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A B S T R A C T

Microalgal diversity enables the possibility to employ them in technological applications, as widely shown by the
modern literature. While there exists an extensive body of literature concerning the technological applications of
microalgae, the scientific knowledge of microalgal species remains relatively limited. Therefore, there is still
potential for unlocking new opportunities through the study of the microalgal biodiversity, particularly in the
Mediterranean region, which is unique because of its sub regional diversity. While some studies have assessed
microalgae distribution in the Mediterranean area, and others have focused on specific aspects of their technical
exploitation, this review seeks to offer a comprehensive overview of isolated microalgal species and their
technological applications. Microalgae from the Mediterranean area share common characteristics, such as low
half-saturation constants and acclimation to high light intensity, making them ideal for specific technological
applications. While the search for new microalgae for technological purposes can help in biodiversity conser-
vation, numerous species still remain underexplored, offering potential for innovative applications. However, the
key finding from the critical analysis of the literature is that the diversity of microalgae in the Mediterranean
region is its true richness, allowing for their versatile applications across various processes. The work focuses on
the Mediterranean area, i.e., having coastlines along the Mediterranean Sea and on aquatic microalgae, coming
from water with different salinity levels. This review offers an intrinsic ecological and technological perspective
and provides a fresh outlook on the microalgal sector, promoting its expansion in the Mediterranean area and the
development of sustainable bio-industries.

1. Introduction

Microalgae constitute a large group of microorganisms within the
phytoplankton category and are characterized by a notable biodiversity
resulting from the number of species encompassed within this group.
Most studied microalgae are unicellular and grow in aquatic environ-
ments all around the planet, including in the most extreme conditions,
comprising hundreds of thousands of different species [1]. These mi-
croorganisms are also characterized by their impressive degree of
adaptability to their environments, enabling them to survive in a wide
variety of situations and conditions. Originating from primary, second-
ary, and sometimes tertiary endosymbiosis events, microalgae possess
characteristics typical of photosynthetic eukaryotes and prokaryotes,
granting them unique and highly adaptable traits and abilities. For

example, they may grow in a very large salinity range, from fresh waters
with very low salt concentrations, to salt saturation. The concept of
species is not well-defined when talking about microalgae. Several
criteria may be used to define microalgal diversity, such as morphology,
physiological differences and reproductive barriers. However, small
subunit (SSU) ribosomal RNA (16S/18S rRNA) homology is the most
used criterion nowadays [2]. Despite the employed criterion, a very low
number of microalgae species is nowadays scientifically known and
studied (about 44,000), and a small fraction of them (about 3000) are
kept in culture for laboratory research [3]. Following the Mata et al.
definition [4], microalgae may fall in two large family of organisms with
different cellular structure: the prokaryotic and the eukaryotic. The
formers are represented, above all, by the class of Cyanophyceae, and the
latter by the classes of Chlorophyceae and Bacilariophyceae (in particular
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diatoms). About the latter classes, it is possible to state that are the most
important from a technological point of view [5]. From a biochemical
perspective, algae contain all the major groups of macromolecules
exhibiting remarkable diversity. They contain carbohydrates, such as
starch or starch-like products [6]; lipids, occurring in a variety of
different compounds, with fatty acid composition varying among
microalgae species and environmental conditions [7], and proteins. As
well known, microalgae respond to environmental stress by increasing
lipid production [8,9]. Some algae are a good source of high-nutritional
value proteins and may reach a protein content of 40 to 70 % of the dry
weight; algal genera such as Chlorella or Tetraselmis have a percentage of
50 % on average [10]. Moreover, algae possess photosynthetic pig-
ments, including chlorophylls, carotenoids and phycobilins. All these
molecules are of interest from a technological perspective as they have
market value and microalgae cultivation is often aimed at producing
them.

Besides oxygen producers, microalgae represent the bottom of the
animal food chain and are the principal source of carotenoids for ani-
mals [11–13]. However, they also represent a good resource to produce
biomaterials, biofuels, anti-inflammatory compounds, food supplements
and various biochemical and consequently, in the last decades, they
attracted the interest of many research groups for a multitude of ap-
plications. Wastewater treatment is another attractive microalgal
application since their ability to assimilate nutrients such as NO3

- , PO4
3-,

NH4
+ and heavy metals [14,15], even present in urban wastewaters, as

well as industrial wastes. For these wide application fields, nowadays,
industrial plants for microalgae culturing have been opening worldwide
[16].

Microalgae are a hot topic, as evidenced by the sharp rise in the
number of publications in recent years, achieving 106,906 Scopus-
indexed works about microalgae or cyanobacteria by 2023.

The present study provides a critical perspective on the microalgal
applications in the Mediterranean Sea basin. The Mediterranean Sea is a
unique environment characterized by several distinct features: it is a

quasi-enclosed sea, oligotrophic with a widespread phosphorous deficit,
and experiences irradiance levels 20 % greater than those of similar
latitudes in the Atlantic Ocean. Additionally, it boasts a very high di-
versity of habitats, resulting in high species richness but low abundance
[17]. Apart from ecological reasons, the diversity of the Mediterranean
can be attributed to its historical significance, with a tradition of study
longer than almost any other sea, and to its paleogeographic context.
The geological history over the last 5 million years has led to distinct
biogeographic categories, further contributing to its unique biodiversity
[18]. These factors create the ideal conditions for the proliferation of
various species of microalgae and cyanobacteria.

However, Mediterranean biodiversity is currently threatened by the
combined pressure of both global change and human impact and despite
recent efforts to protect it, further actions are needed. Microalgae
already have a role in the protection of biodiversity, as they are
currently employed as bioindicators to assess the health of the envi-
ronment. These microorganisms, in fact, have been reported as poten-
tially useful in monitoring the quality of water bodies, with several
advantages as they are a potentially viable economic alternative to
conventional sophisticated methods [19].

In our perspective, furthermore, the search for new microalgae
aimed at technological applications may contribute to biodiversity
conservation efforts, as reported in Fig. 1.

Microalgae adapted to the Mediterranean region exhibit intrinsically
adaptive characteristics suited to their environment, reflecting the
diverse conditions therein and showing a broad spectrum of taxonomic
diversity. Consequently, the technological applications of such micro-
algae are expected to be equally diverse.

The aim of this review is to critically explore the microalgal biodi-
versity of the Mediterranean area. The work focuses on the Mediterra-
nean area, i.e., having coastlines along the Mediterranean Sea and on
aquatic microalgae, coming fromwater with different salinity levels. We
aim also to study the Mediterranean species mentioned in the literature
along with their technological applications, considering the processes

Fig. 1. Role of microalgae in Mediterranean Marine ecosystem.
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sustainability as well, in order to highlight potential application gaps. To
facilitate the reading, a reader’s guide is provided in Fig. 2.

Firstly, a summary of the technological processes involving micro-
algae is provided, emphasizing tools for economic and environmental
assessments. Subsequently, we have examined the ecological charac-
teristics of Mediterranean microalgae and the applications that best suit
them, along with an analysis of the isolated microalgae from Mediter-
ranean area with technological applications. In the final section, a bib-
liometric analysis of microalgal research in Mediterranean countries is
provided, together with the diverse technological applications across
different regions. With its innovative character given by its intrinsic
ecological and technological perspective, this review offers a new point
of view on the microalgal sector, promoting its growth in the Mediter-
ranean area.

2. Microalgal bioprocessing routes

Microalgae-based engineering processes can be categorized into two
main sections: upstream processes, mainly involving the cultivation of
microalgae, and downstream processes, focusing on the processing of
biomass to obtain the final product. The upstream section of microalgae-
based engineering is focused on cultivation strategies that optimize the
growth and productivity of live microalgae biomass. The main efforts
are directed towards cultivation techniques, growth medium composi-
tion, and bioreactor design to achieve high biomass yields and desired
characteristics. Once the biomass has been harvested, the downstream
section involves extracting and refining valuable products. This stage
aims to isolate specific compounds, such as lipids, pigments, or bioactive
molecules. In this case, the key challenge is the separation and purifi-
cation methods employed to obtain high-quality products. The final
product, biomass or extracted compounds, finds applications in various
sectors including food, feed, health, and cosmetics. The price of micro-
algae biomass in these applications varies from 5 to 500 €/kg, with a
market size reaching up to 100 kt/year. Furthermore, emerging appli-
cations such as biofuels, biofertilizers, wastewater treatment, and
chemicals have significantly lower biomass prices (<5 €/kg) but boast
substantial market sizes [20]. To better understand the different process

steps involved in microalgae biomass production, it would be beneficial
to first focus on the upstream processes followed by the downstream
processes as reported in Fig. 3.

2.1. Upstream processes

As depicted in Fig. 3, several parameters must be defined before
cultivation starts, depending on the intended application, including the
selection of the microalgal strain, the choice of reactor and operational
mode, and the composition of the culture medium. Genetic engineering
may be considered to optimize strains for specific applications, and it is
also common to work with consortia microalgae-microalgae or bacteria-
microalgae, e.g. in wastewater treatment.

The choice of the photobioreactors is also of fundamental impor-
tance: photobioreactors for microalgae cultivation are broadly catego-
rized into open-air systems and closed systems [21] where the latter are
typically used for axenic cultures. Tubular photobioreactors and open
raceway ponds, typically mixed by paddle wheels with water depths of
15–20 cm [22,23], are the most used among the two reactor classes,
especially for their suitability in large-scale applications. Closed pho-
tobioreactors offer several advantages, including the regulation and
control of crucial biotechnological parameters. Their fundamental
benefits include a decreased risk of contamination, prevention of CO2
losses, the ability to maintain reproducible cultivation conditions, con-
trol over hydrodynamics and temperature, and a flexible technical
design [22,24,25]. Among closed photobioreactors, the main categories
are stirred tank reactors, tubular configurations, airlifts, bubble col-
umns, flat panels [26–28].

It is also necessary to choose if working in via autotrophic, hetero-
trophic or mixotrophic nutritional metabolism mode. Autotrophic
microalgae synthesize organic molecules from inorganic substances,
primarily utilizing light through photosynthesis. In contrast, heterotro-
phic microorganisms derive energy from external organic compounds
d between the previous metabolic states.

The homogeneity of nutrient concentration, salinity, temperature,
pH has a key role in microalgae growth and may be controlled by tuning
the hydrodynamics of the system. Among various factors, the
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Fig. 2. Reader’s guidelines for the review.
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distribution of light and its spectrum is considered the most critical [26]
considering that the efficiency of photosynthesis is directly connected to
the amount of light absorbed by microalgae [29].

The growth temperature also significantly impacts microalgae
growth, as it influences enzyme activity and can lead to alterations in
composition, particularly in lipids [30]. Temperature control is crucial
for evaluating the feasibility of large-scale algae production, with no
photosynthetic microorganisms identified with an optimal growth
temperature above 75 ◦C [31,32].

2.2. Downstream processes

Downstream processes focus on extracting valuable products from
microalgal biomass. Various technologies and process chains can be
designed focusing on the desired final products. As depicted in Fig. 3, the
downstream section involves biomass harvesting, biomass preparation
(drying and cell disruption), and bioproduct extraction and conversion.

For what concerns biomass harvesting, an efficient recovery of
microalgal biomass is crucial for large-scale production of bioproducts.
Harvesting operation can be continuous (described by a dilution rate, for
a chemostat operation) or discontinuous (in a batch growth system)
[33]. Because of its low density in cultures, the biomass harvesting and
dewatering is a complex and often expensive operation [34], being the
main bottleneck of the entire process. Selecting an optimal harvesting
method involves considerations on the microalgal cell characteristics
(size, charge, and morphology) and equipment costs. Various method-
ologies, including chemical (primarily flocculation), biological (auto-
flocculation and microbial flocculation), mechanical (centrifugation,
filtration, natural sedimentation, flotation, and foam separation), and
electrical (electrocoagulation) methods, can be employed [35,36].

