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Abstract: To address the complex challenges faced by our planet such as rapidly changing climate
patterns, food and nutritional insecurities, and the escalating world population, the development
of hybrid vegetable crops is imperative. Vegetable hybrids could effectively mitigate the above-
mentioned fundamental challenges in numerous countries. Utilizing genetic mechanisms to create
hybrids not only reduces costs but also holds significant practical implications, particularly in
streamlining hybrid seed production. These mechanisms encompass self-incompatibility (SI), male
sterility, and gynoecism. The present comprehensive review is primarily focused on the elucidation
of fundamental processes associated with floral characteristics, the genetic regulation of floral traits,
pollen biology, and development. Specific attention is given to the mechanisms for masculinizing
and feminizing cucurbits to facilitate hybrid seed production as well as the hybridization approaches
used in the biofortification of vegetable crops. Furthermore, this review provides valuable insights
into recent biotechnological advancements and their future utilization for developing the genetic
systems of major vegetable crops.
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1. Introduction

Hybrids offer significant advantages for enhancing the economic and technological as-
pects of vegetable cultivation, primarily due to the phenomenon of heterosis, which confers
superiority over diverse parent varieties. Hybrids’ exploitation is of the utmost importance
in addressing the emerging challenges induced by climate change, including the mitigation
of food and nutritional insecurities. Moreover, hybrids provide a powerful tool for breeders
to maximize the yield potential of vegetable crops. Heterosis exerts a profound impact on
both productivity and quality across a range of vegetable crops, enabling improvements in
livelihoods by enhancing productivity and delivering high-quality products and nutrition-
ally superior food options. Leveraging genetic mechanisms to exploit heterosis facilitates
enhancing productivity, improving quality (depending on the objective), and reducing
seed production costs. The growing interest in heterosis exploitation and the utilization of
genetic mechanisms is evident in the intensified investigation of self-incompatibility (SI),
male sterility, and gynoecism and their applications in hybrid seed production for several
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vegetable crops. However, it is important to note that these mechanisms are limited to
specific classes of vegetable crops.

Heterosis (also known as hybrid vigor) plays a pivotal role in vegetable breeding, lead-
ing to significant improvements in yield, quality, and earliness, which are considered the
desirable outcomes when genetically distant parents are used to produce hybrid off-springs
in vegetable crops. However, the selection of suitable parents is crucial for achieving these
results [1]. Genetic diversity among parents enables the development of inbred lines that ex-
hibit both good general and specific combining abilities, which are then utilized to produce
promising hybrids. The genetic system of the parents determines their combining ability
and helps to predict selection efficiency. Combining ability analysis helps in understand-
ing gene action and assists in selecting appropriate breeding procedures for quantitative
trait improvement. The availability of a larger number of seeds per pollination/cross
and the presence of genetic mechanisms such as male sterility (tomato, chili, capsicum,
onion, and cole crops), gynoecism (cucurbits, particularly cucumber and bitter gourd), and
self-incompatibility (cole crops) offer ample opportunities not only to exploit heterosis
but also to drastically minimize the cost of hybrid seed production. Advancements in
techniques such as transgenics, gene editing, QTL mapping, genomics, and genome-wide
association studies (GWASs) are being employed to predict heterosis in different vegetable
crops [2–6] and tobacco (Zejun). However, the existing published research on the genetic
mechanisms and the role of genes in defining important plant characteristics is limited.
Therefore, studying plants at the gene level and subsequently applying suitable breeding
methods is necessary to fully exploit heterosis.

2. Heterosis in Vegetable Crops

The development of a commercially viable system for producing hybrid seeds has had
a profound impact on the modern scientific understanding of crops and the agricultural in-
dustry.In 1914, George Harrison Shull, an American botanist and geneticist, while working
with corn at Cold Harbor, New York, coined the term “Heterosis” [7,8], which means the
superiority in the performance of F1 hybrids over two mated inbreds. During the second
decade of the twentieth century, Hayes and Jones [9] first suggested the exploitation of
hybrid vigor in cucumber (Cucumis sativus). Notably, the development of the commercial
eggplant F1 hybrid performed in Japan in 1925 marked a significant milestone for hybridiza-
tion attempts [10,11]. Four classes of vegetables are reported as per the use of heterosis [12].
Initially, the commercial adoption of hybrids was limited due to high production costs.
However, the growing availability of published data on the significant heterosis observed
in different vegetable crops has motivated breeders to not only develop new hybrids but
also explore genetic mechanisms to facilitate more efficient and economically viable hybrid
seed production.

3. Floral Characteristics of Different Vegetable Crops

To establish a successful hybrid breeding program, comprehensive knowledge of floral
characteristics, reproductive features, the time of anthesis, and pollination is required. It is
crucial for vegetable growers to possess in-depth knowledge of the different flower types
(male, female, hermaphrodite, monoecious, dioecious, and so on), the time of anthesis,
dehiscence timing, and the reproductive attributes of vegetable crops [10,13,14] in order
to successfully implement the genetic mechanisms involved in hybrid seed production.
In most vegetable crops, floral opening predominantly occurs during the morning hours,
although exceptions occur among certain cucurbit species. Dehiscence varies from longi-
tudinal to transverse, which, in fact, plays an important role in determining the mode of
reproduction. Consequently, a thorough understanding of pollen fertility is essential for
achieving a proper seed set. Moreover, when unsynchronized flowering occurs, knowledge
of pollen storage techniques and their application in pollination can be valuable, greatly
enhancing the efficiency and overall quality of seed production.
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4. Genes Controlling Floral Traits in Vegetable Crops

