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Abstract: Computational models of turbofans that are oriented to assist the design and testing of

innovative components are of fundamental importance in order to reduce their environmental impact.

In this paper, we present an effective method for developing numerical turbofan models that allows

reliable steady-state turbofan performance calculations. The main difference between the proposed

method and those used in various commercial algorithms, such as GasTurb, GSP 12 and NPSS, is

the use of neural networks as a multidimensional interpolation method for rotational component

maps instead of classical β parameter. An additional aspect of fundamental importance lies in the

simplicity of implementing this method in Matlab and the high degree of customization of the

turbofan components without performing any manipulation of variables for the purpose of reducing

the dimensionality of the problem, which would normally lead to a high condition number of the

Jacobian matrix associated with the nonlinear turbofan system (and, thus, to significant error). In

the proposed methodology, the component behavior can be modeled by analytical relationships and

through the use of neural networks trained from component bench test data or data obtained from

CFD simulations. Generalization of rotational component maps by feedforward neural networks

leads to an average interpolation error up to around 1%, for all variables. The resulting nonlinear

system is solved by a combined genetic algorithm and least squares algorithm approach, instead

of the standard Newton’s method. The turbofan numerical model turns out to be convergent, and

results suggest that the trend in overall turbofan performance, as flight conditions change, is in

agreement with the outputs of the GSP 12 software.

Keywords: turbofan; neural network; genetic algorithm; nonlinear modeling; least square method

1. Introduction

The need to develop more efficient and environmentally friendly engines is driven, on
the one hand, by the trend of more stringent green regulations [1], with the EU as a pioneer
in this field [2], and, on the other hand, by increasing fuel cost. Such a class of engines
will use new, sophisticated, highly efficient components with operative behaviors that are
significantly different from the standard components currently in use. In this scenario, new
computational models, oriented to assist the design and test of new components, are of
fundamental importance. Turbofan simulations have become more and more reliable and
feasible over time due to the continuous increase in computing power and an increasingly
multidisciplinary approach to the subjects involved, such as aerodynamics, acoustics,
combustion, and materials [3]. In this paper, we present a new effective numerical method
that allows reliable steady-state turbofan performance calculations in which components
are operated, generalizing the component maps data using artificial neural networks
(ANNs). One of the main differences between the proposed method and the one used
in various commercial algorithms, such as GSP 12 [4] and NPSS [5], is the absence of
the β parameter (GSP 12) or linear piecewise (NPSS) interpolation for the interpolation
of fan, compressor, and turbine maps (Table 1). The β parameter is used, in most of the
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formulations, as an interpolation method in gas turbine simulation programs as it allows
the identification of the operating point from only two parameters (β, N) instead of four
(fixed-geometry component) or five (variable-geometry components) (N, W or WN, π, η,
δ), thus avoiding problems of convergence and accuracy [6]. In the case of a compressor,
the linear variant of beta interpolation involves first defining a beam, more or less dense
depending on the degree of accuracy required, of parallel lines (each defined by a value
of β) to the surge line and then calculating the points of intersection of each of these
lines with each curve at constant corrected speed. Such an intersection point identifies,
from the beta/N coordinate pair, the corresponding values of corrected flow rate, pressure
ratio, and efficiency (W, π, η). Finally, a 2D linear or higher-order interpolation is applied.
In the actual implementation of the method, β interpolation was replaced by implicit
equations derived by using neural networks, which were trained from four experimental
datasets (associated with variables N, W or WN, π, η) divided into two sets of input data
and two sets of output data. This technique can also be used to model, by ANN, any
component, other than turbines or compressors, for which we have sufficient experimental
or numerical data associated with the variables describing their operation. Modeling
real components using maps requires a large amount of experimental data, which could
have some economic and time impact: for this reason, in the present paper, we open the
possibility of performing a limited number of experimental tests (from the GSP 12 map
database), which are interpolated using piecewise functions, thus allowing the identification
of intermediate operating points between two experimentally detected operating points.
A further relevant aspect of such a turbofan model is the possibility of adding/removing
components by simply adding/removing the respective equations describing its operation
(see Section 2.1): a model being made up of a large number of variables (more than 40)
could lead to a high condition number of the Jacobian matrix associated with the system
of nonlinear equations (and, thus, a significant error). However, thanks to the scaling
mode introduced (in Section 2.8), such errors are significantly contained and results are
in good agreement with GSP 12 outputs. The proposed model uses an heuristic method
(genetic algorithm, GA) combined with a gradient method (least squares, LSQ) in order
to solve the turbofan problem whose components are represented by nonlinear equations
or maps (Table 1). Such a combined approach allows the mitigation of the disadvantages
of both individual methods: the LSQ needs an initial guess solution close to the actual
solution and has a high convergence speed, while, in contrast, the GA does not need any
initial guess, but only the definition of upper and lower boundary for the solution, and
has a significantly lower convergence speed [7]. The combined approach, thus, makes
it possible to obtain a robust iterative algorithm with good convergence and precision.
These properties are even more important when the turbofan considered is assembled
with unconventional/innovative components, which makes the choice of an appropriate
initial guess solution even more uncertain, moving it significantly away from that of a more
conventional turbofan. Thus, the turbofan modeling method developed here can serve as a
basis to simulate advanced and innovative components, such as ultra-high-bypass fans,
advanced burners, variable-geometry compressors, and cooled turbines.