Biomass drying represents an optional but essential step in the chain
of production of bioproducts from microalgae and is sometimes
considered to be an economic bottleneck because of its high energy
demand [37,38]. The heat transfer and water diffusion are key mecha-
nisms that must be optimized in order to reduce the water content in the
harvested microalgae [39]. Freeze drying, sun drying, and spray drying
are the most common drying processes [37].

Tomake the biocompounds available for extraction, cell disruption is
often required to break down the rigid and resistant cell wall. Several

methods were proposed for cell disruption, divided into mechanical and
physical methods and non-mechanical methods. In the first category, for
example, there is high-speed homogenization, pulsed electric fields
(PEF), and microwave irradiation [40]. Among the physical cell
disruption methods [65–67], the thermal methods, such as the ther-
molysis, autoclaving, and steam explosion [65–67], are characterized by
their simplicity. These processes are however characterized by low ef-
ficiency and high energy consumption. Furthermore, the generation of
substantial amounts of undesirable cell debris and the thermal resistance
of the target product to be extracted limits their application field [40].
Non-mechanical methods include chemical methods, enzymatic tech-
niques and osmotic shock [40–45].

Various extraction techniques, either applied directly to the cell or
combined with cell disruption methods, can be employed to assist the
recovery of the bioproducts. Extraction with solvents can exploit organic
solvents, ionic liquids, deep eutectic solvents, supercritical fluids and
other kinds of solvents. Organic solvents are extensively utilized for
extracting biomolecules from microalgae, often chosen based on the cell
disruption method [46]. Traditional methods such as the Folch [47],
Bligh and Dyer [48], and Soxhlet techniques [49] are commonly
employed for lipid extraction, albeit with varying efficiency and envi-
ronmental concerns [50]. To address these issues, there has been a shift
towards utilizing green solvents, including supercritical carbon dioxide,
ionic liquids, deep eutectic solvents, switchable water, and biosolvents
[51,52].

The latter, derived from natural sources, provide eco-friendly alter-
natives to fossil resources [53], classified as green solvents due to their
environmental friendliness and harmlessness to humans [50,54–56].

2.3. Wastewater treatment

An emerging new alternative for growing microalgae involves the
use of wastewaters as growth medium, bioremediating the effluent and,
simultaneously, producing biomass.

After the traditional treatment process, very often, the streams do not
meet the criteria for the discharge due to the high concentration of ni-
trogen and phosphorous, and they are recycled in the plant for further
treatments, increasing the operational costs [57–59]. As shown in Fig. 4,
introducing a microalgae-based system as a tertiary step in wastewater
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Fig. 3. The main steps of the processes related to the extraction of bioproducts from microalgae and subdivision in the upstream section and downstream section.
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treatment plants is considered an economically and environmentally
friendly alternative for nutrient removal from wastewater [59–61].
Furthermore, microalgae exhibit the ability to eliminate micropollutants
like heavy metals and persistent organic contaminants, including chlo-
rinated hydrocarbons, dyes from textile industries, and herbicides,
[62–65]. Aside from the phytoremediation benefits, utilizing microalgae
for wastewater treatment leads to the generation of algal biomass with
applications in energy, nutraceuticals, agriculture, and animal feed
sectors [66,67]. This dual-purpose approach enhances the economic
viability of both processes, decreasing the treatment costs [68]. The
selection of microalgal strains represents a key factor for the develop-
ment of efficient nutrient abatement systems and often, microalgal
strains naturally grown in wastewaters are isolated and cultivated for
this purpose, because of their high adaptability, resilience to fluctua-
tions in composition and tolerance to other microorganisms [59,69,70].

Microalgae-bacteria consortia were also proposed as a promising and
economical solution for wastewater treatment [71], since the photo-
synthetic activity, operated by microalgae, lead to a self‑oxygenation of
the culture, eliminating or significantly reducing the need for mechan-
ical aeration [72]. Simultaneously, the CO2 generated from heterotro-
phic metabolisms serves as a carbon source for microalgae and nitrifying
bacteria [73,74].

3. Sustainability of microalgal bioindustries

Despite the large number of studies and efforts to optimize the
various process, as see in Section 3, the commercialisation of microalgal
biomass is still limited by several bottlenecks [75], including crucial
economic [76] and environmental [77] obstacles. Bio-industries are
characterized by uncertainty in the marketability (i.e., profitability) and
the generation of potential environmental burdens (impacts on ecosys-
tems, human health, and climate).

3.1. Main tools for economic and environmental assessments

The primary tools for the evaluation of the environmental and eco-
nomic dimensions of sustainability are the life cycle assessment (LCA)
and the techno-economic analysis (TEA), respectively. They can facili-
tate the design and decision-making actions in the implementation of
sustainable solutions.

The LCA methodology, in particular, is recognized as a standard
reference tool to define the environmental profile of goods and services
by evaluating the environmental burdens in terms of resource con-
sumption, waste generation, and environmental impacts related to the
inputs and outputs of materials and energy involved in the full life cycle
of the product. The LCA implementation is internationally standardised
by the framework of the ISO 14040:2006 and 14044:2006 norms
[78,79]. According to them, the LCA encompasses four stages of

analysis, briefly described in the following. (1) In the goal and scope
definition, the aims of the LCA study are defined, and the main meth-
odological features are chosen (e.g., functional unit and system bound-
ary). (2) The life cycle inventory (LCI) analysis includes the collection,
calculation, and analysis of input /output flows of materials and energy
to/from the product system, typically with the help of a flow diagram
with several unit processes. The foreground inventory is built by gath-
ered data describing the system under study, while the background in-
ventory is built through international industrial data (the Ecoinvent
database is the most used). (3) In the life cycle impact assessment (LCIA)
phase, different methods (e.g., ReCiPe, CML, and Cumulative Energy
Demand) can be used to classify flows into impact categories and
characterize (i.e., calculate) the environmental impacts. Optionally, the
results can be normalized to a reference unit, grouped into one or more
sets and weighted to reflect the relative importance of the impact cat-
egories. (4) The interpretation step summarizes and discusses LCI and
LCIA results, drawing conclusions and recommendations.

The TEA methodology is crucial to assess the economic performance
and (potential) feasibility of a project or technology throughout its
lifetime. TEAs can draw baselines, characterize and compare different
scenarios, identify process bottlenecks, guide system operation and
design, assist process scaleup, and drive research and development to-
wards profitable investments [80]. There is not a standard methodology
for TEA. However, the steps of a complete TEA can be represented
similarly to those of LCA [81]. (1) The goal and scope definition phase
identifies the aim of the TEA study and the system analyzed, as well as
the criteria (parameters like profitability) and indicators (measures of
criteria like net present value) of the economic evaluation. (2) The in-
ventory phase comprises the collection of technical data, such as energy
and material flows and balances, conversion factors, and operating
conditions, and of economic data, which define the price of flows [82].
(3) In the economic assessment step, calculation methods are selected
and calculations are executed. Model equations provide economic in-
dicators for the production cost through capital expenditure (CapEx)
and operating expenditure (OpEx) [82]. By estimating revenues and
selecting an adequate discount rate, profitability indicators (such as Net
Present Value, Return On Investment, and Minimum Selling Price) can
be calculated. An example of an estimation of the various cost items and
economic indicators for microalgal biorefineries is reported in ref. [83].
(4) The interpretation step is conducted in parallel to all TEA phases,
checking the quality, consistency, completeness, and reliability of model
inputs (inventory) and outputs (economic indicators). Based on the in-
dicators, the project economics is judged in a final evaluation.

3.2. State-of-the-art and perspective

In the last decade, hundreds of studies have assessed the economic or
environmental sustainability of microalgae-based applications. To
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Fig. 4. Flow of the traditional wastewater treatment crafts.
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provide an overview of the current status and prospects, Table 1 sum-
marizes the highlights of recent review articles, including some infor-
mation related to economic and/or environmental issues. Overall,
Table 1 reveals that data on biomass cultivation are scattered over
several orders of magnitude (e.g., production cost from ~1 to 100 $/kg,
and greenhouse gas (GHG) emissions from ~0.1 to 1000 kg CO2,eq/kg
biomass), depending on several features such as algal species, bioreactor
configuration, climatic conditions, and dewatering technique. There is
generally a consensus on the fact that microalgal biofuels are uncom-
petitive compared to conventional fuels. Similarly, microalgal technol-
ogies are not mature enough for industrialization to produce
biochemicals. However, their high market value can push the research
towards rapid developments.

Energy requirements and the use of chemical fertilizers are critical
issues. On the other hand, the deployment of renewable energy and
waste nutrient sources has been demonstrated as a valid approach to
significantly improve the sustainability of microalgal systems. Indeed,
incorporating valorization strategies of bioremediation for wastewater
treatment and carbon capture from flue gas can yield economic and
environmental benefits. Multi-product biorefineries with the zero-waste
approach could be effective in implementing profitable production
systems with mitigated environmental burdens. However, the scale-up
from lab- or pilot-scale studies, which is essential to demonstrate the
feasibility of field applications, requires more research efforts. Beyond
that, methodological heterogeneities and different model assumptions
encountered in the literature led to significantly different outcomes.
Therefore, homogenization within a common framework is a key point
for future assessments.

In a more holistic approach, TEA and LCA tools can be combined to
conduct multi-criteria optimization studies based on suitable modelling
approaches, such as superstructure methods [84]. The complexity of the
problem should not be overlooked, especially considering that TEA and
LCA assessments, as well as other process system engineering tools, are
based on multi-scale spatial and temporal input data [85]. Useful in-
sights on the sustainability of microalgal processes can be drawn from
exergoeconomic and exergoenvironmental assessments [86]. From a
broader perspective, the social dimension of sustainability of
microalgae-based products should be evaluated, including the evalua-
tion of social impacts [84] and consumers’ acceptability [87–89], which
can act as either drivers or barriers. In this regard, SWOT (Strengths-
Weaknesses-Opportunities-Threats) analysis can evaluate the current
status and devise a successful strategy for methodological tools
including data and/or some discussion (among others) on economic
and/or environmental aspects (TEA and/or LCA in most cases) of
microalgae applications.

4. Exploring microalgal diversity and applications in the
Mediterranean region

The Mediterranean Sea is a large marine ecosystem with unique
characteristics as it is a hot-spot of biodiversity, being significantly
impacted by resource exploitation, maritime traffic, and coastal urban-
ization, driven by a high-density population. Furthermore, subregional
seas and coastal areas display high variability due to their hydro-
graphical and climatological regimes [101]. Considering that, according
to the Baas-Becking view of microbiology, “everything is everywhere,
but environment selects” [102], the diverse geographical features found
in the Mediterranean region are mirrored in the multitude of distinct
species that have been identified in this area.

Allocating microalgal species to a specific environment is chal-
lenging, as there is still debate over whether microalgae are cosmopol-
itan or endemic [2]. There are two perspectives regarding
microorganisms in general, which also apply to microalgae. The first
establishes they are generally ubiquitous, meaning they may be found
everywhere. The other claims that they are endemic to certain areas and
environments. Consequently, identifying the indicative species of an

Table 1
Overview of some recent review articles, including data and/or some discussion
(among others) on economic and/or environmental aspects (TEA and/or LCA in
most cases) of microalgae applications.

Highlights and main data Reference

• The conversion of microalgae biomass into high-value biochemicals
was characterized by high costs for cultivation in the range from 0.5
to 6 $/kg, with the expenditure dominated by infrastructure, main-
tenance, and labor.

