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ABSTRACT

W
ith the advent of creating intelligent indoor spaces across diverse domains such as
domestic, retail, industries, and healthcare, there has been an intensified demand for
advanced indoor localization systems, especially with the integration of autonomous

machinery and robots into daily life. This thesis aims to surpass the limitations of current
RF- and Optical-based localization systems by developing more accurate, reliable, energy-
efficient, and cost-effective indoor localization systems. These systems are envisioned for
services like navigation in autonomous vehicles and asset tracking in industrial settings. The
thesis categorizes localization systems into two types: autonomous systems for entities like
warehouse robots, and tracking systems for monitoring indoor assets.

Initially, the thesis introduces a Bluetooth Low Energy (BLE)-based autonomous localiza-
tion system, BLoB. This system employs synchronous transmissions for enhanced reliability
and energy efficiency, achieving sub-meter-level accuracy with single-antenna BLE devices.
BLoB capitalizes on a unique beating effect observed in synchronous transmissions, char-
acterized by a sinusoidal pattern of constructive and destructive interference. Utilizing the
constant tone extension feature of the BLE 5.1 standard, BLoB enables multiple anchors to
transmit synchronously, with mobile tags capturing the resulting signal. The identification of
peaks in this superimposed signal, combined with signal strength data, empowers BLoB to
attain sub-meter accuracy in positioning. The efficacy of BLoB is validated in various settings,
including offices and sports halls, proving its robustness in challenging indoor scenarios.

To further refine BLE localization to centimeter or decimeter levels, the thesis proposes the
integration of BLE with precise optical-based localization methods. It introduces BLELight, a
hybrid autonomous localization system that merges the capabilities of BLE and Visible Light
Positioning (VLP) technology through neural network-driven data fusion. The deep neural
network model, trained through an incremental learning approach, showcases a substantial
improvement in localization accuracy, achieving decimeter-level accuracy.

However, prior to developing this hybrid solution with VLP, the thesis presents an inno-
vative VLP system named HueSense. The system utilizes existing LED lighting infrastructure
as transmitters for location beacons. This innovative system requires no modifications to
installed LEDs, instead analyzing their intrinsic characteristics for differentiation and location
mapping. HueSense employs low-power, off-the-shelf hue sensors to realize this functionality.
A prototype using three hue sensors, tested under different lighting environments, demon-
strates the system’s practicality and accuracy, either as a standalone solution or in enhancing
BLE-based localization. BLELight, by integrating features of both BLoB and HueSense, evolves
into a comprehensive hybrid autonomous localization system. This system adeptly tackles real-
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world challenges such as interference from external ambient light, physical obstructions, and
shadows, issues that typically limit VLP efficacy, while also addressing the inherent accuracy
constraints of BLE technology.

Further, the thesis explores a tracking system that leverages the new direction-finding
techniques of the BLE 5.1 standard, augmented with mmWave radar measurements. This inte-
gration, trained jointly in a deep neural network model, addresses the inherent accuracy limi-
tations of BLE. Two variations, BmmW-LITE and BmmW-LITE+, are evaluated. These systems
are optimized for single-antenna BLE devices, eliminating the need for bulky multi-antenna
arrays and presenting a more compact, cost-effective solution for IoT devices. BmmW-LITE+
extends BmmW-LITE by incorporating semantic capabilities at the edge device, facilitating
data transfer from the edge to the cloud, and optimizing bandwidth, power, and memory usage.
All systems, tested experimentally, demonstrate decimeter-level localization accuracy and can
be easily incorporated into solutions for deployment in real-world indoor environments.
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INTRODUCTION

Advancements in the Internet of Things (IoT) are rapidly shaping the smart, digital world

around us. An array of sensors and actuators are increasingly becoming an integral part of

our daily environments, including homes, retail spaces, factories, and offices [6, 7, 8, 9]. This

integration is not only about seamless connectivity but also extends to the incorporation of

robots into our daily routines, performing a variety of tasks in diverse settings and significantly

enhancing our day-to-day experiences and efficiency. A critical aspect of this integration,

especially for Automated Guided Vehicles (AGVs) or Automated Mobile Robots (AMRs), is

the necessity of precise location awareness [10, 11, 12, 13]. Moreover, pinpointing their exact

location with high accuracy is paramount. In this context, understanding the tasks that require

accurate localization versus relative positioning is crucial. For example, navigation and route

planning optimization in AGVs demand exact localization for efficient movement and obstacle

avoidance [10]. Similarly, accurate localization is vital for asset tracking and stock control,

where AGVs need to precisely locate and manage inventory [14]. Conversely, tasks like ma-

nipulation rely more on relative positioning, focusing on the AGVs’ position in relation to the

object it interacts with [15]. The need for precise localization is also evident in applications like

geofencing and zone occupancy detection, where AGVs must adhere to specific operational

zones to avoid conflicts or congestion [16, 17].

1.1 Motivation

Indoor localization plays a pivotal role in the development of smart indoor environments,

with applications ranging from warehouse automation to healthcare. Examples include:

1
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• Within the autonomous sector, these systems are of paramount importance for a wide

array of applications, for example, warehouse automation, security, manufacturing and

logistics, and Augmented/Virtual Reality (AR/VR), to name a few; significantly enhancing

the functionality and efficiency of various technologies within indoor settings [6, 13].

• In industrial settings, such as smart warehouses and workspaces, indoor localization sys-

tems prove instrumental in facilitating autonomous robot navigation and asset tracking.

By precisely pinpointing the location of valuable resources and devices, organizations

can efficiently manage and monitor their operations, leading to increased productivity

and reduced operating costs [12, 18].

• Beyond their applications in industrial settings, indoor localization systems hold signifi-

cant implications for healthcare and assisted living. The ability to accurately track the

indoor location of individuals empowers these systems to provide targeted services that

greatly improve the quality of life for elderly and vulnerable populations. Furthermore,

emergency responders can leverage this technology to swiftly locate individuals in need

of assistance, thereby enhancing overall safety and well-being [19, 20].

• In the research realm “Beyond 5G”, the concept of Joint Sensing And Communication

(JSAC) has been widely discussed [7], with the aim of providing high-quality wireless

connectivity and seamless location awareness in both indoor and outdoor environ-

ments. The inclusion of these features in readily available IoT devices not only enhances

indoor localization capabilities but also paves the way for a variety of location-aware

applications. These applications have the potential to bring significant societal benefits,

ranging from improving indoor navigation for the visually impaired to optimizing space

utilization in crowded indoor areas [21, 22].

• In smart indoor environments, the integration of indoor localization systems fosters the

seamless operation of interconnected devices and systems. Such interconnectedness

creates intelligent indoor spaces that can dynamically adjust to occupants’ needs and

preferences, ultimately enhancing user experiences and overall comfort. Examples

include personalized climate control in offices, interactive museum exhibits, optimized

space management in co-working spaces, and real-time journey updates in public

transport hubs [19, 23].

Figure 1.1 provides a visual depiction of the indoor applications discussed above.

Despite decades of research efforts in developing indoor localization systems that are reliable,

cost-effective, power-efficient, and accurate, the quest for a universally applicable solution,

2
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Indoor 
Localization

Industrial

Healthcare

Transport

Indoor Spaces

Figure 1.1: Composite view & vision of indoor localization applications.

similar to the Global Positioning System (GPS) used outdoors, remains a challenge [24, 8,

25, 26]. Furthermore, the global Indoor Location Market, valued at $10.9 billion in 2023, is

projected to grow about $29.8 billion by 2028, and $52.88 Billion by 2032 [27], experiencing a

compound annual growth rate (CAGR) of 23% over the forecast period (according to a report

by MarketsandMarkets Research [1]), signifying the increasing demand and potential impact

of these technologies.

However, developing effective indoor localization systems poses notable complexities.

This complexity arises from the absence of standardized approaches and the difficulty in

ensuring compatibility and interoperability between systems. Each technology used for indoor

tracking operates on its own unique frequency and communication protocol, each with its

own set of limitations. Interestingly, what one technology lacks, another might compensate

for. Integrating these diverse technologies into an indoor location solution, be it in industrial

spaces or corporate environments, often requires significant updates to the existing infrastruc-

ture, including the installation of new servers/firmware and the integration of various systems.

This process is further complicated by the intricate indoor location market ecosystem (please

see Figure 1.2), which includes technology providers, software developers, and various service

providers, all catering to different industries and applications [1, 2, 28].

While indoor localization systems have shown great potential, they face unique challenges

not encountered in outdoor environments. The most widely used outdoor navigation system

is GPS, which provides highly accurate location information anywhere on or near the Earth

when there is an unobstructed Line Of Sight (LoS) to three or more GPS satellites. Global Navi-
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Figure 1.2: Indoor Location Market Ecosystem taken from [1].

gation Satellite System (GLONASS), Galileo, and Compass/BeiDou are other satellite-based

systems that provide similar capabilities to GPS [29, 30]. These systems are used primarily for

outdoor navigation, but they also have applications in transportation, surveying, and other

fields. However, these technologies have limitations in indoor settings, due to the inability of

satellite signals to pass through walls, building infrastructure, and other physical obstructions,

which hinders their effectiveness indoors [31, 32]. The location information provided by these

systems may be inaccurate or unreliable, making them less effective for indoor localization &

navigation.

As an alternative, different technologies and methods for indoor localization have been

developed. These technologies include Wi-Fi [33, 24, 34] Bluetooth [35, 25], ZigBee [36, 37],

RFID [26, 38] and acoustic [39], which use different methods to determine the user’s location,

such as measuring Received Signal Strength (RSS), triangulating signals from multiple sources,

or using proximity-based methods. These technologies can provide more accurate location

information in indoor environments than satellite-based systems, but they have their limita-

tions. These are typically susceptible to multipath fading, which limits the achievable ranging

accuracy [40, 41].

The principal aim of this thesis is to enhance the precision of these systems and to

engineer indoor localization solutions that are not only accurate, but also economically

viable and energy-efficient, with cost-effective device implementation and minimal

infrastructure and computational requirements.
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1.2 BLE Localization

This research opts for Bluetooth Low Energy (BLE) as the primary Radio Frequency (RF)

technology to develop indoor localization system, recognizing its role as a leading IoT solution

in indoor localization, as highlighted in studies [1, 42]. The decision is reinforced by the

widespread availability and cost-effectiveness of BLE hardware [28]. Furthermore, compared to

Wi-Fi, BLE is characterized by lower complexity and energy consumption, as well as improved

operational efficiency. These attributes make BLE an ideal choice for the development of

cost-effective, and smaller-scale devices, thereby facilitating widespread deployment in indoor

localization scenarios. The past few years have witnessed a substantial surge in the adoption

of BLE tags for various applications. Despite the market contraction experienced during

the COVID-19 pandemic, BLE technology has demonstrated robust growth, with annual

shipments tripling, according to ABI Research’s findings [28]. They also forecast that from 2023

to 2027, the number of shipments will increase by 2.46 times [2]. Please refer to Figure 1.3, for

a comprehensive chart.

BLE operating in the low-power 2.4 GHz unlicensed band, initially emerged as a technology

tailored for single-hop communication with a focus on low data rate applications, mainly in

wearables and multimedia devices. However, the immense popularity of BLE, evidenced by

the estimated sale of over 10 billion Bluetooth devices, has spurred interest in extending its use

beyond these initial domains [1, 27]. Consequently, the Bluetooth 5.1 standard has introduced

direction-finding capabilities into the BLE packet, marking a notable advancement [42]. BLE’s

versatility is evident in its wide range of applications, including tracking, ranging, data transfer,

audio streaming, and location services.

Within the BLE market, location services, with a particular emphasis on indoor navigation,

constitute a predominant share. Notably, these services account for 79% of the total Bluetooth

location resources, exclusively utilized for indoor navigation purposes [28]. Use cases in

location services vary from asset tracking to proximity solutions, but the dominant application

remains indoor navigation. The emergence and development of BLE as a market standard in

recent years underscore its relevance and potential in shaping the future landscape of indoor

localization technologies.

1.2.1 Issues with BLE Localization

Since many years, there have been many BLE devices on the market acting as “low-power bea-

cons”, which allow coarse-grained localization of small, cheap, single-antenna tags and these

beacon applications typically leverage the RSS of packets to estimate the distance between
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Figure 1.3: Annual Bluetooth location service device shipments (numbers in millions). Data
taken from [2].

devices [43, 44, 45], with iBeacon (apple product) [46] and Eddystone (google product) [47]

being prominent examples. Battery-operated beacons serve as the fundamental technology

for BLE technology. The beacon technology operates by having a proximity-sensing beacon

continuously send out a constant signal. When a receiver (e.g. a mobile phone with Bluetooth

enabled) comes into its field of effect, the beacon detects the time taken for the broadcast

signal to bounce back from the receiver. Using the time measurements, it calculates the dis-

tance from the beacon to the receiver to determine its location. Unfortunately, RSS-based

localization approaches are known to be brittle and have limited accuracy (≈ 1–2.5 meters), as

the RSS can easily be affected by changing environmental conditions and human movements,

even when carefully calibrating the reference signal strength [48, 49, 50, 51]. Moreover, the

performance of RSS-based approaches is strongly affected by the number of employed anchors

(the more, the better) and by their careful deployment, which increases costs [52, 53].

AoA-/AoD-based localization. To counter this, BLE 5.1 introduced direction-finding features

that support two methods for determining the direction of a signal: Angle Of Arrival (AoA)

and Angle Of Departure (AoD) [42, 54, 55]. These direction-finding features let BLE devices

append a constant tone extension (CTE) to the transmitted packets, i.e., a sinusoidal waveform

with constant amplitude and frequency, as well as continuous phase. A receiver can sample

the constant tone and process the in-phase and quadrature-phase (I/Q) components of the

received signal, which is then further processed to perform the AoA/AoD localization [42, 4].

Whilst these techniques allow one to achieve a sub-meter localization accuracy by leveraging

angular information [56, 57], they require the use of bulky antenna arrays. According to the

standard, it is assumed that only one transmitter is active during the Constant Tone Extension

(CTE) phase difference measurement. More precisely, in the AoA technique, the receiver is
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Figure 1.4: BLE 5.1 Direction-Finding Techniques: On the left, Angle of Arrival (AoA) Technique
features a receiver with multiple antennas, while the transmitter has a single antenna. On the
right, the Angle of Departure (AoD) Technique showcases a transmitter with multiple antennas
and a single-antenna receiver.

equipped with multiple antennas controlled using an RF switch. By measuring the phase

difference observed at the multiple antennas, the receiver can locate a transmitter’s direction.

Unlike AoA, in AoD, the transmitter is equipped with multiple antennas. It transmits the signal

over multiple antennas in a time-division fashion. The receiver with a single antenna will

estimate the transmitter’s direction based on this time-multiplexed signal. The two techniques

can be realized using a hardware setup shown in Fig. 1.4, in which one side must require an

antenna array. Such antenna arrays are often larger than 15×15 cm, and hence unpractical for

many applications [58]. Moreover, they are costly and hard to design, as the dependence of

angular measurements on the antenna separation increases the complexity of the design [59].

Some recent BLE chips claim to provide phase-based Time-Of-Flight (ToF) information

also known as Channel Sounding1, a phase-based ranging approach [60], that promises precise

localization. However, this technology is still in its early stage and there are only a limited

number of studies on this topic. Furthermore, chipsets supporting this functionality are not yet

widely accessible (standardized ToF support is expected in future Bluetooth revisions [61]) [62,

63]). Consequently, the focus of this thesis is predominantly on utilizing traditional, budget-

friendly, off-the-shelf BLE devices that are equipped with single omnidirectional antennas.

1Channel Sounding operates through a phase-based ranging method, where the distance between two radio
devices is estimated accurately by analyzing the radio signal’s phase [60].

7



CHAPTER 1. INTRODUCTION

The goal is to maintain the simplicity inherent in single-antenna RSS-based methods, while

striving to achieve sub-meter localization accuracy, on par with systems based on AoA/AoD

techniques. However, current BLE state-of-the-art (SOTA) solutions has not fully developed or

explored the direction-finding enhancements, specifically the AoA/AoD techniques, introduced

with BLE 5.1. Therefore, this thesis also aims to assess the accuracy of these advancements and

suggest alternative strategies to make these systems more cost-effective and less cumbersome,

such as by adopting single-antenna configurations in place of multiple antennas.

However, some indoor scenarios, such as AGVs/AMRs retrieving items from supermarket

shelves, as well as the burgeoning requirements of the digital robotics domain, necessitate

more precise localization systems capable of delivering decimeter or centimeter-level accuracy.

Such a level of accuracy is challenging to achieve with BLE technology alone due to its narrow-

band nature, which is further complicated by indoor multipath effects, posing a significant

technological hurdle. Therefore, there is a necessity to integrate BLE with other, more accurate

technologies, such as optical systems. It is important to acknowledge, however, that while

optical systems can offer superior accuracy compared to BLE or RF technologies, they come

with their own set of challenges. Retrofitting or replacing existing devices and installations

with these more accurate technologies can be a substantial investment and labor-intensive.

This is exemplified in the installation of optical systems or the establishment of an anchor

infrastructure for Ultra-Wideband (UWB) devices [64, 65]. Although there are cost-effective

optical localization methods that provide high accuracy, they often lack reliability. These meth-

ods are prone to interference from varying lighting conditions and indoor obstacles, which

can considerably restrict their effective localization coverage.

Therefore, despite the wide range of optical and radio frequency (RF) technologies avail-

able, achieving centimeter-level accuracy in indoor settings with minimal costs, reliability

is still a key challenge. One of the primary challenges posed in the indoor environment is

the non-uniformity of spaces and the occurrence of multipath fading, making the design of

accurate and reliable localization systems all the more essential. Moreover, indoor applications

require a more precise location than outdoor applications, a requirement often referred to as

the "last meter” problem in localization [66].

1.3 Blending Technological Advantages

One of the possible solutions to address the indoor localization issues, demands and a promis-

ing approach, involves the integration of optical and RF technologies to create a hybrid

solution [67, 68, 69, 70]. This approach aims to achieve a stable, energy-efficient, and highly

accurate system. However, this raises a key question: which optical technologies can be

8



1.3. BLENDING TECHNOLOGICAL ADVANTAGES

combined to fulfill the requirements for a highly accurate indoor localization system with

centimeter-level precision, while also ensuring energy efficiency, cost-effectiveness, and relia-

bility?

1.3.1 Suitable Optical Technology

To select an effective optical technology method, the following approaches are considered:

• Visible Light Positioning (VLP): VLP utilizes the visible light spectrum (wavelengths

between 380-700 nm) to accurately determine the positions of individuals or objects in

indoor spaces. The precision of VLP, is attributed to the directional properties of light

and the use of Light Emitting Diodes (LEDs) as information sources, which aligns with

environmental sustainability goals. VLP operates by wirelessly transmitting data through

ubiquitous light sources, typically involving the modulation of light from LEDs. The light

variations are detected by devices equipped with light sensors, such as PhotoDiodes

(PDs) or cameras [71, 14].

• Image-based localization: This method employs cameras to capture environmental

images. These images are calibrated with a specific area to identify locations based on

visual landmarks. Systems like Optitrack offer millimeter-level accuracy, using multiple

specialized cameras and infrared markers in a 3D space, ideal for virtual reality, motion

capture, and robotics. Dual-camera systems, relying on stereo vision, are less accurate

but have reduced complexity and cost [72, 73].

• Laser-based localization: Utilizing Light Detection and Ranging (LiDAR) technology,

this method measures distances to objects using laser beams. It’s primarily used for

creating 3D environmental maps and is often incorporated in Simultaneous Localization

and Mapping (SLAM) in robotics [74, 75].

• Infrared (IR) localization: These systems use IR sensors and transmitters, determin-

ing position through infrared signals, either based on signal strength or ToF measure-

ments [76, 77].

Selection: VLP is highlighted as the most promising for optical localization due to its com-

patibility with existing lighting infrastructure, high accuracy, cost-effectiveness, and reduced

privacy concerns. Camera-based methods, while effective, require significant computing

power, making them less suitable for low-power IoT devices. Laser-based systems, although
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detailed, are expensive and require sophisticated hardware. IR-based systems offer effec-

tiveness in various light conditions but are limited by range, accuracy, and susceptibility to

ambient light interference.

Given the goal of designing a high-accuracy, power-efficient, and low-cost indoor localiza-

tion system for low-power IoT devices, VLP is identified as the optimal choice. The growing

preference for LEDs in lighting, driven by their energy efficiency, cost-effectiveness, dura-

bility, and long lifespan, further strengthens VLP’s position as a sustainable and progressive

localization solution [66, 78, 79].

1.3.2 Issues with VLP

Not all the light sources can be modulated and not all the target objects or humans can

carry a a device capable of sensing light [80]. Depending on whether the light sources are

modulated or not, VLP systems can be categorized into two main types: active-VLP and

passive-VLP (p-VLP) systems. In active VLP, light sources actively modulate to transmit data

to light sensors. Conversely, in p-VLP systems, either the light source or the receiver plays a

passive role. This means that in these systems, LEDs are not actively modulated, or the receiver

lacks a light sensor, with the target functioning passively. In scenarios where the transmitter is

passive, intrinsic characteristics of the light sources are analyzed for light identification and

used in localization. Additionally, the p-VLP system is divided into sub-categories: passive-

source, passive-user, and full-passive. A thorough explanation of these systems, along with an

extensive SOTA analysis of p-VLP, is presented in the following Chapter 3, offering readers a

more comprehensive understanding of VLP systems.

Active-VLP: Existing active VLP systems, despite their potential, face several limitations that

have led to limited commercial interest. Some of these limitations include:

• High infrastructure changes: On the transmitter side, these systems demand custom-

designed light sources with a controller capable of modulating the light. Updating

existing light fixtures with these controllers incurs extra cost and deployment effort,

making commercialization difficult.

• Complexity: Many active VLP systems need to collect different light features and perform

extensive signal processing to accurately estimate the position. Complex hardware on

both ends of the communication link increases the overall cost.
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Additionally, the use of mobile cameras as receivers in certain active VLP systems poses

challenges for users, including high power consumption and privacy concerns. However, some

of these limitations might be addressed by p-VLP systems, which are outlined briefly below:

Passive-VLP:

• Less infrastructure changes: In p-VLP systems, there is no need for specially designed

light sources with a controller. The already installed lighting fixtures can be used as a

source without any modifications.

• Energy efficiency: Most of the p-VLP systems capture the light signals using PDs, which

consume significantly less power ( µW) than cameras. Moreover, in p-VLP systems,

either the transmitter end or the user is passive resulting in a more energy-efficient

design compared to the active systems in which both sides have active elements.

• Cost-effectiveness: The use of low-cost PDs and the need for fewer infrastructure

changes make p-VLP systems cost-effective alternatives to active systems.

• Device-free localization: Some p-VLP systems enable localization without requiring

users to carry any light-sensing device. Light reflection or shadows caused by their body

are used for locating them [8].

Difficult commercialization. Since 2015, several companies have begun to commercialize VLP

systems, marking a significant advancement in this technology. A notable early adopter was

Carrefour in Lille, France, which in 2015, installed Philips’s intelligent lighting system [81]. This

innovative system was designed not just for illumination but also to assist customers in locating

products and accessing available discounts in nearby stores. This installation, however, was

not without its challenges. Carrefour had to install 800 LED fixtures across their 7,800 square

meter store, a venture that entailed considerable expense [81]. Building on this momentum,

Qualcomm, launched its VLP system, named “Lumicast.” This system boasted impressive

precision, claiming to achieve an accuracy of 5−10 cm [82]. Despite these advancements,

a critical challenge remained: both systems required substantial changes to existing lighting

infrastructures. This requirement posed a significant barrier to widespread adoption, as it

involved considerable alterations and associated costs. This thesis concentrates on addressing

the main challenge in VLP systems: the necessity of modulating light sources. Additionally, it

aims to enhance power efficiency and reduce both computational complexity and system cost,

which could significantly improve the commercial viability of VLP. The research will introduce

a new passive-VLP system, specifically the passive-source as detailed in [8]. This system does
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not transmit modulated information from the light sources; instead, it analyzes their intrinsic

features. A light-sensing device on the target device is used to gather this information and

execute localization tasks. In summary, the thesis has a dual objective when utilizing VLP:

Firstly, to develop a p-VLP system that is low-power (utilizing photodiodes), cost-effective, easily

integrable, and computationally efficient for IoT devices, thereby providing pervasive location

awareness and localization capabilities. Secondly, upon fulfilling this objective, the focus shifts

to devising methods by which the VLP system can assist BLE in achieving more precise, decimeter-

level localization accuracy. This approach aims to deliver an energy-efficient, reliable, accurate,

and cost-effective solution, aligning with the ultimate goal of the thesis.

Furthermore, from the survey of existing VLP technologies [66, 8, 83], it is found that VLP

systems only perform well in some controlled environments, and their performance degrades

in real-world situations due to external noise such as ambient light, sensor blockage, and

other environmental obstacles. The accuracy of VLP systems tends to diminish in daylight

conditions, owing to increased ambient interference. This issue is especially pronounced

near wall corners, areas adjacent to them, or around window edges. In such challenging

scenarios, no VLP systems have yet managed to reduce positioning errors to the centimeter

scale. These limitations persist, largely due to technological constraints and the necessity to

keep computational complexity low. A promising strategy, as outlined in the objectives of

this thesis, is to enhance the accuracy of BLE systems. In doing so, the existing challenges

associated with VLP could be effectively tackled through the integration of VLP and BLE-based

localization systems, creating a more precise and robust solution.

1.3.3 Integrating RF with Optical Technology

In response to the technological bottleneck of both technologies BLE & VLP and the need

for low computational complexity, this thesis advocates a hybrid solution that combines

BLE with VLP. This strategy is designed to offset the low accuracy of BLE against the limited

range of VLP, leveraging the strengths of both technologies to create an indoor localization

system that is highly accurate, low computational-cost, and energy-efficient, thus fitting for

practical applications. The focus is on developing innovative techniques to address the unique

challenges of BLE and VLP to facilitate effective real-world deployment. The goal extends

beyond merely merging these technologies; it encompasses first resolving inherent issues

in each technology, presenting novel solutions that surpass the current SOTA in localization

accuracy, cost, and power efficiency. Subsequently, a hybrid solution is designed, aiming to

outperform the capabilities of both individual systems.

However, achieving decimeter-level accuracy in tracking systems, with smooth and con-
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tinuous motion, poses another significant challenges, particularly when striving to avoid the

addition of extra sensor units for passive object tracking. While BLE technology alone falls

short in meeting this level of accuracy, the incorporation of VLP introduces its own set of

challenges. Notably, p-VLP faces difficulties in continuous tracking in environments with

numerous light sources and often requires supplementary sensor units. Therefore, to resolve

these issues, this thesis proposes the integration of BLE technology with millimeter wave

(mmWave)2 radar measurements as a viable solution to enhance the accuracy of BLE tracking

systems, thereby eliminating the need for extra sensing units on the target device.

Moreover, in addressing these tracking challenges, the thesis sets out to fulfill its objective

of thoroughly exploring the new direction-finding techniques introduced in the BLE 5.1 stan-

dard. These techniques, designed for asset tracking solutions, have yet to be fully explored in

terms of their capabilities. The research aims to bridge this gap by comprehensively assessing

and utilizing these advanced techniques. However, this integration is not without its chal-

lenges. mmWave radar technology is hindered by rapid signal loss over distances and reduced

effectiveness in environments with stationary targets or multiple objects [5, 84]. Consequently,

this research delves into developing a strategy that effectively combines the strengths of both

BLE and mmWave radar technologies. The aim is to overcome their individual limitations and

establish a more efficient and dependable tracking system.

It is important to note that the superiority of a hybrid solutions doesn’t imply it is always the

optimal choice. The selection of a localization system should be tailored to specific application

requirements. Further details and insights will be explored as the thesis progresses.

1.3.4 Advanced Techniques in Cross-Technology Data Fusion

Data fusion, a critical process in combining and integrating data from diverse sources, aims to

enhance the correlation, accuracy, and utility of the resulting information beyond what any

single data source or technology can offer [85, 86, 87]. This technique finds its applications in

various fields including health monitoring, localization, and multimedia processing [88, 89].

For example, a healthcare-focused sensor data fusion system is detailed in [90], and a multi-

modal fusion module for speaker separation, integrating audio, video, and speaker embedding

streams, is proposed in [91]. Furthermore, the emergence of machine learning has led to the

rising prominence of Neural Network (NN)-based data fusion methods, particularly in com-

plex localization tasks [92, 93, 94]. These NN approaches, as discussed in [95], often surpass

traditional data fusion algorithms such as Kalman Filters, Bayesian methods, or rule-based

2This research is focused exclusively on BLE technology and encompasses mmWave radar methods that have
been developed through a collaborative effort with a fellow researcher.
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systems in terms of versatility and accuracy. This is especially evident in environments where

sensor data and its geographic correlation are complex. Michelsanti et al. [96] provide an

overview of NN-based fusion techniques used in audio-visual systems, such as concatena-

tion, addition, and product-based methods. These techniques, based on similar NN design

principles, are adaptable for fusing radio features in localization tasks.

Utilizing NNs for data fusion in localization, especially when integrating technologies

like BLE, VLP, and mmWave radar, presents substantial benefits over conventional methods.

Each technology possesses unique characteristics and limitations, and NNs, with their design

flexibility, are adept at harnessing these diverse strengths to significantly enhance the accuracy

and robustness of localization systems. NNs are particularly effective in noise reduction and

signal enhancement, learning to disregard non-essential data variations, like random noise,

while concentrating on patterns essential for accurate localization.

SOTA NN architectures, designed for efficient real-time data processing, are vital for nu-

merous real-time indoor localization applications [92, 93, 97]. The NN model is also adopted

in this thesis to fuse data from different technologies, demonstrating its versatility and effec-

tiveness in integrating diverse data sources for enhanced localization accuracy. However, it is

important to acknowledge that the effectiveness of NN-based methodologies heavily relies on

the presence of high-quality training data that accurately reflects the operational environment

and conditions. In this thesis, special focus is placed on extracting various types of valuable

data, which can more effectively represent the relationship between data and location, thereby

enhancing the learning capability of the NN model.

