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A B S T R A C T

Consider an area of interest 𝐴, where a set of 𝑛 sites lie. Two kinds of information can be captured from
each site: light and heavy information. A fleet of 𝑚 homogeneous UAVs, each one equipped with a battery 𝐵,
is available at a common depot, where the flight mission of each UAV starts and finishes. The problem we
consider focuses on a single flight of the fleet of UAVs and aims at collecting their light information from all
sites (that can be retrieved, not necessarily passing over each site, but simply ‘‘close’’ to it). At the same time,
the fleet will have to select a limited number of sites from which to collect their heavy information. Flying
among sites and acquiring information from them (both light and heavy) has a battery cost. On the other hand,
a profit is associated with the action of acquiring heavy information from a site. We refer to the extraction
of light and heavy information from a site as to weakly or strongly cover the site. The aim of the problem
consists of retrieving light information from all sites while maximizing the overall profit, keeping the battery
consumption of each UAV within 𝐵. In this paper, we model this real-life situation as a new combinatorial
optimization problem that we call m3DIP, for which we provide a mixed integer programming model. Given
the high degree of complexity of the problem, in this way we are not able to provide a solution in a reasonable
time. To address larger instances we propose a matheuristic in which we exploit a path-based algorithm filled
with only a subset of feasible cycles (paths) provided by different heuristics. The output indicates which path
to select and the set of nodes to be strongly and weakly covered by each trip. We compare our matheuristic
with the results obtained by every single heuristic on a large set of instances, showing that the matheuristic
strongly outperforms them. An interesting insight is that even paths provided by a heuristic with very bad
performances can be useful if combined with paths provided by other heuristics and if the coverage decisions
are reoptimized by the matheuristic. We also show the benefit of adding fictitious additional points that UAVs
can visit to weakly cover a subset of sites, without actually visiting none of them.
1. Introduction

Unmanned aerial vehicles (UAVs) are aircraft whose flights can
be fully autonomous without any provision for human intervention.
UAVs were originally developed for military applications, but now that
control technologies have improved and costs have decreased, their use
has found a wide range of applications in many civilian and commer-
cial sectors, such as weather monitoring, forest fire detection, traffic
control, plant disease detection, cargo transport, patrolling, emergency
search and rescue, etc. (e.g. see Di Gennaro et al. (2016), Liang et al.
(2019), Sharifi et al. (2014), Thiels et al. (2015) and Valavanis and
Vachtsevanos (2014)).

At a very high level, data detection is a generalized monitoring
that detects some anomalies, while data inspection requires a deep
verification of the situation. This paper focuses on applicative scenarios
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in which data detection is always required while data inspection is
necessary only under certain conditions. In such real-life scenarios,
UAVs are preferable with respect to ground robots because flying
devices move faster and are not affected by eventual obstacles on the
terrain.

In this paper, we introduce a new combinatorial optimization graph
problem, which we call m3DIP, arising from some applicative scenarios
(Section 2) and consisting of determining a number of cycles covering
all the assigned cycles fulfilling certain constraints. In Section 3, we
observe similarities and differences between it and a couple of very
well-known problems, and this justifies the study of m3DIP as a new
problem. So, in Section 4, we express m3DIP as an integer linear
programming problem. Since in this way we are not able to provide
a solution in a reasonable time, we propose a matheuristic (Section 5);
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the idea is to give as an additional input an opportune subset of cycles
so that the search space is reduced only to this subset instead of the
entire set of all possible cycles. In Section 6, we propose some heuristics
serving a twofold purpose: on the one hand, they generate the set of
cycles given in input to the matheuristic; on the other hand, they can
be seen as benchmark heuristics, revealing that the matheuristic largely
outperforms each of them. Section 7 is devoted to showing the results
of a large set of experiments, validating our matheuristic, and showing
that, even if each heuristic alone is not able to achieve a good result,
nevertheless, it actively contributes with some cycles to the input of the
matheuristic; instead, the matheuristic – that exploits cycles collected
from all the heuristics – largely guarantees the best profit.

2. Problem definition

In this section, we formally define m3DIP and propose some prac-
tical applications that can be modeled through it.

Consider an area of interest 𝐴, where a set 𝑉 = {𝑣1,… , 𝑣𝑛} of 𝑛 sites
is located. The largest distance between two sites is identified as 𝑑𝑀𝐴𝑋 .