• ORP systems were more economical than closed PBR configurations.
However, closed bioreactors offered more controllability with
enhanced bioactive compound content (e.g., astaxanthin in
H. pluvialis was at 1.5–3 % from ORP, while it was over 4 % from
PBRs.

• Astaxanthin extraction was a considerably costly and inefficient
process (7000 $/kg vs. 1000 $/kg in chemical synthesis).

• Multi-product schemes in the more general biorefinery approach
could significantly enhance the economic viability. For example, the
payback period of 6.38 years in protein production was reduced to
2.62 years when considering 3 products (protein, fatty acids, and
pigments).

• Other figures of merit: Return on Investment (ROI) of 38.22 % for the
abovementioned multi-product process; ROI and payback time of
1.87 % and 11 years, respectively, in another TEA of protein pro-
duction; price of β-carotene of either 1370 or 920 €/kg.

[90]

• Green methods (supercritical fluid, pressurized liquid, ultrasound,
microwave, pulsed electric field) for the extraction of metabolites
(phycocyanin, carotenoids…) from microalgae could produce lower
environmental impacts compared to conventional technologies.

• LCIA results on GHG emissions for different FUs included 1.86 t CO2,

eq/800 g astaxanthin, 0.33 kg CO2,eq/MJ biodiesel, 0.6 kg CO2,eq/kg
biodiesel, ~500 kg CO2,eq/kg β-carotene, ~1000–2000 kg CO2,eq/kg
phycocyanin (ultrasound extraction), 9.09 kg CO2,eq/kg
Schizochytrium oil, ~140 kg CO2,eq/kg phycocyanin (pulsed electric
field extraction).

• Energy demand was ~36 % and 56 % for cultivation and lipid
extraction, respectively. Pure CO2 usage increased GHG emissions
and energy requirements by 25–30 % compared with waste CO2

utilization.
• Data from laboratory-scale studies introduce inaccuracies in the LCA
results, but data from large-scale plants were insufficient.

[91]

• The cost of lipid extraction from microalgae was still too high,
accounting for up to 50 % of the total cost of biodiesel. The minimum
sale price of microalgal biocrude and biodiesel was 4.85 $/l and 5.57
$/l, respectively, which were uncompetitive while the diesel cost
(1.59 $/l).

• Themain operating cost of extraction methods using solvents was due
to chemicals. Hundreds of kilograms of solvents were required for the
extraction of 1 kg lipids, involving a cost of ~1000 $/kg lipid or much
more in the case of green solvents. The cost associated with energy
consumption for lipid extraction was between ~10–40 $/kg, with the
lowest value exhibited by supercritical CO2 extraction.

[92]

• The cost of microalgae bio-oil fluctuated in a wide range, e.g.,
0.44–8.76 $/l, thus being not competitive against that of conven-
tional fuels.

• Only a small number of pilot projects have been realized, while
several obstacles, resulting in high operation and capital costs, still
hinder the scaling up and commercialization of microalgal biofuels.

• Compared with conventional fuel crops, microalgae grown in
wastewater could improve the sustainability of biofuel production.
Cultivation in wastewater could save up to 90 % of freshwater and
minimize the need for chemical nutrients.

• Future technological advances have the potential to lower fossil fuel
consumption and overall carbon footprints.

[93]

• Microalgal biofilm achieved higher biomass yield and productivity
compared to conventional suspended cultivations. The energy
requirement for harvesting was reduced by up to 83% compared with
that of suspended biomass centrifugation.

• The biofilm-based algae cultivation was not practised on a large/
commercial scale due to several technical limitations. A preliminary
TEA was conducted by using small-scale outdoor data, showing that
the biomass production costs by biofilm-based cultivation were 8–10
times lower (e.g., ~1 vs. 10 $/kg) than that of suspension-based
cultivation, due to benefits from higher biomass productivity, lower
water and power consumption and labor cost.

[94]

• Scientific research is driving the microalgae industrialization.
However, techno-economic limitations related to the high cost of

[89]

(continued on next page)
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environment, especially a large one, is a complex challenge. Neverthe-
less, some microorganisms can only thrive under specific environmental
conditions, reflecting the importance of environmental features,
particularly in the Mediterranean basin, which has unique ones.

Although oceanic microalgae are subject to constant mixing by the
oceans and are therefore more likely to be ubiquitous, the same cannot
be said for algae belonging to the Mediterranean Sea, which is a closed
sea with physical barriers. It’s worth noting that the presence of physical
containment is one of the factors that promote speciation. Under
dispersal limitation and environmental heterogeneity, microalgal di-
versity is higher due to local environmental factors promoting endemic
species [2]. Environmental specialization can lead to extremely high
diversity, especially if several trophic interactions are simultaneously
relevant. Population density, dispersal ability, and body size also affect

Table 1 (continued )

Highlights and main data Reference

cultivation facilities, nutrient supply, and licenses to market
microalgae-related products are providing grand challenges. Biomass
production costs of closed PBRs and open ponds of 12.4 and 1.6 $/kg,
respectively, were reported, with this gap being caused by the sig-
nificant difference in the facility investment (2000 $/m3 for PBRs vs.
50 $/m3 for ORPs).

• Biorefining strategy could maximize the economic value of
microalgae biomass and offset the production cost of various
microalgae products. The co-production of biodiesel and high-protein
food led to a cost of 0.43 $/kg food with an additional revenue of 0.97
$/kg food. By changing the order of biorefining and isolating the
protein before the lipid extraction brought a revenue of 6.23 $/kg
protein. In contrast, the single-purpose production of algal protein
had a cost higher than 10 $/kg protein.

• The valorization of industrial waste CO2 produced a cost of 0.20 $/kg
biomass for low-value biofuel.

• GHG emissions estimated by different LCA studies covered several
orders of magnitude (up to almost 1000 kg CO2,eq/kg biomass) and
were affected by various factors, including the cultivation
technologies, process conditions, culture scales, process inputs (flue
gas and nutrients), harvesting methods, and algae strains.

• Energy consumption varied between 4 and 800 MJ/kg biomass, and
fossil-based electricity use was identified as the major contributor to
the global warming impact category.

• The use of renewable energy and waste nutrient sources (wastewater,
waste gas, or food waste) was a valid approach to significantly
mitigate the environmental burdens and even achieve negative
carbon emissions.

• Several TEAs were reviewed, showing great variability in the
production cost of microalgal biofuels, which was compared with the
commercial price: 0.77 or 0.8–3.5 $/l vs. 1.15 $/l for biodiesel, 19.45
or 1.3 $/gal vs. 2.72 $/gal for bioethanol, 0.57–13.53 $/kg vs. 2–8
$/kg for biohydrogen, 0.55 or 0.3 $/m3 vs. 0.25–2.7 $/m3

biomethane, 2.2 or 0.7 $/l vs. 0.48–0.53 $/l for biocrude, 1.48–1.8 or
0.58 $/l vs. 0.71 $/l for pyrolysis oil, 5.89 or 8.45 $/l vs. 0.9 $/l for
biojet fuel.

• The incidence of CapEx on the total production cost was between 57
% and 84 % for most biofuels, while it reduced to 42 % for biocrude
and 30 % for bioethanol.

• To obtain realistic outcomes from TEAs, the need for data collection
at a large scale (e.g., pre-commercial scale) was claimed.

• Values of net energy ratio (NER, defined as total energy produced
over processing energy consumed) < 1 were reported for microalgal
bioethanol, biodiesel, biomethane, and biocrude. A value of ~1.3 was
also reported for biocrude oil produced from a large-scale HTL system
and biohydrogen production with supercritical water, while the
highest NER of ~2.2 was achieved by bio-oil production via pyrolysis.

• GHG emissions in the range ~1–7.5 kg CO2,eq/kg biofuel were
reported, with the lowest and highest values for bioethanol and
biohydrogen, respectively.

• The values of NER and GHG emissions could promote HTL and
pyrolysis as potentially sustainable technologies. The overall
practical feasibility of microalgal biofuels will be determined by
strain selection, harvesting techniques optimization, and wet biomass
processing development.

[95]

• In wastewater treatment, HRAPs could reduce costs and
environmental impacts compared to traditional systems based on
activated sludge (0.18 €/m3 vs. 0.26 €/m3, global warming of 0.146
vs. 0.458 kg CO2,eq/m3, and eutrophication of 126 × 10− 6 vs. 158 ×

10− 6 kg PO3−
4,eq/m3). Moreover, HRAPs required only 22 % of the

electricity demand of activated sludge. However, the net
environmental benefit of an activated sludge-based sequencing batch
reactor was slightly larger than HRAPs because of the removal rate of
nutrients.

• Co-pyrolysis of sewage sludge and wastewater-grown microalgae for
biofuel production produced the largest net profit (9 % higher than
sewage sludge) when considering a 1:1 mixture. However, the sewage
sludge alone scenario had better environmental performance. The
highmoisture content resulted in a drying step being the most energy-
intensive operation (69–88 % of total used energy).

• The treatment of food-processing wastewater with unialgal culture
had lesser environmental burdens than the treatment with mixed
cultures. Bioproduct recovery from microalgae wastewater treatment
systems can minimize environmental impacts by up to five times
compared to a conventional system using a standard growth medium.

[96]

Table 1 (continued )

Highlights and main data Reference

• Ideas proposed to overcome present economic challenges included
the addition of organic substrates, the adoption of microalgae and
bacteria consortia, and the development of low-cost pre- and post-
treatments.

• Bioplastics could reduce GHG emissions thanks to the use of raw
materials from renewable resources and the elimination of toxic
production processes. For example, PLA bottles decreased GHG
emissions by 20 % compared to PET bottles, while saving two-thirds
of energy. Regarding the end-of-life, incineration, landfilling and
recycling were not considered suitable for bioplastics, while biodeg-
radation was considered the best option.

[97]

• The environmental performance of microalgae cultivation depends
on location, season, scale, algal species, and nutrient source.
Phototrophic cultivation is less productive than heterotrophic
cultivation, thus requiring larger cultivation volumes.

• More than 70 % of total energy (335 or 250 kWh/kgDW, depending on
the algal species) was consumed for centrifugal harvesting and spray-
drying after biomass cultivation in ORPs. In contrast, 80 % of the total
energy (686 kWh/kgDW) was required for cultivation in closed PBRs.
The GHG emissions of C. vulgaris cultivation in closed PBRs and ORPs
were 220 and 141 kg CO2,eq/kgDW.

• Nutrient supply could be critical for the process sustainability. For
example, GHG emissions associated with nutrients were reduced by
80 % and 20 % by using slurry and wastewater, respectively.

• Based on a weight basis, the GHG emissions and non-renewable en-
ergy impact categories could be much higher for microalgae than for
beef and other plant raw materials.

[98]

• 16 LCA studies carried out with primary data from pilot to industrial
scale. Only a few LCAs with data from near-full-scale plants (culti-
vation volume in the order of 10 m3 or higher) were found.

• Electricity (especially for artificially illuminated systems) and
infrastructure were the major environmental hotspots in microalgae
cultivation.

• Microalgal biofuels were not competitive with conventional (bio)
fuels in energy and environmental performances. However, multi-
product scenarios were promising.

• Systems for producing high-value biochemicals (e.g., antioxidants
and biostimulants) had small and poorly impactful downstream sec-
tions. Valorization strategies of co-products (residual biomass) and
waste streams (flue gas and wastewater) enhanced the environmental
performance.

• The results covered several orders of magnitude. For example, GHG
emissions spanned in the range 0.33–4256 kg CO2,eq/kgDW biomass
and 378–6119 kg CO2,eq/kg astaxanthin. Behind the results’
variability, technical and methodological reasons were identified.
Homogenization and clarity were claimed as essential requirements
for future assessments, along with the availability of data from large-
scale plants.