Table 1. Comparison between turbine simulation algorithms.

Code Solver Interpolation Meth.

Proposed GA + LSQ ANN
GSP 12 Newton Raphson β
NPSS Newton Raphson linear piecewise
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2. Methods

In Section 2.1, we first introduce the nonlinear equations system used for modeling
the turbofan and propose equations for the rotating components obtained by feedforward
neural networks. We then choose the Rolls-Royce Trent 1000 as the reference turbofan to
run the off-design performance simulation and give performances in the cruise condition,
which are used as input parameters for the present model (Section 2.2). However, unlike
the classic two-spool engine architecture, in this article, in order to reduce the complexity
a little in the implementation of the code, we opted for a configuration in which the LP
turbine drives the fan only (instead of fan + LP compressor). Next, we briefly present
the theoretical concepts behind genetic algorithms, least square method (Section 2.3),
feedforward neural networks (Section 2.4), and their actual use in Matlab via built-in
solvers. In Section 2.5, we highlight the parameters of population size, max generation,
and crossover fraction necessary for the operation of the genetic algorithm solver and
provide, for both solvers, a common expression for the objective function ( f unobj) whose
minimization allows the performance of the turbofan to be derived. In Section 2.6, we
illustrate the reasons behind the choice of the feedforward neural network as the network
for modeling the fan, compressor, and turbine, along with a brief explanation of the training
methods, the choice of the number of layers/neurons, and the performance (as measured
by the MSE, mean square error) of the networks. In Section 2.7, we introduce an overall
algorithm for calculating turbofan performance, which uses the elements illustrated in the
previous sections: this algorithm is divided, for ease of understanding, into three functional
blocks, which perform well-defined tasks. Finally, in Section 2.8, we illustrate the scaling
algorithm, which provides scaling factors for the rotating component maps and a guess
solution to initialize the performance calculation algorithm.

2.1. Turbofan Nonlinear Equations System

The turbofan model (Figure 1), adopted as example, consists of a system of 44 nonlin-
ear equations in 44 unknowns. These equations represent the thermodynamic model of
each turbofan component in addition to other equations derived from matching relations
regarding the power balances of the HP and LP shafts as well as the equality of rotation
speeds of the fan and LP turbine, and the compressor and HP turbine.

Figure 1. Turbofan main components [8].

The air intake was modeled as an adiabatic component with viscous losses defined by
πint (Equation (1)).
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Each rotating component is described by means of two implicit relations appropriately
scaled by a factor f actscal (see Section 2.8), obtained from feedforward neural networks
training, in particular Equations (2) and (3) for the fan and compressor [9], and Equations (4)
and (5) for the turbine (where WN is the product of the correct flow rate and the correct
rpm value).



















W

f actscalW

= f1c(
N

f actscalN

,
π

f actscalπ

)

η

f actscalη

= f2c(
N

f actscalN

,
π

f actscalπ

)
(2)



















W

f actscalW

= f1 f
(

N

f actscalN

,
π

f actscalπ

)

η

f actscalη

= f2 f
(

N

f actscalN

,
π

f actscalπ

)
(3)



















N

f actscalN

= f1tHP
(

WN

f actscalWN

,
π

f actscalπ

)

η

f actscalη

= f2tHP
(

WN

f actscalWN

,
π

f actscalπ

)
(4)



















N

f actscalN

= f1tLP
(

WN

f actscalWN

,
π

f actscalπ

)