A specific class or a combination of classes of genes determines organ identities. Their
role in floral development can be explained using the ABCDE model [15,16], which is ap-
plicable to both monocotyledonous and dicotyledonous species. This model demonstrates
that five classes of homeotic genes, namely, A, B, C, D, and E, govern floral organ identi-
ties [17,18]. As per the floral quartet model [19], the development from the first to the fourth
level is outlined earlier by Murai [18]. The key roles of different genes in the development of
different floral organs have been elucidated by different authors in their respective studies
on several vegetables. In angiosperms, as per the ABC model of flower development, petals
and stamens are reported to be under the control of B-function genes. Based on this model,
Ning et al. [20] isolated PAP3 (a B-class gene) in pepper, which encodes 226 amino acids
with high similarity to the MADS-box protein family, with a conservative MADS domain
and semi-conservative K domain. Moreover, shriveling of pollen grains was observed
after the knockdown of the PAP3 gene through virus-induced gene silencing (VIGS). This
eventually led to male sterility, but no effect on petal development was observed. In line
with the ABCDE model, Chuan et al. [21] isolated six genes (BraAP2 (an A-class gene),
BraAP3 and BraPI (B-class genes), BraAG (a C-class gene), BraSHP (a D-class gene), and
BraSEP (an E-class gene) in Chinese cabbage using PCR amplification. Significant decreases
in the expressions of A-, B-, C-, D-, and E-class genes during the first to fourth stages, the
first to fifth stages, the first to third stages, and all six developmental stages of floral bud
development, respectively, in petal-loss plants (the A-16 and A-17 lines) compared with
normal plants (A-8) were reported. These results could be exploited by vegetable breeders
as a theoretical basis for the future exploration of the underlying molecular mechanisms.
The RsMADS gene in radishes and its associated potential functions with a discussion at
the molecular level, particularly regarding the mechanisms underlying flowering and floral
organogenesis, has been documented by Li et al. [22]. Furthermore, investigations on the
evolutionary relationships and expression profiles along with dominant pathways in rela-
tion to flowering genes have been performed [23,24], which may help to improve bolting
and flowering in Raphanus sativus and other Brassicaceae crops. Using the BLAST technique,
142 potential bolting- and flowering-related genes were identified in various flowering
pathways, and, furthermore, out of these 142 genes, the isolation and profiling of 7 critical
genes was also reported using TA cloning and RT-qPCR analysis. SQUAMOSA, GLOBOSA,
DEFICIENS, AGAMOUS, and SEPALLATA1 were the previously defined groups in carrot
in relation to MADS-box genes, and five genes, namely, DcMADS1, DcMADS2, DcMADS3,
DcMADS4, and DcMADS5, were assigned to them [25,26]. The development of anthers
and pollen was attributed to DcMADS3 and DcMADS5, which belong to the B-class and
E-class MADS-box genes, identifying the identity of stamens. Stamens were reported to be
completely replaced with carpels when the DcMADS3 gene was down-regulated in the
homeotic flowers of carpeloid cytoplasmic male sterility (CMS)-type carrot [25]. Further-
more, the SEP1 gene arbitrates the behaviors of the B- and C-organ identity genes [27–29].
The genes controlling flowering and reproduction were assigned to six linkage groups on
nine carrot chromosomes as Vrn1 (early flowering habit), cola-locus (male and female organ
differentiation defects), DcMADS3, DcMADS5, and Rf1 (restoring petaloid CMS) and were
mapped onto LG2, LG4, LG5, LG7, and LG9, respectively. The mapping of the Vrn1 and
Rf1 genes was reported by Alessandro et al. [30], while the rest of the genes were assigned
to different linkage groups by Budahn et al. [26]. Moreover, a well-saturated map for carrot,
incorporating the findings from the aforementioned studies, was developed by the latter.
These studies could help breeders to develop male sterile lines in carrot, with the ultimate
goal of utilizing the same system for efficient hybrid seed production.

Similarly, in the case of cucurbitaceous vegetables, particularly in the case of melon
and cucumber, male and female flower production is reported to be under the control of
various genes. ACS11, the limiting enzyme of ethylene biosynthesis, which is reported to
control female flower development, is encoded by the androecy gene. Male and female
plants are under the control of ACS11 expression. ACS11 expression leads to female plants
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while its loss-of-function mutants produce male plants. CmACS11 and CmW1P1 (the male-
promoting gene/inhibitor of carpel development) play major roles, and their combination
leads to artificial dioecy, while on an individual level, the former represses the expression
of the latter to control the development and coexistence of male and female flowers in
monoecious species [31]. The mutation of CmWIP1 leads to a gynoecious phenotype in
melon [32]. Conversely, in the case of cucumber, CRISPR/Cas9 can be utilized to exploit
genetic mechanisms due to its low transformation efficiency [33]. In line with this, an
improved transformation protocol for cucumber has been developed, and the generation of
a gynoecious cucumber line using the CRISPR/Cas9-mediated mutagenesis of CsWIP1 has
been well documented [34]. Upon modification from CmWIP1 to CsWIP1, a rapid increase
in the development of gynoecious inbred lines was observed in cucumber, and this was
utilized for hybrid seed production. A huge difference in the number of male flowers was
observed with the CsWiP1 mutant when compared with the wild type. The new knowledge
of genes governing floral characteristics has allowed vegetable breeders to develop new,
more stable, and climate-resilient male sterile and gynoecious lines to facilitate hybrid seed
production. In the case of highly self-pollinated crops such peas as peas, wherein the keel
acts as a restriction against crossing work, the down-regulation of genes governing keel
formation may open new opportunities to develop hybrids more efficiently and at a lower
cost. Even in the case of cross-pollinated crops in which it is difficult to emasculate the
flowers, converting them to petaloid forms could help to facilitate hybrid seed production.
In cucurbits, developing gynoecious lines using CRISPR/Cas9 opens new ventures.