These sites can be either nodes with possibly multiple sensors from
which collect data, or locations to be monitored with different precision
so that two kinds of information can be captured for each of them: a
piece of light information (for example, some simple sensed data, such as
ground temperature or humidity, or medium resolution pictures) and a
piece of heavy information (e.g., a high-resolution video).

A fleet of 𝑚 homogeneous UAVs 𝑈 = {𝑢1,… , 𝑢𝑚} is available at
depot 𝑣0. The flight mission of each UAV starts and finishes at the

epot. We denote by 𝑉 + the set 𝑉 ∪ {𝑣0}.
Each UAV 𝑢𝑖 is equipped with a battery 𝐵. The problem we consider

ocuses on a flight of the fleet of UAVs between two periods to recharge
atteries and aims at collecting from all sites their light information
hat can be retrieved, not necessarily passing over each site, but simply
‘close’’ to it. Specifically, a UAV passes ‘‘close’’ to a site if it passes at

distance upper bounded by a parameter 𝑅 from it; in other words,
f there exists an instant in its flight when the site falls inside a circle
entered at the UAV itself with radius 𝑅. We define 𝛾𝑖 as the number of
ites located within a radius 𝑅 from the site 𝑣𝑖. At the same time, the
leet will have to select a limited number of sites from which to collect
heir heavy information.

We say that a site has been covered when a UAV has captured
piece of information from it. Each site can be either weakly or

trongly covered: a UAV strongly covers a site when it hovers over
he site, acquiring heavy information about it. In contrast, the UAV
eakly covers the site when it flies close to the site and acquires light

nformation about it. Finally, a UAV can even decide to fly over a site
ithout acquiring its information.

Flying between two sites 𝑣𝑖 and 𝑣𝑗 has a cost in terms of battery
consumption, so we introduce a function 𝑞, indicating the battery
spent in moving between two sites (regardless of the direction) and is
typically (but not necessarily) proportional to the covered distance.

Also, acquiring information (both light and heavy) from a site has
a cost for a UAV, so we introduce the two cost functions 𝑏𝑤 ∶ 𝑉 → R+

and 𝑏𝑠 ∶ 𝑉 → R+, representing the battery cost to respectively weakly
and strongly cover site.

It is worth noticing that, although heavy information typically
occupies a huge memory, we decide not to take care of memory cost
(as done instead e.g. in Sorbelli et al. (2022)) because the current tech-
nology allows us to store even very large information easily. Indeed, an
hour of 4K video uses about 45 GB of storage space, and commercial
UAVs can easily be equipped with memory cards that range in storage
between 64 and 512 GB.1

To drive the choice of which sites to visit to collect their heavy
information, sites are labeled by a relevance function, and the objective

1 See e.g. https://www.dji.com/it/mini-3-pro/specs.
2

𝑝

of the whole fleet is to maximize the overall captured relevance in such
a way that every UAV does not overrun its battery. The relevance of
sites w.r.t. strong coverage is modeled by associating a profit to each
site: the higher the profit, the more relevant the heavy data acquisition
from that site. So, for each site, we also define a profit function 𝑝 ∶
𝑉 → R+ that is gained by the fleet whenever a UAV strongly covers
the site. The profit on each site is defined on the basis of some external
information, e.g., the time elapsed since the last accurate monitoring,
some probability function, etc., and can be updated before each fleet
flight.

Some possible applications of this model are the following:

• wind turbine inspection: sites are wind turbines; a thermal camera
detects any energy loss and performance issues even from a rela-
tively far location (light information) while, where necessary, i.e.,
where profit is higher, a vision camera allows one to accurately
view the fine details of the wind turbine (heavy information);

• animal species monitoring: identifying sites with lairs positioned
on a slope, a thermal camera monitors all of them (light infor-
mation); then, only holes with a higher probability of animal
detection (and hence with a higher profit) will be more closely
guarded with a high-performance camera (heavy information);

• cellular antennas or solar panels inspection/diagnostics: antennas
are prone to bird’s nests, lightning strikes, rust/corrosion, and
damaged bolts, and they usually lie over high buildings and are
often not easily accessible; panels are prone to delamination and
corrosion, micro-cracks, PID (Potential Induced Degradation) ef-
fect, degrading their efficiency and performance. Moreover, both
antennas and panels are in huge numbers, and UAV inspection
eliminates the need to put people in harm’s way and reduces
person-hours and labor costs by automating inspections with low
maintenance costs. Each antenna/panel is a site, light information
corresponds to a rough visual inspection to evaluate at a high
level any damage or potential problems, and a more accurate
inspection (heavy information) is done only on some opportunely
chosen antennas on the basis of their profits, computed keep-
ing into account external factors such as time elapsed since the
previous visit and the favorable position for bird nidification;