η

f actscalη

= f2tLP
(

WN

f actscalWN

,
π

f actscalπ

)
(5)

The adiabatic modeling and the total pressure relations were also applied to the
fan (Equation (6)), compressor (Equation (7)), HP turbine (Equation (8)), and LP turbine
(Equation (9)).
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Further equations relate to the compressor–HP turbine (Equation (10)) and fan–LP
turbine mass flow balance (Equation (11)), the compressor–HP turbine (Equation (12)) and
fan–LP turbine power balance (Equation (13)), the compressor-HP turbine and fan–LP
turbine speed equality (Equations (14) and (15), respectively), and the definitions of WNtHP

(Equation (16)) and WNtLP (Equation (17)).

πc =
(1 + f )NtHP

πbWNtHP
Wc

√

Tt4

Tt2 f
(10)
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The burner was modeled as a nonlinear component and defined by the quantities πb

and ηb (Equation (18)) (where b1 and b2 are characteristic parameters of the burner [10]). In
addition to those relations, energy balance across the burner was considered (Equation (19)).
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The nozzle was modeled as an isoentropic component where two regimes of operation
can be distinguished depending on whether the discharge is sonic (Ma6 = 1) or subsonic

(Ma6 < 1). Specifically, defining rcrit =

(

γ′−1
2 M2

5+1

1+ γ′−1
2

)

γ′

γ′−1

and r = P6
Pt5

for the core nozzle, in

the case in which r > rcrit, the outflow is subsonic and Equation (20) holds.
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Differently, in the case in which r < rcrit, the core efflux is sonic and Equation (20)
holds with the only exception that P6 = Pt5rcrit. Similar equations hold for the bypass
nozzle. The remaining equations define the static properties upstream of the nozzles from
their total properties (Equation (21) where i = f , c).
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Each of the 44 equations is first brought into its homogeneous form ( f (x⃗) = 0) and
then normalized by dividing the homogeneous function itself by the physical quantity it
represents: for this purpose, the normalization of Equation (19) is given in Equation (22).

fi(x⃗) = Tt4 −
f ηbHi + cpTt3

c′p(1 + f )
= 0 → fnormi

(x⃗) =

(

Tt4 −
f ηb Hi+cpTt3

c′p(1+ f )

)

Tt4
= 0 (22)

The 44 normalized equations ( fnormi
(x⃗) = 0) are then brought together in a non-

linear system (Equation (19)), associated with a vector of the unknowns x⃗ (which are
essentially a collection of the physical quantities contained in the left-hand member of the
non-normalized equations shown above).

F⃗norm(x⃗) = 0⃗ (23)

2.2. Reference Model

The engine model used as reference is the Rolls-Royce Trent 1000 and its design
parameters, derived from the type certificate [11] and ICAO databank [12], served as the
basis for the selected cruise quantities in Table 2a.

The knowledge of πc, π f , α, ṁtot, and F in cruising conditions allowed us to estimate,
through an inverse preliminary performance study [13], the value of Ae and Abyp, which

were 0.41 m2 and 3.20 m2, respectively; this was essentially performed by gradually varying
the value of Ae until the value of thrust under cruise conditions (Fcruise) shown in Table 2a
was obtained. Consequently, Abyp was also derived. In the absence of data provided by

the manufacturer, component efficiencies in Table 2b and f = 1
42 were assumed. In the

following sections, the parameters b1 and b2 are assumed equal to 0, and ηbd is set equal
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to 0.96 in order to facilitate the comparison of the outputs with those of GSP 12; finally,

Hi = 43.26 KJ
Kg .

Table 2. (a) Trent 1000 performance in cruise. (b) Component efficiencies in cruise.

(a)

Characteristic Value

πc 32.85
π f 1.54
πint 0.98
πb 1.00
α 9.12

ṁtot 467.00
Kg

s
Fcruise 63.82 KN
N′

tLP 2683 rpm
N′

tIP 11,164 rpm
N′

tHP 11,164 rpm

(b)