[99]

• Due to the lack of standardization in the methods, comparisons
among different LCAs were difficult and mean trends were uncertain.
GHG emissions were in the range from − 75 to 534 g CO2,eq/MJ
biofuel, with HTL tending to be better than other biomass conversion
methods due to a higher energy efficiency. Integrating wastewater
treatment with algae cultivation led even to negative GHG emissions.

• The NER (input over output energy) ranged from ~0.34 to 1.25,
while the minimum selling price was from 2.1 to 10.4 $/GGE. The
Energy Return on Investment (EROI) was <1, thus requiring further
efforts for the development of competitive systems.

[100]
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the ability of microalgae to colonize an environment. Consequently, in
the Mediterranean, there is a high degree of horizontal diversity due to
habitat differences. In general, microalgae inhabiting oligotrophic seas
like the Mediterranean cope with low levels of nutrients and high irra-
diances. As an evolutionary mechanism, they often have low half-
saturation constants for nutrients such as nitrogen and phosphorus
[103]. This can be well applied, for example, to the bioremediation of
wastewaters involving microalgae, as they can effectively decrease even
very low concentrations of nutrients, as recently shown [104]. On the
other hand, microalgae in this area need to cope with high irradiance
levels, resulting in low chlorophyll levels and in the production of high
amounts of pigments for photoprotection. Therefore, they may be easily
employed in producing high-value compounds such as pigments and
antioxidants.

While some studies have assessed microalgae distribution in the
Mediterranean area [105,106], this section aims to provide a compre-
hensive overview of isolated microalgal species with technological ap-
plications. Pathogens are intentionally excluded from this discussion.
The main species isolated from the Mediterranean area with techno-
logical applications are indicated in the supplementary material
(Table S1). The table also includes the location of isolation and the GPS
coordinates. In a separate column, additional applications, different
from those mentioned in the isolation articles, are listed along with the
relevant citations. Here, we reported the same species gathered in
classes for brevity (Table 2). Among them, the main species with tech-
nological applications are from the class Bacilariophyceae, Chlorophyceae
and Cyanophyceae. The first two classes are mainly employed for
extracting high-value compounds for pharmaceutics or nutraceuticals
and as an alternative for bioremediation purposes, while the third is for
the production of nanoparticles or for biocompounds for pharmaceutics.
In the following section, a thorough examination of the species present
in the Mediterranean area is provided.

Regarding the coastal presence of microalgae, numerous species
have been documented across various studies. Quijano-Scheggia et al.
documented the presence of species in the genus Pseudo-nitzschia spread
in NE Spanish coast across 2005–2006 [107]. This marine diatom is of
the pennate genus and it is known mainly for being toxic due to the
production of domoic acid [108], even if it may be applied for some
technological applications. The authors found several strains, including
Pseudo-nitzschia multistriata, which was also found in the Gulf of Naples
in Italy, and it was reported to be a good producer of intracellular
domoic acid [109]. Quijano-Scheggia et al., more recently, observed
that this genus is widely spread across all the Mediterranean Sea,
describing its distribution [110]. It has been found, for example, in
Italian and Greek costs. Another study by El Aroussi et al. [111] iden-
tified several species of microalgae from Moroccan coasts and assessed
their availability for biodiesel production. By assessing the 57 isolated

species, authors concluded that Nannochloropsis sp., Dunaliella tertio-
lecta, Isochrysis sp. and Tetraselmis sp. are promising species as biodiesel
feedstock based on parameters such as growth, lipids quantity and
quality, fatty acid profile but also robustness and ease of culture [122].
In another study conducted along the Mediterranean coast of Morocco,
researchers identified several microalgae species including Nanno-
chloropsis gaditana, Nannochloris sp., Phaeodactylum tricornutum, and
Tetraselmis suecica. Analysis of the lipid fraction revealed promising
potential for these microalgae in lipid production, suggesting their
suitability for use as supplements in aquatic and animal feed enriched
with polyunsaturated fatty acids (PUFA), as well as in the production of
other food products with higher omega-3 fatty acid content. Notably,
Nannochloris sp. exhibited the highest lipid productivity at 15.93 mg/l/
day, indicating its potential utility as a source for dietary supplements or
biofuels feedstock [112]. In another study on microalgae isolated from
Moroccan seawater, Nitzschia sp., Nannochloropsis sp., and Tetraselmis
sp. were assessed as possible sources of biodiesel, and Nannochloropsis
sp. was identified as the best candidate due to its high lipid content
[113]. Nitzchia sp. is a species investigated for several purposes; for
example, it has been used for purifying sea cucumber aquaculture
wastewater [114] and metabolite production, antibacterial activity, and
slow-release biofertilizer [115]. On the other hand, Tetraselmis is a very
deeply studiedmicroalga with many applications; for example, it may be
applied in lipid production and bioremediation and as source of bio-
molecules and antioxidants [116]. Among the other identified strains, it
was reported that Nannochloris may be applied in for landfill leachate
biotreatment and lipids production [117]. In a different work assessing
microalgae from Sicilian littoral, three strains were identified as Chlor-
ella sp. Barcarello, Chlorella sp. Pozzillo and Dunaliella viridis [118].
Biochemical analyses were performed and Dunaliella resulted ideal for
its antioxidant content, while in all the strains there is an interesting
content of poly unsaturated fatty acids (PUFAs). These characteristics
may indicate applications in nutraceutics. In a conceptually similar
work, five microalgal strains were isolated from the Adriatic coast in
Croatia and identified as Nitzschia sp. S5, Nanofrustulum shiloi D1,
Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the
cyanobacterium Euhalothece sp. The strains were characterized for the
content in macromolecules, pigments, antioxidant activity. Authors
concluded that Nanofrustulum shiloi D1 is a potential feedstock for bio-
diesel production due to its high content in lipids. Tetraselmis sp. Z3 can
be used as a fish oil replacement due to its PUFAs content. All selected
microalgae are a good source of proteins and pigments that may be
applied in nutraceutics and all microalgal extracts strongly inhibited the
growth of Gram-negative E. coli and S. typhimurium and Gram-positive
S. aureus. [119]. Another study reported that Picochlorum may be used
also for phycoremediation of nitrogen and phosphate [120]. A research
was carried out on several microalgal strains isolated from the Aegean

Table 2
A resume of microalgae reported as classes isolated from the Mediterranean area and their primary application.

Class/family Application Isolation location Reference

Bacilariophyceae Source of lipids, aquaculture, biodiesel production,
source of bioactives

Italy, Turkey, Tunisia,
Croatia, Morocco, Spain,
Egypt

[107,109,112,113,119,121,122,144,146,168,172,173,179]

Chlorophyceae Source of beta carotene, nutraceutics, biomass
production

Italy, Turkey, Tunisia,
Morocco, Spain, Greece,
Egypt

[111,112,118,134,142,146,161,163,165,168,171,172,174,177,178]

Cyanophyceae Production of FAMEs, synthesis of nanoparticles,
bioremediation, pharmaceutics, nutraceutics

Italy, Croatia, Tunisia,
Malta, Egypt

[119,123,146,168,172]

Chlorodendrophyceae Biodiesel feedstock, fish oil replacement,
bioremediation

Morocco, Croatia, Greece [111–113,119,165]

Eustigmatophyceae Biodiesel feedstock, nutraceutics Italy, Morocco [111–113,146]
Dinophyceae Nutritional, cosmetic, and drug additives Turkey [122]
Prymnesiophyceae Nutritional, cosmetic, biodiesel feedstock Turkey, Morocco [111,122]
Trebouxiophyceae Nutraceutics/phycoremediation of nitrogen Croatia [119]
Fragilariophyceae Biodiesel feedstock Croatia [119]
Hymenomonadaceae Pharmaceutics Turkey [121]
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Sea, in Turkey. Among the several isolated strains authors found Am-
phora cf capitellata and Nitzschia communis, with antibacterial activities,
Nitzschia thermalis, with anticancer activity, Ochrosphaera sp. with
antifouling activity. The isolated strains may be applied therefore in
marine pharmacology [121]. In another study, Nitzschia Navis-varingica,
Heterocapsa pygmaea and Chrysochromulina aliferawere isolated from the
surface water of Mersin and Erdemli coast, in Turkey. These strains were
tested for their anticancer proprieties, and authors concluded that
microalgal extracts may be used in nutritional, cosmetic and drug ad-
ditives for cell growth as well as wound healing [122]. Numerous strains
were isolated and characterized from the central Mediterranean region,
specifically along the coastline of Malta. These strains encompass a va-
riety of cyanobacteria, including Leptolyngbya, Phormidesmis, Nodosili-
nea, Phormidium, and Lyngbya, as well as heterocytous Calothrix species.
Additionally, coccal cyanobacteria such as Aphanocapsa and Chroococcus
were identified, along with coccal microalgae from genera Chlorella,
Chlamydomonas, and Coelastrella. The community also included diatoms
belonging to Navicula species [123]. Among the aforementioned strains,
almost all have at least one technological application. For example, the
phycobiliproteins of Leptolyngbya may be employed for natural illumi-
nated colourant beverages [124]; Phormidesmis may be considered
source of immunomodulators and antioxidants with possible application
in dietetics and medicine [125]; Nodosilinea is rich in carotenoids, and
may be used in skin care formulations [126]; Phormidium may be used
for deriving copper oxide nanoparticles for biomedical and environ-
mental applications [127]; Lyngbya phycochemicals and biosynthesized
nanoparticles may be used as antimicrobial and anti-cancer agents
[128]; methanolic extracts of Calothrix have bioactive potential and
could employed as pharmaceutical sources [129], they may be also
employed in the synthesis of gold nanoparticles [130]. Aphanocapsawas
investigated as biofertilizer [131] and Chroococcusmay be employed for
the decontamination of polluted soils [132].

Coastal lagoons of the Mediterranean, whether hypersaline or
freshwater, exhibit a nutrient content significantly influenced by factors
such as increased evaporation, resulting in higher salinity and deposi-
tion of salts like calcium carbonate. Additionally, these lagoons are often
affected by human activities, leading to the accumulation of various
wastes. Consequently, the organisms inhabiting these lagoons can differ
greatly from those found in nearby marine environments [133]. In
studies focusing on freshwater lagoons, diverse microalgae have been
documented. For example, 19 microalgal species were identified from
Sarıyar Dam reservoir, in Turkey [134]. The most interesting among
them are Dictyosphaerium pulchellum, which may be employed in genetic
transformation [135], and Scenedesmus acuminatus which showed high
potential in the simultaneous production of biomass and carbon fixation
[136] and may be grown in liquid digestates from anaerobic digestion
[137]. These and other microalgae are studied [138] and preserved in a
Turkish collection [139]. Lortou et al. identified several strains from
different locations, such as freshwater lakes and a lagoon. The authors
found several microorganisms and different new taxa. Among the found
species it is possible to observe several species of the genus Desmodesmus
and Chlorella, together with Asterarcys quadricellulare, which may be
employed for wastewater bioremediation and biomass production as
biodiesel feedstock [140], andMonoraphidium sp. which may be used as
lipid feedstock, [141–143]. Several strains were also isolated from
different Karst springs distributed in various places in Italy [144].
Among the most interesting strains there are: Nitzschia frustulum, which
may be used for producing photoluminescent nanocomb structures from
seawater through natural evaporation. Despite their man-made origins,
this kind of system is very important because of the high habitat het-
erogeneity and biodiversity. In salted ponds, extremophile microor-
ganisms can proliferate, showing a high ability to tolerate extreme
conditions such as very high salinities and temperatures. These micro-
organisms are of particular interest due to their potential biotechno-
logical and industrial applications because of the bioactive compounds
they produce, often as a survival mechanism [145]. In one of the earliest