• smart agriculture: a number of sites can be identified in a field
with extensive crop (e.g., the points at integer coordinates w.r.t.
opportune Cartesian coordinates); UAVs can be equipped with a
variety of sensors that facilitate the analysis of a range of data:
nitrogen levels, chlorophyll, biomass, humidity, water stress, etc.
(light information); sites in special situations, as zones where a
parasite has recently spread among plants or slopes where sun’s
rays are most direct, will receive a higher relevance and will be
better analyzed (heavy information); such an approach should
reduce the amount of used water and pesticides, and promote
sustainable and rational agriculture.

To model the situation, we construct a complete node- and edge-
eighted graph 𝐺 = (𝑉 ,𝐸, 𝑞, 𝑏𝑤, 𝑏𝑠, 𝑝), where:
𝑞 ∶ 𝐸 → R+ is an edge-weight: 𝑞({𝑣𝑖, 𝑣𝑗}) = 𝑞𝑖𝑗 represents the battery

onsumption required by the movement of the UAV along edge {𝑣𝑖, 𝑣𝑗};
𝑏𝑤 ∶ 𝑉 + → R+ and 𝑏𝑠 ∶ 𝑉 + → R+ are node-weights: 𝑏𝑤(𝑣𝑖) = 𝑏𝑤𝑖

nd 𝑏𝑠(𝑣𝑖) = 𝑏𝑠𝑖 represent respectively the battery cost to acquire light
weak coverage) and heavy (strong coverage) information from 𝑣𝑖, if
> 0, and are null if 𝑖 = 0;

Finally, 𝑝 ∶ 𝑉 + → R+ is a node-weight representing the profit;
ence, 𝑝(𝑣𝑖) = 𝑝𝑖 is equal to the relevance for the sites and is null for
he depot.

Given the set of sites 𝑉 and a fleet of UAVs 𝑈 all positioned at the
epot, our problem consists of determining a cycle for each UAV such
hat it has enough battery to complete the traversal of its cycle, in the
eantime weakly covering all sites and strongly covering some of them.

Given a solution 𝑆𝑜𝑙 of this problem, by extension, we denote by

(𝑆𝑜𝑙) its profit, that is, the sum of the profits associated with the

https://www.dji.com/it/mini-3-pro/specs


Computers and Operations Research 168 (2024) 106678T. Calamoneri et al.

o
i
t

f
a
i
M
K
m
b
T
m
T
t
b
b
a
n
i

R

t
v
n
i
w

Table 1
Table of symbols used in this paper.

Symbol Description

𝑉 = {𝑣1 ,… , 𝑣𝑛} Set of sites
𝑞𝑖𝑗 Battery cost to fly between sites 𝑣𝑖 and 𝑣𝑗
𝑏𝑤𝑖 Battery cost to weakly cover site 𝑣𝑖
𝑏𝑠𝑖 Battery cost to strongly cover site 𝑣𝑖
𝑝𝑖 Profit gained by the fleet whenever 𝑣𝑖 is strongly

covered by a UAV
𝑑𝑀𝐴𝑋 Largest distance between two sites
𝑣0 Depot
𝑉 + 𝑉 ∪ {𝑣0}
𝛾𝑖 No. of sites located within a radius 𝑅 from node 𝑣𝑖
𝑈 = {𝑢1 ,… , 𝑢𝑚} Set of UAVs
𝐵 Battery given to each UAV
𝑅 Radius for weak coverage

only sites heavily covered. The final aim is choosing the solution of
maximum profit among all the feasible ones.

We conclude this section by observing that we implicitly assume
that fleet 𝑈 is equipped to guarantee the feasibility of the problem; in
other words, we assume the batteries of the UAVs are powerful enough
to guarantee that at least the weak coverage is always possible (see
Table 1).

3. m3DIP vs. some known related problems

In this section, we review the literature of some very well-studied
problems that have similitudes with m3DIP, for most of them we try
to propose how they could be extended in order to define light and
heavy information, and we clarify why their known solutions cannot
be exploited in our case. All the definitions will be rephrased according
to the terminology used in this paper.