η Value

η f 0.91
ηc 0.90
ηtHP 0.93
ηtLP 0.93
ηb 0.96

2.3. Genetic Algorithm and LSQ Solver

The need for the use of the genetic algorithm (GA) arises from the possibility that, for a
given flight condition, the initial guess solution, provided by the preliminary performance
analysis (Section 2.7), may be relatively far from the actual nonlinear system solution. A
GA is a heuristic approach based on the theory of natural evolution, which has been the
subject, for decades, of numerous studies concerning its use in the resolution of nonlinear
systems of different complexity and size [14]. The application of the GA in the resolution
of such systems passes through the definition of a fitness function ( f unobj) that allows the
transformation of the problem itself into one of optimization. Many forms of f unobj have
been proposed. They range from the sum of the absolute values of the single functions [15]
up to quadratic expressions [16]; however, there is no clear superiority of one over the other.
In this method, the fitness function was chosen equal to f unobj(x⃗) = ∑

n
i=1 fnormi

(x⃗)2, where
n = 44 is the dimension of the solution vector x⃗ and fnormi

is defined in Section 2.1. The
genetic algorithm process starts by defining a fitness function and a genetic representation
of the solution domain: usually, solutions are represented as an array of bits (0 and 1) in
order to allow typical genetic operation, such as crossover and mutation, to be conducted
more easily. Then, an initial population of solution (consisting of hundreds or thousands

of candidate solutions) is generated, usually randomly, within given lower (⃗lb) and upper
boundaries (u⃗b). Individual solutions are then selected through a fitness-based process,
which essentially consists of choosing the solutions that best minimize f unobj. The next
step is to generate a pool of solutions (children) from those previously selected (parents):
for this purpose, the crossover technique is used, which consists of breeding two parent
solutions in order to produce one child solution. This operation is repeated several times
in order to generate a desired number of child solutions. In order to make the genetic
patrimony more heterogeneous, a portion of the population is subjected to the mutation
operation, which consists of changing part of the genetic patrimony of the single solution
(i.e., replacing 1 with 0 and vice versa). This operation reduces the risk of premature
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convergence, a situation in which the solution of f unobj becomes stuck in a local minimum.
Similarly, a fitness function was also defined for the LSQ solver (the same one chosen for
the GA algorithm). Both the LSQ and GA solvers aim to find x⃗ that minimizes f unobj(x⃗),
which coincides with the solution of the system of nonlinear equations. The combined use
of the two techniques allows us to mitigate the disadvantages associated with the single
algorithms; in fact, unlike the methods based on the local gradient of a function (LSQ), the
GA has the advantage of reducing the probability of incurring a local minimum, which
is very common in the case of functions with multiple local minima, at the expense of a
higher computational cost.

2.4. Feedforward Neural Networks

In the turbofan under consideration, rotating component maps were considered,
whose behaviors were generalized through ANN. In this regard, a careful review of the
literature suggested, for the compressor ANN modeling, the use of feedforward neural
networks consisting of a small number of layers [17] and an empirically determined number
of neurons such that the MSE is minimized: in particular, a study conducted on a dataset of
54 experimental points led to an average error on the π and Wc of a compressor of about
1% [18]. In the following implementation of this method, a feedforward architecture with
5 hidden layers is adopted, in which the connections between the various nodes do not
form loops, or information flows unidirectionally from input xi to output yi. First, the
input xi is normalized, i.e., its mean is subtracted and is, in turn, divided by the standard
deviation. Then, the normalized input (xnormi

) reaches a specific neuron within the first
hidden layer, which multiplies it by its weight (wij) and adds it to its bias (bij); this result is
filtered by an activation function, chosen here as the hyperbolic tangent sigmoid function
(tansig) (Equation (24)). This process is repeated for all the inner layers until the output
layer is reached. The last layer output is a normalized value (ynormi

) which needs to be
denormalized in order to obtain the ANN output value (yi).







































l1 = tansig(w1xnormi
+ b1)

li = tansig(wili−1 + bi)

ynormi
= tansig(w6l5 + b6)

xnormi
=

xi − xmean

δstdx

yi = ynormi
δstdy

+ ymean

(24)

Training was performed using Levenberg–Marquardt algorithm. Networks of all the
rotating components were built in Matlab with the feedforwardnet command using 5 hid-
den layers of different size of neurons, each listed in Table 3: the choice of this parameter
stems from the need to achieve good network performance without data overfitting phe-
nomena. All networks have 2 inputs (N e π for compressor and fan, WN e π for turbines)
and 2 outputs (W e η for compressor and fan, N e η for turbines).

Table 3. Neuron count per layer.