In the following section, a concise formalization of the localization challenges & opportu-

nities outlined in this section will be presented.

1.4 Challenges and Opportunities

This thesis distinguishes two principal categories of localization systems. The first category

includes autonomous localization systems, in which the target, such as a warehouse robot or

an individual in a shopping mall, autonomously determines its position and navigates on its

own. The second category covers tracking systems, primarily used for monitoring purposes,

like tracking asset locations in a warehouse.

1.4.1 Challenges

The focus of this thesis is on addressing three key challenges in the development of au-

tonomous indoor localization systems, outlined below. For in-depth information on each
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challenge, readers are directed to the corresponding chapters, identified with a ’CHx’ index.

This ’x’ in the ’CH ’index refers to the chapter number in the thesis, with each challenge directly

related to a specific chapter.

CH2 Developing accurate and cost-effective BLE localization systems: The challenge lies

in enhancing the accuracy of BLE-based location systems in indoor settings, where

multipath effects and signal fading present significant difficulties. Solutions using ad-

vanced methods with multiple antennas, while effective, tend to be bulky and costly.

The goal is to maintain the simplicity and affordability of BLE devices, such as those

with a single antenna, while achieving sub-meter accuracy and overcoming channel

effects. The question is how to attain such precision with BLE technology.

CH4 Cost & infrastructure changes: A significant challenge for VLP is the necessity to modify

existing lighting systems for location signaling. Such modifications can incur substantial

costs, and there is often reluctance from companies to make these investments. Fur-

thermore, the dependency on power-intensive cameras for light detection limits VLP’s

suitability for low-power IoT devices.

CH5 Enhancing VLP systems for real-world use: Existing VLP systems perform well only

in controlled environments. In real-world scenarios, factors like external ambient light

sources, obstacles, and shadows, decline localization performance, ultimately restricting

the effective localization areas. The key challenge is to adapt and improve VLP systems

so they can perform well in these everyday environments and also expand their range of

operations.

CH6 High-Accuracy Tracking: The challenge involves enhancing BLE tracking by integrating

it with mmWave radar technology to achieve high-precision tracking. This enhancement

seeks to compensate for the shortcomings of VLP systems, particularly their inability to

provide continuous tracking without additional sensors.

Ultimately, this research seeks to provide a solution for achieving decimetre-level lo-

calization accuracy in large public spaces, catering to the needs of smart factories and

work-spaces.

In addition to defining key challenges, this thesis also sets forth various hypotheses related

to these challenges and details the specific goals of the research. The aim is to address these

challenges, test the hypotheses, and meet the objectives, thereby contributing fresh insights

and solutions in the areas of Visible Light Communication, and Bluetooth Low Energy.
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1.5 Research Context

The research presented in this thesis closely aligns with the goals of the ENLIGHT’EM project,

an innovative initiative that seeks to harness the potential of LEDs as a sustainable and energy-

efficient lighting technology. This project opens up new avenues for emerging IoT services

while capitalizing on the inherent advantages of LED technology. Supported by the European

Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie

grant agreement No. 814215, ENLIGHT’EM places a strong emphasis on training early-stage

researchers (ESRs). These ESRs make significant contributions at both technical and scientific

levels, engaging in diverse activities, including disseminating research findings, participating in

Ph.D. programs, and attending network-sponsored tutorials and workshops. The consortium

behind ENLIGHT’EM includes industrial partners who blend theoretical knowledge with

practical expertise, offering ESRs invaluable technical training opportunities. The research

within ENLIGHT’EM is organized into three distinct technical work packages (WPs): WP1

focuses on Low-energy Technologies, WP2 explores Intelligent Algorithms and RF Integration,

and WP3 is dedicated to Applications and Services. Specifically, this thesis aligns with the

work of ESR11, situated within WP3. ESR11’s primary objective is to develop a hybrid indoor

localization system by integrating radio frequency technologies like Bluetooth Low Energy with

Optical Technology, such as Visible Light Communication. This integration aims to achieve a

highly accurate, energy-efficient, and cost-effective indoor localization solution.

This study is conducted at the Bristol Research & Innovation Laboratory (BRIL), a division

of Toshiba Europe Limited in Bristol, United Kingdom, as well as in collaboration with the

Delft University of Technology (TU Delft) in the Netherlands. This research partnership also

extends to the University of Applied Sciences and Arts of Southern Switzerland (SUPSI) and

the University of Palermo (UniPA) in Italy.

1.6 Research Questions and Hypotheses

The thesis is structured around specific research questions, followed by hypotheses formulated

in response to these questions, as detailed below::

RQ1 Is sub-meter accuracy achievable with single-antenna BLE devices? How does ex-

ploiting the beating effect—a by-product of synchronous transmission protocols —

alongside the unique carrier frequency offsets caused by hardware discrepancies,

contribute to advancing single-antenna BLE technology in tag localization? Moreover,
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can the reliable identification of BLE nodes be ensured without the need for frequency

tuning?

H1 The research posits that by harnessing the ’beating effect’—an outcome of the

simultaneous transmissions from multiple transmitters inherent to the syn-

chronous transmission protocol—it is feasible to localize a tag with accuracy

at the sub-meter level using single-antenna BLE devices and reduced channel

occupancy within the BLE technology framework.

H2 Furthermore, the hypothesis suggests that the identification of individual anchor

nodes, as delineated in hypothesis H1, can be efficiently conducted through the

analysis of carrier frequency offset, which arises due to hardware discrepancies.

This approach circumvents the necessity for frequency-tuning adjustments.

RQ2 How can the intrinsic characteristics of LEDs be optimized for enhancing Visible Light

Positioning systems in mobile objects such as AGVs/AMRs, ensuring system viability

without modifying existing lighting infrastructure, and addressing challenges of

identification overlap, environmental variables, and the quest for centimeter-level

accuracy?

H3 The hypothesis posits that by extracting the intrinsic properties of LEDs, such as

their dominant color composition, these light sources can be uniquely identified.

This identification process can then be utilized to provide location services to

mobile objects, achieving an accuracy level down to the centimetre.

RQ3 How can the integration of optical and RF technologies enhance the accuracy and pre-

cision of indoor localization systems, and what methodologies and feature selection

criteria are essential for effectively merging different modalities data and addressing

the inherent limitations of each technology to improve overall localization perfor-

mance?

H4 The research hypothesizes that integrating optical and RF technologies for local-

ization purposes can significantly improve the precision and accuracy of such

systems to decimeter-level, thereby mitigating the inherent limitations associated

with each technology when used independently.

H5 Furthermore, it is proposed that leveraging machine learning methods, particu-

larly through the application of incremental learning techniques, for the integra-

tion of these diverse modalities could enhance the process of feature fusion from
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both technologies. This integrated approach is anticipated to yield localization

systems that are not only reliable but also exhibit high levels of accuracy, reaching

down to the decimeter scale.

1.7 Research Objectives

The primary goal of this thesis is to develop innovative indoor localization systems that are

both accurate and precise. The thesis categorize these systems into two types: autonomous

systems and tracking systems. The required level of accuracy varies depending on the intended

application. For instance, AGVs in supermarkets need sub-meter accuracy for navigating to

specific sections. Achieving closer proximity to a particular shelf demands even greater pre-

cision, potentially at the decimeter level. In the healthcare sector, where robots might be

employed for transporting patients, the necessity for high accuracy and reliability in tracking

becomes paramount. However, designing a reliable and universally effective indoor localiza-

tion system is complex due to the irregular nature of indoor spaces, effects like multipath

fading, the movement of targets, and the lack of standardized technologies. To create a stable,

energy-efficient, and highly accurate system, it is necessary to integrate various technologies.

The goal of this thesis is to exploit the complementary properties of optical and RF

technologies. By integrating both, the aim is to provide the best trade-off for each tech-

nology in terms of location accuracy, cost, and energy consumption, thereby designing

more efficient indoor localization systems...

The initial aim of this thesis is the development of a hybrid autonomous localization system,

integrating BLE and VLP technologies. The subsequent phase of our research focuses on the

creation of advanced tracking systems, amalgamating BLE technology with mmWave radar

technology. The essence of this work is to synergistically blend these technologies, thereby

enhancing the efficacy and performance in applications of both autonomous localization and

tracking. The objectives are outlined as follows:

Objective 1 Develop innovative methods to enhance the performance of RSS-based BLE

localization techniques. Investigate how single-antenna BLE devices can be

optimized to achieve sub-meter level accuracy. Furthermore, pioneer methods

to integrate the use of the Constant Tone Extension feature from the BLE 5.1

standard into RSS-based localization methods.

• To evaluate the robustness of the developed localization method in dy-

namic, multipath-rich environments.
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• To investigate how to maintain consistent localization performance as the

testing area increases.

• To explore whether RSSI-based approaches can be enhanced to match the

performance of AoA-based techniques.

• To examine the use of BLE protocols, like synchronous transmission, for

effective localization services.

Objective 2 Design a low-power, cost-efficient, easily integrable, and computationally mod-

est passive VLP system, specifically for IoT devices, to facilitate ubiquitous loca-

tion awareness and tracking capabilities. Additionally, develop methodologies

and techniques to significantly reduce the infrastructure requirements and the

initial investment necessary to support indoor VLP services.

Objective 3 Engineer novel fusion approaches such as utilizing machine learning techniques

to integrate optical and RF features for the development of a hybrid localiza-

tion system. This system should be highly accurate, aiming for precision at the

decimeter level, and reliable. This involves addressing the individual limitations

of each technology and then synergizing them to construct a reliable and precise

indoor localization system.

Objective 4 Develop innovate methods to reduce the cost of developing BLE multi-antenna

array angle techniques for tracking systems. Investigate the capabilities of the lat-

est BLE 5.1 direction-finding standard and suggest innovative ideas to enhance

the accuracy of these systems to the decimeter level. These techniques would

fuse BLE features with more accurate tracking technologies, such as mmWave

radar systems.

For all the objectives stated, the overarching aim is to develop the necessary software and

hardware toolchains. These toolchains will demonstrate the viability and real-world application

potential of all the systems developed.

1.8 Thesis Novel Contributions

The core contributions of this research are twofold. Firstly, it focuses on the design of in-

novative autonomous indoor localization systems, which could significantly benefit AGVs

in warehouses or similar indoor settings, enhancing their location awareness and enabling

autonomous navigation in smart environments. Secondly, the thesis presents the development
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of a tracking solution, tailored for the healthcare sector, asset tracking in industrial settings,

aligning with the advancements of Industry 4.0.

To tackle the challenges outlined in Section 1.4 and achieve the goals set forth in Sec-

tion 1.7, this thesis has devised four innovative localization systems. Among these, three

pertain to autonomous localization, wherein the target can autonomously determine its own

location, while the fourth solution focuses on tracking. The subsequent section offers concise

overviews of these novel solutions, highlighting their unique contributions. Before delving

into these descriptions, the section first elaborates on the technological innovations this thesis

contributes to the development of these solutions.

1.8.1 Technology Contributions

To the best of the author’s knowledge,

1. the thesis presents a pioneering narrowband localization system that relies on a syn-

chronous transmission protocol, designed to minimize wireless channel occupancy.

This innovative approach enables accurate RSS-based BLE localization for devices

equipped with a single-antenna. The thesis introduces signal processing techniques to

exploit the ’beating’ spectrum that can be performed on mobile tags (such as AGV/AMR)

to make them spatially aware and intelligent enough to make location-dependent deci-

sions. The approach facilitates very high-resolution tracking, not yet possible with any

conventional Bluetooth-based localization system. Relying on the latest standardized

advances in Bluetooth 5.1 specifications (such as Constant Tone Extension) and exploit-

ing these in novel ways different from their intended use, makes the thesis approach

radically different from the state-of-the-art approaches.

2. the thesis presents the first passive visible light positioning system that relies on single-

pixel colour sensors to extract the light’s hue-spectrum. By leveraging these sensors, it

can provide location awareness services and accurate localization, without requiring

any modifications to the existing lighting infrastructure- offering a cost-effective &

power-efficient solution. This approach marks a significant advancement in the field of

VLP, making it more accessible and feasible for widespread implementation. Additionally,

the thesis posits that the integration of these passively gathered light characteristics with

RF-based technologies (such as BLE, as discussed in this thesis) could notably augment

their localization precision. It proposes an incremental learning framework to merge

data from both technologies, overcoming the limitations of each technology individually

and delivering a reliable and accurate localization system.

20



1.8. THESIS NOVEL CONTRIBUTIONS

3. the thesis presents the pioneering experimental exploration of Bluetooth 5.1 direction-

finding techniques especially the angle-of-arrival techniques, to achieve sub-meter

level precision in tracking mobile objects through the use of multi-antenna arrays.

It further offers a single-antenna based tracking system that maintains similar sub-

meter accuracy while avoiding the use of bulky, costly antenna array. Moreover, the

thesis introduces the integration of this advanced BLE-based tracking system with

mmWave radar technology utilizing DNN-based techniques to offer a decimeter-level

tracking accuracy. This integration effectively overcomes the limitations inherent in

each technology.

1.8.2 Contributions

Contribution 1:

BLoB

The first contribution of this thesis is the creation of a novel BLE localization

system based on beating, named BLoB. This system fulfills the objective

of designing an accurate yet cost-effective RF-based localization method.

It utilizes synchronous transmission protocols in low-power wireless com-

munication, where the resulting beating effect—a sinusoidal pattern of

constructive and destructive interference in the received signal—plays a

crucial role. This research use this effect innovatively for localization, mark-

ing a departure from traditional methods. A distinctive feature of BLoB is its

reliance on single-antenna configurations for both anchors and tags. This

contrasts with the current SOTA localization systems that typically require

complex and expensive antenna arrays for sub-meter accuracy. BLoB is im-

plemented on standard BLE devices and its effectiveness is rigorously tested

in various settings, including static and mobile scenarios across different

environments like office rooms, libraries, meeting rooms, and sports halls.

Comprehensive details of this system and its performance evaluation are

provided in Chapter 2. This development is instrumental in validating the

hypothesis outlined as H1, and H2 in the thesis.

Contribution 2:

HueSense

The second key contribution of this thesis is the development of an innova-

tive passive visible light positioning system, named HueSense. This system

is based on the observation that LEDs emit slightly different colour spectra,

which are indistinguishable to the human eye but can be detected by colour

sensors. This unique characteristic allows for the identification of each light

source by its spectrum, without the need for modulation or alteration. This

approach eliminates the necessity of modifying existing lighting infrastruc-
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ture, relying instead on cost-effective and energy-efficient off-the-shelf hue

sensors for location awareness services in AGVs. Detailed discussions and

findings on this system are presented in Chapters 3 and 4. This objective is

designed to validate the hypotheses outlined as H3 in the thesis.

Contribution 3:

BLELight

The third contribution of this thesis is the development of a hybrid system,

BLELight, which is a Deep Neural Network (DNN)-based localization sys-

tem combining p-VLP and BLE technologies. This system aims to achieve

stable, energy-efficient, and accurate indoor localization. To effectively inte-

grate the diverse features from both p-VLP and BLE, an incremental learning

approach is proposed for training the Deep Neural Network (DNN). This

method allows for the fusion of data from visible light and BLE, addressing

their individual limitations and attaining decimeter-level accuracy. Incre-

mental learning is used to minimize feature interference from different

sources, ensuring that model learning at each stage is influenced primarily

by one signal feature. The core premise of this approach is the belief that

both RF and optical (VLP) modalities, despite their differences, provide valu-

able insights into the signal-location relationship in indoor environments.

This confirms the fourth hypothesis- H4, presented in this study.

Contribution 4:

BmmW

The fourth key contribution of this thesis is the development of BmmW,

an advanced tracking system that combines BLE technology and mmWave

radar. This system enhances BLE 5.1’s constant tone extension feature with

mmWave radar data to enable real-time 3D tracking of a mobile tag with

decimeter-level precision. A unique aspect of BmmW is its integration of a

DNN trained with data from both BLE and mmWave measurements. This

integration capitalizes on the strengths of each technology, addressing the

challenges of BLE’s limited accuracy and the signal attenuation and multi-

ple object identification issues of mmWave radar. Additionally, to further

optimize cost-efficiency, the system introduces BmmW-LITE, tailored for

single-antenna BLE devices, thus eliminating the need for more complex

and expensive multi-antenna arrays. A detailed discussion and analysis of

this system are provided in Chapter 6.
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1.9 Thesis Structure

The structure of this thesis is organized as follows: Chapter 2 presents the developed BLE-

based localization system, which is founded on a synchronous transmission protocol. Initially,

the chapter presents an overview of the current SOTA in BLE technology, then it details the

protocol and provides a thorough technical overview of the technique used to construct BLoB,

a BLE-based system. Moreover, this chapter includes experimental validations of the system

conducted in a variety of environments.

Chapter 3 offers a comprehensive overview of VLP systems, with a particular focus on

the emerging p-VLP systems. The chapter develops a taxonomy to categorize p-VLP systems

and delve into the challenges they face for wider acceptance in commercial environments.

Following this, Chapter 4 introduces the developed novel p-VLP system. This chapter not

only discusses the underlying principles of the system but also showcases a prototype, which

is analyzed for its applicability in real-world scenarios, particularly in uncontrolled lighting

environments. This analysis is supported by various experiments to validate the system’s

effectiveness.

Chapter 5, demonstrates the hybrid localization system. This system is developed by

integrating the key features from both the p-VLP system introduced in Chapter 4 and the BLE

system from Chapter 2. The development methods discussed in this chapter are heavily based

on machine learning techniques.

Chapter 6 presents the tracking system, which is a fusion of BLE technology and mmWave

radar. This chapter starts by reviewing the SOTA tracking solutions for both these technologies

and discusses various techniques for their integration. It provides a complete description of

the proposed fusion technique for tracking systems, along with experimental validations to

support its efficacy.

Finally, Chapter 7 concludes the thesis. It discusses the key findings from this research and

draws conclusions. Additionally, this chapter looks forward to future research possibilities,

offering recommendations for further work in this area.

Figure 1.5 offers a clear overview of the thesis’s organization, detailing the progression

from one chapter to the next and emphasizing the unique topic and research focus of each

chapter. This visual guide aids in understanding the logical sequence and specific areas of

study covered in the research.
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Figure 1.5: Illustrating the sequential structure and key focus areas, contributions of the thesis.

1.10 List of Publications

The research conducted in this thesis has resulted in two USA patent applications, the submis-

sion of two articles in indexed journals, and five published conference proceedings. Addition-

ally, the author has collaborated with other researchers on two conference proceedings. The

following sections provide a list of all these articles.

1.10.1 Patent Applications

This section presents a list of patents that have emerged from this research. It should be noted

that while one of these patents is publicly accessible and included in this document, the

other patent is not yet publicly available. Consequently, it is not shared here, respecting the

considerations of intellectual property rights.

• J. Singh and P. Li, “Method and system for optical localisation,” 2023. US Patent App.

18/352,987.

• U. Raza, J. Singh, A. Stanoev, and V. Marot, “Method and system for wireless localisation,”

May 4 2023. US Patent App. 17/453,386.

1.10.2 Conference Proceedings

This section presents a list of conference proceedings as part of the outcomes of the research

conducted in this thesis.
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1.10.3 Journal Articles

This section provides a list of journal articles resulting from the research conducted in this

thesis. Please note these articles are submitted and currently under review.

• P. Li*, J. Singh*, H. Cui, and C. A. Boano, “BmmW+: A DNN-based Joint BLE and mmWave

Radar System for Accurate 3D Localization with Goal-oriented Communication,” in

Pervasive and Mobile Computing, 2023 (*Contributed equally to the research). [Special
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Spectrum,” in IEEE Internet of Things Journal, 2024.
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This section provides a list of publications in which the author has participated as a collabora-

tor and the material is not included in the thesis.
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Smart Lights with Litalk,” in Proceedings of the 1st ACM Workshop on AI Empowered

Mobile and Wireless Sensing, pp. 13–18, 2022 (*Contributed equally to the research).
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BLOB: BEATING-BASED LOCALIZATION FOR SINGLE-ANTENNA BLE

DEVICES

This chapter introduces BLoB, a BLE-based scalable localization solution for the ubiquitous

BLE Devices. Initially, the functioning of BLoB is explained, followed by a demonstration of its

effectiveness in various real-world settings.

2.1 Introduction

BLE is another key technology for accurate indoor localization, characterized by its ubiqui-

tous nature and low power consumption [35]. This chapter explores the method of preserving

the inherent simplicity in single-antenna BLE devices and RSS-based approaches, while still

achieving sub-meter localization accuracy, comparable with AoA/AoD-based systems. Specifi-

cally, RSS-based localization systems can attain high accuracy, even within sub-meter ranges,

by gathering distance measurements from multiple anchors using different frequency chan-

nels in a sequential time-division manner. However, this approach leads to a significant use of

communication channels, making it less scalable and limiting the update rates. Moreover, the

2.4 GHz band is prone to RF interference, affecting some transmitted packets. To mitigate these

issues, the implementation of synchronous transmission protocols is proposed, where all an-

chor nodes transmit simultaneously [98]. This method lessens channel congestion, enhances

scalability and update rates, and reduces the time the radios need to be active. The subsequent

sections will explain how synchronous transmission elevates localization performance and

improves channel occupancy.
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The structure of this chapter is as follows: Background information about Synchronous

Transmission (ST), beating, and the CTE feature is presented in Section 2.2. An overview

of BLoB, including its design and hardware implementation, is detailed in Section 2.4. The

experimental evaluation of BLoB’s performance is conducted in Section 2.6, and its limitations

and potential future enhancements are discussed in Section 2.7.

2.2 Preliminaries

This section describes how synchronous transmissions can lead to beating effect (Section 2.2.1)

before introducing necessary background information on the BLE 5.1 CTE feature (Sec-

tion 2.2.2).

2.2.1 Synchronous Transmissions and Beating

Flooding protocols based on ST have been extremely popular within the low-power wireless

community as a means of providing highly reliable multi-hop communications [99]. In contrast

to traditional RF communication practices, transmitting nodes in ST-based communications

intentionally send packets at the same time as their neighbors. While this may seem counter-

intuitive (as one would assume the competing signals would collide at the receiver) a high

degree of synchronization between nodes and certain physical layer (PHY) aspects of low-

power narrowband communications allow successful demodulation of the overlapping signals,

specifically capture effect1 and non-destructive interference [100].

Particularly in IEEE 802.15.4-based ST and the coded BLE 5 PHYs, the capture effect plays

a significant role, allowing successful reception from nodes simultaneously sending differ-

ent data [101]. However, when sending the same data (i.e., precisely the same packet or bit

sequence, such as a constant tone), successful reception is largely dependent on frequency

synchronization between the transmitting nodes [3]. While perfect synchronization would

produce constructive interference across the packet and an overall power gain, small manu-

facturing imperfections result in marginally different carrier frequency offsets. This leads to

non-destructive interference consisting of sinusoidal periods of both constructive and destruc-

tive interference across the packet, known as the beating effect. Figure 2.1 shows an example of

simple sinusoidal beating pattern created by two synchronous transmitters, and how complex

beating patterns are created when an additional transmitter is overlapped. Recent literature

has explored how this beating effect impacts ST performance. Importantly, Baddeley et al. [3]

1The capture effect enables the RF receiver to pick up one of the colliding packets in a ST, given that the
incoming RF signal meets certain power and timing constraints [99, 98].
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Figure 2.1: Sinusoidal interference patterns created by simple (2 anchors) and complex (> 2
anchors) beating [3].
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Figure 2.2: Overview of CTone sampling and of the stored I/Q samples at the receiver. Classical
systems (e.g., AoA-based [4]) store h = 74 or h = 37 I/Q samples when using 1µs- or 2µs-long
antenna-switching and sampling slots. In contrast, BLoB uses a single antenna and leverages
the antenna-switching slot for extra I/Q sampling, which results in up to h = 148 collected
samples.

demonstrated the existence of beating over synchronous transmissions (with an increasing

number of nodes) by evaluating errors across a large number of randomly-generated packets,

resulting in clear beating patterns across a histogram of bit errors. Notably, this study showed

that not only is the beating frequency consistent across different PHYs (for the same nodes),

but that different pairs of transmitters produce a frequency that is significantly dissimilar, due to

relative Carrier Frequency Offset (CFO) between devices. Moreover, subsequent studies have

shown that the relative CFO between synchronously transmitting devices can be predictably

modelled and estimated despite temperature variations [98]. This thesis research will reveal

experimentally that the beating pattern is influenced not only by the quantity of transmitters

but also by the geographical distribution of the transmitting nodes. Furthermore, the research

will experimentally demonstrate that minor manufacturing imperfections in the hardware,

resulting in varying carrier offsets, generate a signal magnitude that fluctuates between valleys

and peaks, which is commonly referred to as a "beating signal."
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2.2.2 Constant Tone Extension in BLE

BLoB leverages the beating signal to capture the relative CFO between devices (anchor nodes)

and identify the devices themselves by exploiting the CTE feature in BLE 5.1. The latter allows

to append to a BLE packet a constant-frequency signal consisting of unwhitened and constant

1 digits, whose length can vary between 16µs and 160µs [42]. The purpose of the CTE is to

provide a constant wavelength signal (CTone) that can be sampled by a receiver, which then

processes its inphase/quadrature (I/Q) components to derive polar coordinates yielding the

phase angle and the amplitude value [55].

The CTE can be divided into several sub-fields, as illustrated in Figure 2.2, starting from a guard

band of 4µs followed by a reference period of 8µs. The rest of the CTE field is then divided

into slots for antenna switching and sampling. The switching and sampling slots can either

be 1µs or 2µs long: this allows, for example, AoA implementations to choose between a finer

localization (faster switching) and a higher energy efficiency, or a simplified antenna design

(slower switching) [4]. Moreover, 2µs-long slots make it possible to use a cheaper RFswitch

between the antennas that has a longer transition time. The CTE field contains h = 74 and

h = 37 samples when using 1 and 2µs-long switching and sampling slots, respectively. On the

BLE receiver side, while receiving a packet (composed of a preamble, access address, protocol

data unit, cyclic redundancy check, and CTE), the radio also samples the I/Q components

of the baseband signal at 1µs frequency. In BLoB, as only single-antenna devices are used,

also the I/Q samples in the antenna switching slots can be leveraged, which results in up to

h = 148 collected samples during the sample slots. The additional number of samples allows

the receiver to more effectively separate and decode the individual signals being transmitted

and reliably detect beating patterns across all BLE 5 PHY configurations, which makes our

approach independent of the underlying PHY. Please note that the CTE field consists of only

1s with no information attached: there is hence no requirement to demodulate the CTone at

the receiver.

2.3 BLoB: Beating-based Localization

BLoB lets off-the-shelf single-antenna BLE tags to examine the beating patterns across a CTE

signal received when multiple single-antenna anchors transmit data simultaneously. It is

demonstrated that the relative CFO between devices transmitting simultaneously can be

extracted from the received beating pattern, which allows for reliable identification of anchors.

Exploiting this information and analyzing the peaks in the beating and signal spectrum enables

the identification of anchor nodes that strongly contribute to the beating and are hence located
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nearby the receiving tag. These observations facilitate the refinement of location estimates

and significantly enhance the accuracy of an RSS-based localization system operating on

single-antenna BLE devices.

Contributions Building upon these principles, this chapter presents BLoB, a novel BLE-

based localization system capable of achieving sub-meter accuracy with the use of small and

inexpensive single-antenna devices, and without relying on any angular information. In BLoB,

multiple anchors transmit packets synchronously using the CTE, while mobile tags extract

the signal characteristics – particularly the beating profile – from the superimposed signal

resulting from the synchronous transmissions, enabling accurate location determination. This

chapter made the following contributions with BLoB:

i) Introduction of signal processing techniques for the identification of relevant anchor

nodes based on the CFO detected within the beating pattern.

ii) A method is showcased to determine the contribution from a pair of dominant anchor

nodes within the received beating pattern (i.e., nodes that strongly contribute to the

beating and are hence located nearby the receiver), which allows for the refinement of

the location estimate.

iii) The design of BLoB, an indoor localization system that integrates the aforementioned

solutions and leverages ST and BLE’s CTE feature to achieve accurate localization using

single-antenna devices only, is presented.

iv) Implementation of a prototype of BLoB on off-the-shelf Nordic Semiconductor

nRF52833 boards with a single PCB antenna is described. BLoB only requires sup-

port for the CTE feature, and it can hence run on any off-the-shelf device compliant to

BLE 5.1 and above.

v) The performance of BLoB is experimentally evaluated in several indoor environments,

ranging from large public spaces (e.g., tennis hall) to office rooms. The results in both

static and mobile settings demonstrate that BLoB retains sub-meter localization accuracy

even in multipath-rich environments. Such performance is superior to classical RSS-

based approaches and is comparable to that of AoA-based systems, which is remarkable

considering that BLoB operates on single-antenna devices and does not utilize any

angular information.
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Figure 2.3: Overview of BLoB, a localization system that uses up to n spatially-separated
single-antenna anchors synchronously transmitting packets embedding the CTE to localize
single-antenna mobile tags by examining the beating characteristics across the received signal.
One of the anchors acts as initiator (I) and is responsible for time-synchronizing all network
operations.

The core idea of this chapter has been patented (please refer [102]), and the results were

showcased at the prestigious 20th International Conference on Embedded Wireless Systems

and Networks (EWSN) in 2022, where they were honored with the ’Best Paper Award’.

2.4 BLoB: High-level Overview

This section provides a high-level overview of BLoB (Section 2.4.1), and a detailed description

on how ST-induced beating using the CTone helps localization of single-antenna BLE mobile

tags (Section 2.4.2).

2.4.1 System Overview

Figure 2.3 illustrates BLoB’s architecture at-a-glance. In BLoB, spatially-distributed anchors

equipped with a single antenna synchronously transmit identical packets with empty payload

and CTE appended, following a ST-based flooding protocol (detailed in Section 2.5.4). Due to

the presence of inherently imperfect crystal oscillators, the CTone signals are sent at slightly

different frequencies from the intended center frequency by each anchor (∆ fi ). Surrounding

tags, also equipped with a single antenna, receive the superimposed CTone signal resulting

from the synchronous transmissions and perform high-resolution I/Q sampling using up

to h = 148 samples, as shown in Figure 2.2. Signal analysis and beating characterization is

then performed on the collected I/Q samples (Section 2.4.2). This serves as input to anchor

detection and classification (Section 2.5.1), and subsequently to tag localization (Section 2.5.2).