TOP
There are 𝑚 hikers initially located at 𝑣0, and each one gains a profit

𝑝(𝑣𝑖) if visits a still unvisited site 𝑣𝑖. The hikers must complete their
tour within a predetermined time 𝐵. So, the Team Orienteering Problem
(TOP) (Chao et al., 1996) consists in determining a set of 𝑚 cycles, each
passing through 𝑣0 and respecting the time constraint such that each
node is visited at most once and the total profit collected is maximized.

It is clear that, in general, TOP omits to visit some nodes due to the
𝐵 constraint, and can be considered as a special case of m3DIP, when
𝑅 = ∞, that trivially guarantees the weak coverage.

Variants of TSP
In the multiple Traveling Salesperson Problem (mTSP) (Gorenstein,

1970), 𝑚 salespersons leave their base station 𝑣0 and have to visit
𝑛 sites most cheaply, so 𝑚 cycles must be found such that all nodes
are included in at least one cycle, and the goal is to keep the overall
traveled distance as low as possible. They could have to simply visit all
the customers (light information) but have some longer meetings with
a few of them (heavy information).

The Close Enough 𝑚-Traveling Salesperson Problem (CEmTSP) (Gul-
czynski et al., 2006) is a variant of mTSP, where the salespersons do not
need to visit the exact location of each site. Instead, for each of them,
a region of the plane containing it and possibly other sites considered
as its neighborhood set is specified, and the goal is to find 𝑚 cycles, all
starting from 𝑣0 and intersecting all of these neighborhood sets at least
once in the shortest possible overall traveling distance.

CEmTSP and m3DIP are somehow similar if all 𝑝𝑖s are null, but
even in this case, a solution for m3DIP would be a feasible solution
for CEmTSP but not necessarily the optimum one, because CEmTSP
requires minimizing the traveled distance (i.e., the overall battery
consumption) instead of the completion time.

It is worth noting that some researchers solving this problem intro-
duce some additional dummy points to better cover all sites. We also
3

adopted this strategy, which will be discussed in Section 7. i
A problem closer to ours is the generalized CETSP recently intro-
duced by Di Placido et al. (2023). In that paper, the authors address
a variant of the CEmTSP, where each customer is associated with a
set of disks with different radii and rewards. If the disk dimensions are
two, they could be exploited to define light and heavy information. The
reward collected corresponds to the one related to the innermost circle
traversed. The objective is to maximize the difference between the total
collected reward and the route length. In contrast, our problem differs
from theirs in several aspects: we have a team of UAVs instead of a
single one; we do not need to minimize the route length, and we have
a battery constraint that limits the flight duration of each UAV.

The Prize Collecting TSP (Balas, 1989) is another well-known exten-
sion of the TSP in which the goal is to find the optimal tour through
a set of sites, each associated with a profit, which maximizes the
difference between the collected profit and the traveling cost (prize).
These prizes could be categorized as light or heavy based on the level
of effort or the time needed to collect them. It has many applications in
different fields, and it has also been extended to the multi-vehicle case.
The main difference with m3DIP is that, whereas the Prize Collecting
TSP actually considers the travel cost in its objective function, in our
problem, the travel cost, expressed in terms of battery usage, impacts
only the feasibility of the routes. In addition, we consider two types of
profits whose one is the possibility of collecting the light information
passing in the nearby of a site without explicitly visiting it.

Coverage Problems
When solving the Sweep Coverage Problem (SCP) (Li et al., 2011),

nly periodic patrol inspections are sufficient for a certain set of sites
nstead of continuous monitoring, like in traditional coverage; in par-
icular, a site is said to be 𝑡-sweep covered whenever at least one UAV

visits the site within every 𝑡 time period, and 𝑡 is an input parameter.
A variant of SCP is the Cooperative Sweep Coverage Problem (CSCP)

(Gao et al., 2020), which allows the deployment of multiple UAVs on
the same trajectory to further reduce the sweep period or detection de-
lay. UAVS could need to guarantee complete periodic patrolling (light
information) and check for some more accurate (heavy) information
within longer time intervals.

The objectives are to minimize either the number of necessary UAVs
to guarantee 𝑡-sweep coverage for all the sites or the maximum sweep
period 𝑡 given the number of UAVs. The different objective function
makes SCP and m3DIP rather different.