Component Map Neurons

Fan 6
Compressor 6
HP/LP turbine 8
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2.5. GA and LSQ Matlab Implementation

A GA algorithm was implemented in Matlab [19] and called by the “ga” function
which required the definition of several parameters such as population size, maximum
generation, and crossover fraction, as shown in Table 4: in this regard, as specified in [20],
we decided to maintain a high crossrate value (0.9) in order to be able to reduce the
population size.

Table 4. GA options.

Feature Value

Population size 300
Max generation 30
Crossover frac. 0.9

In the same way, the LSQ solver was invoked in Matlab by the “lsqnonlin” com-
mand [21] and required the definition of additional parameters such as the starting point

(⃗x0), u⃗b, and l⃗b and the max number of iterations (set to 500).

2.6. Modeling Rotating Components with ANN

The database containing the rotational component maps was imported from GSP 12.
Data for the individual component were then subjected to piecewise linear interpolation,
via the Matlab function “interp1”, which allowed the size of the individual database
to be increased, maintaining a faithful representation. This last operation was necessary
because neural networks require a large amount of data for their proper training. Next, data
normalization was performed after estimating the mean value and standard deviation of the
dataset obtained by interpolation: normalized data were then used to train a feedforward
neural network. The specific configuration of the neural network was defined using the
“feedforwardnet” function, while the training was carried out using the “train” function
and the network parameters in Table 3. During the network testing phase, mean squared
error values for each network were estimated and are reported in Table 5a; in addition to
these, in order to better characterize the error on the outputs, the mean percentage errors
(x̄ %), the maximum percentage errors (errmax %), and their standard deviations (σ %) were
calculated (Table 5b).

Table 5. (a) Mean squared errors for turbofan rotating components (values refer to the test dataset).

(b) Mean percentage errors x̄ %, max percentage errors errmax %, and standard deviations σ % for the

compressor, fan, and turbine output variables (values refer to the test dataset).

(a)

MSE Value

Fan 2.03 · 10−4

Compressor 5.14 · 10−4

Turbine 2.87 · 10−6

(b)

Error Measures Wc ηc Wf η f NtHP ηtHP

x̄ % 0.82 0.08 0.59 0.05 0.04 0.03
σ % 1.63 0.11 1.71 0.06 0.04 0.04
errmax % 16.47 1.13 19.63 0.58 1.19 2.56

A careful analysis reveals that the highest percentage error points tend to be located,
for both the fan and the compressor, along the stall regions and more at a low to medium
N (Figure 2).
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Figure 2. Compressor local error map for different N constant curves.

2.7. Hybrid LSQ—GA Solver

Using the elements described in the previous sections, an algorithm for calculating
the performance of a turbofan was formulated: such performances are presented in the
form of operating lines on component maps and overall performance as function of f (see
Section 3.1). This algorithm is based on the interaction of 3 functional blocks (Figure 3),
which perform the specific tasks listed below:

• Preliminary design calculation (Figure 4);
• Nonlinear solution calculation (Figure 5);
• Nozzles condition check (Figure 6).

Figure 3. Interactions between the three parts of the algorithm.

Figure 4. Preliminary design calculation in Figure 3.
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Figure 5. Nonlinear solution calculation in Figure 3.

Figure 6. Nozzles condition check in Figure 3.

Preliminary design calculation was realized according to [9,13]. Preliminary design
calculation (Figure 4) begins by setting both core and bypass nozzle state to chocked on the
first iteration, then the preliminary solution is computed starting from the second iteration
preliminary design inputs (πint ,π f , πb, πc, η f , ηc, ηb, ηtLP

, ηtHP
, α) of scaling algorithm

(see Section 2.8 for more details), with the desired value of Ma0, z, and an initial value
of f = fmax; other input data are Ae and Abyp. Specifically, the fmax is chosen close to
the fcruise but greater than it, and, defining ϵ = fmax − fcruise, we have that ϵ increases as
the altitude decreases (see Table 6 as an example). Preliminary design calculation output
(⃗xpr) is a 44-element vector which is essentially a rough estimation of vector x⃗ (turbofan
performance): x⃗pr constitutes the input for the nonlinear solution calculation.
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The nonlinear solution of Figure 5 starts by first calculating the lower (⃗lb) and the
upper (u⃗b) boundary necessary to run the GA solver: this is simply conducted by setting

l⃗b = 0.1 · x⃗pr and u⃗b = 10 · x⃗pr. The nonlinear solution block calls the turbofan normalized
equations system, described in Section 2.1, and requires as input, in addition to the selected
flight condition ( f , Ma0 and z), x⃗pr, Mai (Mach value of the flow for each engine section
given in Table 7), Abyp, Ae, πint, b1, b2, ηbd, and the scaling factors ( f actscali ). In actuality,
the value of Mach in the engine sections varies in off-design conditions; nevertheless, the
variation is very small and has a negligible impact on performance. Scaling factors are
determined using procedures explained in Section 2.8.