32



2.4. BLOB: HIGH-LEVEL OVERVIEW

Table 2.1: Comparison of BLE-based localization techniques.

Method Anchor(s) Tag(s) Operation

AoA Single-antenna device
transmits packets embedding
the CTE

Multiple-antenna device
captures the I/Q data of the
CTE by switching between
antennas

Receiving devices track other objects by
measuring the phase difference of the received
waveform at different antennas

AoD Multiple-antenna devices
transmit a packet embedding
the CTE while switching
through multiple antennas

Single-antenna device
captures the I/Q data of the
CTE

Receiving devices track their own positions by
measuring the phase difference of the received
waveform from different antennas

RF Single-antenna device
transmits packets that do not
embed the CTE

Single-antenna device
measures signal strength

Receiving devices track their own positions by
estimating the distance based on the received
signal strength and a reference signal strength

BLoB Single-antenna devices
synchronously transmit
packets embedding the CTE

Single-antenna device
captures the I/Q data of the
CTE

Receiving devices track their own positions by
analyzing the received signal strength at beating
and signal frequencies

Hence, BLoB is fundamentally different from other BLE-based localization approaches, as

summarized in Table 2.1.

2.4.2 Leveraging Beating for Localization

In BLoB, n anchor nodes synchronously transmit sufficiently-long (160 µs) CTone signals

with frequencies (ω1,ω2, . . . ,ωn) to produce beating, as shown in Figure 2.3. Mathematically,

consider the CTone signals from n spatially-distributed anchors, represented as:

(2.1) a1 cos(ω1t ), . . . , an cos(ωn t ) and C Tonei = ai cos(2π fi t ),

where ω is the angular frequency of the signal in radians and ai is the amplitude of the i th

transmitted signal.

For beating to occur, the CTone frequencies f1, . . . , fn should not be equal to each other,

and the separation between any two frequencies must not be equal, e.g., the CTone frequency

can be chosen as:

(2.2) fi = fCTE +∆ f with ∆ f = (m ∗ fs)/L,

where fCTE equals to 250 kHz, ∆ f is the frequency offset, fs is the sampling rate, and L is the

length of the CTone signal. The parameter m is an integer value, provided fi should fall in

receiver bandwidth. The frequency offset can be deliberately chosen using Eq. 2.2 to avoid side

lobes interference; however, the inherent CFO caused by the inaccuracy of crystal oscillators is

sufficient to analyze beating in BLoB.

The tag receives the superimposed CTone signal (SICT) resulting from the ST. Ignoring any

channel impairments for simplicity, such a superimposed signal can be described as:
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(2.3) SIC T =
n∑

i=1
Ai cos(2π fi t ),

where A1, A2, . . . , An are the amplitudes of individual CTone signals after attenuation and as

received at the mobile tag. To obtain the amplitude of the transmitted CTone signal frequencies,

the receiver can use the Fast Fourier Transform (FFT) to analyze the signal spectrum of the

received or beating signal. However, the method for extracting the pairwise contribution of

the CTone signals in beating will be explained in the following section.

2.4.2.1 Envelope Extraction of the Beating Signal

To extract and analyze the pairwise contributions of anchors’ amplitudes in the received

beating signal, the tag extracts the squared envelop of the received superimposed ST-signal by

taking the squared value of the Hilbert transform [103], which can be expressed as

(2.4)

∣∣∣∣∣Hilbert

(
n∑

i=1
Ai cos(2π fi t )

)∣∣∣∣∣
2

.

By applying an FFT on the envelope obtained with Eq. 2.4, one can characterize the result-

ing amplitude of beating frequencies and their corresponding power amplitudes, as sketched

in Figure 2.4. Within the beating spectrum, one can identify a number of peaks, representing

the contribution in beating from each pair of anchor nodes. Such contribution is strongly

dependent on the tag’s position: if the tag is closer to a given anchor, the amplitude of the

peaks involving this anchor will be higher: BLoB call such an anchor a dominant anchor (or

the corresponding beating frequency a dominant frequency). The maximum number of peaks

in the beating spectrum is
(n

2

)
. These peaks will be used together with the amplitude of the

transmitted CTone signal frequencies for localizing a tag’s position (see Section 2.4.2.2).

2.4.2.2 High-Resolution Tracking

The frequency power spectrum of the squared envelope of the received analytic signal can be

expressed as (a comprehensive derivation is available in Appendix 8):

(2.5)

Sn(ω) = 2π
n∑

i=1
a2

i δ(ω)

+2π
∑
k>l

ak al [δ(ω−ωk +ωl )+δ(ω−ωk −ωl )] .

where k and l vary between 1 and n. Sn is the frequency power spectrum received from the

transmitters, whereas δ(ω) is a Dirac delta function at the frequency ω.
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Figure 2.4: Principle behind beating-based localization- A single-antenna tag extracts the
squared envelope of the received superimposed signal (i.e., deriving from the synchronous
transmissions of anchors A1, A2, A3, A4 embedding a CTone sent at frequency f1, f2, f3, f4). This
allows the tag to determine the contribution of the dominant anchors (by analyzing the highest
peaks in the beating spectrum). The top-right figure depicts the case in which there is no
dominant frequency in the beating spectrum (in fact, the tag is located at the same distance
from all anchors). The bottom-right figure depicts a beating spectrum with a clearly dominant
frequency, i.e., that of anchor A1.

In BLoB, by examining the peak amplitudes of beating frequencies at |ωk −ωl | (along

with the signal frequencies ωk ,ωl that capture the RSS information from the anchors), one

can obtain additional information compared to classical RSS-based localization approaches

(which only leverage RSS information without beating), and hence increase the accuracy of the

localization system. In other words, the computation of the envelope and the extraction of the

beating frequencies and amplitudes enables a tag to use additional N (N −1)/2 observations

(on top of the N observations from the signal spectrum), resulting in a finer location estimate.

Notably, the larger number of observations does not result in any additional traffic nor higher

channel occupancy, and only leads to a negligibly larger expense in terms of signal processing.

Section 2.5.1 details how to extract the dominant/true peaks reflecting the signal and beating

amplitudes information.

2.4.2.3 BLoB in Principle

Consider n = 4 transmitted CTone signals with unit amplitude, represented as cos(2π f1t),

cos(2π f2t), cos(2π f3t), cos(2π f4t) with CTone frequencies f1 = 2, f2 = 5, f3 = 10, f4 = 17 Hz.

The tag receives a superimposed signal (Eq. 2.3) and performs the steps described in Sec-

tion 2.4.2.1 to extract the amplitude of the signal at the beating frequencies and transmitted

CTone frequencies. These steps are implemented in Matlab assuming a path-loss channel
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model [104], and derive the illustration shown in Figure 2.4.

Specifically, Figure 2.4 (top-right) shows the single-sided power spectrum of the squared

envelope of the received signal representing the frequency on the x-axis and the received power

at those frequencies on the y-axis. A total of six peaks can be identified, i.e.,
(n

2

)
, corresponding

to the absolute numerical difference between CTone frequencies. Moreover, the input CTone

signals can be extracted directly from the signal spectrum i.e. by applying an FFT on the

received signal.

This example assumes uniform power of all transmitted CTone signals. For this reason, in

Figure 2.4 (top-right), where the tag is located exactly at the same distance from all anchors,

the peaks corresponding to the six beating frequencies have the same amplitude. A change

in the tag’s position is reflected as a change in the peak amplitude of the beating frequencies.

Figure 2.4 (bottom-right) shows an example where the tag moves closer to anchor A1: in this

case, the peaks related to A1 are clearly dominant (i.e., their amplitude is higher). Note that

this example assumed a perfect channel model with no impairments. In real environments,

due to channel noise and multipath effects, there will be many other peaks in the received

spectrum other than those at the anchor nodes’ frequency. A method is therefore introduced

to determine the true dominant peaks in the spectrum, followed by a section on performing

localization using this approach.

2.5 BLoB: Design & Implementation

Next, the design and implementation of BLoB are detailed in this section, with an emphasis on

anchor detection and classification in real-world systems (Section 2.5.1) and on tag localization

(Section 2.5.2). Additionally, this section includes a modeling of BLoB and an analysis of

its performance in Matlab (Section 2.5.3). Lastly, the ST communication primitive of BLoB

(Section 2.5.4), which is utilized in the evaluation experiments detailed in Section 2.6, is

presented.

2.5.1 Anchor Detection and Classification

The example in Section 2.4.2 assumes a perfect channel model with no impairments. In

real environments, due to channel noise and multipath effects, there will be many other

peaks in the extracted beating and signal spectrum other than those at the anchor nodes’

frequency. Moreover, as BLoB exploits the CFO and does not tune the anchors’ clocks, side

lobe interference creates more challenges to detect the true peaks in the spectrum. A method
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is thus derived that enables BLoB to determine the true dominant peaks in the beating and

signal spectrum, effective in real-world environments.

2.5.1.1 Peak Searching

To determine the peaks in the beating and signal spectrum (which helps determine the number

of anchors present in an ST-based network), BLoB performs the following steps:

(i) Determine all the local maxima values Lmax and their neighbor local minima values Lmin1 ,

Lmin2 in the received beating and signal spectrum. In the case of the signal spectrum

(provided the transmitted CTone frequencies are known), the frequency corresponding

to local maxima and minima should satisfy the condition:

(2.6) | fLmax − fLmini
| <∆ fmin ,

where fLmax and fLmini
are the signal frequencies corresponding to the local maxima sample

point and nearest minima sample point to local maxima, respectively.∆ fmin is the minimum

CFO in the transmitted signal frequencies.

(ii) The local maxima found in step (i) should have amplitudes greater than a threshold T1,

which is empirically chosen (verified experimentally in Section 2.6) to be equal to 1/5 of the

maximum received power in the signal spectrum. By setting this threshold, the unwanted

spectral peaks and channel noise are eliminated.

2.5.1.2 Anchor Detection

BLoB exploits both the beating and the signal spectrum to determine the dominant number of

anchors present in the network. Firstly, it finds the peaks in the unfiltered signal and beating

spectrum and then configures the cutoff frequency of a fixed impulse response (FIR) filter

based on the found peaks. The cutoff frequency for the FIR filter is calculated as follows:

flower = f1 ∗α1, fupper = f2 ∗α2,(2.7)

where f1, f2 are the frequencies corresponding to the first and the last peak found in the

spectrum, respectively, whereas α1,α2 are the redundancy coefficients [105]. Next, again

search the peaks in the filtered spectrum. A decision about the total number of anchors

present is made based on the peaks found in the filtered signal spectrum and in the beating

spectrum. This method is called as blended approach (MB ), as it uses both beating and

signal spectrum. For comparison, an alternative approach is explored that relies solely on the
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(a) Loc error using freq approach (MF ) (b) Loc error using blended approach (MB )
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Figure 2.5: Analyzing BLoB’s localization performance under different channel models in a
Matlab environment. The colour bars in Figures 2.5a and 2.5b represent the localization error
in meters.

signal spectrum, specifically using only the amplitude at CTone frequency signals, without

incorporating any information about the pairwise amplitude contributions from the beating

spectrum. This method, akin to classical RSS methods, is termed as freq approach (MF ).

In this approach, the peaks identified in the filtered signal spectrum are interpreted as the

number of dominant anchors present.

2.5.2 Tag Localization

BLoB, calculates the tag’s coordinates based on the amplitude of the received signals at the

beating and signal frequencies from multiple anchors. Specifically, it uses a weighted centroid

approach to determine the tag position, as BLoB has access to the amplitudes of individual

anchor nodes and the contribution of pairs of anchor nodes.

Step 1 (weights calculation). Calculate the weights (W ) corresponding to each dominant
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synchronous transmitter using the peak amplitude (denoted as P ) at beating and signal

frequencies and assign the weights for the blended approach:

(2.8) W (i ) =
n∑

i , j=1,i ̸= j
P |ωi −ω j |+P (ωi ).

Step 2 (2D localization). The weighted 2D coordinates xr , yr of the mobile tag are computed

as:

(2.9) xr =
∑n

i=1(W (i )∗xt (i ))∑n
i=1 W (i )

, yr =
∑n

i=1(W (i )∗ yt (i ))∑n
i=1 W (i )

,

where xt (i ), yt (i ) are the known coordinates of anchor Ai .

2.5.3 Preliminary Results from Simulation

To validate the algorithms presented in Section 2.5.1 and 2.5.2 as well as to further investigate

how different profiles of beating and signal frequency amplitude affect the location estimates

provided by the proposed approach, assume a 2D plane of 10×10 m2 with 4 anchor nodes

(A1, A2, A3, A4) at the four corners of the square plane. These anchors operate at 250 kHz,

257.69 kHz, 269.23 kHz, and 273.08 kHz CTone frequencies, respectively, chosen to satisfy

Eq. 2.2. The length of the CTE packet used is 160µs with a sampling rate of 8 Msps. The BLE

packets embedding a CTE are generated in a Matlab-based BLE 5.1 simulator [106].

The tag captures the raw I/Q samples of the BLE packet, including the payload and CTE.

The processing of the received signal to derive power amplitudes at beating and signal fre-

quencies involves discarding the payload and focusing only on the CTE field in the packet for

location estimation, meaning there is no requirement for payload data in BLoB (Section 2.5.4).

Simulation of hundreds of tag locations is conducted to determine the location based on

the proposed approach, taking into account the path loss [104] and Rayleigh fading channel

model [107].

Figures 2.5a and 2.5b display the calculated Euclidean localization error (defined as

Eri (i ) = |lk − lcal |, where lk , lcal are the known and calculated tag’s position, respectively).

These errors are calculated for the x, y coordinates of the tag at different positions using the

freq approach and the blended approach, respectively. In the freq approach (only the

signal frequency spectrum), the weight is assigned as: W (i ) = P (ωi ).

The CDF derived over the Eri of all location estimates for both methods is shown in Fig-

ure 2.5c under the path loss and Rayleigh fading channel models. Both methods perform well

when the tag is located at the centre and receives equal power from all transmitters. How-

ever, the blended approach performs better when the receiver moves away from the centre
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Figure 2.6: ST-based protocol used in BLoB. The tag (T) syncs on the first timeslot then localizes
on the second.

position. The calculated mean localization error is 0.6 m and 3.6 m, for the freq approach,

whereas it is 0.53 m and 2.3 m for the blended approach, under the path loss and Rayleigh

fading channel models, respectively. This means that the additional information derived by

considering the beating characteristics (pairwise contribution of each anchor’s power) in the

blended approach improves the localization performance by up to 36% compared to the

freq approach (which is equivalent to conventional RSS-based localization).

The results mentioned above are obtained through simulation. To examine BLoB’s perfor-

mance in real-world conditions, an ST-based protocol is implemented on off-the-shelf BLE

devices, as detailed in the following section.

2.5.4 ST-based Communication Primitive

Figure 2.6 illustrates the adaptation of an ST communication primitive to facilitate CTE-based

analysis of the beating effect. Utilizing the direction-finding radio extension within the ST

protocol, packets embedding a CTone are generated and received. In the initial time slot,
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forwarders2 serve as receivers for time synchronization; subsequently, in the next time slot,

they begin synchronous transmission of CTone signals, with the receiver conducting I/Q

sampling. The Nordic Semiconductors nRF52833 SoC [108] has been enhanced to enable

the radio’s I/Q sampling capability, essential for obtaining raw baseband samples for signal

beating analysis.

As antenna switching is not required in neither transmitters nor receivers, each device role

is configured to expect its peer to be responsible for switching. As such, the transmitters are

configured for AoA mode, while the receiver is configured for AoD mode. Other radio peripheral

features leveraged include the ability to capture I/Q samples throughout the entire received

packet, not just the CTE extension, and the option to over-sample with a 125 ns interval

between samples [108]. It is important to note that while the BLoB concept primarily focuses

on localization (using an empty payload), it can also support simultaneous communication

and localization in an ST-based network, as long as the protocol allows for the CTone signals

from different anchors to overlap.

Moreover, with an appropriate CTE length, beating detection across all BLE 5 PHY configu-

rations is feasible, rendering the approach independent of the physical layer [3].

2.6 Experimental Evaluation

The performance of BLoB is experimentally evaluated, initially focusing on the accuracy of

detecting and classifying dominant anchors (Section 2.6.1). Subsequently, the localization

accuracy of BLoB in various environments is quantified, along with a performance comparison

to the SOTA AoA technique (Section 2.6.2).

2.6.1 Detection of Dominant Anchors

The evaluation begins by examining the accuracy of BLoB in detecting and classifying dominant

anchors. The evaluation seeks quantitative answers to these questions:

• Is the inherent CFO caused by the inaccuracy of crystal oscillators sufficient to discern

anchors? (Section 2.6.1.2)

• Can dominant anchors present in the network be detected by leveraging the beating

induced by the CFO? Do packet loss and antenna polarization affect the anchor detection

accuracy? (Section 2.6.1.3)

2Within Nordic Framework transmitters other than initiator are called ’Forwarder’ [108].
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2.6.1.1 Experimental Setup

Experiments are conducted using Nordic Semiconductors nRF52833-DK boards in an office

room, as depicted in Figure 2.7, with up to 7 anchors. To test BLoB’s anchor detection accuracy,

four scenarios are considered:

(S1) Anchors and tag are in the same plane (as in Figure 2.7a) with the same antenna polar-

ization;

(S2) Anchors and tag are in the same plane (as in Figure 2.7a) with different antenna polar-

ization;

(S3) Anchors and tag are in a different plane (as in Figure 2.7b) with the same antenna

polarization;

(S4) Anchors and tag are in a different plane (as in Figure 2.7b) with different antenna

polarization.

2.6.1.2 Inherent CFO Detection

The study begins by investigating whether the inherent CFO, resulting from the inaccuracy

of crystal oscillators, is adequate for differentiating between anchors in real-world settings.

For this purpose, the CTone frequency shift due to CFO is measured and compared for several

nRF52833-DK boards. Operating at a carrier frequency of 2.4 GHz, the expected baseband

CTone signal spectrum should peak at fCTE=250 kHz [42]. However, in practice, deviations

occur, as shown in Table 2.2, with the CFO varying up to 11.69 kHz from the nominal CTone

frequency of 250 kHz. These findings confirm the feasibility of distinguishing anchors based on

their CFO in real-world settings. The CFO present across different anchors can be determined

by following the below steps in BLoB and described in the Algorithm 1.

i. Turn on the initiator and follow the steps described in Sect. 2.5.1.1 to find the dominant

peak in the signal spectrum. Assume that f1 is the CTone frequency corresponding to the

detected peak. As only the initiator is active, only one dominant peak should exist in the

signal spectrum, and no beating should occur. If the detected peak does not correspond to

fC T E , CFO is present and equals fC T E − f1. Consider f1 as the true CTone frequency.

ii. Determine the CTone frequency of each forwarder by keeping the initiator on and by acti-

vating one forwarder at a time, e.g., activate F wd1. Then, determine the dominant peaks

in the signal spectrum. If two peaks are detected, the frequency corresponding to the new

detected peak should be the CTone frequency of the considered forwarder (e.g., f2 for F wd1).
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(a) Same plane (b) Different plane (c) Up to 7 anchors

Figure 2.7: Experimental setup used in Section 2.6.1.

If only one dominant peak is detected in the signal spectrum, then the beating spectrum is

observed.

If the beating does not occur, then the considered forwarder shares the same CTone fre-

quency with the initiator. If beating occurs, this implies that the difference between the

frequency of the initiator ( f1) and of the forwarder (e.g., f2 for F wd1) is too small to be

distinguished in the signal spectrum. We then determine the dominant peak in the beating

spectrum. Assuming the frequency corresponding to the detected dominant peak is ∆ f12,

the CTone frequency f2 for F wd1 is calculated as f2 = f1±∆ f12 with two possible values (e.g.,

252 kHz or 248 kHz when ∆ f12=2 kHz and f1=250 kHz). To resolve the ambiguity, we can add

a new forwarder: if the frequency of the latter is 255 kHz, then in the beating spectrum we

will either find a peak at (255-252)=3 kHz or at (255-248)=7 kHz.

Importantly, while CFO is a property of the radio oscillator and is thus sensitive to environ-

mental factors such as temperature variations, recent work has demonstrated that the relative

CFO between synchronously transmitting devices can be predictably modeled and estimated

as a function of temperature [98]. This supports the practicality of the proposed approach in

harsh environmental conditions.

2.6.1.3 Anchor Detection

Next, task is to test BLoB’s anchor detection accuracy based on the detection of dominant

peaks which facilitate localization. Three configurations are considered for this purpose:

• With CRC: Only the CRC passed packets are considered and CRC failed packets are

discarded.

• Without (W/O) CRC: Only failed CRC packets are used.
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Algorithm 1 To examine CFO across anchors in BLoB

Require: Extracted Signal & Beating spectrum
Ensure: CFO for each anchor

1: Turn on initiator and find dominant peak f1 using peak search algorithm described in
§ 2.5.1.1

2: if Detected peak is not fC T E then
3: Set CFO as fCTE − f1

4: Set f1 as the true CTone frequency

5: for each forwarder F wdi do
6: Keep initiator on and activate F wdi

7: Find dominant peaks in the signal spectrum
8: if two peaks are detected then
9: Set f2 as the frequency corresponding to the new detected peak

10: Set f2 as the CTone frequency of F wdi

11: else if only one dominant peak is detected then
12: Observe beating spectrum
13: if no beating occurs then
14: F wdi shares the same CTone frequency with the initiator
15: else
16: Identify dominant beating peak & assign its frequency as ∆ f12

17: Calculate f2 for F wdi as f2 = f1 ±∆ f12 with two values
18: Resolve ambiguity by adding a new forwarder and observing the beating spec-

trum to determine the correct f2

Table 2.2: Observed CFO on different nRF52833 boards. Device 685508885 (underlined) acts
as initiator. ∆ f represents the detected CFO compared to the nominal 250 kHz value, whilst
∆i ni t captures the frequency delta w.r.t. the initiator.

Device ID Detected CTone freq. (kHz) ∆ f (kHz) ∆i ni t (kHz)

685508885 252.453 +2.453 0
685557904 244.756 -5.244 -7.697
685939208 250.910 +0.910 +1.543
685695561 246.295 -3.705 -6.158
685435368 238.600 -11.40 -13.853
685083356 261.690 +11.69 -9.237
685465122 255.532 +5.532 +3.079

• Both: Both failed and successful CRC packets are used.

Four anchors are considered to simultaneously transmit CTone signals (as depicted in

Figure,2.7a), with tags detecting dominant peaks in both the beating and signal spectrum.

The analysis is conducted under two approaches: the average peak and the average packet

approach. For the average peak approach, anchor detection accuracy is determined by the
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Table 2.3: Anchor detection accuracy for avg. peak and avg. packet methods with four anchors
with freq and blended approach.

Method Scenario With Cyclic
Redundancy
Check (CRC)
(freq)

With CRC
(blended)

W/O
CRC
(freq)

W/O CRC
(blended)

Both
(freq)

Both
(blended)

Avg. Peak

S1 21.90% 99.42% 11.11% 100 % 18.65% 100%
S2 19% 100% 20.66% 100 % 24.45% 99.18%
S3 21.93% 98.83% 30.56% 100 % 18.21% 98.55%
S4 20.94% 86.91% 31.93% 99.16 % 12.50% 89.17%

Avg. Packet

S1 25% 100% 75% 100 % 75% 100%
S2 75% 100% 100% 100 % 75% 100%
S3 100% 100% 100% 100 % 75% 100%
S4 100% 100% 75% 100 % 75% 100%

Table 2.4: Anchor detection accuracy using average peak and average packet methods.

Nodes
1 2 3 4 5 6 7

Avg. Peak
Freq 100% 19% 20.66% 24.45 % 3.47% 1.37% 0%
Hybrid 100% 100% 100% 99.18 % 87.28% 84.96% 87.96%

Avg. Packet
Freq 100% 100% 100% 75 % 60% 33.33% 57.14%
Hybrid 100% 100% 100% 100 % 100% 100% 57.14%

ratio of the total number of true dominant peaks detected in each received packet to the

total number of anchors present. In the average packet approach, I/Q samples are averaged

over 20 packets (Empirical Statistical Optimization) before determining the true dominant

peaks. Table 2.3 presents the anchor detection accuracy (quantified as the number of times

the detected peaks correspond to the actual number of anchors) from several hundred runs.

The average packet approach proves more efficient as averaging reduces the impact of channel

noise.

Corrupted packets. The beating effect may result in packet loss in a communication link [3].

Although, intuitively, this is undesirable, BLoB’s performance actually increases when consid-

ering the failed CRC packets, as the beating pattern will be more complex – hence leading to a

higher detection accuracy, as confirmed from the results in Table 2.3.

Antenna polarization. Further, analysis reveals that changing antenna direction increases the

number of CRC failed packets received at the tag (W/O CRC configuration). This results in

more complex beating patterns, enhancing accuracy, as evident in Table 2.3. Furthermore,

the results demonstrate that employing BLoB can achieve 100% anchor detection accuracy in

most cases.
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Figure 2.8: CTE-derived beating patterns at the receiver.

(a)

(b)

Figure 2.9: Office 1: Real-time received signal spectrum (left) as well as received beating
spectrum (right) with 4 anchor nodes. Figure (a) refers to a tag placed in the middle of four
anchors; Figure (b) refers to a tag is in close proximity to anchor A4.

Maximum number of detectable anchors. The maximum number of nodes detectable with

BLoB and the effects of adding more anchors on the beating signal are tested. The Both

configuration (utilizing both failed and successful CRC packets) is considered in the S3 scenario.

In this setup, node detection accuracy reached 100% for both the average peak and packet

methods, as indicated in Table 2.3. To determine the maximum number of detectable anchors,

the density of anchors in the network is incrementally increased by adding a new anchor in

each successive run, as illustrated in Figure 2.7b. Each new anchor is positioned at an equal

distance from the tag, with Figure 2.7c depicting the setup with seven anchor nodes. The

introduction of each new anchor alters the beating pattern (refer to Figure 2.8), which impacts
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(a) Office 1 (metallic
wire in x-direction, Dx )

(b) Office 1 (metallic
wire in y-direction, D y )

(c) Office 2 (d) Library

(e) Meeting room (f) Sports hall

Figure 2.10: Environments used in the experiments in Section 2.6.2.

the accuracy of anchor detection. An analysis reveals that as the number of anchors increases,

more peaks of varying amplitudes appear, and the intervals between valleys in the beating

patterns decrease. Consequently, peaks begin to merge in the frequency spectrum, leading to

reduced anchor detection accuracy. However, as shown in Table 2.4, BLoB successfully detects

up to 6 anchors with an accuracy of 100% in the experiments conducted.

2.6.2 BLoB’s Localization Performance

The evaluation of BLoB proceeds with an analysis of its localization performance, focusing on

accuracy, robustness to harsh environments, and a comparison with the SOTA AoA approach.
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The results provide quantitative answers to the following questions:

• How robust is BLoB localization in dynamic and multipath-rich environments? (Sec-

tion 2.6.2.2 and Section 2.6.2.3)

• Does BLoB’s performance remain consistent as the testing area increased? (Sec-

tion 2.6.2.4)

• How does BLoB perform in mobile settings? (Section 2.6.2.5)

• Can BLoB achieve a performance that is comparable to AoA-based solutions even though

it does not explore phase information? (Section 2.6.2.6)

2.6.2.1 Experimental Setup

To evaluate the localization performance of BLoB in realistic scenarios, various dynamic

multipath-rich environments are being considered, listed in Table 2.5. These environments

include offices, sports halls, libraries, and meeting rooms, each of which contains a variety of

reflective and scattering objects such as chairs, desks, monitors, wardrobes, and RF-operated

equipment, creating a multipath-rich environment. Four anchor nodes are placed in a square

formation on tripods at a height of 1.8 m in the offices and sports hall, and on a table at a

height of 1 m in the library and meeting room, respectively (see Figure 2.10). The tag is placed

at randomly-distributed testing positions (denoted as NT L) with varying amounts based on

the environment being tested (as summarized in Table 2.5). At least 150 packets are collected

at each position and the absolute error at each NT L is calculated as the Euclidean localization

error (Er ). Results are presented by averaging multiple combinations over time of 10 packets

each and computing the CDF over Er . It is important to note that all presented results are raw

measurements only, without the use of any filtering techniques such as Kalman or particle

filters.

2.6.2.2 Results in Static Multipath-rich Environments

The localization performance of BLoB is evaluated first in Office 1 without the addition of

reflective objects. The real-time beating and signal spectrum with four active anchor nodes are

visible in Figure 2.9a, with the localization performance test results presented in Figure 2.11a.

Role of antenna orientation. The robustness of BLoB is tested by evaluating its localization

performance with different antenna polarizations in an office environment. As indicated in

Figure 2.11a, the majority of errors (90%) remain below 1 m, with mean localization errors

for horizontal (Ah) and vertical (Av ) antenna polarizations being 87.55 cm and 107.3 cm,
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respectively. While antenna orientation typically impacts localization performance signifi-

cantly [109], in BLoB, this impact is minimized due to the use of superimposed CTone signals

to create beating – less affected by antenna polarization [110].

Addition of metallic wire. To further assess BLoB’s performance in complex reflective environ-

ments, a dense/thick metallic wire is added at the same height as the anchor nodes in Office 1.

Whilst not a full metal sheet, the fence is more than just a simple wire and adds significant

reflections. Different placements of the metallic wire are tested: one in the x-direction (Fig-

ure,2.10a) and another in the y-direction (Figure,2.10b) relative to the setup. Figures,2.11b

and,2.11c demonstrate that BLoB maintains sub-meter accuracy even in highly-reflective en-

vironments. Contrary to other BLE localization methods that rely on angular information or

RSS [57], BLoB is capable of handling both low and high reflection environments by exploiting

more sampling points and the beating effect.