The Maximum Coverage Problem (MCP) consists of selecting 𝑘 sites
rom a set in order to maximize the portion of demand covered, where
site is considered covered if at least one node in its covering radius

s selected (Downs and Camm, 1996). A well-established version of
CP is the Maximum Coverage Location Problem (MCLP) (Berman and
rass, 2002), in which the goal is to locate 𝑘 facilities in order to maxi-
ize the portion of demand covered. Both problems could be extended

y considering light and heavy coverage, with different covering radii.
he goal would become to offer a light coverage to all the sites while
aximizing the portion of demand covered also by the heavy service.
his could find application, for example, in telecommunications, where
he light service could be represented by 2G coverage, which has a
roader communication range, while the heavy service is exemplified
y the faster data rates and lower latency of a 5G network but with
shorter communication range and a greater cost. This problem does

ot have vehicles moving around but the concepts of light and heavy
nformation appear very naturally.

outing Problems
The Vehicle Routing Problem (VRP) (Braekers et al., 2016) is one of

he most studied combinatorial optimization problems. Its goal is to
isit a set of customers, starting from a depot, with a set of homoge-
eous vehicles, in such a way that the total traveled distance (or cost)
s minimized. A classical extension is the Capacitated VRP (CVRP), in
hich vehicles have a maximum loading capacity, and each customer
s associated with a demand. Vehicles could collect light information
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when passing near a customer (e.g., visual check on the state) and
heavy information when stopping at a customer (e.g., performing an
equipment check or maintenance). Despite some similarities, in m3DIP
the goal is to maximize the total collected profit instead of minimizing
the total traveled distance.

The Capacitated Arc Routing Problem (CARP) differs from the CVRP
in the demand, associated with arcs rather than nodes (Golden and
Wong, 1981). The different kinds of visits could differ from the type of
service supplied by visiting the arc. For instance, in waste collection, a
light service could correspond to just emptying the waste bins along
certain streets, while a heavy one to clean the bins and the streets
themselves. While the first must be performed, the second one could
be optional and generate a profit. Our problem is rather different with
respect to this one for a twofold reason: first, we do not give any
importance to the arcs, and secondly, in the CARP it is not possible
to get light information passing simply close to a site but it is anyway
necessary to visit the sites.

WRP
The Watchperson Route Problem (WRP) is a well-known problem

in computational geometry (Ntafos, 1992). The goal is to define the
shortest tour for the watchperson within a polygonal area in order to
be able to watch at least once every point in the area from a maximum
distance of 𝑑. A common application lies in the design of routes for
surveillants in a closed area, such as, for instance, a museum. The
concept of light and heavy services could be applied also in this case.
The latter would represent a deeper inspection from a smaller distance.
The goal could become to maximize the area covered with a heavy
service, in a given amount of time, while ensuring a total light coverage
for the area. Clearly, this problem behaves differently from m3DIP in
view of the different objective function and the absence of battery
constraints.

4. Mathematical model

In this section, we express m3DIP as a mixed integer linear program-
ming problem arc-based model (AM).

We define the following binary decision variables:

• 𝑥𝑖𝑗 assuming value equal to 1 if site 𝑣𝑗 is visited immediately after
site 𝑣𝑖, and 0 otherwise;

• 𝑤𝑖𝑗 assuming value equal to 1 if site 𝑣𝑖 is weakly covered by site
𝑣𝑗 , and 0 otherwise;

• 𝑠𝑖 assuming value equal to 1 if site 𝑣𝑖 is strongly covered, and 0
otherwise;

• 𝑄𝑗 is the residual energy of the UAV while flying over site 𝑣𝑗 . By
definition, 𝑄0 = 𝐵.