works addressing microalgae isolated in these systems, from 1990, au-
thors described 111 species in the salt works of Tarquinia, located on the
Tyrrhenian coast of central Italy, noting that diatoms prevailed up to
110 ‰ salinity. They were replaced by Cyanophyta at higher salinities
[146]. There are several isolated strains with technological applications
divided into Cyanophyta, Euglena, Bacillariophyta and Chlorophyta.
From the first phylum: Aphanothece halophyticamay be employed for an
enhanced production of fatty acid methyl esters (FAMEs) [147]; aqueous
extracts of Chroococcus minutus may be used for the synthesis of silver
nanoparticles with antibacterial activity [148]; Chroococcus turgidus
may be employed in bioremediation of municipal wastewaters with bio-
product applications of its biomass [149]; Spirulina subsalsa is a source of
phycocyanin [150]; Oscillatoria limnetica and Oscillatoria princeps,
Lyngbya sp. and Phormidium sp. may be applied in the production of
nanoparticles of various types [127,128,151,152]. Conversely, Euglena
sp. has several immune and antiviral effects and is a potential of value-
added metabolites [153,154]. In the class of bacillariophyta, Navicula
cincta may be used as source of triacylglycerols for biodiesel and exo-
polysaccharides [155], while Navicula salinarum has been investigated
as source of only exopolysaccharides [156]; Amphora coffeaeformis ac-
cumulates lipids which may be applied as aquaculture feed [157] while
Amphiprora sp. may be applied as a source of lipids [158]. In the
chlorophyta phylum, Dunaliella salina is a well-known microalga culti-
vated for its content in beta-carotene [159] while Cladophora sp. may be
applied for example, in the generation of electricity as biocathode [160].
More recently, in 2018, from the same ponds a halo-tolerant strain of
Dunaliella sp. (genus Chlorophyceae) was isolated [161]. As highlighted
by the authors, this strain produces high levels of lutein, an important
carotenoid with many functions related to health protection [162]. In
another study from the same authors, a strain of Dunaliella salina was
isolated from the same saltworks [163]. Authors suggest that this strain
may have applications such as feed production, nutritional reinforce-
ment as a vitamin A, precursor and production of pharmaceuticals and
fine chemicals (mainly carotenoids such as beta-carotene). In another
region of Italy, in the south, several strains were isolated from the saltern
ponds of Trapani, Sicily [164]. In this work, Dunaliella viridis (genus
Chlorophyceae), Dactylococcopsis salina (cyanobacteria) andNavicula sp.
(diatom) were isolated, cultivated, and their bioactive effects were
assessed. The authors concluded that the biomass cultured in high-
salinity conditions might be applied in cosmeceutical/nutraceutical
applications due to the production of a characteristic pool of carotenoids
(e.g. lutein, fucoxanthin, neoxanthin). The cyanobacterium Dactylo-
coccopsis showed a high cell repair activity, while Brevibacterium sp.
showed anti-proliferative activity on cancer cell lines; they may be
therefore applied in pharmaceutics. In another saltworks, in Messo-
longhi, Greece, a survey about the plankton biota was conducted in
2015. Authors found several categories, namely Cyanobacteria, Chlor-
ophytes, Diatoms. Several microalgal species were identified, such as
Asteromonas gracilis, Tetraselmis marina, Dunaliella sp. [165]. Aster-
omonas gracilis showed to be a promising feedstock for biodiesel pro-
duction [166], while Tetraselmis marina, may be employed in
bioremediation and as a potential source of compounds of interest and as
feed for aquaculture [167]. Dunaliella sp., instead, is a well-established
strain for microalgal biotechnology [159]. Saltworks in Egypt were
also assessed, and, in particular, the solar saltern of Port Fouad. Re-
searchers found several species belonging to the categories of cyano-
bacteria, diatoms, dinoflagellates, Euglenophyceae and Chlorophyceae
[168]. Among Cyanobacteria, as alreadymentioned, Chroococcus turgidus
may be applied in bioremediation of municipal wastewaters [149],
while Leptolyngbya fragilis for bioremediation of soil contaminated with
dodecane [169]. As already observed, Spirulina subsalsa is a source of
phycocyanin [150]; Synechococcus elongatus secretes extracellular vesi-
cles which promote angiogenesis [170]; Synechocystis salina may pro-
duce polyhydroxyalkanoates and is investigated under a
biotechnological point of view. In another work from Chtourou et al., a
strain of Dunaliella sp. was isolated from the Sfax-Tunisia Solar
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Evaporating Salt-Ponds and identified. Authors concluded that the strain
is usable for biodiesel production due to its content in fatty acids [171].
From the same saltern pond, more recently, three strains were isolated
and identified as Dunaliella salina (Chlorophyceae), Phormidium versicolor
(Cyanophyceae), and Cylindrotheca closterium (Bacillariophyceae). The
photosynthetic and antioxidant activities of the species under light and
salinity stress conditions were assessed, revealing that high irradiance
and high salinity stimulated carotenoid synthesis and that the strains
could provide promising sources of extremolyte for several purposes
[172]. In another study assessing the same saltern pond of Sfax, an
interesting strain of the genus Amphora was isolated and characterized
for the first time. According to authors’ conclusions, the strain resulted
ideal as biodiesel feedstock due to the high content of lipids and the
composition of them, mainly saturated [173]. In another work on three
different saline sites in the northern region of Tunisia (North Lake
Lagoon, Sebkha of Sijoumi, and Sebkha of Sahline), Chlorella sorokiniana
ES3 and Neochloris sp. AM2 were isolated and characterized. Examina-
tion of their fatty acid profile and biodiesel parameters indicated that
Chlorella sorokiniana shows promise as a viable candidate for the pro-
duction of high-quality biodiesel [174].

It is worth separately mentioning microalgae isolated from
contaminated sites, as their potential use can be linked to bioremedia-
tion strategies. Specifically, regarding heavy metal pollution, micro-
algae have shown promise as biosorbents for heavy metal ions in
wastewater. This is due to their advantageous characteristics, including
low cost, ready availability, relatively large specific surface area, and
binding solid ability [175]. In this context, several researchers investi-
gated on microalgal bioabsorption ability. For example, Desmodesmus
sp. was isolated from freshwater in Turkey and studied for its Ag/TiO2
removal ability [176]. A microalga belonging to the genera Coccomyxa
was isolated from Tinto River, a river flowing through a mining area in
the south of Spain. Although this alga may well-grow in acidic envi-
ronments contaminated with Iron, Copper, Manganese, Nickel,
Aluminium, authors proposed that it might have potential for xantho-
phyll production [177]. Similarly, a strain from the same genera was
isolated from a polluted river in Sardinia, Italy, and the authors propose
its employment as a source of carotenoid [178].

As demonstrated by this literature review, numerous species of
microalgae (including cyanobacteria) isolated in the Mediterranean re-
gion are currently being exploited under a technological point of view.
In particular, referring to the information in Table S1, we gathered the
following number of species for each class and reported them in Table 2:
Bacilariophyceae: 22; Chlorophyceae: 20; Cyanophyceae: 25; Chlor-
odendrophyceae: 5; Eustigmatophyceae: 3; Dinophyceae: 1; Prymne-
siophyceae: 2; Hymenomonadaceae: 1; Trebouxiophyceae: 1;
Fragilariophyceae: 1.

However, there is still a significant number of them that are currently
unutilized, mainly found in freshwaters. These could represent an
exciting resource when looking into new applications. At the same time,
it is evident that several of the above-discussed applications still require
further research to refine the technologies to make them ready for the
industry, especially for what concerns energy/biomaterial applications.
On the other hand, exploring novel compounds from microalgae is an
active and promising research area, yielding significant results in recent
years. Similarly, the production of nanoparticles starting from cyano-
bacteria is an expanding topic with room for innovation. In these fields,
other microalgal and cyanobacteria may still be assessed to uncover new
bioactive compounds and different kinds of nanomaterials. Mediterra-
nean microalgae present similarities due to the common evolutionary
selective pressure, such as owing low half-saturation constants for nu-
trients and acclimation to high irradiance levels [103]. However, this
review primarily highlights how the greater richness of Mediterranean
microalgae lies in their diversity, enabling them to have applications
across a wide range of fields, as elucidated in the next section. Fig. 5
represents the key findings of the current section.

5. Technological application of microalgae in the Mediterranean
area

5.1. Research criteria and bibliometrics

A bibliometric research was conducted to provide an in-depth anal-
ysis of the technological applications of microalgae in theMediterranean
area, utilizing the electronic database SCOPUS. 41,428 titles were found
using the keyword “microalgae” until 2023. By restricting the research,
8347 are the titles relative to countries belonging to the Mediterranean
area, i.e., having coastlines along the Mediterranean Sea. Starting in
2020, a remarkable increase of interest in microalgae technologies has
taken root across the Mediterranean region. This new interest can be
attributed to several factors, such as growing environmental concerns,
heightened focus on sustainable practices, and the exploration of inno-
vative avenues for resource utilization. Due to this heightened interest,
there has been a noteworthy escalation in the number of scientific
publications. The transition from 2019 to 2020 witnessed a substantial
increase of approximately 17 % in articles dedicated to this subject
(Fig. 6). This increase in scientific output underscores the growing
recognition of microalgae’s potential across various sectors. Among all
the works published from 2020 to 2023, the vast majority is relative to
the two subject areas of Agricultural and Biological Science and Envi-
ronmental Science (almost 40 %). The other large subject area is related
to the Engineering issue (Chemical Engineering and Engineering), with
almost 1000 titles, followed by Biochemistry, Genetics and Molecular
Biology, with nearly 430 titles. This demonstrates how the technologies
related to microalgae have been a crucial research issue in recent years.

Only the articles related to technology (subject area of Agricultural
and Biological Sciences, Environmental Science, Chemical Engineering,
Engineering, Energy, Chemistry andMaterial Science) were evaluated in
this work, and 2290 titles published in the last three years were
considered in the bibliometric analysis. In particular, in Fig. 6 it is
possible to observe also the evolution of the time of documents pub-
lished in the last three years, distributed by the subject areas of interest.
It could be interesting to observe the strong increase in published arti-
cles in the Environmental Science area, passing from 2020 to 2022 and
2023, confirming the appeal of the green microalgae technology in these
last years.

Concerning the affiliations, the Centre National de la Recherche
Scientifique (CNRS), located in Paris, France, is the most productive
research centre in the Mediterranean area, with 267 published articles
about the microalgae issue. It is followed by the Universidad of Almería
(142), sited in Spain, and by the Consiglio Nazionale delle Ricerche (83),
located in Rome, Italy.

In the subject areas of interest, Algal Research is the journal with

Fig. 5. Main factors connected to Mediterranean microalgal diversity.
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more articles (142), followed by the Journal of Applied Phycology (76)
and Science of Total Environment (73). Behind there are Bioresource
Technology, Applied Sciences Switzerland and Environmental Science
and Pollution Research.

Among over 1600 significant keywords provided by the authors,
about 32 % is inherent to pharmaceutical and nutraceutical issues, and
9 % to the use of microalgae biomass as a biostimulant or feed for
vegetables or animals. Another large portion of the author keywords is
related to wastewater treatment (30 %), comprising the emerging pol-
lutants, micro- and nano-pollutants, metals, microalgae-bacteria con-
sortia and waste valorization. The studies of bioreactors comprise 10 %
of the authors’ keywords, a percentage that growth to 16 % considering
the keywords connected to kinetic, modelling, and computational fluid
dynamics works. The last most crucial issue, in terms of published au-
thors’ keywords, is related to a biorefinery approach for energy pro-
duction, with about 11 % of keywords. Other keywords inherent to life
cycle assessment and economic analysis, rheology, and machine
learning approach are less than the 3 % for each area. In Fig. 7 is rep-
resented a histogram with the main addressed issues in the universities

of the Mediterranean area and the relative occurrence percentage of the
relative significant authors keywords. From this analysis it is possible to
understand how the most discussed topics published in article by the
Universities in the Mediterranean area are the use of microalgae in
wastewater treatments, in pharmaceutical and nutraceutical applica-
tion, the use as biostimulant and as feed in animal farming, followed by
biofuel production.