Performance in the proximity of an anchor. The simultaneous ranging approaches are sus-

ceptible to dynamic range problems, as highlighted by [64, 65], particularly when the tag is

in close proximity to the anchor node. To evaluate BLoB’s performance in such scenarios,

measurements are taken near the anchor A4 ( f4) within a 1 m radius. Although the amplitudes

of signals from other anchor nodes transmitting at CTone frequencies f1, f2, and f3 in the

signal spectrum are relatively low, the analysis of the beating spectrum (shown in Figure 2.9b)

helps BLoB to determine the pairwise contribution of each anchor’s power. As a result, an

accuracy of 0.93 m is achieved, which is only 0.07% less than the mean average error obtained

in this area.

Table 2.5: Mean BLoB localization error in different scenarios.

Environment
Office 1 Office

2
Library Meeting Room

Sports
HallW/o metallic wire Metallic wire Blockage

Area (m2), Testing Loc. (NT L) 20, 52 20, 52 20, 20 15, 15 15, 20 10, 30 90, 30

Mean Loc. Error (cm)
freq 101.57 94.10 84.51 106.86 138.41 78.04 154.37
blended 87.55 91.47 70.25 72.06 93.43 50.84 116.18

2.6.2.3 Dynamic Environment

Following promising results in Office 1, BLoB is evaluated in three additional dynamic envi-

ronments with anchors placed at different heights: Office 2, a Library, and a Meeting Room,

as depicted in Figure 2.10. The results3, shown in Figure 2.11d, reveal that the Library envi-

ronment exhibits more localization error (93.43 cm) compared to the others, attributed to the

presence of multiple book racks and a metallic down-ceiling causing increased multipath.

3All presented results are averaged over different antenna configurations.
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Figure 2.11: CDF of the localization error in different multipath environments. Office 1: dif-
ferent transmitter antenna polarization (Av : vertical, Ah : horizontal) w/o metallic wire (a), a
metallic wire placed at different positions (b), comparison of Loc. error of setup- with and w/o
metallic wire placement (c), Dynamic environment (considering blended approach): Library,
Office 2, Meeting Room (d), Large indoor tennis hall (e), BLoB’s localization performance
compared to BLE’s AoA technique. The latter uses bulky multiple-antenna arrays and yet
achieves a comparable performance to BLoB, which is a single-antenna system (f ).

However, BLoB still achieves sub-meter accuracy. A performance comparison of BLoB with the

SOTA solutions that utilize a constant tone is detailed in Table 2.6.

2.6.2.4 Large Environment

BLoB is further evaluated in a large sports hall, covering an area of 90m2, where it is being

tested in one court while the adjacent courts are in use. Ground truth locations of the tag

are provided by the highly-accurate Optitrack system [111]. Eight Flex13 motion capture

camera systems are deployed as shown in Figure 2.10f. The Optitrack system, which can

be calibrated within minutes, offers mm-level accuracy without requiring manual marking

of fixed positions. Calibration is performed during the initial 5 minutes of the experiments,

achieving a localization accuracy of 0.401 mm, significantly finer than what BLE typically

achieves. The localization accuracy results for BLoB, illustrated in Figure 2.11e, demonstrate
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Figure 2.12: Mobility experiment in the Office 2 environment.

that 90% of localization errors are under 1.5 m, with a mean average localization error of 116

cm. These results validate the feasibility of using BLoB in large indoor public spaces.

2.6.2.5 Mobile Scenarios

To validate BLoB’s performance in mobile scenarios, it is tested with a mobile target in the

multipath-rich Office 2 environment during normal office hours (thereby introducing mild RF

interference across the 2.4 GHz spectrum in the form of everyday office activities). As shown

in Figure 2.12, anchors were placed at A1 to A4, creating a 7 m by 1.5 m arena, while the tag

was placed on an autonomous robot which moved 6 m along a predefined linear trajectory

(this indicates by the red dashed line) from right to left across the middle of the arena. The

estimated tag trajectory from BLoB is shown in blue, and from 45 samples the mean estimated

localization error obtained with the mobile target was 96.58 cm. While this does not represent

a full study of BLoB’s performance in mobility conditions, this indicated the viability of BLoB’s

sub-meter localization accuracy in real-world mobile scenarios.

2.6.2.6 BLoB vs. AoA-/AoD-based systems

The localization performance of BLoB is now demonstrated to be comparable with AoA-based

direction finding solutions, despite its reliance solely on single antennas and the consequent

non-utilization of angular information. When using AoA, a tag is equipped with multiple

antennas controlled using an RF switch. By measuring the phase difference observed at the

multiple antennas, the tag can locate a transmitter’s direction, and perform trilateration to find

its position coordinates. If the separation between antennas is known, the AoA is computed
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Table 2.6: Comparison of localization error in SOTA.

SOTA Technique Multi-Array / Single Antenna Mean Error

Farnham [114] AoA Multi 2.5m
Qian et al. [57] AoA Multi > 10◦
Rinaldi et al. [115] AoA Multi > 20◦
He et al. [116] AoA Multi > 5◦
Cominelli et al. [40] AoA Multi 0.85m
Pau et al. [56] AoA & RSS Multi 0.70m
BLoB RSS-CT Single 0.55m

using Eq. 2.10:

θA = arccos((φλ)/(2πD)),(2.10)

where λ is the wavelength, φ is the phase difference, and D is the distance between adjacent

antennas in the antenna array. To evaluate AoA’s performance, four multiple-antenna arrays

are used in Office 1, placing the tag in identical locations where BLoB was tested, using Silabs

EFR32xG22 boards [58] and Silabs’ AoA implementation [4, 112, 113]. Figure 2.11f presents the

results: BLoB achieves a comparable localization performance to that obtained using AoA, also

in challenging non-line-of-sight (NLOS) conditions (the tag is getting obstructed from two

anchors due to the boundary between two tables, see Figure 2.10a). Specifically, BLoB exhibits

a 50% error of 87.55 cm, whereas AoA-based localization exhibits an error of 95.72 cm. In NLOS

conditions, the difference in error is ≈ 18.66 cm in favor of BLoB.

2.7 Discussions & Limitations

This section discusses additional features and benefits of BLoB, along with its main limitations.

Minimizing channel occupancy. The use of ST reduces the number of transmissions over the

air and thus reduces signaling overhead incurred system, minimizing channel occupancy. This

is a key advantage of BLoB in comparison to classical systems which rely only on RSS: the latter

require individual responses from each anchor, whereas in BLoB all anchors synchronously

transmit a response embedding a CTE, pictorially represented in Figure 2.13.

Example: How BLoB scheme compares against legacy schemes from an operation point of view

and key performance metrics such as latency and radio resource utilization can be elaborated

with a simple example setup consisting of 4 anchors (A1, A2, A3, A4) and 1 mobile tag.

RSS based localization: This requires many transmissions at various times. These include:

• Request from T to anchor A1, Response from A1 to T, T records the RSS
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• Request from T to anchor A2, Response from A2 to T, T records the RSS

• Request from T to anchor A3, Response from A3 to T, T records the RSS

• Request from T to anchor A4, Response from A4 to T, T records the RSS

T process all the RSS and coordinates of anchors to estimate its position. The process concludes

in time at least long enough to complete eight over-the air transmissions.

BLoB localization:

• Either T or a dedicated anchor Ai sends a CTE request

• All anchors on receiving it transmit a CTE response concurrently

• Mobile tag T receives the concurrent CTE response and applies the signal processing,

and estimates its coordinates

The process is concluded in the time needed to complete two over-the-air transmissions over

a single channel. The RF footprint in time (channel occupancy) is short to complete such

transaction even on the congested Bluetooth advertising channels, the three special ones out

of 40 channels.

Frequency diversity. BLoB can localize an unlimited number of devices in an extremely short

time while benefitting from the frequency diversity over a single narrowband channel. This

diversity is extracted from the frequency spectrum, providing diversity in frequencies denoted

as f1, . . . , fn . Additionally, the beating spectrum contributes to even more diversity, resulting in

a total of N + (N · (N −1)/2) frequency components, all within a single 2 MHz channel. This

comprehensive frequency diversity leads to enhanced localization accuracy. Furthermore,

when employing multiple concurrent transceivers with frequency diversity, BLoB exhibits

resilience against Wi-Fi interference. The frequency diversity continues to increase as the

number of anchors increases, as demonstrated in Figure 2.14. This increase will not occur

without the beating spectrum exploration.

Scalable and privacy-preserving localization. Similar to GNSS-based systems, in BLoB mobile

tags are not actively involved in the communication and hence do not disclose their pres-

ence. In other words, BLoB enables fully-passive localization that preserves the user’s privacy

and allows to potentially support countless tags. Moreover, BLoB does not suffer from the

disadvantages of AoA/AoD-based systems, where it is challenging to verify the truthfulness of

transmitted CTones in such systems, a change in phase introduced by an attacker can cause a

significant shift in the AoA [40].
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Figure 2.13: Comparison of TDMA and BLoB localization Approaches: On the left, each anchor
uses different frequency channels and transmits sequentially in a time-division manner. On
the right, all anchor nodes transmit synchronously with inherited CFO from each other.
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Figure 2.14: Frequency Diversity in BLoB as the Number of Anchors increases within a single
narrowband channel.

Channel hopping to improve performance. In BLoB’s implementation, channel hopping is

employed to average out I/Q performance across multiple fading scenarios. Since the beating

spectrum depends on the carrier frequency of all transmitters, averaging out I/Q samples

taken across multiple channels enhances the likelihood of sampling a combination that yields

larger beating amplitudes.

Computational complexity. Currently, the signal processing in BLoB is carried out on MATLAB

based on the traces obtained with the actual BLE boards. However, the signal processing

algorithms employed by BLoB are relatively lightweight, and can be implemented on dual-

core BLE-based SoCs such as the nRF5340 by utilizing the second core and the ARM CMSIS-

DSP accelerated library to perform the FFT operations required for the algorithm. Such an
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embedded prototype of BLoB will be implemented in future work.

Dynamic range. The beating amplitudes extracted at the |ωk −ωl | frequencies can be useful

in addressing the dynamic range issue in ST-based localization methods [64, 65]. This issue

occurs when the signal strength from one anchor node is much higher than that of other

sources, resulting in signal clipping and making it challenging to accurately measure the RSS

or the time difference of arrival between the signals. By using beating extraction in BLoB, the

pairwise contribution of each anchor’s power can be determined, aiding in the calculation of

the received power of every anchor node.

2.8 Related Work

BLE-based localization. In the pioneer study of BLE 5.1 AoA [40], the authors successfully

demonstrated the effectiveness of the technique on USRPs, achieving sub-meter accuracy.

However, the testbed scenario was limited to an outdoor environment with few multipath

reflections, and the accuracy was calculated by averaging over a large number of packets (1200

phase delay points), resulting in high computational complexity and difficulty in reproducing

real-time results. Another experimental demonstration of AoA using SiLabs boards [58, 113]

was performed in [56], where the authors reported an average distance error of 0.7m using a

hybrid solution based on RSS and AoA. However, this study was limited to only eight static

locations, positions were averaged over 48 packets, and the tests were conducted in a single

controlled environment with no consideration for multipath interference. A study by Rinaldi et

al. [115] examined the effect of distance on AoA direction-finding techniques for localization

in industrial environments. It was found that the angular error increases with distance (even

beyond 10 degrees), and that it largely depends on the polarization of the antenna array.

Shuai et al. [116] studied the impact of multipath, noise, and antenna switching on AoA

calculations, finding an angular error of 12.1 degrees. To mitigate this, two algorithms based

on non-linear recursive least square and unscented Kalman filter were proposed, resulting in

an improvement of 7.1 degrees for line-of-sight. Finally, it has been observed that direction-

finding techniques are highly impacted by channel selection [57, 117]. For instance, [40]

studied the impact of channel hopping on AoA and found that the angular error spreads more

at lower frequencies. In this context, BLoB, overcomes the current hardware restrictions of

AoA/AoD techniques, and has been thoroughly tested in multipath-rich environments with

both static and mobile targets, where it sustains sub-meter accuracy.

UWB-based localization. Ultra-wideband (UWB) systems are known to achieve a high lo-

calization accuracy thanks to their fine-grained timing resolution [64, 118, 119, 120]. UWB
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radios can in fact process ultra-narrow impulses of 2 ns and precisely estimate the channel

impulse response (CIR). By applying signal processing on the CIR, a mobile tag can extract

ToA information, which – combined with the known coordinates of the anchors – allows to

estimate its position with cm-level accuracy. Unfortunately, narrowband systems such as those

based on BLE do not benefit from the fine time resolution and the advanced hardware features

present in UWB radios. Nevertheless, BLoB achieves sub-meter localization using BLE, a far

more ubiquitous technology than UWB.

Other wireless localization technologies. Wi-Fi can provide high-resolution indoor localiza-

tion systems [33, 24]. However, its high power consumption and the need of special chips

for beamforming and time-of-arrival analysis limits its wide adoption [121]. The perfor-

mance of LoRa for localization is heavily affected by the signal configuration and the environ-

ment [122, 123]. Simka et al. [124] reported that the localization error increases by 1.23 m using

low-bandwidth signal configurations. Moreover, LoRa’s localization performance degrades

for short distances and in indoor applications, making it unsuitable for indoor localization at

sub-meter accuracy [125, 126].

2.9 Concluding Remarks

This chapter has capitalized on BLE’s constant tone extension feature and the beating effect

from synchronous transmissions to develop BLoB, a novel BLE-based localization system that

can localize mobile tags with sub-meter accuracy using small, inexpensive single-antenna

devices, without the need for angular information. BLoB has been assessed through simulation

and real-world experiments in various indoor settings, including multipath-rich environments,

and in both static and mobile contexts. The research findings indicate that BLoB’s performance

surpasses traditional RSS-based methods and is on par with AoA-based systems, which de-

pend on more complex, costly multi-antenna arrays. Therefore, BLoB is a practical solution

for many IoT use-cases where bulky multi-array antennas are impractical. However, certain

applications require decimeter-level precision, a level of accuracy challenging to achieve

with BLE technology, whether through RSS or angle-based methods. The intrinsic operating

frequency of BLE, increased vulnerability to multipath interference, and hardware clock limi-

tations are significant barriers to such precision. To overcome these challenges, combining

BLE with another technology that inherently mitigates these issues is a promising approach.

The upcoming chapters of the thesis are dedicated to explaining optical localization solutions,

specifically designed to enhance BLE localization with the goal of achieving decimeter-level

accuracy. To ensure a thorough understanding, the next chapter offers a detailed background

on this optical technology, presenting the current SOTA.
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EMERGING PASSIVE VLP SYSTEMS

T
his chapter provides a comprehensive overview of emerging passive Visible Light

Positioning (VLP) systems, with a special emphasis on passive-VLP to enhance the

reader’s understanding. It begins with a classification of p-VLP systems as detailed in

Section 3.2. This classification, based on the types of passive elements and receivers, draws

from the framework proposed by Wang et al. [80]. Following this, there is an extensive survey

of the most recent advancements in p-VLP systems, categorized according to this established

classification. The focus then shifts in Section 3.3 to explore various commercially significant

applications. This section examines how the SOTA p-VLP systems are tailored to fulfill the

requirements of these applications. Additionally, Section 3.4 presents a comparative analysis

of different passive positioning systems, highlighting their performance based on real-world

system implementations, to offer a practical perspective of these technologies. The chapter

concludes by addressing the ongoing challenges that p-VLP systems face in gaining wider

commercial acceptance. The outcome of this chapter are published and presented at the ACM

Workshop on Light Up the IoT, co-located with ACM MobiCom 2021.

3.1 Introduction

VLP is a technology that can accurately locate people and objects using light. It works by

using common light sources like LEDs or Fluorescent Lightss (FLs) to send data and location

information through visible light. To do this, the light from these sources is modulated to carry

location signals. On the receiving end, a device sensitive to light, such as a PD or a camera,
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detects these changes in light to determine the location.

However, not all light sources are suitable for modulation. VLP systems that use actively

modulated light sources to send data to light sensors are called active VLP systems. Despite

their potential, active VLP systems face a few challenges that have limited their commercial

interest. Some of these limitations are:

• High infrastructure changes: On the transmitter side, these systems demand custom-

designed light sources with a controller capable of modulating the light. Updating

existing light fixtures with these controllers incurs extra cost and deployment effort,

making commercialization difficult.

• Complexity: Many active VLP systems need to collect different light features and perform

extensive signal processing to accurately estimate the position. Complex hardware on

both ends of communication link increases the overall cost.

• The burden on the user: The users of an active VLP system require carrying an optical

sensing unit for positioning. Although mobile phone cameras are pervasive and abun-

dant, users are confronted with their high power consumption and privacy concerns.

Furthermore, the requirement of holding the mobile in the direction of light sources

to receive location estimates is a cumbersome task. This limitation also exists in p-VLP

mainly where the receiver is an active device, more details are provided in Section 3.2.

In p-VLP information can be sent even without modulating the light source and the user

may or may not have to carry a light-sensing device for receiving the location beacons. The

p-VLP systems offer the following benefits:

• Device-free localization: p-VLP systems enable localization without requiring users to

carry any light sensing device. Light reflection or shadows caused by their body are used

for locating them.

• Security: In passive user systems, there is no need for users to keep personal gadgets

like mobile phones for estimating their position.

• Energy efficiency: Most of the p-VLP systems capture the light signals using PDs, which

consume significantly less power ( µW) than cameras. Moreover, in p-VLP systems

either the transmitter end or the user is passive resulting in more energy-efficient design

compared to the active systems in which both sides have active elements.
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• Less infrastructure changes: In p-VLP systems, there is no need for specially designed

light sources with a controller. The already installed lighting fixtures can be used as a

source without any modifications.

• Cost-effectiveness: The use of low-cost PDs and the need for fewer infrastructure

changes make p-VLP systems cost-effective alternatives to active systems.

3.2 Architecture and Taxonomy of passive-VLP Systems

3.2.1 Architecture

The architecture of p-VLP systems consists mainly of three components: a light source, user,

and receiver. The light source can be man-made like incumbent FLs, LEDs or natural light

sources like the sun. The receiver is a light-sensing device usually a PD or camera referred to

as ’Rx’ in this chapter. The user can be a human, robot, or any object like a carton box in a

warehouse, etc.

3.2.2 Taxonomy

p-VLP systems are classified based on types of transmitter and users’ involvement into three

categories: passive source, passive user and fully p-VLP systems as shown in Figure 3.1. Like

the work presented in [80], a light source is defined as passive if it only provides illumination

and active if it also modulates data. The user is considered active if it carries a light-sensing

device and passive otherwise 1. Figure 3.1 (a) represents an active VLP system in which the

user is localized with the help of one or multiple deployed active light sources and an active

light sensing device carried by the user. Based on the received modulated information, the

user locates its position. On the other side, p-VLP systems do not always need an active light

source. The light operation and user involvement solely depend upon the type of p-VLP system.

Furthermore, p-VLP systems are classified into types of receivers namely PD-based systems

and camera-based systems as shown in Figure 3.2. The next section briefly describes each type

of p-VLP system with examples from the research literature.

3.2.2.1 Fully Passive

In fully passive systems, neither the light fixtures modulate the location beacons nor users

carry any photosensor. Instead, typical unmodulated light sources present in indoor spaces

such as bulbs and sunlight from windows, etc, are used for positioning purposes. As a user

1Passive user localization is also synonymous to device-free localization or non-cooperative localization.
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VLP

Active VLP

Active source
& user device

p-VLP

Passive source Passive
user device

Fully Passive

Modulated light Reflected lightUnmodulated light Rx: active deviceSmart material Rx: Photodiode

(a) (b) (c) (d)

Figure 3.1: Different classes of VLP systems: (a) Active VLP systems require active modulated
light sources and an active user device. (b) Passive source systems employ unmodulated light
sources but rely on intelligent materials/devices to modulate the light sources. (c) Passive
user systems do not require a target to carry an active user device and monitor the shadow of
the target using modulated light sources and ambient photosensors for localization. (d) Fully
passive systems neither require modulated light sources nor active user devices to track the
target, albeit through ambient photosensors.

moves around, it blocks the light and produces a shadow. The shadows of the users are of

varying intensity. This causes a change in the light intensity at different points in the room.

The light sensors placed in the room measure these changes and estimate the user’s actual

position and/or room occupancy status. Such light sensors can be placed at different places in

the room.

Systems: LocaLight [127] is a fully passive localization system that embeds co-located PDs

and RFID sensors on strategic points on the floor to localize users using their shadows. The

receivers are battery-free and harvest energy intermittently from the incident RF signals

generated by RFID readers. Due to a lack of continuous energy supply real-time positioning is

not possible. For the same reason, the performance of successfully detecting a target depends

on its speed. SmartWall [128] also exploits shadows but embeds PDs on the wall to estimate

the user’s location based on a fingerprinting technique and machine learning. Specifically,

Weighted k Nearest Neighbor (WKNN) classification is employed on the RSS values to predict

real user position at the inference stage. The system only locates the objects and is further
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extended in WoW [129] to track moving targets. However, both systems require extensive

manual effort on fingerprinting. To reduce the dependency on labeled training data and

fingerprinting, FieldLight [130] makes use of artificial potential fields along with light sensors

to localize the target. While all the above systems exploit shadows other fully passive systems

use reflections. CeilingSee [131] converts the ceiling LEDs so that these can also sense energy

reflected back from the targets. Variance in diffuse reflection only helps the LEDs to detect

occupancy but not estimate the target location. The presence of multiple targets under Field

Of View (FOV) of light causes interference and thus can degrade the detection of occupancy.

3.2.2.2 Passive User

In passive user systems, the user is not equipped with any light-sensing device. The user’s

involvement in locating its position and occurrence is passive. However, the light source

modulates the data and transmits positioning beacons. The light reflections and shadows

caused by the user’s body are used to locate its position. Compared to the fully passive systems,

the passive user systems dominantly exploit reflections. The reflected received data is decoded

by the receiver circuitry to retrieve the user position. The receiving sensors can be placed

anywhere in the targeting area similar to fully-passive systems.

Systems: The work done in [132] is an example of a passive user system which modifies

the light driver circuit to send a time-multiplexed signal to recognize the source of reflected

light at each sensing device and based on a threshold user occupancy is detected. Similarly,

EyeLight [133] sends on-off modulated data through the lighting device to check if the target

has crossed the light barrier or not. Instead of modulating the one LED, the StarLight [134]

approach modulates each LED in a custom-designed light panel and embed the sensing device

on the floor. Based on the shadow it measures the frequency power changes, based on which

the user’s movement and gesture are detected.

3.2.2.3 Passive Source

In passive source systems, the light sources do not modulate the positioning beacons instead,

an intelligent or smart material chip is placed in an environment to modulate the light. The

smart material can be made of a polarizer, Liquid Crystal Display (LCD) and birefringence

material [135], etc. As light passes through these materials it changes the light properties

such as polarization, etc. These changes although unperceived by humans are then detected

by active receivers to estimate their position. The chip can be placed at suitable locations

in the room to modulate room light and even close to a window to modulate the natural

sunlight. System performance not only depends on the reflection or blockage of light but
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is also sensitive to user device handling dynamics related to its alignment and orientation

towards smart material chips.

Systems: RainbowLight [135] and PIXEL [78] are two pioneer passive source systems. Both

use polarization-based modulation. PIXEL exploits a mobile camera as a sensing unit and

an LCD-based smart chip to do a binary color shift keying modulation. However, to detect

the color light changes a polarizer is also placed in front of the camera. On the other side,

RainbowLight’s modulating chip consists of a birefringence and polarizer material which

produce a specific interference pattern of the light spectrum at different directions to the chip

when light passes through it. An initial mapping between chip direction and received light

spectrum by a mobile camera at various positions of a mobile device is built. This procedure

is done once for every chip and compared with these initial mapping values, the users’ 2D

position is estimated. Further, to improve the initial mapping an interpolation-based method

is proposed. For the 3D position calculation of the device, an intersection-based method is

developed which makes use of 3 chips to locate the device. The above two systems are camera-

based approaches that need to put a special material in front of the camera. To overcome this

limitation PD-based receivers are used in other passive source systems such as CELLI [136].

CELLI uses the principle of spatial resolution to find the position of a mobile device. It sends

parallel interference-free polarized beams through the LCD pixels to different spatial cells.

The transmitted beams are unique to the projected cell. The user in the projected cell carries a

PD-based receiver to recover its unique cell coordinates. However, with this, the user does not

know its actual position for calculating the actual position a two-lens strategy is used which

makes this system a complex one.

Alternative passive source systems exist that do not require the placement of intelligent

surfaces or materials in the environment. Instead, these systems utilize the unique intrinsic

features of light sources for identification, aiding in localization. The effectiveness of such

systems hinges on the distinctiveness of the extracted features. However, there can be challenges,

as multiple light sources may share similar intrinsic features.

Systems: LiTell [137] identifies a unique ’light fingerprint’ by capturing high-frequency signals

from the ballast (a device placed in series with a load to limit the current driving the light

source) of fluorescent bulbs, known as their characteristic frequency. This process requires

high-resolution cameras, leading to high power consumption. On the other hand, Pulsar [138]

employs the characteristic frequency of LEDs but uses a different approach. Instead of cam-

eras, it employs an intricate setup involving several PDs, which, while avoiding cameras,

results in significant computational demands. Another method, iLAMP [139], distinguishes

light sources through their spatial-radiation pattern, essentially the pattern of light intensity

distribution. This technique also depends on power-intensive cameras and ambient light
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Receiver-type

Camera-based

PIXEL [78]

RainbowLight [135]

LiTell [137]

Photo-diode-based

Reflection-based

CELLI [136]

PassiveVLP [140]

Performance bounds [141]

Okuli [139]

EyeLight [133]

Active sensing [132]

Shadow-based

StarLight [134]

LiSense [142]

WoW [129]

LocaLight [127]

FieldLight [130]

SmartWall [128]

Figure 3.2: Classification of positioning systems by receiver type and passive components.

sensors, contributing to its complexity as a passive VLP system.

3.3 Applications of passive-VLP Technologies

VLP positioning has a wide variety of applications such as asset tracking, autonomous robot

navigation, human localization, to name a few. This section provides an overview of the

different applications of the p-VLP system, categorized based on the classification defined in

this chapter and aligned with corresponding research in these domains.

3.3.1 Occupancy Management

Passive user and fully passive systems can be used for occupancy measurement in an indoor

space. Occupancy measurement plays a significant role in Smart-building management, e.g.,

based on occupancy count regulation of heating and cooling in a room can be achieved

which will optimize power consumption. Moreover, in shopping malls, and retail stores with

occupancy measurement, one can predict which location has attracted the most customers.
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3.3. APPLICATIONS OF PASSIVE-VLP TECHNOLOGIES

Systems: EyeLight [133] can measure the occupancy by measuring the deviation in the average

received power from the base light level (calculated when the room is empty) and it achieved a

93.7% accurate occupancy count. Another fully p-VLP system CeilingSee [131] has achieved

> 90% occupancy inference performance.

3.3.2 Human Gesture Monitoring and Communication

Gesture monitoring benefits those living in assisted environments, for valuable emergency

evacuations & aids for visually impaired persons, and communicating through gestures is

helpful in providing virtual keyboard writing, handwriting-based input for smartphones or

smartwatches, virtual-gaming, etc. Due to the light reflection phenomenon and shadow prop-

erty, p-VLP is a boon for human gesture monitoring.

Systems: Okuli [139] develops a passive user-based system to detect the movement and track

a human’s finger in a defined work-space. It utilizes the fact that fingers are round and good

reflectors of light to build a model-driven solution. With a workspace of 9 x 7 cm, Okuli can

detect and localize a random finger’s positioning with an error of 1.43 cm in 90% cases and a

median error of 0.7 cm. Another work, LiSense [142] a shadow-based human sensing system

that reconstructs 3D human skeleton postures. It uses 324 floor-mounted lighting sensors and

modulated lighting sources to reconstruct five main body joints with a mean angular error of 10

degrees. StarLight [134] the extended work of this system reduces the number of receivers used

to 20 but with a higher error of 13.5 degrees. The above-discussed examples are passive user

system based. Recently, researchers have investigated fully passive systems for localization

which can also be used for human gesture monitoring and communication through them e.g.

WoW [129] and SmartWall [128]. The systems have achieved a high localization accuracy of

7 cm and 7.9 cm, respectively. However, such systems require extensive fingerprinting and

labeled training limiting their application usage.

3.3.3 Automated Industry 4.0

In a factory, any item with a reflective surface can be tracked and monitored through p-VLP.

Even robots can be tracked and navigate through p-VLP. Not only device-free tracking but

device IDentification (ID) is also possible. However, for decoding ID the device/object should

have a smart reflecting material or visible-light-based barcodes on its surface. Furthermore,

passive source systems can be utilized to provide location awareness and navigation for AGVs.

These systems generate unique light signatures throughout a designated area, which can be

correlated with a map of light installations relative to that area. AGVs can store this information
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CHAPTER 3. EMERGING PASSIVE VLP SYSTEMS

for enhanced location awareness. Additionally, by integrating sensor fusion technology, AGVs

can accurately determine their precise location within the area.

Systems: In their study, [140] adapted the external surface of a toy aluminum car, a type

of passive user system, to enable localization, tracking, and identification of its ID. This

modification resulted in an average localization error of just 0.97 cm, along with successful

decoding of the object’s ID.

Additionally, LiTell [137], another passive source project, demonstrated remarkable ac-

curacy. It achieved a 10 cm accuracy in 90% of cases when a phone was stationary and level,

and a median accuracy of 15 cm with 90% reliability at 25 cm when the phone was carried by

someone walking. Pulsar [138], a similar system, attained a median localization error of 0.6

meters and a heading direction error of 4 degrees while in motion. However, the prototype

of Pulsar showed a response latency of 840 ms, posing a challenge for real-time application

suitability.

3.3.4 Advertising

Location-based services have gained significant popularity, particularly in the retail industry.

In shopping centers, custom chips designed for passive source systems can be strategically

placed throughout the facility. Users with mobile devices can then receive information about

promotions, discounts, and other offers from various vendors based on their specific loca-

tion. Additionally, in grocery stores, details such as product descriptions and pricing can be

conveniently provided to shoppers via these passive source system-equipped custom chips.