These variables are subject to the following constraints:

max
∑

𝑣𝑖∈𝑉
𝑝𝑖𝑠𝑖 (1)

∑

𝑣𝑗∈𝑉 +
𝑥𝑖𝑗 =

∑

𝑗∈𝑉 ∗
𝑥𝑗𝑖 ∀𝑖 ∈ 𝑉 + (2)

∑

𝑣𝑗∈𝑉 +
𝑥𝑖𝑗 ≥ 𝑠𝑖 ∀𝑣𝑖 ∈ 𝑉 (3)

∑

𝑣𝑗∈𝑉
𝑤𝑗𝑖 ≤

∑

𝑣𝑗∈𝑉 +
𝛾𝑖 𝑥𝑗𝑖 ∀𝑣𝑖 ∈ 𝑉 (4)

∑

𝑣𝑗∈𝑉
𝑥0𝑗 ≤ ℎ (5)

∑

𝑣𝑗∈𝑉
𝑤𝑖𝑗 = 1 ∀𝑣𝑖 ∈ 𝑉 (6)

𝑤𝑖𝑗 ≤ 1 −
𝑑𝑖𝑗 − 𝑅

∀𝑣𝑖 ∈ 𝑉 ∀𝑣𝑗 ∈ 𝑉 (7)
4

𝑑𝑀𝐴𝑋
t

𝑗 ≤ 𝑄𝑖 − 𝑞𝑖𝑗 𝑥𝑖𝑗 − 𝑏𝑠𝑖 𝑠𝑖 −
∑

𝑣𝑙∈𝑉
𝑏𝑤𝑙 𝑤𝑙𝑖 + 𝐵(1 − 𝑥𝑖𝑗 ) ∀𝑣𝑖 ∈ 𝑉 ∀𝑣𝑗 ∈ 𝑉 (8)

𝑠
𝑖 𝑠𝑖 +

∑

𝑣𝑙∈𝑉
𝑏𝑤𝑙 𝑤𝑙𝑖 + 𝑞𝑖0 ≤ 𝑄𝑖 ≤ 𝐵 ∀𝑣𝑖 ∈ 𝑉 (9)

0 = 𝐵 (10)

The goal of the problem is to maximize the total collected profit
s expressed in (1). Constraints (2) ensure route continuity imposing
hat the number of existing arcs must equal the number of entering
rcs for all the nodes in the network. A site can be strongly covered
nd can weakly cover other sites only if it is visited, as stated by
onstraints (3) and (4), respectively. The number of UAVs used cannot
xceed the number of available UAVs or, equivalently, the number of
roduced cycles is at most equal to the number of UAVs, as expressed
n Constraints (5). Each site must be weakly covered, as imposed
y Constraints (6). Constraints (7) imply that a site can be weakly
overed only by sites located within a radius 𝑅 from it. Constraints (8)
llow keeping a trace of the currently available battery when reaching
site. At each site, the battery level must be always sufficient to

llow the eventual strong and weak planned coverage, as imposed by
onstraints (9). Finally, constraints (10) set the available battery at the
tarting depot equal to the prefixed value, respectively. All the decision
ariables are binary.

In the following, we call AM-solver an algorithm exactly solving the
roblem exploiting the above AM based model.

. Matheuristic 

Unfortunately, the AM-solver cannot provide a solution in a rea-
onable time, even for very small instances of our problem. So, here
e provide a matheuristic that we call , to distinguish from other
euristics that will be described in the following.
 consists on solving a path-based model (PM) of m3DIP, in

hich variables represent complete cycles. Such a model provides a
olution if fed with all the feasible cycles. Since their number grows
ith the number of sites 𝑛 following a factorial law, the problem

annot be solved with the current state-of-the-art solvers, even for small
nstances.

The idea is to give the PM only a subset of cycles, all passing through
he depot, so that the search space is reduced only to this subset instead
f the whole set of all possible cycles.

To highlight this behavior, we show the results of an experiment
n a single random instance with 20 sites, showing how the execution
imes and the objective function vary when the number of cycles
ncreases. From it, it clearly appears that while the time quickly grows
ith the number of cycles (see Fig. 1(a)), the optimal solution is ap-
roached already with a small number of cycles in input (see Fig. 1(b)).
his justifies our choice of consistently reducing the number of cycles
mong which choosing the solution.

Each cycle, which is defined as an ordered sequence of sites starting
nd ending in 𝑣0, will be passed in input as a characteristic vector
it traverses site 𝑣𝑗 if and only if its characteristic vector has a 1
n correspondence of index 𝑗) plus a value indicating which is the
raversed distance that depends on the order in which the traversed
ites are visited.

While selecting the cycles that will enter the solution, among the
nes given in input, the  decides which sites traversed by these
ycles are weakly and strongly covered, always respecting the battery
onstraint 𝐵, paying attention to weakly cover all sites and trying to
eep as higher as possible the profit.

Since the output solution is optimum when limited to the given set
f cycles, the quality of the solution will strongly depend on how we
elect the input set of cycles.