5. Pollen Biology and Development

Information regarding pollen behavior has gained popularity among breeders as it
assists their breeding plans accordingly. Complicated flower biology, sex forms such as
dioecy, unsynchronized male and female flowering, and poor and irregular flower pro-
duction altogether limit wide hybridization. Therefore, the improvement of vegetables
through conventional breeding approaches is constrained especially in the case of yam,
etc. [35,36]. Pollen storage is considered an effective and versatile approach to overcome
these limitations. Pollen behavior can be modified when subjected to different temperatures.
There are also reports of enhanced pollen viability under varied storage conditions. The
stored pollen, with enhanced viability, can be utilized to facilitate pollination processes,
particularly in cases of unsynchronized flowering. Reproduction in angiosperms was
reported to be highly selective [37], with female tissues identifying pollen from identical
species and rejecting pollen from different species. These processes enable breeders to
utilize self-incompatible (SI) systems for hybrid seed production, particularly in the case
of Brassicas. The role of high temperatures in breaking these SI systems has been well
documented. The effects of temperature on pollen development and SI systems in different
vegetable crops have been thoroughly studied and compiled. In the case of tomato, several
reports on pollen storage and pollen viability are available. The highest efficiency for fruit
set, fruit weight, and the number of seeds per fruit in the case of stored pollen was observed
in one-day-stored pollen [38], two-days-stored pollen [39], and nine-days-stored pollen [40].
Similarly, pollen viability was enhanced with three to four days [41], ten days [42,43],
and five days of storage at room temperature and seven days in refrigerated storage [40].
Furthermore, the effect of high temperature in relation to pollen viability has also been
extensively investigated. High temperatures, i.e., at a day temperature of 32 ◦C and a
night temperature of 26 ◦C, reduce pollen viability and the number of pollen grains per
flower in tomato [44]. This has been associated with alterations in carbohydrate metabolism
during anther development. Decreased starch and sugar concentrations in mature pollen
have been identified as possible causes for the reduction in pollen viability [44]. Reduced
fruit set, fruit weight, and seed number per fruit at high temperatures have been well
documented [45–47]. In the case of hot pepper, pollen could be stored for up to 47 days
when cryopreservation was applied [48], which is a method that has been considered
relevant by several researchers [49,50]. Alexander et al. [51] also claimed that Capsicum
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pollen could retain its viability and fertility for more than 42 months under cryopreserva-
tion. Pollen samples of yam retained their germination capacity even after 2 years when
subjected to “wet-cold” conditions at −80 ◦C [52]. In cucurbits, pollen tube growth in
watermelon was observed to be highest at 35 ◦C and lowest at 15 ◦C [53]. Increasing the
temperature from 10 to 32◦C resulted in an elevation in the pollen tube growth rate [54].
Sugiyama et al. [55] studied the storage of seedless watermelon pollen and its effect on
several characteristics. Storing pollen beyond 1 month in dehydrated ethyl acetate (as an
organic solvent) with the temperature maintained at −20 ◦C has been suggested. Silica
gel stored in a sealed container at 5 ◦C has been found to retain pollen germination on an
artificial medium for up to 20 days. In the case of melon, maximum pollen germination
and pollen tube growth were observed at 30 ◦C and 35 ◦C [56]. Eggplant pollen storage at
low temperatures (with the maximum and minimum at −30 ◦C and −20 ◦C, respectively)
resulted in higher germination percentages [57]. Different chemicals have been explored
for eggplant pollen storage, with benzene being more reliable than acetone and chloroform.
Freeze-dried pollen (at −60 ◦C) exhibited the best germination [57]. The trinucleate type
of pollen in most Brassicas creates difficulties in handling, storage, and in vitro condi-
tions [58]. Particularly in the case of CMS, poor hybrid seed production is often ascribed to
inadequate pollination [59–61]. Various pollen viability tests and strategies to overcome
inadequate pollination in carrot, cauliflower, and onion have been well documented by
Brown [62]. Maintaining the availability of pollen possessing desirable traits from pollen
banks represents an efficient and reliable method to improve hybrid seed production.

6. Genetic Mechanisms

Various strategies have been proposed for hybrid seed production based on emascula-
tion and pollination procedures. One of the most promising strategies for producing cost-
effective seeds with minimal impact on seed purity is the utilization of genetic mechanisms.
These genetic mechanisms, namely, self-incompatibility (SI), gynoecism, and male sterility,
have proved to be reliable and economically viable options and, therefore, have gained
high popularity among breeders. By leveraging these genetic mechanisms, improved yields
and desirable traits can be achieved, seed purity can be concomitantly insured, and the
need for labor-intensive emasculation and manual pollination can be reduced.

6.1. Self-Incompatibility (SI)

Self-incompatibility (SI) refers to a genetically controlled mechanism of certain plant
species that prevents self-pollination [63]. It involves the rejection of pollen from the
same plant by the pistil, promoting out-breeding and maintaining genetic diversity. This
phenomenon was first described by Koelreuter in 1764 [64] and is reported to occur in
a wide range of vegetable crops such as cabbage, cauliflower, tomato, etc. Darwin [65]
discussed SI for the first time, while significant information on genes and gene products
regarding SI trait expression was made available by Dodds et al. [66]. This mechanism
implies the inability of viable and functional pollen grains to fertilize ovules carrying
similar S-alleles and the inhibition of self- and sib fertilization in a few plant species. This
mechanism is particularly evident in cole crops such as Brassica oleracea [67], which exhibit
a highly self-incompatible system. Extensive reviews and many research reports have
explored SI’s fundamental and genetic aspects in both flowering plants and vegetable
crops [68–81]. Herein, attempts are made to cover the history of SI, its genetics, the factors
involved in SI breakdown, the methods for detecting SI, and its commercial exploitation.

6.1.1. History of Sporophytic Self-Incompatibility (SSI)

Earlier studies have investigated the SI mechanism in cabbage [11,82] and its association
with the gametophytic system. Consequently, it was assumed that incompatibility mech-
anisms or systems that are controlled by several alleles belong to the gametophytic (GSI)
and sporophytic (SSI) types of self-incompatibility and are restricted to heterostylic species.
Firstly, the SSI system was reported by Hughes and Babcock (1950) in Crepis foetida, while
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Gerstel [83] documented it in Parthenium argentatum. Bateman [69,84,85] further elucidated
the sporophytic nature of SI in all members of the Brassicaceae family, a finding that has since
been corroborated by various researcher groups [86–88] studying Brassica oleracea.

6.1.2. Genetics of SSI

The discovery of SSI resulted in the production of a huge number of S-locus alleles.
In particular, 30 S-locus alleles in Brassica rapa [89] and more than 50 in Brassica oleracea,
30 to 40 S-alleles in Brassicaceae [90], and more than 100 S-haplotypes in Brassica oleracea
and Brassica rapa have been documented by different authors. Classical genetic analysis
categorized the Brassica S-alleles into 2 groups based on their phenotypic effect, i.e., with
high allele activity placed high on the dominance scale (0 to 10 pollen tubes develop per
self-fertilized stigma) and low allele activity considered to be recessive (10 to 30 pollen
tubes develop per self-fertilized stigma). Furthermore, genetic analysis revealed that the
S-locus cysteine-rich (SCR) protein and S-locus receptor kinase (SRK) were responsible for
SI reactions in Brassicas [91–93]. The pollen coat protein S-cystine-rich/‘S’ Protein 11 and
the stigma-specific S-receptor kinase (SRK) encoded by two tightly linked polymorphic ‘S’
genes have been reported to regulate SI [94]. Other mechanisms governing SI include the
requirement for ARC1, U-box proteins in the Brassica pistil [95], the involvement of two
separate determinate genes [81], and intriguing molecular lock and key mechanisms [96].
The studies on the regulation systems of SI provide valuable insights for breeders and
could pave the way for new research avenues at the molecular level.