5.2. Technological diversity in the Mediterranean

In this section of the work, the main articles published in the seven
areas of interest over the last four years are analyzed, divided by
country. The research was conducted with the same key words described
in the previous paragraph restricted with the name of each country. The
affiliation of the first author is taken as priority, and the works are
selected considering their inherence to engineering issues and their
relevance in terms of novelty and citations.
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5.3. Spain

Spain sees the University of Almería-CIEMAT as the most active
centre in the microalgal research, with 142 published works among 707.
The most discussed topics are related to agricultural and biological
sciences (with 21.8% of the entire number of papers) and environmental
science (20.3 %), followed by chemical engineering (11.7 %). Recently,
many efforts were dedicated to the treatment and exploitation of
wastewaters generated from pig farms. Many studies were carried out to
explore the exploitation of wastewater [180], containing a high nutrient
content generated from piggery, for cultivating algae and producing
algal biomass for biostimulant applications [181]. The experimental
campaign involved the use of an open thin-layer cascade reactor. Based
on the obtained data, an economic analysis was conducted for a plant
with a treatment capacity of 37.77 m2/day, considering four scenarios
depending on whether the biostimulant production utilized membranes
or a simple centrifugationmethod for separation. Additionally, the study
evaluated the co-production of a biopesticide through solvent extrac-
tion. The most cost-effective separation method for biostimulant pro-
duction turned out to be the membrane system, with a cost of 65.5 €/m3,
and it remained competitive with commercial fertilizer when the crop
distance was <300 km. Ciardi et al. [182,183] proposed to use diluted
pig slurry to reduce water consumption in the cultivation of Scenedesmus
almeriensis. After an optimization study [183], they found an optimum
dilution of pig slurry for maximum biomass productivity of 5 %, with a
productivity rate of 0.68 g⋅l− 1⋅day− 1, comparable to that obtained
through the standard growth medium. Moreover, they proposed to use a
sequence of thin-layer photobioreactors over a 16-month period to
reduce the water consumption in microalgae cultivation [182,184]. A
nutrient recovery strategy was proposed consisting in cultivating
microalgae in brewery wastewater [185] and in nitrified urine, with or
without adding supplements [186]. The treatment and reuse of urban
wastewater was studied in lab-scale by Gonzalo Ibrahim et al., demon-
strating how the concentration of the pathogen agent reached was
compatible with the reclaimed water limits despite the absence of ul-
traviolet light [187]. A circular approach was also proposed [188,189]
with the recovery of valuable compound. Zambrano et al. evaluated
Scenedesmus almeriensis microalgae–bacteria consortia for the removal
of veterinary antibiotics, such as tetracycline, ciprofloxacin, and sulfa-
diazine from the liquid fraction of pig slurry first in a laboratory scale
batch system [190] and then in a pilot-scale photobioreactor [191]. The
main results showed that microalgae can remove up to 99.9 % of
tetracycline, 78.0 % of ciprofloxacin and 78.0 % sulfadiazine in the
laboratory scale batch photobioreactor, meanwhile they go down to 77
%, 90 % and 69 % sulfadiazine respectively in the pilot-scale reactor.
Another profitable operation on microalgae biomass is the extraction of
saponifiable lipids, which may be rich in eicosapentaenoic acid. Jiménez
Callejón et al. extracted these compounds from Nannochloropsis gaditana
biomass [192]. Arashiro et al. explored the cultivation of three micro-
algae (Nostoc sp., Arthrospira platensis, and Porphyridium purpureum) in
industrial wastewater with the goal of producing phycobiliproteins
[193]. The three strains demonstrated efficient removal capabilities,
achieving up to 98 % removal of COD, 94 % of inorganic nitrogen and
100 % of phosphate. Moreover, phycocyanin, allophycocyanin, and
phycoerythrin were successfully extracted from the biomass, reaching
concentrations of up to 103, 57, and 30 mg/g dry weight, respectively.
In this way, the authors demonstrated the possibility of integrating
microalgae for industrial wastewater treatment and the recovery of
high-value phycobiliproteins. Serrà et al. presented the synthesis of a
hybrid helical Cu@Cu2O@CuO–microalgae photocatalyst for the pho-
todegradation of antibiotics [194]. The synthesis process involved the
electroless deposition of copper and its controlled oxidation, using a
Arthrospira platensis as a biotemplate. This hybrid photocatalyst
demonstrated enhanced efficiency in the photocatalytic degradation of
tetracycline, particularly in energy consumption, and it may be easily
recycled once their effective lifetime is reached, allowing the creation of

microalgal pellets. Belachqer El Attar et al. studied the rheology of
microalgae concentrates of Scenedesmus almeriensis and Nannochloropsis
gaditana [195,196] aiming to characterize the solutions in different
culture media. Villarò et al. [197] in a recent work, proposed to use the
microalga strain Arthrospira platensis BEA, provided by the Spanish Bank
of Algae (Spain), grown in an 80 m2 raceway as food colourant for
macarons. The generated biomass primarily consisted of protein (57.0 %
in weight) and contained natural and valuable pigments such as chlo-
rophylls (6.7 %), carotenoids (1.8 %), phycocyanins and allophycocya-
nins (<1 %). López-Rodríguez et al. studied how to enhance the
extraction of carotenoids, fatty acids, and amphidinols from Amphidi-
niumcarterae strains (ACRN03 and Dn241EHU) by optimizing cell
disruption and solvent extraction methods [198]. The best carotenoid
extraction was obtained at 60 ◦C without prior cell disruption. Also
Morillas-España et al. [199,200] analyzed the production of the
microalga Scenedesmus sp. in pilot-scale reactors. In a first study [200],
along a yearlong experimental campaign, they found that the biomass
productivities achieved in thin-layer cascade reactors during the months
of increased photosynthetic activity reached 30–35 g/m2⋅day. A pre-
liminary economic analysis indicated that using wastewater for micro-
algae production could cut production costs by about 0.44 € per
kilogram. Sánchez-Zurano et al. explored also the microalgae-bacteria
consortia in processes for the depuration of municipal effluents
[201,202]. The authors have suggested respirometric techniques to
identify and calibrate proper kinetic models for the microalgae-bacteria
process, to be eventually applied as an optimization tool to improve the
efficiency and stability of consortia-based wastewater treatment. Other
authors have suggested models for microalgae-bacteria consortia treat-
ment systems. These models can then be used as optimization tools to
improve the efficiency and stability of these wastewater treatment
processes [203]. Sánchez-Zurano in another paper proposed a photo-
respirometric method to evaluate the activity of microalgae, heterotro-
phic bacteria, and nitrifying bacteria within a microalgae-bacteria
consortium [204]. This approach enables the separate determination
of the activity of these microbial components. The treatment of marine
aquaculture wastewater through microalgae-bacteria consortia was
studied by Perales-Pérez et al. [205]. In this work, the authors focused
on the biomass separation step, through a preliminary coagulation-
flocculation pre concentration process and then comparing the settling
and flotation processes to separate the biomass. Morillas-España et al.,
instead, proposed an ultrafiltration membrane to separate the microalga
Scenedesmus sp. in consortia with bacteria, within a wastewater treat-
ment raceway reactor [206]. The ultrafiltration membrane, positioned
in the reactor sump, separates water from cells and was employed to
distinguish the cell residence time, from the hydraulic retention time.
Otálora et al. [207,208] proposed a technique based on machine
learning to classify microalgae. The two proposed models have the
capability to differentiate between Scenedesmus almeriensis and Chlorella
vulgaris. In the most recent work [208], they showed the capability to
differentiate among six distinct genera of microalgae. In practice, the
model achieved an impressive classification accuracy of up to 97.27 %
when analyzing a culture. A significant group of researchers [209–212]
investigated the use of microalgal biomass as nutrient source for aqua-
cultured fish. About the extraction process of valuable substances,
Navarro-López et al. [213] investigated the effect of different parame-
ters on the extraction of biostimulant molecules from Scenedesmus
almeriensis microalgal biomass and underscored the biostimulant po-
tential of the microalga. The optimization of the extraction process was
determined by assessing the germination index in watercress seed bio-
assays. Various combinations of solvent extraction ratios, temperatures,
and extraction durations were subjected to experimentation and the
most effective combination was selected for each solvent. Optimal
conditions were achieved using environmentally friendly organic sol-
vents like acetone or ethanol. López Pastor et al. performed a techno-
economic analysis on the use of solar thermal energy for microalgae
drying [214]. The author proposed a 200 m2 surface collector operating
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in recirculation mode and demonstrated that the cost of the drying step
reduces to 1.16 € for kg of biomass, compared to a cost of 2.37 €/kg for
conventional fossil fuel-based spray dryers. López-Herrada et al., in a
recent work [215] carried out a life-cycle assessment of the production
process for a microalgae-based fungicide derived from amphidinols. The
study was based on a production target set at 22,000 l of fungicide
annually. In another study, Inostroza et al. [216,217] optimized the
design of 500 m2 raceway reactors using a Computational fluid dy-
namics approach. Thanks to simulations the dynamic behavior of the
optimal configuration was analyzed. The monophasic analysis, con-
ducted using the Finite Element Method (FEM) in COMSOL Multi-
physics™, confirmed that the utilization of deflectors in the baffle
partition bend type resulted in superior performance in terms of fluid
velocity, reduction of dead zones, shorter residence time, and an
appropriate cell Reynolds number. To complement the analysis, a
multiphasic analysis was conducted using the Finite Volume Method
(FVM) in ANSYS Fluent, considering the geometry and rotation speed of
the paddlewheel. An important study about the adhesion behavior of
flagellated microalgae has been addressed by García-Abad et al. [218].
Seven different surfaces with varying water adhesion tension properties
and two microalgae strains were analyzed: Chlamydomonas reinhardtii
and Isochrysis galbana, which were cultivated under batch and fed-batch
conditions. Cells and exopolymeric substance adhesion were measured
and a direct correlation between cell and exopolymeric substance
adhesion was observed, inversely related to biomass generation in the
cultures. These results are particularly interesting in the biofouling
context.

