant QPT. Precisely, the phase corresponding to the
ground state |ψb−

0 〉 can be intended as the normal phase, while that corresponding to the
ground state |ψa−

0 〉 can be thought of as the superradiant phase [57]. The peculiarity of such a
superradiant QPT lies in the fact that it is a first-order QPT [58,59], differently from both the
standard superradiant phase transition of the Dicke model [60–62] and the superradiant QPT
of the quantum Rabi model [57], which are instead phase transitions of the second order.

4. Conclusions

The present work studies a model which describes an ubiquitous physical situation
that can be formalized in terms of two interacting qubits coupled to a common bosonic
field. We have shown that, despite its non-triviality, the model turns out to be exactly
solvable when a full symmetry between the two spins is considered. Precisely, we have
focused on an isotropic Heisenberg spin–spin interaction, an homogeneous magnetic field
applied to the spin pair, and an equal coupling of the spin–boson type between each
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spin and each mode of the field. In this instance it is then possible to analytically derive
eigenenergies and eigenstates of the system. Thanks to our exact approach it has been
possible to unveil the occurrence of QPTs with respect to the three parameters characterizing
the model (the spin–spin coupling, the spin-bath coupling, and the strength of the classical
magnetic field). These QPTs are characterized by abrupt changes in relevant physical
observables of the system: the two-spin concurrence, the net spin magnetization, and the
mean photon number. Such sudden changes are due to the fact that these QPTs are of
the first order (presence of a level crossing). We have in particular emphasized that the
change of the mean photon number from a vanishing to a non-vanishing value between
the two phases allows to speak of superradiant phase transition. The peculiarity of such
a superradiant phenomenon is related to the fact that it corresponds to a first-order QPT,
differently from what happens for both the standard superradiant phase transition of the
Dicke model [60–62] and the superradiant QPT of the quantum Rabi model [57], which are
instead second-order phase transitions.

We underline that the analytical approach [63–67] used here allowed to exactly solve
the time-independent Shrödinger equation. The method is further valid in every region
of the parameter space: no constraints about the strength of the Hamiltonian parameters
have been indeed introduced. The only requirement is the totally symmetric role of the
two spins.

Since not so many exactly solvable (non-trivial) models, treating the coupling with a
bath, are present in literature, our study can be then at the basis of an interesting insight on
physics of open quantum systems. Moreover, thanks to its generality, our model can be
applied to a plethora of physical systems useful for future quantum technologies. Until now,
the two-spin-boson models considered in literature [17,27,32] have taken into account either
decoupled qubits or the simplest spin–spin coupling. In our case, instead, the physical
effects stemming from the presence of a (non-trivial) isotropic dipolar spin–spin coupling
has been investigated for the first time. This aspect is of crucial importance since in some
contexts the spin–spin interaction cannot be neglected, and in other scenarios, such as in
quantum computation, it is fundamental to perform two-qubit quantum logic gates [35,36]
and to generate entangled states of the system [37–39].

Finally, our exactly solvable model can be also exploited to test the accuracy of the
standard techniques employed for mathematically treating open quantum systems, such as:
(i) the standard Lindblad theory [68,69]; (ii) the partial Wigner transform [70–72]; (iii) the
non-Hermitian formalism [73–81]; (iv) the stochastic approach [82–88].
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