Table 6. Trent 1000 flight conditions for operating lines.

Flight Phase z [m] Ma fmax fmin ∆ f

cruise 11,000 0.85 0.0263 0.0168 1.6354 · 10−4

climb 1 7000 0.6 0.0263 0.0168 1.6354 · 10−4

climb 2 5000 0.45 0.0270 0.0168 1.7560 · 10−4

take off 0 0.20 0.0312 0.0181 2.4718 · 10−4

static 0 0 0.0312 0.0181 2.4718 · 10−4

Table 7. Mach hypothesis at the component inlet section.

Fan Compressor Burner LP Turbine HP Turbine Byp Nozzle Core Inlet

0.40 0.40 0.40 0.30 0.40 0.40 0.40

The nonlinear equation system is solved through a combined approach that involves
the use of the GA solver first and then the LSQ solver: now, if the LSQ solver fails to
compute the solution (⃗x) with an error, measured by the squared norm of the residual (with
i-th residual defined as f uni(x⃗)), higher than 10−20, this solution is discarded and the GA
solver recalculates again starting from x⃗pr, generating a new population of solutions.

The nonlinear solution is then passed to the nozzle condition check block (Figure 6) in
order to check whether the assumptions previously made on the nozzles were corrected. If
positive (or P6 > P0 and P7 > P0), the algorithm decreases the value of f by a fixed ∆ f , sets
the value of the design parameters (π f , πb, πc, η f , ηc, ηb, ηtLP

, ηtHP
, α) equal to their value

found in the vector x⃗, and sends them to the preliminary design block. Thus, a new iteration
can start from preliminary design calculation (Figure 4). If negative, the nozzle conditions
are changed, imposing different core/bypass nozzle conditions (see Equation (20)), and the
entire process is repeated with the same f , in particular:

• If P6 > P0 and P7 <= P0, chocked core/unchocked bypass nozzle condition are set;
• If P6 <= P0 and P7 > P0, unchocked core/chocked bypass nozzle condition are set;
• If P6 <= P0 and P7 <= P0, unchocked core/unchocked bypass nozzle condition are set.

Because of what was stated above, following each iteration from the successful out-
come, the value of f is decremented by ∆ f . In the case where the objective is the determi-
nation of the operating line, the algorithm continues until a value of f corresponding to
low engine speeds is reached ( f = fmin), while in the case where performance for a specific
flight condition (Ma0, z, f ) is of interest, it will be necessary to choose very small values of
∆ f such that, after a certain number of iterations, the desired value of f is intercepted. The
procedure shown in this section is used in Section 3.1 to generate the operating lines on the
rotating component maps as well as the performance values at certain flight conditions.
Table 8 summarizes the fixed parameters and variables illustrated in the above algorithm.



Int. J. Turbomach. Propuls. Power 2024, 9, 27 13 of 20

Table 8. Summary of fixed and variable parameters.

Type Parameter/Variable List

Fixed parameter Abyp, Ae, M0, z, fmax, fmin, ∆ f , πint, Mai, b1, b2, ηbd, f actscali
Variable All other quantities

2.8. Map Scaling

The database for constructing the maps used in this paper was exported from GSP 12
software. However, the use of these maps was subject to a scaling operation since generic
maps of compressors and turbines are used in the present paper, which must be appro-
priately scaled to ensure a given design operating point position on maps. Map scaling
consists of determining the scaling factors ( f actscal (see Equation (2)) for Equation (5)) to
be applied to each of the 4 variables of the fan/compressor (N, W, π, and η) or turbines
(N, WN, π, and η). A comprehensive description of the standard scaling procedure of
rotary component maps performed by GasTurb 13 software can be found in [22]; the same
modalities apply to GSP 12. The scaling operation proposed in this software consists of
multiplying each map by a correction factor, calculated as the ratio between the value
calculated in the preliminary design phase (varpr) and that provided by a reference point
on the map (varmap) (Equation (25) where var are map variables).

f actscal =
varpr

varmap
(25)

However, a slightly different scaling method is used in this work. Such use is made
necessary by the need to partially compensate for numerical inaccuracies caused by moder-
ate conditioning of the nonlinear system. The present scaling algorithm basically consists
of the algorithm proposed in Section 2.7 plus some modifications, which are detailed below:
we will explain the scaling operation of π f , and similar steps are performed simultaneously
for all the remaining design parameters. The scaling algorithm is iterated 2 times. The first
iteration (i = 1) begins by setting inputs as in Equation (26), where π f guess is first assumed
as in Table 2a,b, and ki is initially set to 1.