5.4. France

In France the most active centre in the microalgae technology issue is
the Centre National de la Recherche Scientifique with 268 titles. Among
436 total papers, the 19.4 % is related to agricultural and biological
sciences, and 16.9 % falls in the environmental science issue. Nzayi-
senga et al. examined the biomass and fatty acid production of four
microalgal strains (Chlorella vulgaris, Desmodesmus sp., Ettilia pseu-
doalveolaris, Scenedesmus obliquus), as sources for biodiesel. The biomass
was cultivated under three different light intensities (50, 150, and 300
μE m− 2 s− 1) [219], and the main results showed that elevated light in-
tensities contributed to an increase in biomass concentration in all four
species. A significant rise in fatty acid content was observed in both
Desmodesmus sp. and Scenedesmus obliquus; moreover, the increase in
fatty acid content is inversely associated with a decrease in protein
content in all cases. Analysis of fatty acid composition demonstrated that
higher light intensity resulted in increased oleic acid (18:1) and
decreased linolenic acid (18:3). Wils et al. explored natural deep eutectic
solvents (called NaDES) for the extraction of bioactive compounds from
Spirulina, focusing on pigments and free fatty acids [220]. The glycerol/
glucose-based solvent exhibited a diverse profile, spanning polar phy-
cobiliproteins to free fatty acids, while a fatty acid mixture-based sol-
vent demonstrated high selectivity for free fatty acids. The intensified
extraction process led to the evaluation of six spirulina-NaDES formu-
lations and solvents for their impact on cutaneous inflammation. Zhao
et al. explored the effects of charge and corrugated surface on membrane
filtration performance and a synergistic approach for cultivating high-
density microalgae and achieving cost-effective harvesting using a pH-
responsive, charge-switchable, patterned membrane [221,222]. The
membrane, consisting of polyethylenimine (PEI)-crosslinked poly-
vinylidene fluoride (PVDF), exhibits different charges based on pH,
influencing the interaction with microalgae. Demir et al. employed force
spectroscopy atomic force microscopy (AFM) to examine the molecular-
scale interactions between Chlorella vulgaris cells and chitosan, aiming to
elucidate the flocculation mechanism [223]. This important research
identifies distinct mechanisms at different pH levels, emphasizing the
complexity of these interactions and providing valuable insights into the
flocculation process. Results revealed that, at pH 6, chitosan engages

with the C. vulgaris cell wall primarily through biological interactions
rather than electrostatic forces. Additional AFM experiments demon-
strated a different mechanism at higher pH, characterized by chitosan
precipitation. Lacroux et al. investigated the mixotrophic growth of five
microalgae species (Acutodesmus obliquus, Auxenochlorella proto-
thecoïdes, two strains of Chlamydomonas reinhardtii, and Chlorella sor-
okiniana) in the presence of acetate or butyrate under varying pH
conditions [224]. The assimilation of acetate was efficient for all strains,
while butyrate uptake varied significantly among strains. Growth rates
were affected at pH levels above 8, and values below 5 or 6 inhibited the
growth on acetate and butyrate, respectively. These results are very
important in a framework of optimizing processes that integrate bacte-
rial fermentation with microalgae cultures. Galès et al. by assessing the
CO2 conversion efficiency of microalgae cultivated in open land-based
raceways, found that its highest conversion photosynthetically fixed
CO2 into carbon biomass (40 %) occurred at pH 7 [225]. Moreover, the
same author studied cyanobacteria-microalgae consortia for treating
urban wastewaters within open ponds in different climes (temperate
oceanic and Mediterranean climates) [226]. The results of this work
showed how similar ecological successions were observed in the two
cases. Together with the microalgae, bacteria participated substantially
in the complete consumption of ammonia. The resulting competition for
NH₄+ influenced the removal efficiency levels of disCOD by bacteria and
PO₄3− by microalgae. A study of Peyrton et al. focused on the production
and characterization of polyols synthesized from microalgae extracted
oil [227]. A new foam incorporating 25 wt% biobased polyols was
proposed, demonstrating compliance levels comparable to a fossil-based
reference foam. Moreover, this study achieved a catalyst-free foam with
a density similar to the reference using a biobased triglyceride catalytic
polyol. In a comparative study, Morales et al. analyzed the immobilized
culture systems in large scale, i.e. systems in which the biomass grow
attached on the surface of a support medium. They offer various ad-
vantages over suspended counterparts, such as increased biomass pro-
ductivity and simplified harvesting and concentration processes [228].
A comparative life cycle assessment was conducted, evaluating the
environmental impacts, energy consumption, andmaterial requirements
of large-scale production of Tetraselmis suecica in both conventional
Open Raceway Ponds and Rotating Algal Biofilm systems. With identical
productivity levels, the environmental impacts were 26 % higher per
kilogram of biomass and 24 % higher per protein powder (algae meal).
Jimenez et al. in 2020 proposed the production of a slow-release fer-
tilizer using a Monoraphidium sp. microalgal strain, grown in a liquid
digestate which served as nutrient source [229]. The effect of the
microalgal biomass on tomato plants was positive, enhancing the plant
growth by 32 %. An interesting work, conducted by Zhang in 2020,
proposed a procedure to recovery biomolecules from microalgae
through a high voltage [230]. Nannochloropsis oculata microalga was
used and the process consisted in two steps, involving initial aqueous
extraction followed by secondary organic solvent extraction from
vacuum-dried microalgae. Moreover, the effects of high-voltage elec-
trical discharges (at 40 kV/cm, 4 ms pulses) were investigated, high-
lighting how the high voltage treatment improved the kinetic of vacuum
drying and significantly influenced the organic solvent extraction of
chlorophylls, carotenoids, and lipids. Clavijo Rivera studied a wet
biomass processing method, involving harvesting, cell disruption, and
fractionation of target compounds, with membrane filtration [231]. The
focus of the study was on the lipid recovery from aqueous extracts of
Parachlorella kessleri using cross-flow filtration eliminating the need for
costly drying procedures.

5.5. Italy

In Italy the research trend is equally divided between Agricultural
and biological sciences (18.3 %) and Environmental science (17.4 %)
and the most active research centre is the Consiglio Nazionale delle
Ricerche, with 83 published papers among 532. Casagli et al. described
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the evolution of the algae-bacteria ecosystem in an outdoor raceway for
wastewater treatment through a model named ALBA [232]. The model
incorporates mass balances of COD, C, N, P, H, and O, taking into ac-
count growth and interactions among algae, heterotrophic and nitrify-
ing bacteria, with local climate influencing light and temperature.
Calibration and validation were performed using data from a 56 m2

raceway in the South of France treating synthetic wastewater over>400
days. The ALBA model highlights the impact of paddle wheel regulation
on the ecosystem, emphasizing the need for optimal control to balance
mixing, aeration, and degassing effects efficiently. As reported by the
authors, this model can be used to support advanced control strategies,
including smart regulation of the paddle wheel velocity to balance the
mixing, aeration and degassing effects more efficiently. An interesting
genetic engineering study conducted by Perozeni et al. investigated the
possibility to employ synthetic redesign of the ab-carotene ketolase gene
to facilitate its constitutive overexpression from the nuclear genome of
Chlamydomonas reinhardtii, a microalga lacking the inherent ability to
synthesize high-value ketocarotenoids [233]. This optimized carotene
ketolase overexpression extended the native carotenoid biosynthesis,
resulting in a shift in the green algal colour to reddish-brown. Robust
overexpression allowed the conversion of up to 50 % of native carot-
enoids into astaxanthin and over 70 % into other ketocarotenoids. Di
Pippo et al., in a water pollution context, and the possible exploitation of
microalgae for wastewater treatment, used advanced techniques to
examine the tiny ecosystems formed on microplastics (plastisphere)
collected from lakes in Italy [234]. The plastic surfaces have their own
unique microbial communities, different from the surrounding water.
Despite some variations based on location, there was a consistent group
of microorganisms living on the plastic. Interestingly, the types of mi-
crobes didn’t change much with different plastic materials. Moreover,
less degraded plastics attracted generalist microbes, while more
degraded ones had a more diverse community. Bolognesi et al., in a
circular economy view and a wastewater treatment context, studied the
possibility of recycling sewage sludge and microalgae mixture for the
production of biochar. The proposed method involves a pyrolysis of a
mixed sludge/bioalgae matrix under various conditions. This approach
recovers a material with versatile potential end uses and eliminates re-
siduals destined for landfills. Moreover, the algae were subjected to
preliminary solvent oil extraction and the results indicated a significant
increase in biochar production (25–33 %). Lima et al. dedicated studies
to the effect of flashing lights on Nannochloropsis gaditana, Koliella
antarctica and Tetraselmis chuimicroalgae [235,236]. In fact, light pulses
are known to promoting growth or triggering the production of high-
value biocompounds in microalgae. Main results showed that in the
presence of flashing light conditions, a rise in lipid content and a
reduction in polyunsaturated fatty acids and chlorophyll occurred under
nutrient-deficient conditions, whereas contrasting effects are evident
under nutrient-abundant condition. Furthermore, subjecting concen-
trated cultures to low-frequency flashing light for a duration of four days
resulted in a three-fold increase in the productivities of eicosapentaenoic
acid and specific carotenoids [237]. In another work, Lima et al.
assessed the extraction of the sugar content and its conversion into 5-
hydroxymethyl furfural (5-HMF), used in small quantitative as alimen-
tary additive, to valorize the Chlorella sp. microalgal biomass [238]. In
the initial phase of the process, the authors tuned the pretreatment of
biomass using a combination of sonication and hydrothermal treat-
ments, complemented by the presence of acetic acid and SiO2 pellets.
This optimization aimed to achieve the maximum release of carbohy-
drates. The second step was carried out under hydrothermal conditions
and focused to the catalytic isomerization/dehydration of mono-
saccharides derived from previous reaction step. The process utilized
two commercially available niobium-based catalysts and led to 21 %
yield to 5-HMF on the total sugar, and 29 % in a reactive extraction
process. Regard the wastewater treatment with microalgae-bacteria
consortia, many studies were carried out using autochthonous micro-
algae [237,239]. In particular, the Chlorella sp., was proven as one of the

most effective autochthonous microalgae, in synergy with activated
sludges, leading to a total nitrogen removal of about the 77 % and total
phosphorus removal above the 60 %. Moreover, an increase in saturated
fatty acid production was monitored in presence of bacteria and the
residual microalgae biomass contained a high quantitative of carbohy-
drates that could be used in other applications.

5.6. Turkey

The 21.9 % of the 240 published articles in Turkey are related to
Agricultural and biological sciences and 17.2 % to Environmental sci-
ence, followed by the Energy issue (11.9 %). Among the most interesting
works, a research group in 2020 studied the effect of microplastics and
metal pollutants on the freshwater microalga Chlorella vulgaris
[240,241]. The main results show the response in growth and chloro-
phyll production of the microalga when 0.5 μm-sized polystyrene
microplastics at varying concentrations were present in the culture
medium. The authors have encountered no significant impact at lower
concentrations of microplastics (1 and 5 mg/l), while higher concen-
trations (50, 100, 1000 mg/l) led to a substantial reduction in the
growth and chlorophyll content of cells. Moreover, the combination of
microplastics with metals (Cu, Zn, Mn) exhibited greater inhibition of
growth and chlorophyll concentration. The results of these studies
represent an important step in the possible exploitation of microalgae in
the industrial wastewater treatment framework. Tarhan et al. used the
process water obtained from waste biomass hydrothermal carbonization
for Chlorella minutissima and Botryococcus brauniimicroalgae cultivation
[242]. An interesting use of Chlorella vulgaris biomass was proposed in
different studies [243,244] in which the biomass was used for the syn-
thesis of CuB, NiB, FeB catalyst, and sulphur and phosphorus doped
carbon catalysts. The resulting metal-free catalysts were utilized for
efficient hydrogen (H2) production from sodium borohydride (NaBH4).
Moreover, Saka et al., used Spirulina platensis cyanobacteria dried
biomass, pretreated with H3PO4, for the synthesis of supported-CoB
catalysts [245]. Also in this case, hydrogen obtained from NaBH4,
demonstrating how the microalgal biomass could be applied for efficient
catalytic reactions with a particular attention to the environmental
issue. Chlorella vulgaris was also studied as supplement in agriculture to
alleviate drought stress in broccoli plants subjected to water deficiency
[246]. The foliar application of microalgae mitigated the drought stress
effects, resulting in improved growth performance. Aghaalipour et al., in
a biological remediation point of view, studied the carbon dioxide
capture capacity in Scenedesmus obliquus, Monoraphidium contortum,
Psammothidium sp., and Chlorella vulgaris species [247] and in different
conditions. They found that Chlorella vulgaris showed the best growth
parameters and the vertical column was the best configuration of pho-
tobioreactor when fed with 10 % of CO2 gas.