Gene action studies related to the SSI system have proved helpful to breeders in many
ways. Dominance, reverse dominance, co-dominance, and competitive interactions were
among the main gene actions reported by different authors in their respective studies.
Thompson [97] suggested that dominance and an independent relationship were possible
in a self-incompatible plant with heterozygous S-alleles (SaSb) with sporophytic control
in the pollen and stigmas. In this respect, all four types (viz., type I, II, III, and IV) were
reported to be present in marrow-stem kale [98] and at extremes in Brassicas [99]. Fur-
thermore, intermediate variations were reported to cause the complete weakening of both
S-alleles [99]. These allelic relationships between S-alleles, dominance in the pollen, and
independent action in the stigmas were observed to be the most common gene actions,
as reported by Tatebe [100] in radish, Adamson [88] in cabbage, and Richards and Thurl-
ing [86] in Brassica campestris. However, the co-dominance of alleles (varying in number) in
both the stigmas and pollen was observed by Sampson [101] in Broccoli, Sampson [102] in
radish, Haruta [103] in Chinese cabbage and turnip, Hoser-Krauze [104] in cauliflower, and
Negi [105] in cabbage. Moreover, competitive interaction was observed by Thompson and
Taylor [106] in kale, Lawson and Williams [107] in B. oleracea, and Hadj-Arab et al. [108] in
cauliflower. Haruta [103] observed the dominance of the same allele in both the pollen and
stigmas, while Litzow and Ascher [109] discussed the case of reverse dominance in Brassica
spp. Sampson [110] summarized co-dominant, dominant, and incompletely dominant
relationships with reference to SI in broccoli, while reports of dominant and co-dominant re-
lationships in Brassicaceae were documented by de Nettancourt [111]. Kakizaki et al. [112]
reported the linearly dominant relationship of pollen in Brassica campestris. In relation to
S-haplotypes, the S-locus revealed a dichotomy in sequence, and all class-I haplotypes were
reported to show dominance over all class-II haplotypes in the determination of pollen
specificity [113], while Hatakeyama et al. [114] observed that the relationship between
two S-haplotypes may be co-dominant/ dominant or recessive in the determination of
the phenotypes of the stigmas and pollen in an S-heterozygote. Shiba et al. [115] working
with Brassica rapa and Brassica oleracea demonstrated that dominant/recessive relationships
are regulated at the mRNA level. Understanding the gene action related to SI is highly
valuable, as S-alleles with higher dominance are likely to exhibit minimum selfs and sibs
in hybrid seeds. Such knowledge can greatly assist breeders in identifying and isolating
S-allele homozygotes/heterozygotes.
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6.1.3. Breakdown of SI

Various genetic and environmental factors can contribute to the production of self-
seeds in an SI population, which is a phenomenon known as pseudo-compatibility or
breakdown of incompatibility. Genetic processes involved in this phenomenon include
the presence of weakly active S-alleles in the style [84], competitive interaction between
S-alleles [107,116], and the predominance of recessive alleles [107,117,118]. Addition-
ally, this phenomenon may also be attributed to the genetic consequences of inbreeding
shifts [119]. Other factors, such as the temperature [120,121], humidity [71,121], flowering
stage [122,123], and age of the flower [107], have been documented to affect the level of SI
in Brassica species. Thermally aided pollination, steel-brush pollination, and electric-aided
pollination have been suggested by Roggen and Van Dijk [124], Roggen and Van Dijk [125],
and Roggen et al. [126] as methods to break SI, respectively. In conclusion, SI decreases
with increasing temperature and humidity, and compatibility tends to increase toward the
end of the flowering season. These environmental and climatic factors might interact to
induce a multidimensional situation in field conditions. Therefore, proper care needs to be
taken when designing breeding programs using SI germplasm.

6.1.4. Detection and Maintenance of SI

Various methods for the detection of SI have been proposed by different researchers.
These include conventional breeding approaches [87,98,99,127], pollen grain staining and
stigma darkening [84,85,98], the seed setting/fertility index [70,128], marker genes [70], sero-
logical methods [74], fluorescence microscopy [129,130], molecular approaches [131–133], and
polyacrylamide-gel isoelectric focusing. Test crosses, diallel crosses, and reciprocal crosses
are the major approaches that have been suggested in relation to conventional breeding
programs. Among other approaches, the seed setting or fertility index method has been
widely employed. However, fluorescence microscopy has gained popularity among breed-
ers in the 21st century. With the advancements in molecular markers, various molecular
approaches such as PCR-RFLP, PCR-CAPS, RAPD, BSA, and SCAR markers have been
utilized for the characterization of different S-alleles. RFLP aids in the identification and
isolation of S-alleles in homozygous lines, while CAPS is deployed to characterize different
alleles at the SI locus. BSA and RAPD have proven useful for identifying markers linked
to the SI gene in self-incompatible and self-compatible near-isogenic lines. SCAR markers
have shown potential for improving SI lines and accelerating marker-assisted selection
processes in SI hybrid breeding programs.