Here, we detail how the matheuristic is designed and postpone to

he next section the long discussion on selecting suitable cycles.



Computers and Operations Research 168 (2024) 106678T. Calamoneri et al.
Fig. 1. Variation of: (a) computational time and (b) objective function with the number of cycles given in input to .
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So, we assume we have already generated a set 𝐶 of 𝑐 = |𝐶|

cycles with the heuristics described in Section 6, we pass them to the
following algorithm which assembles the optimal solution obtainable
as the extraction of 𝑚 cycles among the given 𝑐 ones. We recall that a
cycle is only identified by the subset of sites visited, while the PM takes
decisions on strong and weak coverage.

We define the following binary decision variables, which are used
in the PM.

• 𝑐𝑘: assuming value equal to 1 if cycle 𝑘 is selected and 0 other-
wise;

• 𝑊𝑖𝑘: assuming value equal to 1 if site 𝑣𝑖 is weakly covered by
cycle 𝑘 and 0 otherwise;

• 𝑆𝑖𝑘: assuming value equal to 1 if site 𝑣𝑖 is strongly covered by
cycle 𝑘 and 0 otherwise

We also introduce the following constants.

• 𝛼𝑖𝑘: equal to 1 if site 𝑣𝑖 belongs to cycle 𝑘 (i.e., if 𝑣𝑖 can be strongly
covered by cycle 𝑘) and 0 otherwise;

• 𝛽𝑖𝑘: equal to 1 if site 𝑣𝑖 is located within the weakly coverage
radius of a node visited by cycle 𝑘 (i.e., if 𝑣𝑖 can be weakly covered
by cycle 𝑘, even if it possibly do not belong to it) and 0 otherwise;

• 𝐵̂𝑘: residual battery to dedicate for coverage operations for cycle
𝑘; it is equal to 𝐵 decreased by the energy necessary to fly over
the whole cycle, that is the battery amount that can be spent for
weak and strong coverage.

The mathematical PM can be formulated as follows:

max
∑

𝑘∈𝐶

∑

𝑣𝑖∈𝑉
𝑝𝑖𝑆𝑖𝑘 (11)

𝑆𝑖𝑘 ≤ 𝛼𝑖𝑘 𝑐𝑘 ∀ 𝑣𝑖 ∈ 𝑉 ∀𝑘 ∈ 𝐶 (12)

𝑊𝑖𝑘 ≤ 𝛽𝑖𝑘 𝑐𝑘 ∀ 𝑣𝑖 ∈ 𝑉 ∀𝑘 ∈ 𝐶 (13)

∑

𝑣𝑖∈𝑉
𝑏𝑠𝑖 𝑆𝑖𝑘 +

∑

𝑣𝑖∈𝑉
𝑏𝑤𝑖 𝑊𝑖𝑘 ≤ 𝐵̂𝑘 ∀ 𝑘 ∈ 𝐶 (14)

∑

𝑘∈𝐶
𝑊𝑖𝑘 = 1 ∀𝑣𝑖 ∈ 𝑉 + (15)

∑

𝑘∈𝐶
𝑆𝑖𝑘 ≤ 1 ∀𝑣𝑖 ∈ 𝑉 + (16)

∑

𝑘∈𝐶
𝑐𝑘 ≤ ℎ (17)

The objective function consists of the maximization of the reward
collected by strongly covering the nodes, as expressed in (11). A node
can be strongly covered by a cycle only if this cycle has been selected
and passes through this node, as stated by constraints (12). Con-
straints (13) impose that a site can be weakly covered by a cycle only if
5

f

this cycle has been selected and the site is located within the coverage
radius of at least one of the nodes in the cycle. The quantity of battery
spent in weak and strong coverage operations cannot exceed the quan-
tity available, as imposed by constraints (14). Every site must be weakly
covered by exactly one cycle (constraints (15)) and can be strongly
covered by at most one cycle (constraints (16)). Finally, constraints (17)
impose that at most ℎ cycles are used, one for each UAV.

6. Generation of input cycles and benchmark heuristics

In this section, we describe some heuristics, all obtained as simple
modifications of algorithms originally designed to solve problems dif-
ferent from m3DIP, although with something in common with it. These
heuristics serve a twofold purpose: on the one hand, they generate the
set 𝐶 of cycles given in input to ; on the other hand, they can be
seen as benchmark heuristics, revealing that  largely outperforms
each of them. In each heuristic we introduce a degree of randomness,
in order to run them many times and to acquire a large number of
cycles; on the other hand, we compared the best profit computed over
all the runnings with the profit achieved avoiding randomness, and they
coincide.