5.7. Greece

The published works in Greece are oriented to Agricultural and
Biological Sciences (19.3 %) and Environmental Science (18 %). Met-
soviti et al. explored the impact of solar irradiance on Chlorella vulgaris
cultivated in open bioreactors within greenhouse conditions and
investigated the effects of the ratio of light intensity in different wave-
length ranges and artificial irradiation provided by red and white LED
lamps in a closed flat plate laboratory bioreactor on growth rate and
composition [248]. The trends in biomass, lipid, and protein pro-
ductivities as a function of light intensity were found in greenhouse
system laboratory bioreactor. Higher solar irradiance resulted in
increased growth, along with elevated lipid content in microalgal
biomass. In experiments conducted in the closed bioreactor, an increase
in the wavelength ratio correlated with higher specific growth rates and
biomass, protein, and lipid productivities. Furthermore, an increase in
light intensity using red and white LED lamps led to faster growth rates
and higher lipid content (up to 22.2 %). Another important study was
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carried out by Zarrinmehr et al. [249] focusing into the impact of ni-
trogen concentrations on the growth rate and biochemical composition
of Isochrysis galbana microalga. With low nitrogen concentration, cell
growth, pigments, and protein content in biomass exhibited a decline,
while carbohydrates reached their highest value, 47 %, when total ni-
trogen was absent. The most interesting aspect was the polyunsaturated
fatty acids (PUFAs) increment under sufficient nitrogen concentrations
(72 mg/l) compared to nitrogen deprivation. Conversely, the concen-
tration of saturated fatty acids (SFAs) was higher under nitrogen
deprivation than in cases of nitrogen sufficiency. Zkeri et al. compared
two treatment systems for medium-strength dairy wastewater. The first
system consisted of a methanogenic Moving Bed Biofilm Reactor
(AnMBBR) and an aerobic MBBR (AeMBBR), while the second system
included an AnMBBR and a sequencing batch reactor (SBR) with
Chlorella sorokiniana. [250]. The microalgae acclimatized to dairy
wastewater resulted in enhanced growth, with a protein content of 54.6
%, starch content of 3.4 %, and lipid content of 23.1 %. Pax et al. used
exhausted olive pomace for extracting valuable compounds to cultivate
the heterotrophic Crypthecodinium cohnii microalga [251]. The extrac-
tion was carried out through organosolv technology, using water,
organic solvents and an acid catalyst to break down the pomace and
extract components like sugars, galacturonic acid, and phenolic com-
pounds. The liquid fraction was then used as medium for the biomass
growing, suitable for biorefinery processes, in particular for the omega-3
fatty acids extraction. Koutra et al. instead used the digestate of an agro-
industrial effluent for growing Chlorella vulgaris [252]. The removal of
carbon, nitrogen and phosphorus reach up the values of 92 %, 77 % and
94 %, respectively. Moreover, the biomass was used in a biorefinery
context to extract antimicrobial compounds, tested with success on
Bacillus subtilis bacteria.

5.8. Algeria

Eighteen articles on microalgae are published in Algeria. One of the
most interesting works is proposed by Hasnaoui et al. The authors
studied an electrochemical photo-bioreactor to produce H2 from the
Arthrospira platensis microalga [253], achieving hydrogen evolution
rates of up to 27.49 and 13.37 mol of H2 d− 1 m− 3 for the anode and
cathode chambers, respectively, under 0.3 V voltage and ~2.5 mA
current, representing a 4-fold increase compared to the production rates
without voltage application. Keddar et al. in a study of 2020 used the
lyophilized biomass of Scenedesmus sp. to extract simultaneously anti-
oxidants with different polarity [254]. Supramolecular solvents with
various composition were used, produced with octanoic acid dissolved
in ethanol and water at pH of about 3. A yield of 1.04 mg/g of carot-
enoids was achieved, with a significant part of lutein, and of 10.29 mg/g
polyphenols, demonstrating how a green and efficient extraction of
bioactives compound is possible. In another important work of 2023,
Nouacer et al. studied the biosorption of Nickel in Auxenochlorella pro-
tothecoides microalga biomass immobilized in sugarcane bagasse [255].
Results showed that microalgae can also be applied in the removal of
metals from specific wastes, with a maximum adsorption capacity for
nickel of 62.1 mg/g.

5.9. Tunisia

Kahla et al. in 2021 [256], in view of wastewater treatment, exam-
ined the efficacy of the consortium of the benthic diatom Nitzschia sp.
and the associated bacteria in the removal of benzo(a)pyrene and fluo-
ranthene. The diatom, isolated from a Polycyclic aromatic
hydrocarbons-contaminated sediment in the Bizerte Lagoon (Tunisia),
was exposed to this pollutant over 7 days in both axenic and non-axenic
cultures. The diatom exhibited continuous growth under these condi-
tions and accumulated benzo(a)pyrene and fluoranthene with varying
efficiencies in axenic and non-axenic cultures. Biodegradation, the pri-
mary mechanism for Polycyclic aromatic hydrocarbon elimination, was

enhanced in the presence of bacteria, indicating the co-metabolic syn-
ergy of microalgae and associated bacteria. Elleuch et al. in 2021 studied
the Dunaliella sp. biosorption capacity for zinc and other metals in the
context of phytoremediation of contaminated wastewaters [257,258]. In
particular, the presence of zinc influenced the cell growth and photo-
synthetic pigment accumulation and reached a maximum zinc removal
of 98.95 %. In particular, the presence of zinc influenced the cell growth
and photosynthetic pigment accumulation and reached a maximum zinc
removal of 98.95 %. Khemiri et al. evaluated the effect of including
microalgal biomass in food [259,260]. In the first case, the Nanno-
chloropsis gaditana and Chlamydomonas sp. biomasses are used as sources
of protein in gluten-free bread. The microalgae-enriched bread resulted
in higher proteins and lipids content compared to the control bread
[259]. In the second case, the authors introduced an innovative ricotta
cheese incorporating Chlorella sp. as a functional ingredient, maintain-
ing the traditional manufacturing process and preserving acceptable
sensory attributes [260]. Karray et al. proposed a novel process for the
treatment of the olive mill wastewater, involving an anaerobic co-
digestion, an ultra-filtration and a following microalgae treatment
[261]. Scenedesmus sp. specie was used in the culture with the aim of
producing valuable biomass. The maximum productivity in terms of
biomass was 0.15 g/l day in a medium consisting of 25 % of filtrated
digestated. The maximum nitrogen removal rate was 15.18 mg/l day
and the phosphorus and phenolic compounds were almost totally
eliminated. Dammak et al. studied stress factors, such as presence of
nickel, chromium and cobalt in the growth medium and high irradiance
or nitrogen depletion on the lipid production of Tetraselmis sp. microalga
[262,263]. They assessed this microalga specie as a good heavy metals
bio accumulator and at the same time suitable for biodiesel production,
due to the high value of produced lipids.

5.10. Israel

58 articles are published in Israel about microalgae, 31.6 % of which
in the Agricultural and Biological Sciences field. Among the most
interesting ones, Harvey & Ben-Amotz outlined a path towards large-
scale industrial production of 9-cis beta-carotene through biotech-
nology utilizing Dunaliella salina biomass, enhancing downstream pro-
cessing efficiency by employing naturally hyper-accumulating
carotenogenic strains and leveraging red [264]. Shkolnikov Lozober
et al. studied the gelation, i.e. an important techno-functionality for
novel protein sources, and characterized the Spirulina protein concen-
trate gel [265]. Moreover, they explored the enhancement of gel prop-
erties through high-pressure homogenization prior to thermal gelation.
While the high-pressure homogenization increased the protein solubility
by 91 %, the gelation occurs at pH 6.5 as inferior limit, due to the
insufficient protein solubility. Grossman et al. proposed a treatment
system for food processing wastewater, using two local thermotolerant
strains of Coelastrella sp. and Chlorella sp. [266]. The wastewater un-
derwent treatment employing an anaerobic membrane bioreactor, fol-
lowed by polishing through outdoor photobioreactor cultivation of
microalgae, with biomass productivity ranged from 0.25 to 0.8
g⋅l− 1⋅day− 1, while surplus sludge underwent treatment via hydrother-
mal carbonization. The effluent met the standards for irrigation use
water and an energy production stem as biogas and hydrochar was also
proposed to comply with a near-zero discharge process. Liberman
studied the antimicrobial potential of polysaccharides produced by
three different red microalgae species [267]: Porphyridium sp. (seawater
species), Dixoniella grisea (brackish water) and Porphyridium aerugineum
(freshwater). They added zinc and chitosan to increase the antimicrobial
effect for wound-dressing materials use, founding that these hydrogels
offered a synergistic combination of the antimicrobial and wound-
healing benefits of chitosan and zinc, combined with the bioactivities
and rheological properties of red microalgal sulphated polysaccharides.
In the context of pharmaceutical contaminants in wastewaters, Akao
et al. focused the attention on the degradation of iohexol, a contrast
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agent used for X-ray imaging technique [268,269]. The study showed
how the microalga Chlorella vulgariswas able to remove the pollutant: in
27 days 40–50 % of iohexol was eliminated from the medium, with
23–30 % of the agent biodegraded, demonstrating the versatility of this
microalgal specie in the reclamation of polluted waters.

Shrestha et al. proposed the Coelastrella sp. freshwater microalga
biomass as fertilizer for wheat grain [270]. Results showed that, despite
the wheat yield was not affected by the use of microalgae-based bio-
fertilizers, the emission of nitrogen oxide from soils was significantly
reduced compared to the urea fertilizers. These results open newways in
the use of fertilizers with low impact to environment and human health.

6. Conclusions

This review evaluates the Mediterranean microalgal biodiversity
from a technological point of view, focusing on the critical steps of
microalgal bioprocessing and the tools for assessing sustainability.
Through bibliometric analysis of works on microalgae published be-
tween 2020 and 2023 in the Mediterranean area, we observed prevalent
keywords related to pharmaceuticals and nutraceuticals, biostimulants
or feed, wastewater treatment, bioreactors, kinetics or modelling, and
biorefinery. The assessment of microalgal diversity revealed common
characteristics among Mediterranean microalgae, such as low half-
saturation constants and acclimation to high light intensity, making
themwell-suited for specific technological applications. While exploring
new microalgae for technological applications may contribute to
biodiversity conservation efforts, many microalgal species remain un-
derexploited, presenting opportunities for novel applications. However,
the main insight which emerges from an accurate analysis of the sci-
entific literature analysis, is that Mediterranean diversity constitutes the
true richness that enables various microalgal species to be applied across
a wide range of processes. This review serves as a starting point to
identify literature gaps and new applications, facilitating the expansion
of algal research and industry in the Mediterranean area.
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R. Irusta-Mata, Removal of veterinary antibiotics in swine manure wastewater
using microalgae–bacteria consortia in a pilot scale photobioreactor, Environ.
Technol. Innov. 31 (2023) 103190, https://doi.org/10.1016/j.eti.2023.103190.
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Obtaining highly pure EPA-rich lipids from dry and wet Nannochloropsis
gaditana microalgal biomass using ethanol, hexane and acetone, Algal Res 45
(2020) 101729, https://doi.org/10.1016/j.algal.2019.101729.

[193] L.T. Arashiro, M. Boto-Ordóñez, S.W.H. Van Hulle, I. Ferrer, M. Garfí, D.P.
L. Rousseau, Natural Pigments from Microalgae Grown in Industrial Wastewater,
Bioresour Technol 303, 2020, https://doi.org/10.1016/j.biortech.2020.122894.
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G. Pinna-Hernández, D. de Jesus Assis, J.L.C. López, G. Acién, Influence of culture
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