Systems: PIXEL and RainbowLight are the two passive source works in this category that can

be used for this application by employing their polarizer-based smart chips. Among different

systems, the RainbowLight has achieved a localization accuracy of 3.3 cm and the PIXEL

system has a < 3cm accuracy for 90% cases, when the receiving device is placed at 3m.

3.4 Comparative Analysis of passive-VLP Systems

By now, the description of existing p-VLP systems according to the proposed taxonomy has

made it evident that the design goals of different p-VLP systems vary significantly from each

other. Furthermore, it should also be noted that the unique peculiarities of these systems

and a lack of common benchmarks, led system designers to test such systems under radically

different environments. Table 3.1 presents a summary of design goals, methods, testing envi-

ronment, and reported performance of p-VLP systems discussed above. The reader can find

information about the deployment or testing setup which includes area, the number, and

66
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arrangement of LEDs and PDs, as well as whether the effect of ambient noise is considered or

not. All these factors matter a lot when comparing the accuracy of VLP systems.

It is concluded that the fully p-VLP systems are cost-effective due to their inexpensive

receivers and minimal infrastructure modifications, though this is largely dependent on the

specific application (and not applicable for autonomous system applications). Moreover,

it is noted that most of these systems heavily depend on fingerprinting, which can be a

labor-intensive process. A model-driven training method can be employed to reduce the

dependence on fingerprinting as proposed in FieldLight [130]. Shadow-based systems achieve

higher accuracy than reflection-based systems provided that the cost of deploying a large

number of light sensors can be afforded. Until now, the designed systems have been tested in

controlled environments only. The performance of reflection-based methods can be improved

by putting reflective material on the surface of objects. However, whether a reflective material

can be used depends on the application.

The designed passive user systems are mostly application-dependent. It is indeed not easy

to find a one-size-fits-all solution. Okuli [139] provides minimum error but its usage scope is

limited to extremely small areas. PassiveVLP [140] is the only VLP solution that has decoded

the object ID passively while performing localization. Compared to the active VLP system,

passive solutions are energy-efficient, cost-effective and less disruptive to previously deployed

infrastructure. This makes their commercialization case stronger. However, it is a research

area in its infancy and still requires a huge effort from the industry and standardization bodies

to push their commercialization.

Passive source VLP systems can be deployed in areas where the light source cannot be

easily modulated and the user wants to retrieve information about the environment. The

smart material chips can be easily deployed there and the user can use a mobile phone as a

receiver. These chips can be powered by photovoltaic cells. However, the power inefficiency

of a mobile device is still a problem. Moreover, the passive source offers great potential for

autonomous systems (e.g. to provide location services to AGVs).

3.5 Concluding Remarks and Open Research Problems

Recent years have witnessed a burgeoning interest in the field of passive VLP, as evidenced

by the substantial increase in research activities. This chapter provides a concise review of

contemporary p-VLP systems. A taxonomy is proposed, under which the characteristics of

each system are analyzed and discussed. Additionally, this section highlights instances where

p-VLP systems offer distinct advantages over their active VLP counterparts. It is anticipated

that with the escalating demand for cost-efficient and energy-saving positioning solutions,
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p-VLP will emerge as an increasingly crucial technology. p-VLP represents a novel research

domain, ripe with a multitude of untapped opportunities. Concurrently, the development of

p-VLP is confronted with several unresolved challenges, some of which are outlined in the

following sections:

Deployment overhead of light sensors: In shadow-based p-VLP systems the localization

accuracy depends on the characteristics of the shadow cast by a user. As the user moves,

shadow also moves which necessitates the deployment of a large number of light sensors. A

careful and smart way of deployment should be adopted to reduce the number of light sensors

while getting maximum accuracy.

To get enough received reflected light: The amount of the reflected light from the surface

of a target depends on the shape, size, posture and color of the reflecting surface. Therefore,

reflected light is often weak and is also subjected to environmental noise. These factors degrade

system performance. There is a need to train machine learning models based on the reflectivity

of particular shapes.

Localizing multiple targets passively: Until now, the designed p-VLP systems work only for a

single user. However, in real-world environments, this is not usually the case.

Design of a more robust and flexible receiver: Because p-VLP systems enjoy less control

over the environmental light conditions and interference, there is a need to design more

sophisticated receivers.

Power Consumption: While camera-based p-VLP systems provide more reliable solutions,

they also incur higher power and computational costs. Therefore, there is a need to develop

lightweight algorithms and integrate sensor fusion to reduce the constant reliance on cameras

during the localization process.

Low Light Conditions and Blockage: The current p-VLP systems have been tested in controlled

settings with manageable ambient light and minimal sensor obstruction. Given that these

issues are prevalent in VLP, integrating VLP with other technologies is essential to ensure

continuous location services under various conditions.

Research Goal. Section 3.3 explores various potential applications of p-VLP systems. The

research in this thesis will be primarily centered on leveraging p-VLP systems for providing

location services to AGVs. A major objective is to reduce costs by avoiding modifications to the

existing lighting infrastructure, such as employing passive source systems, and by enhancing

power efficiency using energy-efficient PDs. These PDs are specifically designed for seamless

integration with low-power IoT devices. Moreover, the research is focused on reducing the

computational complexity of the associated algorithms. Efforts are also made to tackle chal-

lenges like low light conditions and sensor blockage, aiming to integrate technologies from

other RF domains, such as BLE, to develop a more robust and efficient system.
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HUESENSE: FEATURING LED LIGHTS THROUGH HUE SENSING

This chapter introduces HueSense, a localization system developed using Visible Light Com-

munication (VLC) technology. The initial sections will detail the workings and development of

the HueSense prototype, followed by demonstrations of its real-world effectiveness.

4.1 System Overview

HueSense is a novel passive VLP system, leveraging off-the-shelf, power-efficient color sensors

to provide localization for low-power IoT devices. It uniquely employs existing LED lights,

unmodified and unmodulated, as anchors, which addresses commercialization challenges in

VLP systems. The system aims to offer a cost-effective, low-power, and computationally light

solution for ubiquitous location awareness and tracking in IoT devices. The key innovation

lies in the ability of color sensors to detect subtle differences in LED spectra, imperceptible to the

human eye, allowing for the unique identification of light sources without the need for modifying

their spectrum. Figure 4.1 showcases HueSense’s motivation. While the implementation could

use PDs, it would require multiple PDs with spectral sensitivity tailored to the light source’s

dominant colors.

In HueSense, reliance is placed solely on single-pixel color sensors to extract the light

hue-spectrum. The primary challenge is to distinguish among unmodulated lights efficiently

and effectively without the need for additional ID information. This is achieved by employing

power-efficient and cost-effective single-pixel light color sensors as detectors. However, the

use of single-pixel digital detector modules and the extraction of spectral information present a
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Grating

Hue Sensor

Filter

Unmodified &
Unmodulated

LEDs

Detected wavelength (λm) at the maximum spectral power in the wavelength range of 400-500
nm for four commodity LEDs of the same model and brand.

LED L1 L2 L3 L4

λm (nm) 448.0312 455.2858 450.2281 456.1662

Figure 4.1: Motivation of HueSense: LEDs have slightly different colour spectrum that human
eyes cannot distinguish. Still, the differences can be detected by colour sensors, indicating
that an LED can be uniquely identified by its spectrum without the need to modulate it.

challenge in employing common localization methods such as channel-based or angle-based

techniques, referenced in sources like Luxapose [79] and Pixel [78]. The determination of

distance or angle using the classical channel model may be inaccurate, as the received power

at a specific wavelength varies for different distances/angles relative to an LEDs and differs

among LEDs. To address this, a regression-based learning method is proposed to understand

the behavior of power at specific wavelengths for varying distances/angles under different

LEDs, thus enabling accurate localization.

To the best of current knowledge, HueSense is the first passive VLP system using single-

pixel color sensors for extracting the light hue-spectrum and employing both classical and

machine learning techniques for light mapping and location services. The contributions of

this chapter are summarized as follows.

1. A novel power-efficient and cost-effective approach for passive light feature extraction,

utilizing single-pixel colour sensors to determine the power of dominant wavelengths in

white LEDs.

2. Application of this technique to differentiate between unmodified and unmodulated

white LED light sources, crucial for enabling spatial awareness services.

3. Development of a dual-phase localization system that merges classical mathematical

methods with a learning-based regression approach to localize mobile targets.
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Figure 4.2: Detected LED spectrum using high-spectrum resolution spectrometer at different
incident angle (θ).

4. Experimental validation of HueSense, implemented on Arduino boards for light identifi-

cation and location services for mobile targets. Tested in a real-world scenario within

a dense VLP network of area 25m2, it demonstrates 100% identification precision with

moving targets and achieves decimeter-level localization accuracy.

The core concept and light identification analysis of HueSense have been published in the Pro-

ceedings of the 1st ACM Workshop on AI Empowered Mobile and Wireless Sensing, associated

with ACM MobiCom 2022. This work was honored with the Best Paper Award at the workshop.

4.2 Design

This section initially introduces the principle of the proposed passive light identification

method, addressing how to effectively differentiate between unmodulated LED light sources.

Following this, the technique for extracting and analyzing those hidden discriminating features,

referred to as light ID in this chapter, using cost-effective color sensors, is presented.

4.2.1 Preliminary

Motivation. The wavelength of light emitted by LEDs, and thus its colour, depends on the

materials forming the LED chip. Due to unavoidable manufacturing imperfections, e.g., the

variations in the phosphor coating thickness and the non-uniformity, different optical prop-

erties of the light originate such as the change in radiant flux and colour temperature. These

imperfections make LEDs’ radiated power for particular wavelengths different, which moti-

vates the design of HueSense.

In the case of white LED light, the three dominant emitted wavelengths are λR , λG , and

λB at Red (R), Green (G), and Blue (B) channels, with a greater contribution from B and G
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Table 4.1: Performed t-test on LED L1 spectrum with other LEDs (L2, L3) obtained at different
spectrometer positions (P1-P5) within the FOV of the LEDs.

Position,
LEDs P1, L1-

L2
P1, L1-L3 P2, L1-

L2
P2, L1-L3 P3, L1-

L2
P3, L1-L3 P4, L1-

L2
P4, L1-L3 P5, L1-

L2
P5, L1-L3

h-value 0 1 1 1 1 1 1 1 1 1
p-value 0.4914 3.6448e-05 1.1421e-

05
5.9617e-10 2.8785e-

36
0.0024 3.4147e-

281
4.0482e-289 5.0735e-

101
3.0002e-06

Figure 4.3: RGB power ratio comparison among 12 commodity LEDs of the same model &
brand.

channels compared to the R channel. To generalize this property, a spectrometer1 is used to

extract the LED light spectrum from four different white LED lights in a room. The resultant

spectrum is displayed in Figure 4.2, showing the moving average of intensity to mitigate

peaks/intensity fluctuations due to ambient noise. The spectrum for different LEDs within

their FOV is captured, revealing that each LED possesses a unique hue-spectrum, and the

spectrum properties remain consistent at various positions.

Moreover, to statistically affirm that the spectrum series are distinct, a t-test2 is performed

on the L1’s spectrum mean with zero mean difference as the null hypothesis. The results,

displayed in Table 4.1, confirm the statistical significance, validating the principle of HueSense.

Additionally, more variations in the light spectrum are noticeable around the 450 nm

wavelength. The emitted wavelength corresponding to the maximum power peak in the

400-500 nm range varies for different lights. Figure 4.1 depicts the maximum power peak

wavelengths for four lights in this wavelength range (the maximum power variation region),

serving as a potential ID for LED lights. However, spectrum extraction is only feasible using a

spectrometer, an expensive and impractical solution for small IoT devices.

The following section introduces an alternative, cost-effective approach to realize the hue

properties of LED lights using off-the-shelf hue sensors.

1https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3482
2A t-test is an inferential statistic used to determine if there is a significant difference between the means of

two groups, which may be related in certain features.
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4.2.2 Light ID: Distinguishing LEDs Through Their Hidden Colour Features

An important hidden feature, which can be derived from Figure 4.2, is that the ratio of power

at dominant wavelengths (i.e., λR , λG , and λB , in case of the white LED lights) at different

positions remains constant. The principle of HueSense is to extract the power around the

dominant wavelengths present in the unmodulated white LED bulbs and use this hidden

feature as a discriminative feature among lights. To obtain this hidden feature, small off-the-

shelf hue sensor3 can be used to extract the spectral power at λR , λG , and λB wavelengths.

This type of sensor can be easily deployed into the tiniest IoT devices, and they can directly

extract the dominant wavelengths of white lights from LED bulbs. For example, Figure 4.3

shows the obtained power ratios for 12 LEDs under LoS scenarios in a lab environment.

Proposed LED’s light ID. Based on the captured power ratio values, the construction of the ID

Li for the i th LED is proposed using the following tuple:

(4.1) Li : 〈PBi

PGi

,
PGi

PRi

,
PBi

PRi

〉

where i = {1, · · · , N }, N is the total number of LEDs; PRi , PGi , and PBi are the received spectral

power at R, G, and B channels, respectively. In reality, these IDs can be calculated from the mea-

surements of the LEDs and are stored in a database for future light identification during testing.

Light identification with multiple sensors. The sensor module can be placed on top of

robots with the stored LED ID database information that can estimate their locations in a

room, i.e., under which LEDs they are moving. This estimation can be done by finding the

minimum Euclidean error between the stored LED ID values and newly measured power ratios

at dominant wavelengths, denoted as L̃.

However, how can differentiation be made between light sources with the same power ratios

of R, G, and B channels or approximately negligible difference between the power ratios? To

eliminate this problem, employ multiple sensors with different incident angles. This approach

facilitates the sensor modules to have the information of neighbouring LEDs that will help

with the light identification. The design is shown in top part of Figure 4.6, where Sensor 2 (S2)

and Sensor 3 (S3) are inclined at 45-degree angles with respect to the centre Sensor 1 (S1).

The optimum inclination angle can be found based on the separation between different light

sources and link distance. However, with HueSense, the goal is to create a versatile solution

that can be applied to various illumination infrastructures. The inclination angle of 45 degrees

is selected since the minimum separation between light sources in various indoor settings is

3https://www.hamamatsu.com/eu/en/product/optical-sensors/photo-ic/color-sensor/rgb-color-
sensor.html
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Algorithm 2 Light identification with multiple sensors.

1: procedure LED LIGHT ID ASSIGNMENT

2: For each sensor S j , j ∈ {1,2,3}, extract the power at R, G, B wavelengths for each light Li , i ∈
{1,2, · · · , N } in the database as PRi j , PGi j , PBi j , and store the ID as

Li j : 〈
PBi j

PGi j

,
PGi j

PRi j

,
PBi j

PRi j

〉

3: procedure LIGHT IDENTIFICATION

4: Let L̃k j denote the measured ID values at location k.
5: At current location k, calculate the Euclidean error as

E i
k j =

√
(Li j [1]− L̃k j [1])2 + (Li j [2]− L̃k j [2])2 + (Li j [3]− L̃k j [3])2

6: Find the minimum error value for each sensor as

Dk j = min
i

E i
k j

and store the corresponding argument where the minimum is obtained as Mk j .
7: For location k, find the predicted values Pk as
8: if Mk1 ̸= Mk2 ̸= Mk3 then
9: Pk = argmin

j
Dk j

10: else
11: Pk = Mk1

typically a few meters. The three sensors extract the hue-spectrum properties of the nearest

LED and its neighbouring LED lights, provided these LED lights are in the sensor’s FoV.

4.3 Localization Technique

This section details how HueSense provides spatial awareness, indicating the target’s presence

area, and elaborates on the technique to determine the exact location.

4.3.1 Light Identification

HueSense utilizes the method in Algorithm 2 for passive positioning, identifying LED lights via

detected hue properties. The sensor module, as depicted in Figure 4.6, can be positioned atop

a target device, such as a robot, equipped with a stored LED ID database. This database allows

the system to estimate the device’s location within a room, specifically under which LEDs

it is moving. This estimation is done by finding the minimum Euclidean error between the

stored LED ID values and newly measured power ratios at dominant wavelengths, denoted as

L̃. Once the LED unit is identified, one can pinpoint the target’s accurate location by focusing
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Figure 4.4: The received power at dominant wavelengths varies under different LEDs even at
the same link distance (as shown for LED L1,L2 at position C ). HueSense utilizes a regression
learning model to understand these power variations. The model is trained on the relationship
between power and distance (di ), where di represents the distance from the central position
(directly beneath the LED, where the light received by the receiver has a 90-degree incidence
angle) to various training points within the LED’s emission pattern.

on the area lit up by that specific LED unit. The steps to accomplish this are explained in the

following Section 4.3.2.

4.3.2 Performing Accurate Localization

The light ID remains unique and constant under the LED, irrespective of the link distance or

FOV (demonstrated experimentally in the Section 4.4. This feature is used for LED identifica-

tion, but for localization- the feature should vary either w.r.t distance or angle. In classical RSS

methods, the received power values are used to determine either the distance or angle w.r.t LED

to determine the receiver location w.r.t the LED, i.e. by utilizing the channel model [138, 131].

However, the use of color sensor modules, which output digital power values for incident

light, prevents direct determination of distance from received power. Furthermore, power

received at dominant wavelengths varies at a fixed distance under different LEDs, complicating

localization with channel models. No direct mathematical relation for power variation with

distance and angle can be derived from the IDs, as they differ for each LED (a principle of

HueSense). To address this, a combined classical and learning-based approach is proposed

for accurate location determination with HueSense. After identifying the light, sensors S2 and
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Figure 4.5: Steps in HueSense Localization Process - The circle depicts the emission pattern of
light, with the shaded area indicating the potential target location zone.

S3 are used to further halve or quarter the detected area, and then the target’s position within

this reduced area is determined using a regression-based learning method. Training involves

exposing the model to power values at dominant wavelengths from a single LED at varying

distances to learn the behavior of power with distance, pictorially shown in Figure. 4.4.

A challenge with learning approaches is the extensive training required for all possible

locations, which is time-consuming. HueSense simplifies this by learning the behavior of

power changes with distance for a single LED only, since theoretically, the intensity behavior

should be similar for each LED at different distances, though the power at dominant wave-

lengths differs. The complete steps for analyzing the proposed method are outlined below in

Procedure and illustrated in Figure 4.5.

Localization Approach. Following successful light identification, the detection/search area

is confined to where the light impacts the ground. For simplicity, envision a circular light

emission pattern on the ground, with the aim to pinpoint the receiver’s position within this

circle (refer to Figure 4.5). The following steps outline the process in HueSense for determining

the target position.

Step 1: Determine the forward direction of the mobile target:

i. Choose the forward sensor (e.g., S2) to identify the forward direction of the mobile

target.

ii. Determine the minimum Euclidean error in light fingerprints from neighbouring lights

using the procedure described in Algorithm 2. This narrows the search area for the

receiver’s position to half the detection area, i.e., a semi-circle aligned with the forward

direction of the light receiver (third circle from left in Fig. 4.5).

Step 2: Determine which side/direction of the light source, the target is present: Repeat Step 1 to

determine which side of the light source the receiver is located. This step helps to determine

whether the receiver is on the left or right side of the light source within the semi-circle
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Algorithm 3 Regression-based Learning Method

Require: Sensor S1, LED Ltrain

Ensure: Trained localization model M
1: Data Collection:
2: for each location (xi , yi , zi ) under Ltrain do
3: Measure light features PRi , PGi , PBi using S1.

4: Model Training:
5: Let Pi = [PRi ,PGi ,PBi ]T be the feature vector for xi .
6: Define di as the distance or angle from Ltrain to (xi , yi , zi ).
7: Train model M : P 7→ d with {(Pi ,di )}.
8: Model Evaluation:
9: Calculate test error ∆e using 80% of data for training and 20% for testing.

10: Model Storage:
11: Archive M for runtime use.
12: Runtime Localization:
13: On detecting Ltest, extract PI D

Ltest
.

14: Compute ∆P = PI D
LC

−PI D
Ltest

.
15: Adjust Padjusted = PLtest +∆P.
16: Use M(Padjusted) to predict DR.
17: Final Location Determination:
18: Find location minimizing ∆e within DR ±∆e range.
19: Assign coordinates based on minimized ∆e and known Ltest position.

search area (fourth circle from left in Fig. 4.5). Please note that in this case, the search for

the minimum Euclidean error with the installed lighting unit is limited to only the light

units present around the detected light source in Step 1. This focused search approach helps

streamline the localization process and increases efficiency by considering only the relevant

light units in the vicinity of the detected light source. The detected area in this step can further

be reduced to one by eight (fifth circle from left in Fig. 4.5) by repeating Steps 1-2 provided

the neighbour LEDs are present. If a wall is present on the side of the searching area, this

step would be omitted. The identified quarter search area would be used for further position

estimation.

Step 3: Determine the precise location: To determine the mobile target’s precise location

relative to the detected LED, BLoB employs a regression-based learning model, M , as detailed

in Algorithm 3. This model calculates the distance between the target device and the LED and

then utilizes the LED’s known coordinates to ascertain the target’s location coordinates.

4.4 Evaluation & Results

This section outlines the implemented prototype of HueSense, designed to assess its capability

in passively identifying LEDs and determining their locations using a robot in both static and
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Figure 4.6: HueSense implemented prototype: robot equipped with three hue sensors to collect
light features and send them over a WiFi network for localization.

moving scenarios. The evaluation focuses on two aspects: first, the light identification in an

uncontrolled lighting environment, specifically the corridor at the premises4. The second

aspect involves testing the localization performance of HueSense in a specially designed LED

dense network at the premises.

4.4.1 Implementation

Prototype: The developed prototype, depicted in Figure 4.6, is utilized to experimentally ana-

lyze and test the performance of HueSense. Three HAMAMATSU colour sensors are integrated

with an Arduino board to simultaneously collect R, G, and B channel power (PR , PG , and PB )

from each sensor. The sensors are power-efficient, operating on a 3.3-volt (V) battery. Sensor

integration with the Arduino uses the repository5 for TCS34725-color-sensors, modified for

compatibility with the sensors in MATLAB Simulink. The Arduino board, a 33-Nano IoT6,

features integrated WiFi capability and is both compact and power-efficient, ideal for low-

power IoT devices. The developed Simulink model deployed on the Arduino board collects

and transmits light information over WiFi to the host machine, which runs the MATLAB-based

light identification and localization algorithm. For accurate ground truth location information,

a highly precise Optitrack system is employed.

Testbed: Figure 4.7a depicts the initial testing environment, an uncontrolled lighting setting

with ambient light sources and sunlight. A dense LED network, consisting of 9 standard white

LEDs and covering an area of 10m2, is established as illustrated in Figure 4.7b to assess the

4The initial experiments were conducted during an internship at TU Delft. Subsequent testing was carried out
on a Testbed built at Toshiba premises.

5https://github.com/adafruit/Adafruit_TCS34725
6https://docs.arduino.cc/hardware/nano-33-iot

78

https://github.com/adafruit/Adafruit_TCS34725


4.4. EVALUATION & RESULTS

(a) Corridor. (b) Dense LED network.

Figure 4.7: HueSense experimental setup in a university corridor (a) and the developed dense
LED testbed.

HueSense localization performance. These LEDs are placed approximately 55cm apart, center

to center, creating interference due to their 36◦ FOV.

4.4.2 Impact of Distance and Incident Angle

The evaluation examines whether spectral power ratio values stay consistent when varying the

distance and incident angle relative to the light source. Using a single LED, the spectral power

is measured at different incident angles (by shifting the sensor from position A to B , at a 1 m

distance) and at various distances (moving the sensor from C to D), as shown in Figure 4.8a.

The measurement results, displayed in Figure 4.8b and Figure 4.8c, indicate that the ratio of

dominant wavelengths remains roughly constant (±0.01) across different LED positions and

incident angles. This consistency supports using the average ratio value of the spectral power

at the dominant wavelength as an LED identifier.

4.4.3 Light Identification

Static scenario: HueSense aims to passively distinguish light sources based on hue charac-

teristics. Its performance under static conditions—when the sensor remains stationary and

directly beneath the light source—is evaluated in various environments like labs and corridors.
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(c) Measured power ratio vs. incident angle

Figure 4.8: Impact of distance and incident angle on the power ratio.

Identification results using four LEDs are shown in Figure 4.9a and Figure 4.9b, identifying the

corresponding LED by LEDs with the closest Euclidean distances. Here, HueSense achieves

100% accuracy in light identification.

Moving scenario: To evaluate performance with a moving target, a robot carrying the sensor

module is utilized, as depicted in Figure 4.6. The robot’s advantage is providing precise ground

position while in motion through odometry analysis. The robot moves from LED1 to LED4,

following the trajectory shown in Figure 4.7a. The sensor module collects power values and

transmits light hue information to the system. MATLAB code for light identification, which

contains stored data on light IDs and installation maps, is run on the system. Using the method

described in Algorithm 2, the correct LED ID is identified with 80.14% accuracy as the robot

moves. These findings are presented in Figure 4.9c. Due to wheel friction errors, the robot

follows a curved path, leading to incorrect LED ID predictions under LED L3. Here, proximity

to the wall and interference from ambient light sources complicates identification.
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Figure 4.9: Light identification accuracy in an uncontrolled lighting environment i.e. a corridor
(see Figure 4.7a).

4.4.4 Localization Performance

The efficacy of the regression-based learning algorithm is initially showcased by training it

with a single LED and testing under both the same and different LEDs. This approach confirms

that training with one LED is sufficient to effectively capture power variations at dominant

wavelengths for all LEDs. Data collection involves positioning the sensor module at various

fixed points within the LED’s FOV, amassing over 500 samples in the testbed (see Figure 4.7b).

An 80/20 split is utilized for training and testing data, with additional unseen data from a

different LED for testing under varied conditions. Results, depicted in Figure 4.10a, reveal 75%

accuracy in localization within a decimeter for both scenarios: using test data from the same

LED and from a new LED, with a generalization error of 7cm. The consistency in results under

different LEDs validates the proposed approach.

Subsequent testing evaluates HueSense’s localization performance with a moving target.
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Figure 4.10: HueSense performance analysis in a dense LED network (see Figure 4.7b).

This involves first identifying the light source the target is moving under, and then determining

the location coordinates. Figure 4.10b displays the obtained ID for each LED within the testbed,

as shown in Figure 4.7b. A robot moves from ’LED3’ to ’LED7’ following an ’L’-shaped path to

initially identify the correct LED (trajectory shown in Figure 4.10c). The LED numbers are used

solely for differentiation. The robot collects power values and transmits the light hue data to

the system. MATLAB code for light identification and localization is executed on the system,

using data from the ID collection phase and the light installation map. The true LED under

which the robot moves is identified and its coordinates are determined using Algorithm 3.

Results are presented in the Figure 4.10, show 100% accuracy in light identification using

Algorithm 2. Localization coordinates are determined and compared against the ground truth

to evaluate errors. These results are statistically shown in Figure 4.10d, with 90% of the errors

within decimeter-level, substantiating the proposed technique’s validity.
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4.5 Related Work

LiTell [137] was the pioneering work in the passive-VLP category, utilizing unmodified FLs as

location landmarks and commodity smartphones as light sensors. It achieved an impressive

10cm accuracy 90% of the time when the phone was placed still and level, and a median

precision as high as 15cm, with 90% accuracy at 25cm when held by a walking user. However,

as the number of lights increases, the probability of collisions of unique IDs among groups of

lights also increases. Moreover, LiTell’s method is limited to FLs, which restricts its usage in

current indoor environments [137, 143]. It also requires high-resolution back cameras with

raw output, and it suffers from a high misidentification rate (around 40%). A similar feature is

extracted by Pulsar [138] for LEDs, using dual-PDs, but the system demands specially designed

detectors with a specific FOVs, a requirement that is relaxed in HueSense, making it a complex

VLP system. Pulsar achieved a median localization error of 0.6 m and a heading direction error

of 4 degrees while walking; however, its prototype implementation incurs a response latency of

840 ms, which may not be suitable for real-time applications. Auto-LiTell [144] also employs a

similar feature as LiTell [137], using a custom deep-learning model for light identification only.

However, the localization accuracy was not evaluated. In contrast, HueSense has used more

light weight linear regression methods and a complete localization evaluation is performed. In

another work, iLAMP [145] extracts the spatial radiance pattern of the lights, i.e., the radiance

intensity distribution across a light’s surface, from images captured by a smartphone’s camera.

This approach is power-hungry and achieved close to 100% accuracy in identifying the location

but was tested only under one FL, with the target placed at 25 random spots, no mobility

involved, achieving 3.5 cm accuracy.

The other passive-VLP works reported in the literature are primarily focused on occupancy

determination and gesture monitoring, lacking the capability to provide location/navigation

services to mobile targets [133, 130, 128]. On the other hand, most of the active VLP systems

are designed for localization and navigation services, but they often require modifying the

lighting unit and rely on power-hungry cameras as receiving units, resulting in significant

processing latency [79, 135, 146].

While camera-based systems [79] are more readily available compared to photodiode-

based alternatives [134, 131, 147], they necessitate additional units on the receiver side. Nev-

ertheless, the cost of adding extra sensing units to the receivers is considerably lower than

the expense of changing lighting units. The research presented in HueSense, aligns with the

objectives of p-VLP systems, aiming to eliminate the need for altering existing lighting units,

offering location services. Additionally, HueSense offers the advantage of using cheaper, power-

efficient colour sensors and requires no strict arrangement of sensors, making them easily
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integratable with low-power IoT devices. The power at different wavelengths is influenced by

corresponding wavelengths reflected from different objects. In [148, 149], experiments have

done with participants wearing white clothes to avoid any reflections affecting the system

performance. In contrast, HueSense experiments are conducted regardless of clothing color,

indicating the minimal affect of wavelength refection with the achieved results. Also, by align-

ing color sensors differently, HueSense can reduce reflection from certain colors or materials.

Further detailed studies could be pursued in the future.

4.5.1 Discussion & Concluding Remarks

Training a model to learn power changes at dominant wavelengths with just one LED might

affect accuracy due to varying power levels across LEDs. An alternative, as mentioned in

[148], uses unique LED features across an area, improving performance but increasing data

collection time. While this technique could enhance model performance, it necessitates ex-

tended data collection times proportional to the area’s size. Nonetheless, HueSense achieves

decimeter-level accuracy efficiently without extensive data needs. Furthermore, power varia-

tion at different wavelengths is affected by the material’s reflection properties at those wave-

lengths. Unlike the experiments in [148], with participants in white clothing, HueSense’s

testing was conducted independent of clothing color, showing that adjusting color sensors

can mitigate reflections from specific colors or materials. Further detailed studies could be

pursued in the future.