6.1.5. Commercial Exploitation of SI

Pearson [134] first proposed the use of SI for hybrid seed production in Brassica. Subse-
quent studies on SI feasibility in various crops of the Brassica group, such as cabbage [82,88],
broccoli [135], and kale [136], were conducted. Further research evaluated SI lines and hy-
brids in cabbage [137], cole crops [138], Brussels sprout [122], and cauliflower [104,139–146].
In the case of Brassica, single, double, three-way, and triple crosses were preferred for hybrid
seed production. Double, three-way, and triple crosses proved to be more cost-effective
than a single-cross hybrid seed production method. However, intensive preparatory breed-
ing work to isolate, maintain, and increase the SI lines as well as test their combining
ability was required. Moreover, the lack of uniformity in hybrids developed with SI is
also a major problem. To overcome these problems, strategies such as the use of isogenic
lines as parents [82,147] for economical and uniform hybrid production and approaches
involving high temperatures, double pollination, end-of-season pollination, the use of
3–5% carbon dioxide (CO2) gas [148,149], and the use of 3% sodium chloride (NaCl) spray
have been proposed by various researcher groups [150,151] to prevent labor-intensive
and time-consuming bud pollination and to overcome inbreeding problems. Asexual or
vegetative propagation, specifically meristem culture under in vitro conditions, is another
method to resolve these problems. To counter sibling problems, the use of parental lines
with synchronized flowering, similar morphologies, and pollination via stored pollen
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has been suggested. The careful selection of inbreds with high levels of SI and minimal
morphological differences is of significant importance. Type-IV S-allelic interaction (co-
dominance between the pollen and stigmas) is essential for three- and four-way crosses
because a single cross is reciprocally incompatible with both of its parents (a homozygous
inbred), and, in consequence, any intended selfs in the single cross would not diminish
the genetic purity of the three- and four-way crosses [99]. Moreover, the role of honeybees
as pollinators in SI cannot be overlooked [152] as their preferences for particular inbreds
may lead to the ultimate hybrids. Though many problems with SI systems have been
encountered, solutions have also been proposed, and both private-sector companies, as
well as public institutions, continuously exploiting this system worldwide (Table 1). This
extensive literature review could help young scientists who are engaged in or are planning
to work with SI systems.

Table 1. Reports of lines with high and stable self-incompatibility (SI).

Crop Lines Remarks Reference

Brassica oleracea var. botrytis L. Aghani, Pusi, and Hisar-1 Complete SI [139]
74-6C High and stable SI [145]

Early Kunwari (September maturity) High and stable SI [145]

Brassica oleracea var. italica
Palam Samriddhi, Calabrese Sutton, BR-76018, DPGB-5,
EC-10356, Broccoli Green Head, BI-80167, BI-80336, and

Punjab Broccoli 1
SI [153]

Brassica rapa Kal-22, Kal-3, and Ch1-504 High level of SI [154]

6.2. Gynoecism

In vegetable crops, SI and male sterility systems are mainly confined to the Bras-
sicaceae and Solanaceae families. There are reports of such systems in other families,
particularly Cucurbitaceae. The Cucurbitaceae family has been endowed with highly vari-
able sex types and is one of the plant families characterized by predominantly unisexual
flower production. Through evolutionary processes, the sex forms in cucurbits emerged
as monoecious, gynoecious, andromonoecious, androgynoecious, and gynomonoecious
types [41,155,156]. Among these forms, the gynoecious flowering habit has been exploited
for the hybrid breeding of cucurbits, particularly in cucumber and bitter gourd (Table 2).
Therein, labor operations such as the pinching of staminate flowers and pollination were
reported to be economically feasible [157,158].

6.2.1. Genetics

Well-documented studies have been conducted on the inheritance of gynoecism (fe-
maleness) in cucumber [41,80,159]. The interaction between the mutated gene (recessive
for gynoecious expression) and the dominant intensifier for the female sex gene (In-F) was
reported to govern the expression of pistillate or femaleness [159]. Similarly, in melon,
the interaction between two genes, a and g, governs stable gynoecism [156]. Furthermore,
gynoecism is reported to be under monogenic dominant control [160] in cucumber, while
a single recessive gene (gy-1) controls gynoecism in bitter gourd [155,161,162]. On the
contrary, partial dominant control in the case of bitter gourd has been observed by Iwamoto
and Ishida [163]. Attempts were also made to study gene action in bitter gourd gynoecious
hybrids through generation mean analysis [162] and duplicate epistasis. Transgressive
segregants were found in advanced generations for most traits. Furthermore, significant
additive and non-additive gene effects were observed for traits related to earliness, suggest-
ing the utilization of reciprocal recurrent selection (RRS) or bi-parental mating (BPM) to
enhance these traits. Non-additive gene action was found to be significant for fruit length,
the number of fruits per plant, fruit weight, and yield, indicating that heterosis breeding is
an ideal option for achieving higher gains in these traits.
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6.2.2. Biotechnological Advances

Closely linked SSR markers to the gynoecious (F) locus, namely, SSR13251 and
UW020605 at 1.0 and 4.5 cM, respectively, were identified in cucumber by Jat et al. [164]. A
total of 17 markers were placed on chromosome 6 along with the F locus covering a total
distance of 100.4 cM and were used for genotyping and linkage map analysis. Single domi-
nant gene control was reported specifically in the gynoecious genotypes GPC-1 and PPC-2.
Furthermore, the use of specific markers and dominant gene control in marker-assisted
backcross breeding for transferring gynoecious character into horticulturally desired culti-
vars was recommended. Similarly, an inter simple sequence repeat (ISSR) marker linked
to gynoecism in bitter gourd was identified. DBGy-201 was used as a gynoecious line,
and, subsequently, 24 plants were screened using 200 RAPD and 28 ISSR markers. The
primer (AC)8T amplified a 1000 bp fragment specific to gynoecious plants. This marker
enables the identification of gynoecious plants in just 35–40 days after sowing, offering a
cost-effective approach. Collaborative efforts in the exploration of gynoecism in cucurbit
breeding programs should be encouraged, leading to more efficient and effective strategies.

6.2.3. Commercial Exploitation

The induction of male flowers in cucumber gynoecious lines for commercial-scale
hybrid breeding with the application of growth regulators has been reported by Robin-
son [165]. Before this study, Peterson and Anhder [166] proposed the use of silver nitrate as
an alternative to gibberellic acid due to its inconsistent effects on male flower induction.
The inhibition of ethylene action by silver ions was identified as the main mechanism for
the above-mentioned induction [167]. However, due to the phytotoxic effects of silver ions,
the use of silver thiosulphate was recommended instead [168]. The use of silver nitrate
(AgNO3) (50–100 ppm) or silver thiosulfate (25–50 ppm) in gynoecious plants at the 2–3-leaf
stage has been suggested to stimulate the production of staminate flowers. Furthermore,
the use of 6 mM of silver nitrate has been suggested in bitter gourd to induce hermaphrodite
flowers [162]. However, environmental factors significantly influence the performance of
gynoecious lines. Optimal temperature conditions above 30 ◦C and photoperiods of up
to 12 h have been proposed as desirable, with the photoperiod having no impact at high
temperatures. It should be noted that the expression of the same gene can vary depending
on the environmental context, necessitating the careful consideration of gene–environment
interactions in gynoecism studies.