π f pr(i)
=

π f guess

k(i)
(26)

The preliminary design solution (π f pr(i)
) is then computed and f actscal(i)

is derived

from Equation (27) as a function of k(i), π f pr(i)
and the position on the original map (π f map).

f actscal(i)
=

π f pr(i)

π f map
· k(i) (27)

Using π f pr(i)
and f actscal(i)

, the nonlinear solution (π f(i)
) is then calculated, which is

used to determine the parameter k(i+1) (Equation (28)) and a new iteration begins.

k(i+1) = k(i) ·
π f(i)

π f guess

k(i)

(28)

This process ends at i = 2 and the same scaling procedure is performed simultaneously
for all other design parameters. The scaling process is considered to be successful only
if the results of the second iteration (i = 2) of the scaling process provide performance
very close to that shown in Table 2a,b; if not, it would be necessary to slightly vary the
guess design parameters (π f guess, etc.) by increasing or decreasing that value depending
on whether one obtained, in the second iteration (i = 2), a value smaller or larger than
the value shown in Table 2a,b. This variation procedure is performed manually, but the
authors reserve the possibility to create, in a future article, a routine that automates this
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process as well. The scaling factor obtained in the second iteration ( f actscal2) is used as
definitive value of the scaling factor, while the second preliminary design input (xpr2) is
used to initialize the solution of the turbofan simulation in Section 2.7, as shown in the
diagram in Figure 7. This scaling procedure makes it possible to compensate for most of
the errors introduced in the computational phase of the solution of the nonlinear system,
which arise from a moderate condition number of the Jacobian matrix associated with the
system of equations.

Figure 7. Overall turbofan simulation algorithm including scaling block.

3. Results

In this section, results of the numerical simulations are reported in the form of operat-
ing points on the rotating component maps and overall turbofan performance (F and ṁ f uel)
as function of f .

3.1. Performance Evaluation for Relevant Flight Phases and Comparison with GSP 12

Simulations are performed for the different flight phases: they vary from cruising
condition to static operation at sea level (Table 6).

These results are reported both in the form of steady-state operating points on the
various maps (Figures 8–11) and in the form of graphs for the overall performance
(Figures 12 and 13) as f varies. In particular, current algorithm validation is obtained
through comparison with simulations carried out with GSP 12 software [4], which is
provided with the same data as in Table 2a,b. Validation simulations are carried out for
values of z and Ma0 reported in Table 6 in correspondence with four distinct values of f
in the interval between fmax and fmin (Table 9): the current algorithm operating points are
identified in Figures 8–11 using circle markers, while GSP 12 points are identified using
square markers.
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Table 9. GSP points flight conditions.

Flight Phase f1 f2 f3 f4

Cruise 0.0263 0.0232 0.0199 0.0168
Climb 1 0.0263 0.0232 0.0199 0.0168
Climb 2 0.0270 0.0237 0.0202 0.0168
Take-off 0.0312 0.0266 0.0216 0.0183
Static 0.0312 0.0266 0.0216 0.0182

More extensive simulations aimed at identifying the operating line are performed for
the same conditions in Table 6 using around 48 to 54 values (depending on the flight phases)
of f between fmax and fmin spaced apart from each other by ∆ f (Table 6). Figures 8–11
show the variation of π f , πc, πtLP, and πtHP as a function of the respective corrected mass
flow rates W or WN (in the case of turbines), as f varies, starting from the right (where
f = fmax) to the left ( f = fmin), forming the operating line. It can be seen how the resulting
operating line is in agreement, with a fair margin of error, with the trend resulting from the
data provided by GSP 12.

Figure 8. Operating lines on maps for z = 11,000 m and Ma0 = 0.85 as f decreases from 0.0263

to 0.0168.
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Figure 9. Operating lines on maps for z = 5000 m and Ma0 = 0.45 as f decreases from 0.0270

to 0.0168.