To the best of the author’s knowledge, HueSense represents the first passive VLP system

that utilizes the hue-spectrum of unmodulated LED for light identification and localization

with a single-pixel hue sensor. Different unmodulated LED lights have been successfully dis-

tinguished by exploiting their intrinsic color properties. The distinctive features of HueSense

are expected to enhance the application of VLP in various location-based contexts, such as

autonomous robot navigation and indoor localization. However, p-VLP systems especially

p-VLP, like HueSense encounter significant challenges in low light conditions, presenting a

technological barrier that HueSense alone cannot surmount. The subsequent chapter intro-

duces a strategy for merging HueSense with BLE-based technology, outlining a method to

effectively integrate these technologies. This integration aims to maximize their potential and

achieve the goals outlined in this thesis. Despite these hurdles, HueSense remains applicable

for various scenarios without RF fusion, especially in situations where continuous tracking is

not a critical requirement.
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BLELIGHT: HYBRID BLE-VLP LOCALIZATION SYSTEM

The growing demand for intelligent indoor spaces has underscored the importance of de-

veloping highly precise indoor positioning systems. Chapter 4 and Chapter 2, introduced

two innovative localization systems in this direction, one utilizing BLE and the other using

VLC. While both systems have showcased impressive performance when compared to the

SOTA localization solutions, they each encounter certain challenges primarily stemming from

technological limitations. This chapter will enumerate these challenges and propose solutions

to address them.

5.1 Introduction

As previously mentioned in this thesis, VLP is a promising technology for achieving highly

precise indoor localization by harnessing the directional properties of light. However, existing

VLP systems demonstrate optimal performance only in controlled lighting environments.

In real-world scenarios, various factors such as external ambient light sources, obstacles,

shadows, and sensor blockage contribute to a decline in performance, ultimately restricting

the range of effective localization areas. Additionally, active VLP systems, which use light

sources such as LED units modified to transmit location information and a camera as a VLP

receiver, are power-hungry, and have high latency, while the requirement for changes in the

luminaire design limits wide market adoption [8]. As an alternative to active VLP systems,

p-VLP, such as our solution, HueSense, offers a viable option. However, it does not completely

eliminate some of the aforementioned issues, such as challenges posed by ambient light
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Figure 5.1: BLELight: a multi-modality model.

sources and low-light conditions.

Conversely, RF technologies like BLE have witnessed a surge in popularity for indoor local-

ization systems, primarily owing to their widespread availability and cost-effective hardware.

Nonetheless, the inherent narrowband characteristic of BLE makes it vulnerable to multipath

fading, which, in turn, restricts the attainable ranging accuracy. While BLoB system, the pioneer

in beating-based localization systems for BLE, has showcased sub-meter accuracy, achieving

decimeter-level accuracy remains a formidable challenge due to the limitations of narrowband

technology. Furthermore, currently available chipsets are unable to provide the precise timing

synchronization required for such high levels of accuracy [150, 151].

Hybrid Localization. In order to tackle these challenges and alleviate the constraints inherent

in the individual systems presented in Chapter 2 and Chapter 4, these chapters explore the

integration of BLE and VLP to create a hybrid localization system that is both reliable and

highly accurate. The goal with this approach is to overcome BLE’s inherent low accuracy and

VLP’s restricted usage range by harnessing the strengths of both technologies. To achieve this,

NN-based data fusion technique is employed, to effectively combine signal features from

both modalities, as illustrated in Figure 5.1. DNNs hold significant promise in modelling the

relationship between signal features and target locations, thereby addressing the complexi-

ties posed by multipath propagation in indoor environments [11]. This chapter has further

proposed an incremental approach to fuse these technologies, details are discussed in the

subsequent sections. The main contributions of this chapter are summarized as follows:

i) BLELight, a hybrid accurate localization system for large indoor spaces, is proposed.
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BLELight fuses the intrinsic features of unmodulated light (the ratio of power at domi-

nant wavelengths from Chapter4) with the BLE RSS measurements from both the beating

and signal spectrum( 2).

ii) An incremental learning-based approach for training the DNN model is proposed, in

contrast to traditional joint training methods. This approach efficiently leverages the

multimodality features from both technologies for localization purposes.

iii) Experimental results show that BLELight achieves a mean localization error of approxi-

mately 12cm, enhancing the localization performance of individual p-VLP and BLE by

about 47% and 64%, respectively.

The core idea of this chapter has been patented (please refer [152]), and the results were pub-

lished as an extended abstract in the Proceedings of the 29th Annual International Conference

on Mobile Computing and Networking (ACM MobiCom 2023). Additionally, this work was

qualified for the Student Research Competition at the conference.

5.2 BLELight: Multi-modal Fusion

5.2.1 Framework

BLELight focuses on indoor settings characterized by multi-modality observations, as shown

in Figure5.1. It utilizes optical and RF signals as two separate observational modalities for

target localization. Employing these modalities concurrently aids in achieving greater local-

ization accuracy. The system specifically combines the modalities p-VLP and BLE, applying

an Incremental Learning (IL) methodology to train a DNN model. IL represents a learning

paradigm that equips models with the ability to continually evolve and update their knowledge

base with new data. This method facilitates progressive knowledge refinement in the model,

leading to innovative strategies for combined RF signal and VLP-based localization. The core

concept of IL in this context is that both RF and optical, or VLP, modalities, despite their differ-

ences, convey relevant information about the signal-location dynamics within a particular

indoor setting. Moreover, IL effectively minimizes feature interference or imbalances arising

from diverse sources. Training the DNN model sequentially with individual signal features

reduces interference from multiple sources, enabling a more focused and effective learning

process.
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Figure 5.2: The proposed two-stage incremental learning scheme in which BLE and passive-
VLP features are fed into the DNN model at different training stages to improve the localization
performance.

Figure 5.3: The proposed three-stage incremental learning scheme in which BLE features from
the signal and beating spectrum features are fed into the DNN model at different training
stages to improve the localization performance.

5.2.2 Sytsem Design

Figure5.2 shows the architecture of BLELight using an IL-based technique. During training,

the initial step incorporates features from BLE, specifically extracted from both signal and

beating spectrums[102]. IL enables the DNN model to progressively enhance its understanding

of location-related features. In the subsequent stage, the model continues to refine its localiza-
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Figure 5.4: The designed DNN architecture in BLELight.

tion capabilities by utilizing light signature features. Localization performance evaluation can

be conducted at each stage.

In Chapter 2, the utility of the beating spectrum for improved localization accuracy in

the BLE localization system is demonstrated. Building upon this insight, an advanced model,

BLELight+, is developed, extending beyond the architecture in Fig.5.2. The training phase

involves integrating BLE-derived features from both the signal and beating spectra in the

initial steps. In the third stage, the model continues to augment its localization abilities using

light signature features. Despite the finer tuning of optical features, light signal blockages

often result in missing locations. Localization performance evaluation is feasible at either the

BLE or VLP stage. The DNN model in BLELight is a fully connected NN, with its architecture

depicted in Figure 5.4. The input is a 10×1 vector, and the output comprises estimated location

coordinates (x, y, z). Scaled Exponential Linear Unit (SELU) [153] is the chosen activation

function for the intermediate layers.

Please note that incremental learning and joint learning are the two different approaches of

machine learning techniques, the performance comparison of these would be data dependent.

5.3 Testbed & Data Collection

Testbed: The LED network testbed, previously used in Chapter 4, is employed again for data

collection from LEDs. Additionally, four BLE anchor boards, as utilized in Chapter 2, are

arranged in a square within a 25m2 area (see Figure 5.5). The prototype from Chapter 4,

equipped with hue sensors, is reused with the inclusion of a BLE tag, enabling simultaneous

data collection from both technologies. The testbed’s proximity to windows facilitates ambient

noise interference for VLP, while its metallic components create multipath effects for BLE.

Features selection: Three light hue sensors (S9706 [9]), labeled as i = 1,2,3, gather light

features such as power at dominant wavelengths, forming light signatures:

< PBi /PGi ,PGi /PRi ,PBi /PRi ,PG1 −PR1 >. This yields 10 light features for each target location.
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Figure 5.5: Evaluation: BLELight experimental setup.

While Chapter 4 utilized the first nine features for localization, the tenth feature is also in-

cluded here to match the number of features with BLE. A detailed explanation is provided in

Section 5.4. For BLE, RSS measurements are taken using nrf52830 (details in [108]), extracting

10 features from each collected packet. These features comprise received power at signal tones

( f1, f2, f3, f4) and beating frequencies ( f1 − f2, f2 − f3, f1 − f3, f1 − f4, f2 − f4, f3 − f4).

Data Collection: In this study, data collection is simultaneously carried out for both tech-

nologies using a robot equipped with both BLE and light sensors. This innovative approach

allows for the concurrent gathering of data, ensuring that the conditions and environmen-

tal factors affecting each technology are identical during each data collection instance. For

the p-VLP technology, the data is collected throughout the area, focusing on diverse and

strategically chosen locations. These include spots directly under the LED lights, areas with

low-light conditions typically found near walls, and places where the sensors may encounter

obstructions due to human movement or metallic elements present in the testbed. This varied

selection of locations is critical for evaluating the p-VLP technology’s performance in a range

of different environmental scenarios. Furthermore, the data collection spans across different

days to encapsulate the variations in ambient light conditions caused by weather changes. In
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Figure 5.6: Comparative Analysis of CDF for localization error across various systems i.e.
Passive-VLP and BLE vs. BLELight.

addition, the experiment is designed to emulate realistic conditions by having participants,

present during the data collection, wear clothing of various colors on different days. This

aspect is vital in testing the system’s capability to handle reflections from diverse materials,

specifically for wavelength VLP systems a common occurrence in real-world environments. In

total, the robot collects 8813 samples for BLE and 4776 samples for p-VLP. This data is then

divided using an 80%-20% split between training and testing sets, a distribution that balances

the need for extensive training data with adequate testing samples to validate the system’s

performance. This methodical approach in data collection and segmentation is fundamental

for an exhaustive evaluation of the technologies and their potential applications in practical

scenarios.

5.4 Results & Discussion

BLELight is statistically evaluated using the CDF of localization error (Figure5.6). The ef-

fectiveness of BLELight is compared with joint training, a common data fusion technique

where all features are inputted into a model simultaneously. Figure 5.6 presents the obtained

results, where it can be found that joint training shows limitations in feature learning and
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Table 5.1: 3D Localization error (unit: meter).

p-VLP BLE Joint Learning BLELight BLELight +

Mean localization error 0.369 0.556 0.48 0.20 0.12
Median error 0.34 0.52 0.43 0.16 0.08

80th-percentile error 0.54 0.80 0.75 0.29 0.19

performance enhancement, while BLELight & BLELight+ exhibit clear advantages with the

usage of the incremental learning approach. As IL enables continual learning adaptation,

it significantly enhances accuracy. Incorporating new information and incrementally fine-

tuning the model leads to a reduced MLE, with 0.12m in BLELight+ & 0.20m in BLELight,

surpassing joint training by up to 75% & 58%, respectively. Moreover, BLELight+ exceeds both

BLELight and joint training by 40%, due to the separation of signal and beating spectrum

features. While the beating spectrum aids in localization improvement, the learning algo-

rithms for signal and beating features may be data-dependent. Moreover, Figure 5.6 showcases

the 3D localization capabilities of BLELight+, revealing that 90% of errors fall below 0.35m,

along with a mean localization error of 0.15m, marking a significant accomplishment. The

performance of both systems surpasses the current SOTA in VLC and BLE localization such as

[40, 154, 149, 142, 145, 155, 156]. This superior performance takes into account the variety of

environmental conditions addressed in this thesis, the cost-effectiveness of the sensing units

used, and the innovative methods of data extraction employed.

IL significantly transforms the approach to data fusion in hybrid systems by eliminating

the conventional necessity to maintain an equal number of samples or features, a standard

in joint fusion-based methods1. This change addresses a significant challenge: the complex

requirement of synchronizing time across different receivers, each equipped with their unique

crystal oscillators, and reconciling the disparate sampling rates inherent in various technolo-

gies. To facilitate a straightforward comparison in the study, a balanced number of features

are incorporated within the joint training framework.

The study extends its analysis to underscore the efficacy of the hybrid model compared

to solutions reliant on single technologies. This is achieved by developing and assessing the

performance of distinct DNN models for both BLE and p-VLP. The performance evaluation,

as detailed in Figure 5.6, reveals that the hybrid model BLELight+ notably outperforms the

capabilities of both individual BLE and p-VLP technologies. The improvements are substantial,

1Please be aware that incremental learning and joint learning represent distinct training methods within
the realm of machine learning, while their performance being heavily influenced by the specific nature of the
training data involved. Therefore, the comparative effectiveness of these approaches is contingent upon the unique
characteristics of the datasets (features) they are applied to.
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with BLELight+ exhibiting a 79% and 67% enhancement over BLE and p-VLP respectively,

while BLELight shows a 64% and 47% improvement in the same comparative parameters.

It is particularly noteworthy that the MLE for BLE is recorded at 0.556m, representing

a marked advancement from traditional BLE methodologies [40, 150, 151]. However, it falls

short of achieving the high-performance levels of p-VLP. This thesis previously introduced

a novel classical BLE localization method named BLoB, which achieved sub-meter accuracy

and is comparable to the BLE system discussed in this chapter. Given the diverse performance

parameters, a direct comparison between these two BLE-based approaches presents a complex

challenge. This comparison becomes even more nuanced when considering the varied indoor

environments that have yet to be tested with the BLELight+ system. Such an analysis, which

could significantly contribute to the evolution and refinement of these systems, is earmarked

for future research endeavors.

Compared to the current SOTA, such as [155, 156, 157, 158, 159], the integration in

BLELight+ stands out not only in achieving decimeter-level localization performance but also

in the uniqueness of the data types being integrated. A key aspect is the extraction of data

from VLC technology within the pre-existing lighting infrastructure, which is then combined

with BLE features, presenting a novel solution. This approach sets it apart from most SOTA

implementations, where integration tests are typically confined to a limited number of LEDs

and controlled environmental conditions.

5.5 Concluding Remarks

BLELight+ significantly enhances indoor localization by addressing the individual limita-

tions of BLE and p-VLP technologies through its hybrid system. Moreover, it introduces an

incremental learning-based method for training the DNN model, effectively harnessing the

advantages of multimodal features from both technologies. Experimental evaluations validate

the effectiveness of this method, successfully achieving a decimeter-level indoor localization

system, thereby meeting the primary objective of this thesis.

93





C
H

A
P

T
E

R

6
BMMW: JOINT BLE AND MMWAVE RADAR SYSTEM FOR ACCURATE

TRACKING

This chapter marks a shift from the autonomous localization systems discussed in previous

chapters to advanced tracking solutions, such as tracking an asset in a warehouse, specifically

utilizing BLE 5.1 direction-finding standards. It explores how these solutions are enhanced

through integration with mmWave radar systems, aiming to achieve a decimeter-level accurate

3D tracking system.

6.1 Introduction

This chapter delves into enhancing the tracking performance of BLE devices, with a specific

focus on the advanced capabilities introduced in the BLE 5.1 standard. Notably, this standard

brings new direction-finding techniques like AoA and AoD, promising sub-meter level tracking

accuracy. Previous chapters, particularly Chapter 2, have discussed how these techniques,

typically requiring multiple antennas, can be adapted for single antenna BLE devices to achieve

autonomous localization with sub-meter accuracy.

The exploration in this chapter takes a two-fold approach to BLE localization. First, it

examines the BLE 5.1 standard’s AoA capabilities using multiple antennas, aiming to achieve

the claimed sub-meter accuracy. Then, aligning with the thesis’ objective of designing cost-

effective solutions, the chapter proposes a single antenna BLE tracking method that offers

comparable sub-meter accuracy. However, the challenge of BLE’s narrowband nature persists,
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particularly its limitation in achieving decimeter-level precision in indoor environments due

to significant multipath interference. This calls for innovative solutions and the integration of

other technologies.

In contrast, mmWave radar sensors, with their few gigahertz bandwidth, are capable of

sensing objects with a few centimeters resolution. These sensors, surprisingly affordable

(≈$10), can be employed in the passive localization of objects by harnessing Multiple Input

Multiple Output (MIMO) techniques [84]. When paired with BLE devices, mmWave sensors

have the potential to significantly refine location estimations, all without necessitating any

extra infrastructure. However, it’s important to note the limitations of mmWave radar sen-

sors, such as their susceptibility to rapid signal attenuation and their diminished efficacy in

scenarios involving stationary targets or multiple objects [5].

Therefore, this chapter proposes and examines a synergistic approach that aims to harness

the strengths of both BLE and mmWave radar measurements while mitigating their respective

limitations. This approach is centered around the adoption of a DNN for the fusion of signal

features collecting from both BLE and mmWave sources. This methodology draws inspiration

from the recent advancements made in Machine Learning (ML), particularly in addressing the

complexities of multipath propagation and in developing accurate mappings between radio

signal features and the precise locations of targets [160, 161, 162]. DNNs, with their robust

capabilities in function approximation and their flexibility in design, have already proven their

success in a wide array of applications, ranging from image processing [163] to gaming [164],

and even in advanced language models [165].

Balancing computational complexity. Furthermore, considering the low-power consumption

features of the BLE devices, their computational capabilities and memory are usually low.

Therefore, in this chapter, an alternative option to offload the localization-related computations

from the edge device to the cloud is proposed. The benefits gained from this option are twofold:

(i) the cloud can host more advanced ML algorithms for more accurate localization [166],

and (ii) one can minimize energy consumption at the edge IoT devices while decreasing their

computational load. However, uploading the raw localization features to the cloud becomes

challenging when the volume and types of data are considerable and the network bandwidth

is limited (or when RF interference may affect the dependability of communications [167]).

The concept of goal-oriented communication1, which primarily focuses on conveying the

main information contained in the radio features from end-devices to the cloud addresses

this challenge. This approach minimizes the data sent by using an NN-based information

encoder and decoder at both ends of the transceiver, thereby conserving bandwidth for

1In some literature, the term “goal-oriented” is also referred to as “semantic communications” or “goal-oriented
semantic communications” [168].
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such transmissions [169]. The encoder model deployed on the edge device generates new

data samples that resemble the input data distribution and encodes I/Q data into a lower-

dimensional space while capturing the input data’s underlying distribution. The data reduction

saves network bandwidth and energy consumption, however, typically at the expense of a

(slight) reduction in localization accuracy.

Contributions. This chapter introduces BmmW, an innovative indoor tracking system that

effectively harnesses the capabilities of BLE and mmWave radar technology for accurate

3D tracking of mobile tags with decimeter-level accuracy. It builds upon the advanced AoA

feature from the BLE 5.1 standard, which uses a multi-antenna array to measure the phase

difference of the received signal at multiple antennas and translate it into angular information.

A key contribution of this chapter is the development of BmmW’s unique approach, which

integrates this angular data with mmWave radar measurements for training a robust DNN

model. Further enhancing this system, a novel signal processing method for mmWave radar is

presented, along with a signal heatmap generation method. This approach effectively converts

irregular radar point clouds into regular probability distributions, aiding in accurate target

localization.

Additionally, the chapter presents BmmW-LITE, a streamlined variant of BmmW. It uti-

lizes raw IQ samples from a single-antenna BLE device in conjunction with mmWave radar

measurements. This technique streamlines the computational demands associated with angle

measurements in BmmW and further cuts down the expense of BLE anchor devices since

it is compatible with single-antenna devices. Both BmmW and BmmW-LITE are designed

to run on edge devices, but as their computational capabilities and memory are sometimes

limited, it may be desirable to off-load the localization task to the cloud. When doing so, vast

amounts of sensor data needs to be transmitted to the cloud, which takes a significant portions

of the network bandwidth, increases latency, and slows down the update rate – all factors that

are detrimental to tracking applications in B5G networks. To tackle these challenges while

keeping both cost and computational overhead low, the chapter introduces BmmW-LITE+,

an extension of BmmW-LITE which shares the computational complexity of the localization

between the edge device and the cloud, enabling the preliminary deployment of the learning

model directly on the edge device. This approach allows to capture the semantics of the raw

I/Q data, enabling efficient feature extraction and noise mitigation at the edge device. The

experimental results show that the BLE features can be compressed to 12% of their initial size

without a substantial loss in the final localization accuracy.

The practical effectiveness of BmmW, BmmW-LITE, and BmmW-LITE+ is demonstrated

through real-world environment testing. The results showcase that mobile tags can be tracked

with mean 3D localization accuracy of 10 cm, 36 cm and 39 cm, respectively. Such accuracy is
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superior to that of classical BLE localization methods by up to 80% [40] – albeit at a price of

an increased computational complexity – and is especially remarkable for BmmW-LITE and

BmmW-LITE+, as the latter does not require the use of bulky and costly multi-antenna arrays.

This chapter’s findings were presented at the 19th International Conference on Distributed

Computing in Smart Systems and the Internet of Things (DCOSS-IoT), 2023, where they

received the prestigious ’Best Paper Award’. Furthermore, an extended version of this research

has been invited for submission to the Special Issue of the ’Pervasive and Mobile Computing’

Journal, and the submission has been completed.

Chapter outline. The remainder of this chapter is structured as follows: Section 6.2 provides

an overview of the employed technologies and related work. In Section 6.3, the inner details

and implementation of BmmW are provided. The experimental extraction of DNN model

features is presented in Section 6.4, and the corresponding localization evaluation and results

obtained with a mobile target are discussed in Section 6.5. Finally, the paper concludes with a

discussion about the main benefits and limitations in Section 6.6, and with a summary of the

main findings in Section 6.7.

6.2 Background and Related Work

This section provides a detailed overview of mmWave technologies and data fusion methods

based on NNs, building upon the BLE 5.1. It then delves into the most relevant works related

to BmmW, encompassing studies that leverage multiple technologies for indoor localization,

implement multi-sensor fusion to enhance accuracy and apply goal-oriented communications

for efficient feature data compression.

6.2.1 Bluetooth Low Energy

Building on the SOTA BLE 5.1 AoA localization technique covered in previous chapters, this

chapter introduces BmmW. BmmW trains an NN using both BLE and mmWave radar measure-

ments to create a localization system capable of decimeter-level accuracy for mobile targets,

effectively handling dense multipath effects. Additionally, BmmW-LITE is presented, which

eliminates the need for multi-antenna designs, as explored in prior research. Furthermore,

this chapter introduces BmmW-LITE+, enhancing semantic capabilities at the end-device

level. This reduces the volume of data transmitted to the cloud, thereby easing the localization

processing load on edge devices, which often have limited memory.
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6.2.2 mmWave Radar

mmWave technology commonly refers to the use of RF signals above 60GHz. The use of

sensors operating at these frequencies in contrast to narrowband technologies, has shown

great promise for high-precision indoor tracking applications. These sensors typically have a

wide bandwidth of a few gigahertz and the Frequency Modulated Continuous Wave (FMCW)

Radar approach, enabling them to sense objects with a high distance resolution of a few

centimeters. The principle of mmWave radars and the underlying FMCW2 approach have

been documented in detail in the literature, like in [5]. When combined with MIMO antennas,

whose size is typically very small (e.g., 2x2 mm [170]), mmWave radars can operate as 3D

imaging sensors. With accurately detecting the 3D coordinates of objects and generating point

clouds that encode their spatial shape [5].

Many researchers have used commercial mmWave radars as a low-cost and easy-to-deploy

solution, and have shown that they can locate a target (e.g. human) within a 20 cm error

provided the target is within the effective detection range of the radar. For example, authors

in [171] and [172] use radars from Texas Instrument (TI) that have integrated transmitters

and receivers on a single chip. Zhao et al. [171] use NNs to process mmWave radar data and

propose a human identification and tracking system with a 16 cm median error, but that can

only detect one person at a time. Cui et al. [172] have shown that a single radar can have a

high false alarm rate: while this can be significantly improved by fusing information from

multiple radars, a minimum distance (15 cm) between people is necessary to correctly discern

multiple individuals. Wu et al. [173] have used separate mmWave transmitters and receivers,

and designed a novel system that can locate multiple people simultaneously with a 10 cm

error. However, they have also shown that the accuracy would decrease significantly to more

than 30 cm when the person is more than 1.5 m away, as well as when there are more than two

people present. Hence, while mmWave radars offer several advantages over other tracking

technologies (such as not requiring tags or smart devices to be carried by subjects), the problem

of failing to distinguish between multiple targets and being prone to clutters in the environment

and occlusion on the line of sight are intrinsic weaknesses of this technology. Additionally,

mmWave signals attenuate quickly through the air and rely on Doppler detection, which can

reduce their range of view and limit their effectiveness in monitoring stationary targets [5].

Figure 6.1 gives an illustration of the theoretical RSS of a typical mmWave radar operating

in an indoor environment. The RSS calculation is based on the antenna radiation pattern of

the TI IWR18433 mmWave radar model. The radiation pattern defines the relative strength of

2FMCW radar works by continuously transmitting a signal with a frequency that linearly changes over time,
and it measures the frequency shift of the reflected signal to determine target range and velocity.

3https://www.ti.com/product/IWR1843
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Figure 6.1: Simulated RSS (in dBm) of a typical mmWave radar placed at position (0,0).

the radio signal transmitted and received at different directions. In the case of the IWR1843

model, its signal strength is attenuated to approximately −3 dB at an azimuth angle of 45◦

and to −6 dB at 60◦. Considering together the fact that RF signals attenuate proportionally to

the square of propagation distance, the mmWave signal reflections are often strong only at

close distances, with a substantial decrease of over 30 dB within a few metres, as shown in

Figure 6.1. Therefore, it is often found that a mmWave radar can effectively sense the position

and posture of a person within a close distance, but the accuracy drops dramatically as the

person moves away from the radar due to the rapid decrease in signal strength. To address

these challenges and enhance localization performance, BmmW proposes a joint tracking

system that combines information from BLE and mmWave technologies: by leveraging the

strengths of both technologies, BmmW improves the accuracy and reliability of indoor tracking

in challenging environments. Moreover, this chapter adopts the concatenation-based NN for

radio feature fusion, wherein a two-head input NN is designed for BLE and mmWave feature

processes, and then the processed features are concatenated together for the following joint

training.

6.2.3 Multi-Sensor Data Fusion

Several research works have proposed the combination of multiple communication technolo-

gies to improve the accuracy of indoor localization. For instance, Liu et al. [67] fuse Wireless Fi-

delity (Wi-Fi), inertial sensors, and BLE beacons for indoor localization. However, this method

requires users to carry a smartphone with extra sensors, which may not be practical in some sit-

uations. Bala et al. [174] combine UWB and BLE signals to provide real-time location updates,

but require installation of UWB and BLE devices throughout the indoor environment, which
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can be expensive and time-consuming. Jeong et al. [68] propose a machine learning-based

fusion that requires a large amount of training data to predict the user’s location accurately.

Istomin et al. [175] propose a dual-radio protocol to enable energy-efficient and accurate

social contact detection, leveraging a narrowband radio (BLE) and an UWB radio. Zhang

et al. [69] propose a system that fuses Wi-Fi and Bluetooth fingerprints in edge computing.

Several other works [70] have also used multi-sensor fusion to increase the accuracy of indoor

localization (e.g., inertial measurements unit (IMU) data, etc.). However, these approaches are

highly dependent on the quality of the radio signal, which can be affected by factors such as

signal interference and the number of access points in the environment. The main limitations

of these approaches are related to the complexity and cost of the technology, the need for user

participation, and environmental factors that affect the accuracy of the localization system.

In contrast to these approaches, BmmW does not require additional hardware on the target

device and leverages angular information, which is less affected by multipath.

6.2.4 Goal-oriented Semantic Information Extraction

The deployment of advanced ML localization models faces significant challenges due to

computational limitations and power constraints within the local IoT environment. BmmW

traditionally runs on the edge device but allows to address the aforementioned issue in its

BmmW-LITE+ variant by shifting the transfer of computationally intense tasks to the cloud

using goal-oriented communication. In this scenario, the objective is to efficiently transmit

essential information from the raw radio signal features to the cloud, minimizing the use

of network bandwidth. This information will then be reconstructed in the cloud without

compromising its fidelity, with the ultimate goal of enabling accurate localization.

A key challenge in this process is the extraction and recovery of vital information: currently,

the concept of goal-oriented communication relies heavily on Semantic Communications

(SemCom) to achieve this goal. A substantial body of research has been dedicated to de-

veloping robust and comprehensive methods for semantic extraction, transmission, and

recovery [176, 177, 178, 179]. Under the paradigm of goal-oriented semantic communication,

the autoencoder is arguably the most prevalent SemCom framework [180]. With an autoen-

coder, the raw feature can be compressed to a latent space via an encoder for transmission,

and a corresponding decoder on the receiver can reconstruct the features embedded in the

latent space. In the context of location estimation within BmmW, by leveraging goal-oriented

SemCom, it becomes possible to transmit the compressed sensor data to a central unit or

location engine in the cloud. In this setup, the pre-trained encoder model can be deployed on

the edge device, while the decoder is situated in the cloud.
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Figure 6.2: Overview of BmmW, an indoor localization system leveraging BLE 5.1 and mmWave
measurements to jointly train a DNN and predict the 3D coordinates of a mobile tag. The
BmmW-LITE variant uses raw I/Q measurements and can be run on single-antenna devices.
The BmmW-LITE+ variant extends BmmW-LITE with the ability to efficiently off-load the
localization task to the cloud by means of an effective compression of the raw features.

6.3 BmmW: Design and Implementation

This section describes the design and implementation of BmmW, further providing the tech-

nical details of its components, including the BLE and mmWave subsystems, as well as the

fusion DNN model.

6.3.1 Overview of BmmW

The structure of the proposed joint localization framework is shown in Figure 6.2. BmmW’s

foundation lies in the reception of BLE 5.1’s CTE and mmWave FMCW radar measurements.