6.3. Male Sterility

With respect to male sterility, genic male sterility (GMS), cytoplasmic male sterility
(CMS), and cytoplasmic genetic male sterility (CGMS) systems have gained popularity
among breeders for hybrid seed production (Table 2). GMS has been exploited in a re-
stricted number of crops such as tomato, chili, etc., while CMS systems play a key role in the
Brassicaceae family, particularly in cabbage and cauliflower. CGMS systems are employed
in hot pepper, onion, and carrot. TGMS (temperature-sensitive genetic male sterility) and
PGMS (photoperiod-sensitive genetic male sterility) have also been reported in several
vegetables but are not extensively exploited. The search for novel male sterility–fertility
restoration systems that overcome transgenic issues is also underway. Reviews on the
history and genetics of male sterility are already available [169–183]. Furthermore, research
reports discussing both the genetic and molecular levels of different kinds of male sterilities
(GMS, CMS, and CGMS) are available for tomato [184–186], brinjal [187,188], hot pep-
per and sweet pepper [189–198], okra [199], muskmelon [200–202], watermelon [203,204],
radish [193,205–218], onion [183,219–228], garlic [229], carrot [230,231], cucumber [232],
bean [233–235], broccoli [236], cauliflower [171,237–239], Brussels sprout [147], sugar
beet [240], chives [241], and cabbage [242,243]. The non-availability of efficient systems for
the identification of male sterile plants in a genic male sterile system limits its utilization.
Morphological markers such as the potato leaf marker, green stem and anthocyanin-less
stem in tomato, anther color (purple or yellow) and shriveled anther size in hot pep-
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per, glabrous seedling in muskmelon, glossy foliage in Brussels sprout, and purple stem
pigmentation in cabbage have been reported to aid in hybrid seed production.

Table 2. Crops and genotypes with respect to self-incompatibility, male sterility, and gynoecism in
vegetable crops.

Crop Hybrid/Line System Remark Reference

Tomato ‘ms33 IPA’ as female parent GMS Genic male sterile line with exerted
stigma saved 54.4% of time. [244]

Hot pepper CH-27 GMS
Multiple-disease-resistant hybrid

obtained 55% extra yield compared
withCH-1.

[245]

CH-3 GMS
Out-yielded recommended varieties

by 80–100%;
multiple-disease-resistant.

[246]

CH-1 GMS
Out-yielded recommended varieties

by 80–100%;
multiple-disease-resistant.

[246]

Okra GMS First report in the world. [199]

GMS Evaluated hybrids and reported high
heterosis for yield/plant. [247]

Arka Nikita GMS New GMS-based okra F1 hybrid. [248]

Muskmelon Punjab Hybrid GMS High-yielding and disease-resistant. [249]

Punjab Anmol GMS High-yielding and disease-resistant. [200]

Cauliflower Ogu1A, Ogu2A, and
Ogu3A CMS Ogura type. [250]

Kale MS-91, MS-51, MS-11, and
MS-110 CMS Ogura type. [177]

[251]

Chili
KashiSurkh and Kashi

Early from CCA-42-61 and
PBC-473, respectively

CGMS Suitable for green as well as dry fruit.

[252]
https://iivr.icar.gov.

in/hybrid-kashi-early
(accessed on
26 July 2022)

Arka Meghana, Arka
Sweta, and Arka Harita CGMS Arka Harita; tolerant to powdery

mildew and viruses. [252]

Onion Arka Kirthimaan and Arka
Lalima CGMS IIHR; tolerant to purple blotch, basal

rot diseases, and thrips. [253]

Hybrid-63 and Hybrid-35 CGMS IARI, New Delhi. [177]

DOGR Hy—7 CMS ICAR-DOGR, Pune.
[254]DOGR Hy—50 CMS ICAR-DOGR, Pune.

DOGR Hy-1, DOGR Hy-2,
DOGR Hy-3, DOGR Hy-4,
DOGR Hy-5, and DOGR

Hy-8

CMS ICAR-DOGR, Pune.

Carrot Pusa Nayanjyothi and
Pusa Vasuda Petaloid CMS

Pusa Nayanjyothi and Pusa Vasuda
are the first temperate and tropical
CGMS-based hybrids, respectively.

[255]

Cucumber

CGN-19533, CGN-20256,
CGN-20515, CGN-20953,
CGN-20969, CGN-21585,
CGN-22930, Gyne-5, and

Pusa Sanyog

Gynoecism

Based on crosses among these lines,
researchers suggested to exploit

heterosis breeding commercially for
developing high-yielding, quality

parthenocarpic gynoecious hybrids.

[256]

https://iivr.icar.gov.in/hybrid-kashi-early
https://iivr.icar.gov.in/hybrid-kashi-early
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Table 2. Cont.

Crop Hybrid/Line System Remark Reference

GBS-1 Gynoecism Inbred could be exploited for yield
and earliness. [160]

PPC2, GPC1 Gynoecism

SSR markers closely linked to the F
locus will be useful in marker-assisted

backcross breeding for transferring
gynoecious trait into horticulturally

desirable varieties.

[164]

Bitter gourd Gy263B Gynoecism Gynoecism in Gy263B is under the
control of a single, recessive gene. [155,157]

DBGy-201 Gynoecism Used to develop Pusa Hybrid 3 and 5. [257]

Cauliflower Pusa Hybrid-2 and Pusa
Karthik Sankar SI Field-resistant to downy mildew. [258]

7. Biotechnological Advancements
7.1. Novel Male Sterility–Fertility Restoration System

Singh et al. [259] developed a novel male sterility and fertility restoration system
to facilitate hybrid seed production in crops where seeds are of high economic impor-
tance. This system, besides being biologically safe, also enables the production of pure
hybrids. Moreover, it could help to overcome the limitations of previously available systems
such as Barnase–Barstar systems, chemical methods, and cytoplasmic (CMS) and genic
male sterility (GMS) mechanisms. The system involves the functional complementation
of a TATA-box mutant TGTA promoter and a TATA-binding protein mutant3 (TBPm3)
in an expression-cassette-based system along with modifications for regulatory control.
By combining the long hypocotyl in the Far-Red1 fragment (HFR1NT131) with TBPm3
(HFR1NT131-TBPm3), the tapetum-specific constitutive photo-morphogenesis 1 (COP1) is
expressed in the male parent, leading to the suppression of BECLIN1 and, concomitantly,
to normal tapetal development and fertility restoration. COP1-HFR1 interaction and the
COP1-mediated degradation of the TBPm3 pool (HFR1NT131-TBPm3) are the main forces
working behind this system. It could be efficiently utilized in hybrid seed production
programs for various vegetable crops, as suggested by the authors, and could act as an
alternative to existing systems.