Figure 10. Operating lines on maps for z = 0 m and Ma0 = 0.20 as f decreases from 0.0312 to 0.0183.
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Figure 11. Operating lines on maps for z = 0 m and Ma0 = 0 as f decreases from 0.0312 to 0.0182.

Similar considerations also apply to Figures 12 and 13 (where lines are used for
simulation results while GSP 12 points are depicted by symbols), which show a nearly
linear trend of ṁ f uel and F as function of f , in very good agreement with the output of
GSP 12.

Figure 12. Trend of ṁ f uel as f decreases for flight conditions shown in Table 6.

Finally, a comparison of computational times between the present algorithm and
GSP 12 was performed at three distinct flight phases and for a fixed number of points
(20) between fmax and fmin (Table 10). The results show that there is limited difference
in computational time; nevertheless, it is necessary to take into account that GSP 12 also
computes solutions of a fair amount of intermediate points.
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Figure 13. Trend of F as f decreases for flight conditions shown in Table 6.

Table 10. Comparison of computational time.

Flight Phase fmax fmin n°Points GSP 12 Time [s] Actual Algo Time [s]

Cruise 0.0263 0.0189 20 50 56
Climb 2 0.0270 0.0189 20 56 68
Static 0.0312 0.0189 20 57 86

4. Conclusions

The present work demonstrates how a steady-state nonlinear turbofan model with
components represented by nonlinear equations or implicit relations derived from neural
network training can be effectively solved using GA and LSQ algorithms. A major advan-
tage over current commercial codes (GSP 12, GasTurb) is the ease of implementation in
Matlab and the ability to implement various components by simply modifying the system
equations. This simplicity of implementation is made possible by the use of a scaling mode
that can compensate for most of the errors caused by the potential ill-conditioning of a
large nonlinear system. The results obtained suggest that trends in F and ṁ f uel , as flight
conditions change, are consistent with the outputs obtained from GSP 12 software. A small
contribution to the error can also be attributed to differences, difficult to detect, in turbofan
modeling between the present algorithm and that of GSP 12. The average interpolation
error for all variables of the maps and their standard deviations do not exceed 1% and 1.5%,
respectively. A relevant aspect of the reduction in the accuracy of the simulations could be
determined by the high local maximum percentage error, which is around 16.50% for the
fan and compressor maps (but turns out to be about 1% for the turbine map); however, for
the present simulations, this aspect is negligible because the operating points do not fall
within these regions. More investigation into the interaction of the various errors is needed
in order to solve these problems; however, it emerges unequivocally that the feasibility of
such an approach is related to finding the ANN architecture and the structure of the data
that minimize both the MSE and the maximum local error. This work also demonstrates the
effectiveness and feasibility of using the combined GA/LSQ approach for solving nonlinear
systems of even considerable dimensionality. Future studies will focus on improving the
accuracy and method reliability, extending it to nonstationary off-design performance.
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Nomenclature

A = nozzle exhaust area [m2]

cp = air specific heat at constant pressure
[

J
K·Kg

]

c′p = combustion gasses specific heat at constant pressure
[

J
K·Kg

]

f = fuel flow to core airflow ratio [adim]
F = thrust [N]
f actscal = map scaling factor [adim]

Hi = fuel lower heating value
[

J
Kg

]

ṁ = mass flow rate
[

Kg
s

]

Ma0 = flight Mach number [adim]
N = corrected rpm [rpm]
N′ = shaft rpm [rpm]
Pti = stagnation pressure at section i [Pa]

R′ = combustion gasses specific constant
[

J
K·Kg

]

Tti = stagnation temperature at section i [K]

W = corrected mass flow
[

Kg
s

]

k = iteration variable in scaling factor algorithm [adim]
z = altitude [m]
α = bypass ratio [adim]
γ = ratio between cp and cv of air [adim]
γ′ = ratio between cp and cv of combustion gasses [adim]
η = adiabatic efficiency [adim]
ηmech = mechanichal efficiency [adim]
π = total pressure ratio [adim]
τ = total temperature ratio [adim]

Subscript

byp = bypass nozzle
c = compressor
core = core flow
e = core nozzle
f = fan
HP = high pressure
LP = low pressure
map = value referred to unscaled/original map
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pr = value referred to preliminary design phase
tHP = HP turbine
tLP = LP turbine
tot = intake flow
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