The reception and processing of the BLE CTE packets are selective. Two variants of BmmW

are proposed in parallel with BmmW, i.e., BmmW-LITE and BmmW-LITE+, to accommodate

different application scenarios, as further elaborated below:

• BmmW: The raw I/Q samples are collected from BLE anchors with multiple antennas,

and are processed by the MUltiple SIgnal Classification (MUSIC) algorithm for AoA

estimation, which serves as the default BLE feature for the proposed fusion model.

• BmmW-LITE: Only raw I/Q samples from a single antenna constitute the BLE feature,

in order to reduce the feature processing time and decrease the system’s cost as well as

complexity.
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Figure 6.3: Framework of BmmW-LITE+: balancing the computational complexity by sharing
the computational complexity of the localization between the edge device and the cloud, by
enabling the preliminary deployment of the learning model directly on the edge device.

• BmmW-LITE+: It compresses the raw I/Q samples from a single antenna by extracting

the latent information under the framework of goal-oriented semantic communication.

This way, it reduces the amount of BLE feature data that needs to be transmitted when

the localization task is off-loaded to the cloud. Hence, in BmmW-LITE+, the functions of

the BLE feature reconstruction, mmWave heatmap generation, and final fusion moded

are located in the cloud server to alleviate the computational stress on the local devices4.

A simplified framework is shown in Figure 6.3.

The switch in Figure 6.2 represents the BLE feature selection process. The techniques used

to extract the relevant features from BLE will be detailed in Section 6.3.2. For the mmWave

measurement, the critical step is the generation of the heatmap, which aims to overcome

the irregularity of the radar point cloud: details about this component will be discussed in

Section 6.3.3. Please note that, for accurate location prediction, the BLE features stream should

be synchronized with the mmWave heatmap stream according to the recorded timestamps.

Ultimately, the synchronized BLE & mmWave features are fed into the fusion DNN model for

3D location estimation. The architecture of such a DNN model is detailed in Section 6.3.4.

Lastly, the BLE feature compression and the corresponding Variational Autoencoder (VAE)

architecture is elaborated in Section 6.3.5.

6.3.2 BLE Direction Finding

AoA and AoD are the direction-finding enhancements introduced in the BLE 5.1 standard [42].

The key concept behind these techniques involves measuring the phase difference of the

received waveform across multiple antennas and determining the direction of the signal from

the computed phase difference. Given the known separation between the antennas, the AoA

4The compression of mmWave features are not taken to account, as the mmWave data has been processed
into a n ×3 point cloud matrix. Transmitting this vector directly is acceptable when comparing its size to that of
the raw BLE I/Q data.
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Figure 6.4: CTE packet & sampling structure for ‘multiple-antenna’ (BmmW) & ‘single-
antenna’ (BmmW-LITE) system.

and AoD can be calculated using Eq. 6.1:

θA = ar ccos((φλ)/(2πD))

θD = ar csi n((φλ)/(2πD))
(6.1)

where λ is the wavelength (0.125m mm in BmmW), φ is the phase difference, and D is the

distance between adjacent antennas (11.8 mm in BmmW) in an antenna array. However, to

determine the true AoA, MUSIC is run on the obtained angles, a detailed process outlined

in [181, 113].

To perform these techniques, the Bluetooth SIG added a new field called Constant Tone

Extension (CTE) at the end of a Bluetooth packet, details of which have already been discussed

in the previous chapter.

CTE Sampling. The sampling band of 148µs in the CTE field does not necessarily equate to

collecting the maximum possible number of samples due to the duration of the switching slots,

making it difficult for classical AoA/AoD techniques to utilize the entire band. While the BLE

5.1 standard defines the sampling period, manufacturers have the flexibility to develop their

own methods for efficient utilization. One such method, proposed by Silabs [113] and adopted

by BmmW with added I/Q samples collection, allows to collect a maximum of 74 samples

with a 1µs switching slot, as illustrated in Figure 6.4. In the ideal scenario, simultaneous

sampling of all antennas would be required, implying the use of multiple radio switches, which

is impractical. As an alternative, antennas can be sampled sequentially in a time-division

manner. However, this approach introduces a phase shift. To accurately calculate angles, phase

compensation must be applied. The initial eight samples of the CTE packet (refer to Figure6.4)

are obtained from a single antenna and serve as reference points for assessing phase variation.

This procedure is replicated for each packet. Subsequently, employing Equation6.1, the angle

θA is calculated. The utilization of the MUSIC [181] algorithm then assists in determining the

true AoA.

The technique described above for BmmW discards the remaining 74 samples during

antenna switching slots, and the samples are reduced to half when the switching slot is 2µs. To

optimally utilize the CTE sampling band, this thesis proposes BmmW-LITE: a single-antenna
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system, illustrated in Figure 6.4, that eliminates the need for multiple antenna switching, hence

allowing a single antenna to collect all I/Q samples within the 148µs CTE band. The collected

raw I/Q samples are utilized as a ‘feature’ to train the NN model. As the CTE is a constant

frequency tone, the model can learn channel impairments. Additionally, these samples are

jointly trained with the information from the mmWave radar, as described in Section 6.3.4.

6.3.3 mmWave Radar Heatmap Construction

The principle of mmWave radars and the underlying FMCW approach have been documented

in detail in the literature, e.g., in [5]. The radar sends mmWave signals to detect objects in the

scene, receives the reflections, and uses a set of signal processing techniques to produce a point

cloud that encodes the 3D location and shape of the objects. As an FMCW radar, it uses chirp

signals to sense objects, where the frequency of the signal is modulated to linearly increase over

the transmission. The radar sends out a series of chirp signals and tracks the phase changes

across them to measure the velocity of objects. It also compares the phase differences between

antennas to measure the angle of the objects. This procedure is illustrated in Figure 6.5 and to

demonstrate let Nc denote the number of chirps per frame, Ns denote the number of samples

per chirp, and Nr x denote the number of transceiving antenna pairs, then the input of the

Digital Processing Chain (DPC) is a 3D matrix I of size Nr x ×Nc ×Ns . A range-FFT is performed

along the Ns axis. It gives an output matrix R(Nr x×Nc×N∗
s ) that encodes the object location in

the range domain, where N∗
s is the size of the range-FFT. Then, a Doppler-FFT is performed

along the Nc axis of R and gives an output matrix D (Nr x×N∗
c ×N∗

s ) that measures the velocity

distribution of the objects, where N∗
c is the size of the Doppler-FFT. The average of D along

the Nr x axis is calculated as D̄ (N∗
c ×N∗

s ). A peak detection algorithm, such as the Constant False

Alarm Rate (CFAR), is then applied over D̄, which gives a list of the k detected objects, with

their indices in the Doppler and range domain {(c1, s1), (c2, s2), ..., (ck , sk )|c ∈ N∗
c , s ∈ N∗

s }. For

each object in the detection list, the corresponding value in the Doppler-FFT output matrix

D is taken using c and s as indices, resulting in a 1-D array O(Nr x ) which corresponds to the

signal at each receiving antenna. An AoA calculation algorithm, such as an angle-FFT or a

beamforming-based algorithm, is performed on O. Together with the object’s range index s,

the calculation gives the object’s x-y-z coordinates with respect to the radar, which becomes a

point cloud.

However, the density and the accuracy of the point cloud are prone to noise and can have

arbitrary population, making them unsuitable to be processed by an NN directly. Additionally,

commercial off-the-shelf mmWave radars are commonly designed for automotive driving

applications and suffer from a lack of elevation resolution. For instance, the TI AWR series
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Figure 6.5: Point cloud generation procedure of a typical mmWave radar [5].

Figure 6.6: Heatmap construction e.g., with 3D point cloud from the radar (top view) (left),
and constructed 2D heatmap (right).

features ’eight’ virtual antennas along the azimuth direction, but only two along the elevation

direction [182], rendering it unsuitable for numerous geometry-based solutions due to its

unbalanced resolution. As a result, since the elevation information may prove less dependable,

BmmW relies solely on 2D information (i.e., azimuth and depth) from the radar, and con-

verting it into heatmaps. These heatmaps encode the probability distribution of the person’s

position in the scene, offering a feasible alternative. The heatmap approaches deliver low

computational complexity and facilitate the NN’s ability to extract features by compressing

the feature space.

Heatmap Generation The complete mmWave data processing chain involves three parts.

The first part follows the standard FMCW approach as shown in Figure 6.5 and is completed

by the radar on-chip processors. It processes the raw mmWave RF signal and generates a 3D

point cloud that accurately represents the scene. Then, a clutter removal stage is introduced.

In indoor environments, there are often plenty of clutters that typically remain stationary

and produce constant reflections to the radar. By eliminating clutters, the radar can focus on

detecting and tracking the actual target(s) of interest. This provides the radar with increased

sensitivity in detecting weaker target signals, as well as reduced false alarm rate when dif-
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Figure 6.7: The full data processing chain of the mmWave radar.

ferentiating between real targets’ signals and irrelevant signals. A traditional way of clutter

removal is by simply filtering out all zero-Doppler signals during the Doppler-FFT stage de-

scribed earlier. However, as the experiments also involve the detection of stationary targets,

eliminating zero-Doppler signals would reduce the sensitivity of the system. Therefore, in

this work, clutter removal by recording the detected point cloud from the empty environment

and subtracting them from the actual detection using geometrical distance-based filtering is

performed. Targets within several centimeters of a recorded clutter will be discarded from the

point cloud, effectively removing the unwanted reflections. This is especially beneficial when

the detection of stationary people is required. In the third stage, a heatmap representing a

probability distribution on the target’s location in the area is generated, where the probabilities

are calculated based on the strength of the mmWave signal (i.e., the population of the point

cloud in each unit region):

(6.2) H(P ) =


∑
(x,y)∈P

G(x,y)
|P | , if |P | > 0

0, otherwise

where P is a set representing a 2D point cloud with a population of |P | and coordinates

{(x1, y1), ..., (x|P |, y|P |)}. G(x, y) creates a 2D Gaussian kernel at point (x, y). H (P ) is the resulting

2D heatmap that represents the point cloud distribution in the environment. The heatmap,

illustrated in Figure 6.6, indicates a higher probability for points with a larger population, such

as the person cluster in the middle, compared to the clutter on the left. The entire procedure is

displayed in Figure 6.7.
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6.3.4 Fusion Neural Network Design

Figure 6.8 shows the architecture of the designed fusion NN, which contains two branches

for different inputs. The top branch is designed as Fully Connected Network (FCN) for the

processing of the BLE feature, while the bottom branch is a Convolutional Neural Network

(CNN), taking the mmWave heatmap as the input feature. After the convolution, this feature is

flattened to a linear layer and eventually coated with the output of the top NN branch. The

output of this NN is the (x, y, z) coordinate of the estimated location. The neuron numbers

of each linear layer and the involved activation functions are annotated in Figure 6.8. Please

note that, for BmmW and BmmW-LITE, the neuron number of each layer in FCN is different

due to the diverse dimensions of the training features. Specifically, in BmmW, the estimated

azimuth angle θ, elevation angle φ, and corresponding estimated distance to the objective of

all anchors consist of the ultimate training feature, which is a 3∗4 dimensional vector. Hence,

the number of neurons of each linear layer is 100, 100, 50, 50, and 50. Instead, in BmmW-LITE,

the training features are I/Q samples with dimensions of 164∗4. Hence, the number of neurons

of each linear layer is set to 1000, 500, 100, 100, and 50. Adam [183] is selected as the optimizer

of the entire NN. The initial learning rate l r is the default value, while it decays according to

(6.3) l r = l r ∗0.3epoch//20

where, epoch indicates the index of current training epoch, and // represents the discard

remainder operation. The Mean Absolute Error (MAE) is the selected loss function for NN

training, which is defined as l oss = mean(|(x̂, ŷ , ẑ)− (x, y, z)|), with (x, y, z) being the ground

truth coordinate and (x̂, ŷ , ẑ) the estimated coordinate.

6.3.5 Variational Autoencoder-based BLE Data Compression and Recovery

Figure 6.9 illustrates an NN architecture based on VAE designed for compressing and re-

covering BLE features. The VAE framework provides a powerful method for training deep

latent-variable models and learning posterior inference models through the use of stochastic

gradient descent, as detailed in [184]. As depicted in Figure 6.9, the VAE architecture com-

prises two main components: an encoder and a decoder. The encoder, often referred to as the

inference model, is responsible for learning the posterior distribution in the low-dimensional

latent space based on the input data samples. On the other hand, the decoder functions as

a generative model, learning the joint distribution of the latent variables and the input data.

The loss function of the VAE is formally defined in Eq. 6.4.

LV AE =−∑
i

[
Ez∼qθ(z|xi )

[
log pφ(xi |z)

]+DK L
(
qθ(z|xi )||p(z)

)]
(6.4)
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where θ and φ represent the learnable parameters of the encoder NN and the decoder NN,

respectively. qθ(z|xi ) is used to denote the posterior inference for input sample i and pφ(xi |z),

to represent the generative model given the latent distribution, as described in [185]. The

initial term in Eq. 6.4 corresponds to the expected log-likelihood of the data, assuming a

Gaussian probability density function. Maximizing this term is equivalent to minimizing the

mean squared error in the reconstruction. The second term in the equation represents the

Kullback–Leibler divergence between qθ(z|xi ) and the prior distribution p(z). This divergence

term serves as a regularization mechanism for the latent space [186].

In BmmW-LITE+, this VAE framework is built upon BLE I/Q samples. The BLE local an-

chors are assumed to be able to conduct semantic compression using the associated encoder.

Each BLE sample comprises 164 features, out of which 82 represents amplitude information

and the remaining 82 represents phase information extracted from each I/Q sample. To ensure

symmetrical semantic processing capability, the NN consisting of the encoder and decoder

is structurally symmetrical along the bottleneck, which adheres to the paradigm of FCNs.

The VAE model, once trained, will be divided into an encoder and a decoder for practical

deployment in the real world. The encoder will be deployed on BLE local devices, while the

decoder will operate on the cloud server. The objective of this process is to compress the

raw I/Q dataset using the embedded encoder on BLE devices, and then transmit the com-

pressed data to the cloud server through a wireless channel for subsequent reconstruction

and utilization. Notably, the dimension of the VAE bottleneck layer (C value in Figure 6.9) has

a significant impact on both data compression quality and the final localization outcome.

Therefore, careful consideration must be given to the signal compression ratio. Since the VAE

is a lossy compression, higher compression ratios result in greater information loss. In this

work, the relationship between the VAE’s bottleneck dimension and the mean localization

error will be discussed in Section 6.5.2.

6.3.6 Implementation of Neural Network Models

Next, this section provides a detailed description of the implementation of three main compo-

nents described in Figure 6.2.

6.3.6.1 BLE Data Branch

The collection of BLE features is performed using Silabs EFR32xG22 boards [58], which serve

as anchor nodes, and the implementation is performed by employing the direction-finding

solution provided by Silabs’ AoA implementation [187, 113]. The I/Q sampling capability

is added to this stack to collect the raw measurements, as detailed in [113]. Please refer to
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Figure 6.8: The concatenated two-branch NN architecture employed for feature fusion, where
the top branch is the FCN aiming to process the BLE features, and the bottom branch is
designed as the CNN to handle the mmWave heatmaps.

30200 100 50 50

Amplitude/Phase 

Dim = 82 Linear layerActivation layer (SELU)Bottleneck

5030 50 100 200

Recovered Amplitude/Phase

Dim = 82

C

BLE devices Cloud
Semantic information

Figure 6.9: The VAE architecture for BLE feature compression and reconstruction based on
goal-oriented semantic communications.

Silabs[188] for a comprehensive overview of the BLE software architecture. The ID of anchor

nodes/locators, their positions relative to local-coordinate systems, and antenna orientation

are all input into the host locator system using .json format files. The EFR32xG22 boards are

equipped with a 4×4 antenna array, but as in BmmW-LITE & BmmW-LITE+, there is no need

to switch between antennas, only a single antenna is utilized for I/Q collection. The EFR32BG22

Thunderboard, detailed in [189], is used as a target device that operates in the connectionless-

mode sending the CTE packets in periodic advertisements [113]. For the BmmW, the BLE stack

implementation is the same, but all the antennas on the array board are utilized to determine

the phase difference of the incoming signal, as antenna switching is necessary to analyze the

AoA technique [42].

6.3.6.2 mmWave Radar Data Branch

An IWR1843 radar from TI is used to perform experiments, operating within the 77 GHz to

81 GHz frequency range. The heatmap is set to a size of 55×35 pixels, covering a 5.5 m×3.5 m
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area (refer to Section 6.4.1), resulting in a resolution of 0.1 m per pixel. To transform a point

cloud into a heatmap, the point cloud is projected to 2D. A Gaussian kernel with a radius of 4

is defined for each point, and these kernels are cumulatively added to the heatmap according

to their 2D coordinates.

The resultant heatmap is normalized to range between 0 and 1, indicating the radar’s

confidence in pinpointing the target’s location. In the data recording phase, the radar is first

directed towards an empty scene to capture the background reflection from clutters, creating a

clutter heatmap. This clutter heatmap is then subtracted from the actual data recordings. The

radar operates at 25 frames/sec, and 10 consecutive frames are combined into a single data

instance to diminish the impact of outliers. Each data instance is transformed into a heatmap

of the predefined size and these heatmaps are input into one branch of the NN, where they are

fused with the BLE data branch.

6.3.6.3 VAE for BLE Data

The primary function within BmmW-LITE+ is the goal-driven VAE framework designed for

compressing and reconstructing BLE data. The distributions of BLE amplitude and phase

exhibit significant deviations. During the training experiments with the VAE, a noticeable

drop in reconstruction accuracy occurred when combining amplitude and phase information

as joint input features for the VAE. Consequently, this work presents the training of two

distinct VAE models: one dedicated to amplitude and the other to phase. Considering the

computational and resource limitations on edge devices, both VAEs adopt the simplest FCN

architecture, depicted in Figure 6.9. The SELU activation function, chosen for its proven

stability in training scenarios, is used in these models.

6.4 Real-time Data Collection

This section describes the scenario employed to collect real-time data for training and testing

the BmmW’s NN model.

6.4.1 Experimental Setup

A real-time indoor testbed for joint data collection from BLE and mmWave is built, employing

four BLE anchors at the corner of a 5.5 m×3.5 m area and placing the mmWave transceiver in

the middle between two BLE anchor nodes, as presented in Figure 6.10. The BLE anchors nodes

are placed at a height of 2 m from the ground, while the mmWave transceiver is placed at 0.8 m.

A highly accurate Optitrack system consisting of eight cameras is erected around the edge of
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Figure 6.10: Experimental testbed used to simultaneously collect the real-time data from both
BLE & mmWave sources with a moving target. The target, held by a human subject, follows a
random trajectory within the testbed arena.

the site to gather ground truth coordinates of the mobile target. The Optitrack system is initially

calibrated to achieve a localization accuracy of 0.44 mm. A total of 12 trials are conducted for

data collection, involving a person holding a BLE tag. In each trial, the individual traverses

a random path within the experimental area. The trials are further diversified by involving

three different individuals of varying heights to enhance the robustness of the data collection

process. Throughout these trials, the BLE anchors continuously receive I/Q packets from the

asset tag (i.e., the target beacon), while the mmWave radar simultaneously collects the reflected

signals from the moving person. This experimental setup leads to the collection of 12 sessions,

each session capturing two minutes of data from BLE, mmWave radar, and the Optitrack

system. The total volume of data collected and synchronized amounts to approximately 66000

entries.

6.4.2 Dataset Collection

The methodology for dataset collection is illustrated in Figure 6.10. Three data streams (from

BLE, mmWave, and OptiTrack) are synchronized according to the UTC time stamping for

training the NN. For one sample, the BLE I/Q features form a 164∗4 vector consisting of
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amplitude and phase information extracted from the recorded I/Q samples. The BLE AoA

features for one sample consist of a 3∗4 vector with estimated azimuth angles, elevation

angles, and corresponding distances. As discussed in Section 6.3.6.2, one mmWave sample

contains a 55∗25∗10 array as the feature. To evaluate the effects of the mmWave signal in

different regions, the entire experimental area is divided into two parts: the mmWave strong

area, which is the square area in front of the mmWave board (with a size of 3 m×3 m, marked in

light green); and the mmWave weak area, which is far from the mmWave board (marked in light

yellow). This division is necessary because ≈ 48% of the 66000 data instances of the mmWave

radars fail to detect the target person at all, confirming the argument that the mmWave radar

alone has a limited range/angle of view, thus emphasizing the importance of combining

multiple technologies in BmmW.

6.5 Experimental Evaluation

This section describes the performance of BmmW and shows the achieved 3D localization

accuracy for a mobile target, as well as a detailed characterization of the performance of

BmmW’s variants BmmW-LITE and BmmW-LITE+.

6.5.1 Evaluation Metric

The model evaluation is conducted on a server with Intel 2 E5-2640v4 CPU and 2 RTX 2080Ti

GPU. The splitting of the training and test dataset follows the 80%-20% principle. For the

model training and testing, the batch size is set to 100, and early stopping is adopted, with the

stopping patience equal to 10. This implies that if the ’test loss’ fails to decrease for the next 10

epochs, the training will be terminated. The MLE is used as the model performance evaluation

criteria, defined as the averaged Euclidean distance between the predicted location and the

ground truth location among all test samples, as shown in Eq. 6.5:

(6.5) MLE =
Nt∑

i=1

√
(x̂i −xi )2 + (ŷi − yi )2 + (ẑi − zi )2 /Nt

where Nt represents the number of test data. It is worth mentioning that the NN predictions

(x̂, ŷ , ẑ) are raw predictions without any further processing like smoothing or filtering.

6.5.2 Results: BmmW and BmmW-LITE

A comprehensive evaluation of both BmmW and BmmW-LITE is conducted, examining their

performance across a range of BLE anchor configurations, denoted as BLE*k, where k rep-
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(a) (b)

Figure 6.11: Localization accuracy (in meters) w.r.t. the combination of BLE anchors, wherein
(a) depicts the results of using BLE I/Q samples for localization alone, while (b) illustrates that
results of fusing BLE I/Q samples and mmWave, i.e.,BmmW-LITE.

resents the number of BLE devices used. The choice of BLE anchor configuration, when

combined with mmWave radar, plays a crucial role in determining localization accuracy.

In this experiment, a total of four BLE anchors are employed, each labeled as anchor 1

through anchor 4. The physical locations of these anchors within the experimental area are

illustrated in Figure 6.10. The first objective is to analyze how the localization accuracy of both

BmmW and BmmW-LITE is influenced by the selection of BLE anchors. Various combinations

of BLE anchor selections are illustrated on the x-axis of Figure 6.11, ranging from the exclusive

selection of anchor 1 to the inclusion of anchors 1-4. The cross-validation scheme is adopted

in this evaluation, which splits the dataset, trains the model on some subsets, evaluates on

others, and repeats the process with different subsets for each iteration. In Figure 6.11, the

outcomes of this objective are illustrated. The y-axis displays the corresponding localization

accuracy for each selection. These two sub-figures show both the mean accuracy value and

the upper/lower bounds.

The presented findings indicate that when utilizing solely BLE I/Q samples for localization

(see Figure 6.11a), there is an improvement in accuracy with an increase in the number of

BLE anchors. This observation aligns with the general trend in BLE localization. Having a

greater number of anchors results in a larger pool of RSS data available at the receiver, which,

in turn, facilitates more precised localization. Interestingly, this improvement appears to be

relatively independent of the specific anchors selected; for example, choosing anchors 1 or 2
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does not result in a notable difference. This observation is thought to be dependent on the

environmental conditions.

However, the scenario becomes more intricate when integrating BLE and mmWave fea-

tures for joint localization as depicted in Figure 6.11b. The upper bound for localization

exhibits fluctuations across all combinations of BLE anchors, with higher values observed

when anchors 3 and 4 are included. This pattern can be attributed to the potentially unstable

nature of model training. The training process encompasses regions where mmWave signals

experience strong propagation decay with distance (example see Figure 6.1), notably further

from anchors 1 and 2 and in proximity to anchors 3 and 4. Because of the inherent randomness

in the train/test set allocation during cross-validation, there exists a certain probability of

inducing training failures for the model. This randomness contributes significantly to the

observed substantial variations in the results.

To evaluate the effect of data selection under ideal model training conditions, the focus

is placed on the lower boundary of this distribution. This is represented by the yellow line

with green dots in Figure 6.11b. It can be analyzed from this line that overall, the fusion

process enhances accuracy compared to solely using BLE. Moreover, as the number of BLE

anchors increases, there is an evident enhancement in the overall accuracy of the fusion

model. Nevertheless, the specific selection of anchors significantly impacts the fusion model’s

accuracy. For example, the yellow line highlights a notable disparity in the effect of choosing

anchor 1 (0.2 m) versus anchor 4 (0.4 m) in the fusion process. This discrepancy arises because

anchors 1 and 2 share the same side as the mmWave radar placement, whereas anchors 3 and 4

are on the opposite side. Additionally, compared to anchors 1 and 3, anchors 2 and 4 face a wall,

introducing more multipath components in the I/Q samples. Consequently, anchor 1 contains

more valuable/direct BLE response information for training the fusion models compared to

anchors 2, 3, and 4. Therefore, the selection of BLE anchors 1, anchors 1-2, anchors 1-3, and

anchors 1-4 achieves the highest accuracy compared to their individual counterparts. Under

these optimal BLE selections, the results of the evaluation are presented in Table 6.1, which

shows the comparison of BmmW and BmmW-LITE against results obtained without fusion

with mmWave radar.

Feature fusion provides clear benefits for both methods across all scenarios, with the

highest accuracy gain of 53.91% achieved in the case of three BLE anchors. The highest

accuracy achieved is 0.09 m and 0.341 m for BmmW and BmmW-LITE, respectively, which is

80% and 60% higher than that of classical BLE localization methods [40]. BmmW provides

significantly higher localization accuracy, especially with an increase in BLE anchors. Moreover,

by comparing different rows in Table 6.1, it is evident that the performance improvement of

the fusion NN model in the mmWave strong region is greater than that in the mmWave weak
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BLE*1+mmWave
BLE*2+mmWave
BLE*3+mmWave
BLE*4+mmWave

(a)
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(b)
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BLE*2+mmWave
BLE*3+mmWave
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Figure 6.12: The MLE CDF of the BmmW and BmmW-LITE models in an entire area (a,e);
in the mmWave strong area (b, f); and in the mmWave weak area (c, g). Comparison of the
ground truth locations and NN-predicted locations in a part of the test set for BmmW (d) and
BmmW-LITE (h).

Groundtruth
Prediction

(a)

Groundtruth
Prediction

(b)

Figure 6.13: The MLE CDF of the BmmW and BmmW-LITE models in an entire area (a,e);
in the mmWave strong area (b, f); and in the mmWave weak area (c, g). Comparison of the
ground truth locations and NN-predicted locations in a part of the test set for BmmW (d) and
BmmW-LITE (h).
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Table 6.2: % increment in MLE for BmmW w.r.t. BmmW-LITE.

Areas BLE*1 BLE*2 BLE*3 BLE*4

Entire Room 12.12% 44.65% 68.65% 70.92%

mmWave Strong 14.01% 33.27% 51.94% 75.12%

mmWave Weak 20.10% 15.12% 47.74% 63.15%

region. This is due to the decay of mmWave signals with increasing detect distance. Although

the mmWave radar may fail to detect the person around half of the time, that information

can still be helpful as it indicates that the person may not be in the mmWave strong area. The

highest improvement in BmmW-LITE is observed with 1 BLE anchor fused with mmWave

heatmap, which reduces error by 40.07%. Notably, even when using a single BLE anchor, the

fusion model achieves sub-metre accuracy in all testing areas, with a maximum error of 0.73 m.

In addition, CDF is used to statistically evaluate the localization performance of BmmW

and BmmW-LITE in different scenarios, as shown in Fig 6.12. The CDF results show that

BmmW achieves almost 90% localization accuracy within 0.5 m in all scenarios. Especially

with the ‘BLE*4+mmWave’ scenario shown in Figure 6.12b (which corresponds to the fu-

sion of BLE and mmWave measurements when using 4 BLE anchors), the CDF curve is

extremely steep, demonstrating highly-accurate predictions. BmmW-LITE achieves 60% lo-

calization accuracy under 50 cm across all scenarios, and up to 90% when using four BLE

anchors. Furthermore, to visualize the 2D tracked trajectory, random predicted locations are

selected from the test set and compared with the ground truth locations. This comparison is

shown in Figure 6.13a and 6.13b for the “Entire room with BLE*4" scenario with BmmW and

BmmW-LITE, respectively. BmmW’s estimated trajectory closely matches the ground truth

trajectory. BmmW-LITE’s estimated trajectory also matches the ground truth, but there are

some out-of-the-box predictions at certain locations hindering its performance. These outliers

can be removed in a post-processing step, if necessary.

Table 6.3: The MLE (in meters) in the test set under different scenarios using BmmW-LITE+
model with optimal BLE anchor selection.

Areas BLE*1 BLE*2 BLE*3 BLE*4

Entire Room 0.747 0.668 0.583 0.494

mmWave Strong 0.732 0.628 0.419 0.392

mmWave Weak 0.720 0.591 0.554 0.522
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Without Normalisation
With Normalisation

Figure 6.14: Localization accuracy (MLE in meters) w.r.t. the size of the VAE bottleneck.

6.5.3 Results: BmmW-LITE+

Before delving into the localization accuracy achieved by BmmW-LITE+, the performance of

the VAE in reconstructing BLE features for localization is evaluated. In particular, attention is

given to how the size of the VAE bottleneck layer influences localization accuracy when using

VAE-reconstructed BLE features.

Figure 6.14 depicts the relationship between the VAE bottleneck layer size and localization

accuracy. The experiment covers bottleneck layer sizes from 1 to 14, corresponding to BLE am-

plitude/phase compression ratios of 1.2% to 17%. The accuracy is compared in two scenarios:

normalizing input BLE amplitude/phase features or not. Interestingly, normalization does not

significantly aid the process. As the bottleneck layer size increases to 10−14, the localization

accuracy using the reconstructed BLE approach remains close to that of raw BLE features,

around 60 cm. This suggests that using goal-oriented communication, raw BLE features can

be compressed to 12% of their initial size without a substantial loss in localization accuracy.