7.2. Marker-Assisted Selection (MAS) for C-GMS Line Development

Two CMS-specific SCAR markers were developed to distinguish N-cytoplasm from
S-cytoplasm and AFLP markers linked to the fertility restorer gene Rf [260]. The CAPS
marker (E-AGC/M-GCA122) linked to the Pr locus that is related to the partial restoration
of fertility in CMS was also reported in chili pepper (Capsicum annuum L.) [261]. The SCAR
marker, CRF3S1S, was highly efficient (100%) at differentiating restorers from maintainers.
The use of CRF3S1S allows the unambiguous detection of restorers in untested ABLs
and/or any germplasm, saving both time and resources.

Globally, S-type cytoplasm in onion is always preferred due to its stability in diverse en-
vironments and being genetically governed by a single gene, the Ms gene [221]. PCR-based
specific markers identifying the cytoplasm have been testified. Regarding Ms locus identifi-
cation, marker-assisted selection made it possible with RFLP [223], CAPS [227], SCAR [262],
SNPs [263], and other PCR-based markers [226,264–266]. Recently, new primers for the
cytoplasm [225,267] and the Ms locus [264,265] are being utilized for the identification of
the cytoplasm and the Ms locus [183,268–270]. Although they are reported to be in complete
linkage disequilibrium with the Ms locus, new PCR markers linked to the Ms locus are
still being reported. For the identification of the cytoplasm, two PCR markers specific to
onion cytoplasm, viz., accD, an indel marker [267], and MKFR designed on a chimeric gene,
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orf725 [225], were utilized. For Ms locus determination, two PCR markers reported for
the restorer-of-male-fertility (Ms) locus, namely, AcSKP1 [265] and AcPMS1 [264], were
employed. Khar et al. [228] concluded that approximately 95% of Indian onion cultivars
possessed a homozygous recessive Ms locus. Furthermore, they observed that the limita-
tions of PCR-based markers for the identification of the Ms locus still exist and need to be
addressed by utilizing new PCR markers.

8. Biofortification in Vegetables through Hybridization

The fortification of key vitamins, antioxidants, and micronutrients has been high-
lighted in recent advances in conventional plant breeding. Traditional breeding methods
such as variety evaluation in available germplasm, pre-breeding, selection, hybridiza-
tion, heterosis breeding, mutation breeding, and polyploidy breeding are the most widely
used biofortification approaches that offer long-term, cost-effective alternatives to trans-
genic and agronomic approaches [271]. However, the process of developing nutrient-rich
varieties through breeding approaches requires the biochemical categorization of target
nutraceuticals at crucial stages [272].

Traditional breeding methods, excluding mutation and polyploidy breeding, require
sufficient genetic variation for traits such as carotene and other useful carotenoids, iron, zinc, and
other minerals [273]. Limited availability of genetic variation in the gene pool poses challenges
in selecting appropriate breeding strategies. Overcoming this limitation involves incorporating
genetic material from wild relatives and introducing desirable traits into commercial cultivars
such as beans and peas, which exhibit significant variations in Fe and Zn contents (a 6.6-fold
difference) [274]. Apparently, tubers generally display reduced genotypic variation [275]. Wild
relatives of vegetables that are rich in quality traits and are used for breeding purposes to
enhance the nutrient contents of popular varieties are listed in Table 3. These wild relatives
serve as donor parents in crossbreeding with recipient lines possessing desirable agronomic
features, resulting in hybrid varieties of high nutritional value.

Table 3. Crop wild relatives with high-quality features useful for breeding.

Crop Wild Relatives/Landraces/Varieties/Accessions Nutrient

Tomato

S. pimpinellifolium and Caro Red (Rugers×S. hirsutum) Vitamin A
Caro Rich, F-7045, VRT-35, CGT, and VRT-5 Beta carotene

High-pigment mutants (hp), Crimpson (og), Pusa Rohini, Lycopene
S. pennellii IL6-2, IL7-2, and Phenolics

S. pennellii IL12-4 Ascorbic acid
S. chilense and atroviolacium (atv) from S. cheesmaniae Anthocyanin

Chili C. annuum var. IC: 119262(CA2), Bayadaggi (kaddi), and Ascorbic acid
Paprika KTPL-19 Capsanthin

Cucumber Xishuangbanna gourd (C. sativus var. Xishuangbananesis) Beta carotene

Muskmelon
Honeydew 32 and Ascorbic acid

Canary yellow Flavons (Naringenin chalcone)
Spine gourd Momordica dioca Protein

M. chochinchinenesis Lycopene

Bitter gourd DRAR-1 and DVBTH-5 Beta carotene
DRAR-1 and DVBTG-5 Ascorbic acid

Sweet potato Resisto, Zambezi, and Chiwoko Beta carotene
Cassava UMUCASS 44, UMUCASS 45, and UMUCASS 46 Vitamin A
Broccoli Brassica villosa Glucosinolates

In cases where nutrient-rich donor parents are not cross-compatible with the recipient
parents, we can alternatively transfer the genes/QTLs related to the target nutrient into a
compatible variety to produce inbreds or pure lines that can be further used for hybridiza-
tion to develop desirable biofortified hybrids. Information regarding the genes/QTLs for
nutritional quality is given in Table 4. For traits that can be phenotypically assessed in an
early generation, such as the color-related genes in cauliflower, the transfer of genes can be
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relatively straightforward. However, in the case of other qualitative traits such as essen-
tial minerals, visual inspection is not feasible at an early stage. In such cases, molecular
breeding techniques such as marker-assisted selection (MAS) can be used for the successful
transfer of the target gene/QTL. This is a method of selecting desirable individuals in a
breeding scheme based on DNA molecular marker patterns instead of, or in addition to,
their trait values. It is a valuable tool for plant breeders, enabling a more efficient selection
of desired crop traits. MAS allows the identification of individuals carrying the trait of
interest without relying solely on their phenotype in the early generation [276]. In recent
years, efforts have been focused on identifying markers that are strongly associated with
genes/QTLs for nutritional quality, which are similar to the markers linked to the gene
responsible for orange color in cauliflower.

Table 4. Genes/QTLs for nutritional quality in some vegetables.

Crop Traits Gene/QTL References

Tomato

Vitamin C Vtc 9.1 (higher vitamin C) [277]

Fruit color/carotenoids

B (Beta) (yellow fruits)
[278]ogc (old gold-crimson) (higher lycopene content)

Del (Delta) (orange fruits) [279]
r (yellow flesh) (yellow fruits) [280]
t (tangerine) (orange fruits) [281]

hp-2 (high pigment) (higher lycopene content) [282]
Dg (darkgreen) (higher lycopene content y-uncolored epidermis) [283]

Apricot (at) [284]

Anthocyanins
Anthocyanin fruit (Aft) (anthocyanin in the skin and outer pericarp) [285]

[286]
Atroviolacium (atv) [287]

Aubergine (Abg) [288]

Chili Fruit color
Y (yellow fruit color) [289]

C2 (orange fruit color) [290]
A (purple fruit color) [291]

Brinjal Anthocyanin fap10.1 [292]
Onion Bulb color P (pink color) [293]

Cauliflower Curd color
β-carotene accumulation/Or gene [294]
Pr (high anthocyanin content) [295]

Kale Leaf color BoPr (purple leaf) [296]
Carrot Carotenoids PSY [297]

Watermelon Lycopene LCYB [215]
Broad bean Tannins zt-1 and zt-2 (reduced tannins) [298]

The International Food Policy Research Institute, in collaboration with the Interna-
tional Center for Tropical Agriculture and the CGIAR, has started the Harvest Plus program
to breed biofortified staple food crops [299]. The major goal of this program is to boost
the availability of vitamin A and micronutrients, including iron and zinc, in Asian and
African staple food crops such as wheat, rice, maize, cassava, pearl millet, beans, and
sweet potato [300]. Its purpose is to develop staple food crops that have higher levels
of bioavailable essential minerals and vitamins to improve the micronutrient status of
target populations, especially resource-poor individuals in developing nations [301]. The
Bio-cassava Plus project was also created to increase the nutritional quality of the cassava
crop [302]. There are some commercial hybrids with enhanced nutraceuticals have been
developed in different vegetables by different institutions (Table 5).
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Table 5. Some nutraceutical-enhanced hybrids of vegetable crops.

Crop Variety Description Chief Nutrient
Element

Nutrient
Content

Institute
Developed

Carrot
Pusa Nayanjyoti First orange-colored temperate

carrot hybrid β-carotene 1.89 mg/100 g 7.55 mg/100 g IARI, New Delhi

Pusa Meghali Selection from Local red × Nantes
Half Long cross β-carotene 1.89 mg/100 g 11571 IU/100 g IARI, New Delhi

Sweet
potato Sree Kanaka Tubers with dark orange flesh color

Inter-varietal hybrid β-carotene 2.0–3.0 mg per 100 g 9–10 mg/100 g FW CTCRI (2017)

Tomato Punjab Red Cherry

Following pedigree selection,
interspecific hybridization between

Solanum esculentum and Solanum
pimpinellifolium

Lycopene 2.57 mg per 100 g of
fresh weight

4.9 mg per 100 g of
fresh weight PAU (2015)

Potato Kufri Neelkanth Developed through hybridization
and selection method Anthocyanin Negligible >100 µg/100 g fresh wt CPRI, Shimla

Cassava Sree Visakham A hybrid between a local cultivar
and a Madagascar variety Carotene - 466 IU 100 per gm CTCRI,

Thiruvanantpuram

9. Future Prospects

Although significant efforts have been made by researchers and institutions to develop
hybrids through the utilization of genetic mechanisms, the real economic potential of
these mechanisms remains untapped. Moreover, new and innovative traits should be
introgressed into the backgrounds of strong and stable SI, CMS, and CGMS lines that
can be further utilized for the development of hybrids in vegetable crops. This becomes
particularly important in the face of climate change, wherein the development of hybrids,
particularly for off-season production, with better adaptability, a significant number of
nutraceuticals, and the ability to impart multiple resistance to biotic and abiotic stresses
is of utmost importance. Molecular approaches can play a vital role in strengthening
genetic mechanisms. This includes the development of novel fertility–sterility restoration
systems and the exploitation of genetic tools to down-regulate specific genes [303] for
improving male sterility systems. The genomic mapping of SI alleles can help derive
mechanisms to enhance and strengthen SI lines, while CRISPR/Cas9 technology can be
employed to develop robust and stable gynoecious lines in cucurbits. Furthermore, the
use of RNAi and TILLING approaches is advocated for vegetable improvement [304].
Implementations in which such systems have been exploited include the development of
multiple-disease-resistant hybrids by Dhaliwal et al. [245], the evaluation of CMS lines that
are rich in antioxidants and flavonoids, the use of CRISPR-Cas9 by Hu et al. [34], and the
development of a novel sterility–fertility restoration system by Singh et al. [259].

10. Conclusions

Significant progress has been achieved in vegetable hybrid breeding in the last decades
through the exploitation of genetic mechanisms such as self-incompatibility and male
sterility. Gynoecism has also recently gained popularity, and the application of this system
in cucurbitaceous vegetable crops holds great potential. The integration of genomic tools,
particularly the molecular markers that are practically feasible for the identification of GMS
at the seedling stage, will help to enhance its scope. It will open new avenues to exploit
monogenic recessive male sterile lines in several vegetable crops. Marker-assisted breeding,
particularly the mapping of nutritional-, abiotic-, and biotic-stress-resistant genes, could be
helpful to introgress such genes into newly developed genetic-mechanism-based hybrids.
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