In a manner similar to Section 6.5.2, the effect of using reconstructed BLE features on

the accuracy of both the BLE localization model and the BLE-mmWave fusion model (with a

compression ratio of 12%) is also evaluated. To reduce variability in accuracy due to a typical

model training and to prevent confusion for readers, Figure 6.15 presents only the minimum

values achieved after multiple training iterations, omitting the full distribution display5.

Figure 6.15a compares the accuracy of selectively using raw and reconstructed BLE features

for localization. Overall, raw BLE and reconstructed BLE features exhibit similar properties

in contributing to localization accuracy – whereby an improved accuracy is obtained with an

5It is important to highlight that, in this context, the indicated values represent the highest attainable accuracy
for various BLE combinations under ideal training conditions. However, achieving these values may not always be
possible due to the variation of mmWave features and randomness of training/validation splitting. Therefore, the
accuracy depicted on the y-axis should be regarded merely as a reference, facilitating quantitative analysis of BLE
anchor selection and fusion.
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increase in the number of BLE anchors. However, the adoption of reconstructed BLE features

sacrifices accuracy compared to the use of raw BLE features. This discrepancy arises because

VAE compression is essentially a lossy compression method, leading to the loss of some

intrinsic information during compression. Nevertheless, the figure indicates that the accuracy

gap diminishes with an increase in BLE anchors, and – when utilizing all reconstructed BLE

features from 4 anchors – the localization difference becomes negligible (less than 3 cm).

Figure 6.15b compares the fusion model using raw BLE and reconstructed BLE features.

Generally, the reconstructed BLE features perform similarly in terms of localization accuracy

compared to the raw BLE features for fusion. After reconstruction, anchor 1 retains the most

valuable information for localization, followed by anchors 2, 3, and 4. The increase in the

number of BLE anchors contributes to the enhancement of localization accuracy. Similar to

the observations in Figure 6.15a, there is a performance decay when using reconstructed BLE

features in the fusion model, but the increase in BLE anchors helps mitigating this loss in

accuracy.

Assuming an optimal selection of BLE anchors, Table 6.3 quantifies the localization ac-

curacy achieved by BmmW-LITE+. Different areas are considered, including the entire, the

mmWave strong, and the mmWave weak areas, and the average accuracy from the 5-fold cross-

validation is reported. The results, when compared to those in Table 6.1, indicate that the

accuracy of BmmW-LITE+ is marginally lower than that of BmmW-LITE. This is particularly

obvious when less number of anchors are adopted as localization beacons. In the scenarios us-

ing 4 BLE anchors, the accuracy of the entire room is down to 0.494 m from 0.369 m (a decrease

of roughly 34%). However, in the mmWave strong area, the accuracy is 0.392 m, only 3 cm

worse than when utilizing the raw BLE feature (0.362 m). Additionally, the CDF is employed to

statistically assess the localization performance of BmmW-LITE+ across various scenarios, as

illustrated in Figure 6.16. When compared to Figure 6.12d, 6.12e, and 6.12f, the overall CDF

in the entire room or in the mmWave strong area does not exhibit a significant difference.

However, in the mmWave weak area, the inclusion of BLE anchors shows a more pronounced

impact on enhancing accuracy.

6.6 Discussion and Future Work

The following discussion addresses additional aspects of BmmW, including its advantages

and main limitations, as well as areas worthy of further investigation in future studies.

Models’ parameter and computational complexity. In BmmW and BmmW-LITE, a mobile

tag is designed to transmit CTE packets consistently. These packets are then relayed to a

centralized server, often situated in the cloud, where they serve as foundational data for the
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Raw BLE
Reconstructed BLE

(a)

Raw BLE
Reconstructed BLE

(b)

Figure 6.15: Comparison of the best possible localization performance based on the combina-
tion of anchors for raw BLE features and reconstructed BLE features, wherein (a) shows the
results of BLE-alone localization and (b) demonstrates the accuracy of the fusion model.

training and validation of NN models. Conversely, within the framework of BmmW-LITE+,

the NN encoder model is deployed directly on edge devices. This allows all BLE anchors in

the network to collaboratively employ the model for the purpose of compressing features

efficiently. Furthermore, to quantitatively assess the system’s complexity, the parameters and

Floating Point Operations per Second (FLOPs) for each model (BmmW, BmmW-LITE, and

BmmW-LITE+) have been carefully documented, as detailed in Table 6.4. The parameter

count, which encompasses all weights and biases, serves as an indicator of the NN’s size, re-

flecting its structural complexity and learning capacity. FLOPs, on the other hand, measure the

computational complexity by quantifying the number of floating-point operations executed

per second, offering insight into the model’s operational demands.

The maximum number of parameters across the models is 2.02 million, and the peak

FLOPs recorded is 72.16 million. This configuration underscores a design focused on balanc-

ing computational efficiency with sufficient model complexity to address the task at hand.

For context, the well-known Resnet-34 model, often deployed in image processing applica-

tions, boasts approximately 3.6 billion parameters [163], highlighting a significantly higher

computational complexity.

In terms of hardware complexity, the obtained numbers of parameters and FLOPs effec-

tively position BmmW models within the operational capacities of very low-power systems

(less than 1 W) and embedded systems (1 W to 10 W), which are capable of performing Giga-
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BLE*1+mmWave
BLE*2+mmWave
BLE*3+mmWave
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(a)
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(b)
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Groundtruth
Prediction

(d)

Figure 6.16: The MLE CDF of the BmmW-LITE+ models in an entire area (a); in the mmWave
strong area (b); and in the mmWave Weak area (c). Comparison of the ground truth locations
and NN-predicted locations in a part of the test set for BmmW-LITE+ (d).

level operations per second, as stated in the survey by Reuther et al.[190]. This alignment

indicates that the BmmW, BmmW-LITE, and BmmW-LITE+ systems are ideally suited for

deployment on common edge devices, such as those in the Jetson series [191, 192]. Their de-

sign ensures that inference operations are nearly real-time, benefiting from both the compact

model size and the minimized computational complexity.

Performance comparison. The effectiveness of indoor localization systems can greatly differ

based on indoor environmental conditions. To ensure a fair comparison, this work benchmarks

against two systems, as referenced in previous studies [160] and BLoB [193](Chapter 2). Both

systems are tested under similar conditions and settings in the same indoor environment,

providing a relevant and meaningful basis for comparison.

In the study by Li et al. [160], Wi-Fi indoor localization is explored using a DNN and
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Table 6.4: The number of parameters and FLOPs for BmmW, BmmW-LITE, and BmmW-LITE+
models with different BLE anchor selections.

Parameters FLOPs
BLE1 BLE2 BLE3 BLE4 BLE1 BLE2 BLE3 BLE4

BLoB 527.27 k 531.03 k 536.72 k 544.56
k

69.16 M 69.16 M 69.18 M 69.20
M

BmmW-LITE 621.53 k 903.36 k 1.37 M 2.02 M 69.36 M 69.92 M 70.84 M 72.16
M

BmmW-LITE+ 46.45 k 92.90 k

commercial Wi-Fi anchors. The localization accuracy of the implemented CNN model, uti-

lizing Channel State Information (CSI) from three Wi-Fi anchors, is reported at 0.57 m. The

model comprises 6 million parameters and approximately 100 million FLOPs. Each localiza-

tion sample has a shape of 75×30×6, leading to higher communication overhead compared

to our BmmW series scheme. Consequently, it is evident that the BmmW series outperforms

the [160] scheme in terms of accuracy, complexity, and communication overhead.

Another study, BLoB [193], unlike BmmW and the work by Li et al. [160], does not rely

on NN models but rather adopts a traditional approach to localization and offers sub-meter

accuracy. The hardware expenses and communication demands of BmmW work align closely

with those of BLoB, even though the computational complexity of BmmW is marginally in-

creased due to the incorporation of NNs. Despite this, the BmmW series excels in localization

precision and enhances adaptability for deployment, offering various versions tailored to

mobile targets and ensuring broader applicability across different use cases.

Blending technologies. The incorporation of BLE with mmWave technology in BmmW is

also driven by the concept of JSAC. JSAC is widely recognized as a cornerstone for the upcom-

ing generation of Radio Access Networks (RAN), where communication and radar sensing

capabilities are seamlessly integrated into a unified system. Among the potential JSAC solu-

tions, mmWave and MIMO techniques have garnered the most attention. For example, Nokia

has presented a blueprint for mmWave indoor localization systems leveraging JSAC [194]. In

this context, this study explores fusion methods for mmWave radar signals and ubiquitous

BLE signals, aiming to unleash the potential of multi-modal signals for indoor localization.

Thanks to its ubiquity, widespread availability, power efficiency, cost-effectiveness, and ease

of deployment [2], BLE is indeed considered to be the primary low-power communication

technology to develop indoor IoT localization solutions [28], especially after the introduction

of the direction-finding features in BLE 5.1 [42]. It is worth noting that other low-power wireless

communication technologies enabling the creation of location-aware IoT applications have

recently emerged – above all, UWB technology. The latter is increasingly popular following
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the integration of UWB radios into high-end smartphones and modern vehicles, as it allows

highly accurate ranging and centimeter-level localization. However, UWB radios are not yet

ubiquitous and are often paired to a BLE radio aiding device discovery and low-power data

communication. The BmmW work hence also provides an alternative solution to existing

UWB-based systems that combine the future JSAC feature with legacy BLE devices.

Accuracy vs costs. Tab. 6.2. 6.3 quantitatively demonstrates the performance of BmmW and its

variants. Even though the use of raw IQ measurements in BmmW-LITE, BmmW-LITE+ causes

a loss in accuracy, they require less computational effort. In fact, BmmW involves the use of

AoA measurements obtained by running the MUSIC algorithm, which has a complexity of

O(N 3), where N is the number of antennas [51]. Moreover, BmmW requires multiple bulky

antenna arrays, whereas BmmW-LITE, BmmW-LITE+ offers a less complex, cost-efficient

solution. Still, both methods offer superior performance than the SOTA [40, 26, 195].

Scalability. The addition of more BLE anchors increases the coverage area, but also incurs

extra costs. The experimental evaluation has shown that the use of 4 BLE anchors is sufficient

to achieve a high localization accuracy. Please note that BmmW has been tested only within

one office room, and performed both training and testing in the same environment: this leaves

open questions with respect to the generality of the proposed NN. Such an evaluation can

be conducted in the future with collection of data across diverse dynamic & large indoor

environments.

Clock-drift. Multi-modality sensing models may experience clock drift caused by differences

in sampling rates between the modalities. BLE boards, on the other hand, have a predictable

curve of clock drift which can be used to mitigate this issue [98]. Additionally, addressing

the discrepancy in sensing frequency between diverse sensors can be investigated in future

studies.

Enhancing the NN through hyper-parameter tuning. The NN model architecture in BmmW,

BmmW-LITE, and BmmW-LITE+ has been developed based on the author’s expertise. How-

ever, this may not fully exploit the potential of the input data (i.e., there is room for performance

enhancement). Future work includes conducting hyper-parameter tuning [196] to determine

an optimal model structure.

Optimal compression ratio. In BmmW-LITE+, the determination of the VAE bottleneck size

serves as a proof of concept for remote sensing, but cannot be guaranteed to be optimal.

Real-world trade-offs between compression ratio, localization accuracy, and bandwidth con-

sumption exist, and should be carefully considered in real-world deployments.
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6.7 Concluding Remarks

This chapter has introduced BmmW, a novel localization/tracking system that combines the

strengths of BLE 5.1 direction-finding and mmWave radar technology through a DNN-based

fused model, achieving decimetre-level accuracy. Three methods for incorporating BLE data

into the NN model are presented: BmmW utilizes AoA ranging data, BmmW-LITE uses raw

I/Q measurements, while BmmW-LITE+ extends BmmW-LITE by off-loading the localization

task to the cloud. Specifically, BmmW-LITE+ addresses the need for data compression before

sending data to the cloud by adopting goal-oriented communications. Experimental results

show that BmmW, BmmW-LITE, and BmmW-LITE+ can sustain decimetre-level accuracy,

with a mean localization error of only 10 cm, 36 cm, and 39 cm respectively, an improvement

of up to 80% compared to classical BLE localization methods. Furthermore, over 90% of

the errors are within 50 cm across all three approaches, which makes them appropriate for

mobile IoT applications: users can simply choose the most suitable approach based on the

specific application and deployment requirements. BmmW outperforms BmmW-LITE due

to its additional processing and data filtering, but BmmW-LITE offers a computationally and

cost-efficient system that eliminates the need for bulky multi-antenna arrays. On the other

hand, BmmW-LITE+ stands out as a flexible solution for balancing the computational com-

plexity via centralized localization on the cloud. In summary, BmmW, through the integration

of BLE and mmWave radar technology, surpasses the constraints of traditional methods, pre-

senting a viable approach for achieving high-precision localization in ’Beyond 5G’ wireless

communication systems. Additionally, this study is, to the best of the author’s knowledge, the

first to investigate the capabilities of the BLE 5.1 standard, specifically the AoA technique, in

providing decimeter-level accuracy in complex indoor settings.
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7
CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This thesis, targeting the enhancement of indoor localization accuracy, makes significant

contributions in two key areas. The first is the development of cutting-edge autonomous

indoor localization systems. In this realm, three innovative systems, BLoB, HueSense, and

BLELight, are introduced, utilizing visible light communication (VLC), BLE, and a hybrid of

VLC & BLE, respectively. These developed solutions hold great promise for aiding AGVs/AMRs

in various indoor environments like industry and homes, improving their location detection

and enabling autonomous navigation in intelligent indoor spaces. The second focal point is

the creation of BmmW, a tracking solution that merges BLE and mmWave technologies. This

solution is most suited to application in the healthcare sector and for asset tracking in indus-

trial settings, though its use is not limited to these areas, aligning well with the advancements

of Industry 4.0.

In the development of these systems, the research successfully addressed challenges

CH3, CH4, and CH5, as detailed in Chapter 1. The following section will provide a concise

discussion of each system, highlighting how these specific challenges are tackled and the

research objectives met.

7.1 Final Synopsis

BLoB The first primary challenge addressed is enhancing the accuracy of BLE-based

localization systems. Although phase or angle techniques and sophisticated al-

gorithms can be used for this purpose, they often require multi-antenna arrays,
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leading to costly solutions. To tackle these issues while keeping costs in check, this

research introduces a novel RSS, beating-based BLE localization system, named

BLoB. This is considered the first narrowband BLE-beating-based localization

system to the best of the author’s knowledge. The research advocates for the use

of a constant tone extension (CTE) in RSS-based methods, aligning with the BLE

5.1 standard initially devised for Angle of Arrival (AoA)/Angle of Departure (AoD)

techniques. The system employs CTE to create a ’beating effect’—a sinusoidal

pattern of constructive and destructive interference in the received signal, caused

by synchronous transmissions—and uses this effect for localization. The research

details the signal processing techniques necessary to identify peaks in the beating

spectrum of the superimposed signal from multiple synchronous transmitters.

These peaks provide key information about the locations of anchors and, com-

bined with received signal strength data, enable BLoB to determine a tag’s position

with sub-metre accuracy. A unique aspect of BLoB is its use of single-antenna

configurations for both anchors and tags, differentiating it from contemporary

localization methods that rely on AoA/AoD information and typically need ex-

pensive, bulky antenna arrays for similar accuracy. The thesis findings show that

BLoB achieves sub-metre localization precision in complex indoor environments

and large spaces, comparable with angle-based techniques. This confirms hypo-

thesis H1, H2 and meets objective 1, demonstrating the system’s effectiveness

and innovation in Bluetooth indoor localization.

HueSense To overcome the challenge of adding an extra control unit to light sources or

modifying existing lighting infrastructure, which incurs additional costs, this re-

search has been directed towards developing passive Visible Light Positioning

(VLP) system. In this realm, an innovative passive-VLP system named HueSense

has been devised. The fundamental insight of this research is the realization that

LEDs emit slightly varied colour spectra which, while indistinguishable to the

human eye, can be detected by colour sensors. This finding implies that light

sources can be uniquely identified by their spectrum without the need for mod-

ulation or alteration. More specifically, HueSense operates by extracting power

at dominant wavelengths of white LEDs to create unique signatures for light

identification. This process facilitates location awareness and enhances accu-

rate localization. Moreover, the system employs off-the-shelf, low-power colour

sensors that can be easily integrated into low-power IoT devices. Additionally,

HueSense relies on computationally lightweight linear algorithms. The system’s
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effectiveness has been proven in real-world settings, including an uncontrolled

lighting environment like a university corridor, as well as in a densely configured

VLP lab testbed. In these settings, HueSense has demonstrated 100% accuracy

in location-mapping (i.e., identifying lights based on the proposed feature) with

a moving robot and has achieved localization accuracy within decimetre levels.

This validates hypothesis H3 and fulfils objective 2, proving the system’s efficacy

and innovation in the field of VLC-based indoor localization.

BLELight While Systems 1 and 2 introduced innovative localization solutions utilizing

VLC and BLE technologies, they faced inherent technological limitations. To

address these challenges, this research introduced a novel hybrid solution named

BLELight. To effectively merge the two technologies, the research employed

DNN. Additionally, to capitalize on the multimodal features of both VLP and

BLE, an incremental learning-based approach utilized for training the DNN. This

approach uses incremental learning to integrate data from visible light (extracted

passively) and BLE, thus mitigating their individual constraints and achieving

localization accuracy at the decimetre level. Incremental learning is particularly

effective in reducing feature interference from different sources, allowing the

model to learn predominantly from one signal feature at a time. The core premise

of this approach is that, despite their distinct characteristics, both BLE and optical

(or VLP) modalities provide valuable insights into the signal-location relationship

within a specific indoor environment. The research achieved decimetre-level

localization accuracy and a remarkable improvement in localization accuracy,

showing an approximate average 1.5-fold enhancement over individual VLP and

BLE technologies. Particularly notable is the more than 1.75-fold improvement

over the BLE localization systems, attributed to the finer localization data derived

from VLP measurements. This substantial enhancement confirms that the unique

features identified in HueSense can significantly augment BLE or RF localization,

validating hypotheses H4, H5 and fulfilling objective 3. Importantly, this system

passively fuses light features from light sources, requiring no modifications to

the light source. These features can be integrated with other indoor technologies

besides BLE, offering the potential for further advancements in their localization

performance.

Although the BLELight system attains superior accuracy compared to the

HueSense and BLoB systems, the process of gathering features from both tech-

nologies and training the DNN model is somewhat arduous. However, more
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advanced training methods could potentially alleviate this issue. Meanwhile,

HueSense and BLoB stand as two innovative localization systems that are well-

suited for applications where reliable decimetre-level accuracy is not a critical

requirement.

BmmW This thesis further developed an innovative tracking system, BmmW, designed

for effective asset tracking in factory settings or similar indoor environments.

Despite the introduction of new direction-finding techniques in the BLE 5.1

standard in 2019, promising sub-metre accuracy, their experimental validation in

field tests remains incomplete and underdeveloped. A primary challenge faced

by companies has been the design of the required multiple-antenna arrays for

these techniques. This research delves into maximizing the potential of BLE 5.1

direction-finding techniques, particularly AoA.

The BmmW system enhances AoA estimations provided by BLE 5.1’s constant

tone extension feature with mmWave radar measurements, achieving real-time

3D localization of mobile tags with decimetre-level precision. It incorporates a

DNN trained on both BLE and mmWave data, effectively harnessing the strengths

of each technology. This system addresses the inherent limitations of mmWave

radar, such as difficulties in monitoring stationary targets and multiple objects,

and its limited range due to rapid signal attenuation. Additionally, it compensates

for the lower accuracy typically associated with BLE. It is important to note that

this research primarily focuses on BLE technology, with mmWave radar being

incorporated for research purposes as part of a collaborative effort. Addressing

the issue of bulky and expensive multiple antenna systems, this thesis explores

the use of single-antenna BLE devices and has developed a variant of BmmW,

named BmmW-LITE. Both systems adhere to 802.15.4 BLE standard and do not

employ synchronous transmission. The experimental testing of BmmW’s per-

formance demonstrates that its joint DNN training approach enables real-time

tracking of mobile tags with decimetre-level accuracy when combining BLE angle-

of-arrival measurements with mmWave radar data. Moreover, BmmW-LITE of-

fers sub-metre accuracy thus providing accurate tracking of objects in indoor

environments, even with the use of cost-effective, single-antenna BLE devices.

Furthermore, a variant of BmmW-LITE, called BmmW-LITE+ is introduced to

further facilitate data transfer from the edge to the cloud, optimizing bandwidth,

power, and memory usage by incorporating semantic capabilities at the edge

device.
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This thesis has made substantial contributions towards advancing indoor localization systems,

particularly in enhancing existing RF-based localization methods through introduction of

novel approaches and integration with optical technologies. The systems developed herein

represent significant strides in the quest for more accurate and efficient indoor localization, a

crucial component in the evolving landscape of smart indoor environments.

The insights and innovations presented in this work hold the potential to greatly benefit

society. By aligning with the growing trend of smart, artificially intelligent robots in diverse

indoor settings—from homes and industries to the healthcare sector—these advancements

promise to elevate the quality of life, facilitate assisted living, and optimize resource utilization.

As the future increasingly leans towards smart indoor environments, the research encapsulated

in this thesis is poised to play a pivotal role. It not only addresses the immediate needs of these

evolving spaces but also lays the groundwork for future developments.

Despite the considerable progress made, it’s important to acknowledge that the systems

developed in this thesis are still in their early stages. As highlighted in the first chapter, the

ecosystem of bringing an indoor localization system from a conceptual stage to a commercially

viable reality involves numerous steps. There remain several areas ripe for further development,

and the advancements presented in this work can serve as a catalyst for advancing more

intelligent indoor environments.

7.2 Future Research Directions

In this section, an exploration of potential future research directions is presented, aimed

at accelerating the creation of more intelligent indoor spaces. This discussion is not just a

reflection on what has been achieved, but a forward-looking perspective, contemplating the

future of indoor localization. The aim is to identify and navigate pathways that could lead to

the realization of fully integrated, smart indoor environments, thereby contributing to a more

technologically advanced and efficient society.

7.2.1 Joint Sensing And Communication

This research has explored localization solutions that pave the way for pioneering advance-

ments in JSAC applications. This involves harnessing a diverse array of technologies to develop

systems that excel in delivering not only high-precision localization but also seamless commu-

nication capabilities. Such innovative systems have the potential to significantly transform

JSAC, achieving both sensing and communication objectives in a unified framework. The BLoB

system, grounded in BLE technology, holds potential for such applications. The flexibility
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offered by the initially empty payload in the BLoB (BLE) packets provides an opportunity to

integrate information bits for concurrent communication and ranging in future applications.

The incorporation of the CTE, an optional bit sequence used for direction-finding at the end

of the BLE packet, while still maintaining the capability for communication in the payload,

presents an innovative and adaptable approach for future explorations in this field.

Furthermore, this thesis lays a solid foundation for future research, wherein the joint

localization solutions developed can be adeptly applied to JSAC applications. A notable in-

stance of this advancement is BmmW, which combines BLE with mmWave radar technology.

BLE’s renowned energy efficiency renders it ideal for long-lasting applications. In contrast, the

mmWave component is integral for its high localization accuracy and its bandwidth capacity,

essential for rapid data transmission in scenarios with intensive communication demands.

The synergy between mmWave radar’s precise localization and its fast communication capabil-

ities is poised to revolutionize sectors such as autonomous vehicles, smart city infrastructure,

and IoT ecosystems, exemplifying the core principles of JSAC applications. Looking forward,

the possibility of incorporating mmWave multi-antenna radar into RAN base stations presents

a fascinating direction for enhancing JSAC solutions.

7.2.2 Seamless Integration with Smart Building Management

In the dynamic sphere of smart building management, the deployment of various environ-

mental monitoring sensors, such as those for temperature and humidity, etc, are crucial for

efficient operation and control. While these sensors adeptly capture environmental data,

the true utility of this information is significantly enhanced when correlated with accurate

location data. In modern smart buildings, LEDs are a ubiquitous presence, and herein lies

an opportunity for the advancement integration of the HueSense system. By aligning with

existing LED infrastructure, HueSense can provide essential location information, bridging a

critical gap in the smart building management process. The integration of HueSense stands

out due to several key advantages: its cost-effectiveness, power efficiency, and the ease with

which it can be incorporated into low-power IoT devices. These attributes make HueSense an

ideal solution for smart buildings, where the optimization of energy use and the minimization

of additional infrastructure costs are paramount. This integration not only streamlines the

management process by providing precise location context to environmental data but also

propels the building’s infrastructure toward a more interconnected and intelligent system.
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7.2.3 Advanced Sensor Fusion

The potential to elevate the capabilities of the developed systems is substantial, particularly

through the integration of data from a variety of onboard sensors commonly equipped in

automated vehicles, such as IMU, among others. This refined approach of sensor fusion seeks

to amalgamate the unique strengths of various sensing technologies, alongside the application

of machine learning models, to forge a system with unparalleled accuracy and dependability.

Specifically, the incorporation of data from IMUs offers critical insights into the dynamics of a

vehicle, capturing essential metrics like acceleration and rotational movements. These details

are vital in navigating complex scenarios and environments. By blending these additional

sensor data streams with the established framework of technology fusion, one can markedly

amplify the system’s proficiency in accurately pinpointing locations.

7.2.4 Enhanced Annotation Strategies for Data

This thesis emphasizes the importance of labelled data in developing integrated systems,

particularly when jointly training models using datasets from different technologies. The

current method utilizes an intricate camera (OptiTrack) system for recording ground truth

locations, which, while accurate, is both expensive and labour-intensive. To address these

challenges, the development of a high-accuracy, yet cost-effective, data annotation approach

is imperative. Potential alternatives could include the use of a dual-camera system or various

wireless sensing technologies for labelling. Approaches such as semi-supervised learning or

contrastive learning, a deep learning technique for unsupervised representation learning ,

could be key in extracting and utilizing the rich information embedded within these unlabeled

datasets, thereby optimizing the data annotation process and enhancing the overall efficacy of

the system.

7.2.5 Optimization and Refinement of Neural Network Model architectures

The NN model architectures developed in this thesis, while informed by the author’s experi-

ence, may not yet fully exploit the potential of the data. To enhance performance, future work

could focus on hyper-parameter tuning to fine-tune the model for optimal efficiency. Through

systematic adjustments and evaluations of various parameters like learning rate, batch size,

and layer configurations, the model can be fine-tuned to process and learn from the data

more effectively. Additionally, exploring model pruning techniques—aimed at reducing model

complexity by eliminating redundant layers or neurons—could streamline the models. This
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approach not only makes the models leaner and more efficient but may also improve their

effectiveness by focusing computational resources on the most impactful elements.

7.2.6 Generalization Ability of Neural Network Models

The effectiveness and reliability of NN models are intrinsically tied to the characteristics

of the datasets on which they are trained. A notable challenge arises when there is a shift

in data distribution, which can result in a notable decline in model accuracy. This issue is

particularly pronounced in complex environments, such as densely populated areas or smart

industrial settings. In these scenarios, the variability in room configurations, although not

always significant, can still contribute to shifts in data distribution. Moreover, the interference

in the 2.4 GHz frequency band, which is the operational band for BLE technology explored in

this thesis, adds another layer of complexity. Such environmental factors can lead to changes

in the data landscape, potentially impacting the performance and generalization ability of the

NN models.

Addressing these challenges requires a focus on improving the models’ ability to generalize

across varied and dynamically changing environments. This involves developing strategies

that enable the models to maintain high accuracy and robustness, even when confronted with

data that differ from the conditions they were initially trained on. Techniques such as data

augmentation, domain adaptation, and the incorporation of environmental variability into

the training process can be instrumental in achieving this.

Additionally, to ensure the effective real-world deployment of these models, it’s crucial to

establish a continuous performance monitoring system. This system should not only evaluate

the models’ effectiveness but also offer insights and avenues for necessary updates. Adopting

a comprehensive approach is essential for the successful implementation of the developed

systems in real-world scenarios. This approach should encompass all aspects of the model’s

lifecycle, including its design, deployment, ongoing monitoring, and periodic updating.

Drawing a parallel with the emerging concept of digital twins, there’s a need for a seamless

flow of information from the real world to the digital realm. This continuous feedback loop is

vital for ensuring that the system operates effectively and adapts to changing conditions over

time. By integrating these practices, the models can remain relevant and robust, accurately

reflecting and responding to the dynamic nature of real-world indoor environments.
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T
o extract the frequency power spectrum of the squared envelope of the received

analytic signal, assume the received signal is represented as:

(8.1) r (t ) =∑
k

cos(ωk t )

The analytic signal of the received signal can be written as [197]:

ra(t ) = r (t )+ j r̃ (t ) = r (t )+ j

(
1

πt
∗ r (t )

)
= r (t )

(
δ(t )+ j

1

πt

)
(8.2)

The Hilbert transform of cos(ωt ) = sin(ωt )(8.3)

ra(t ) =∑
k

cos(ωt )+ j sin(ωt ) =∑
k

e jωk t(8.4)

= |ra(t )|e j∠ra (t )(8.5)

Fourier transform of ra(t ) can be expressed as:

(8.6) Ra(ω) = 2π
∑
k
δ(ω−ωk )
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Envelope extraction of the ra(t ) signal:

|ra(t )|2 =
(∑

k
cos(ωk t )

)2

+
(∑

k
sin(ωk t )

)2

(8.7)

=∑
k,l

cos(ωk t )cos(ωl t )+∑
k,l

sin(ωk t )sin(ωl t )(8.8)

=∑
k,l

cos(ωk −ωl )t(8.9)

= N (dc component)+2
∑
k,l

cos(ωk −ωl )t(8.10)

Fourier transform of the squared envelope:

Sa(w) = 2πNδ(w)+2π
∑
k>l

[δ(ω−ωk +ωl )+δ(ω−ωk −ωl )](8.11)

If the received signal is composed of signals of different amplitudes:

(8.12) r (t ) =∑
k

ak cos(ωk t )

then,

Sa(w) = 2π

(∑
k

(ak )2

)
δ(w)+2π

∑
k>l

ak al [δ(ω−ωk +ωl )+δ(ω−ωk −ωl )](8.13)
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