Preliminarily, observe that, in order to construct a suitable set of
cycles to be given in input to , we would like to choose cycles with
ifferent characteristics; e.g., some of them could pass through many
ites with the aim of better contributing to the weak coverage, while
thers could pass through sites with a high profit, in order to improve
he value of the profit of the whole solution.

In Section 3, we have already discussed that the solutions to the
wo problems TOP and CEmTSP address only a part of the objectives
ddressed by m3DIP. Namely, TOP is focused on strong coverage (and
either guarantees a feasible solution to m3DIP), while CEmTSP is on
eak one. So, we cannot exploit the solutions of these two problems to
educe good solutions to m3DIP; nevertheless, the cycles constituting
heir solutions seem very good candidates to contribute to generating
ycles to be given in input to .

euristic 𝑔𝑇𝑂𝑃
Unfortunately, TOP is 𝑁𝑃 -hard and 𝐴𝑃𝑋-hard (Blum et al., 2007).

o, there is a wide literature solving the problem either optimally or
ith good approximations (see e.g. the survey Gavalas et al., 2014).
evertheless, even these latter algorithms require very long times,

hough theoretically polynomial. For this reason, we run a simple
reedy heuristic to handle TOP, which we call 𝑔𝑇𝑂𝑃 .

More in detail, 𝑔𝑇𝑂𝑃 generates 𝑚 cycles one by one by adding one
ode at a time, at each step randomly selecting one node among the
hree ones with the highest ratio between the profit of that node and
ts cost, given as the sum of the battery consumption to reach it plus
he battery cost to strongly cover it.

It is worth noting that in the literature there is a very simple and
ast heuristic for TOP (Vansteenwegen et al., 2009); nevertheless, we
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Table 2
Average weak coverage percentage.

Battery 𝐵 7.5 MJ 1 MJ 1.5 MJ

No. of nodes 𝑛 20 50 70 20 50 70 20 50 70

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

𝑔𝑇𝑂𝑃 82.9 68.8 67.0 94.2 83.6 81.8 100.0 96.7 95.4
𝑔𝑇𝑂𝑃+10% 87.2 74.6 71.3 97.4 88.0 86.0 100.0 98.0 97.4
𝑔𝑇𝑂𝑃+20% 90.6 79.4 77.4 99.6 90.8 89.3 100.0 99.4 98.3
𝑔𝑇𝑂𝑃+30% 93.6 83.4 80.8 100.0 93.8 92.6 100.0 99.8 98.9
𝑔𝑇𝑂𝑃+40% 96.1 86.0 84.1 100.0 95.8 93.8 100.0 99.9 99.3
𝑔𝑇𝑂𝑃+50% 97.9 89.4 88.3 100.0 96.7 95.4 100.0 100.0 99.6

𝑔𝑟𝑒𝑒𝑑𝑦 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
𝑇𝑆𝑃𝑁 98.4 95.4 91.6 100.0 99.9 99.1 100.0 100.0 100.0
𝑇𝑆𝑃𝑁−10% 96.7 90.2 87.1 99.6 98.8 97.2 100.0 100.0 100.0
𝑇𝑆𝑃𝑁−20% 90.4 80.8 77.9 98.8 96.4 94.0 100.0 100.0 100.0
𝑇𝑆𝑃𝑁−30% 82.8 70.2 67.6 96.2 90.8 88.9 100.0 100.0 99.5
𝑇𝑆𝑃𝑁−40% 70.5 58.8 54.9 90.4 80.8 77.9 99.6 98.8 97.2
𝑇𝑆𝑃𝑁−50% 62.7 51.0 47.1 79.0 65.6 63.0 98.4 95.4 91.6

𝛼𝛽 87.6 82.2 80.3 98.3 95.9 95.2 100.0 100.0 100.0
0 1 89.9 83.6 81.0 99.2 97.0 96.3 100.0 100.0 100.0
 1

4
3
4

87.6 80.6 79.6 97.9 94.3 94.2 100.0 99.9 99.8
 1

2
1
2

84.3 75.6 75.5 96.6 90.4 90.0 100.0 98.4 99.2
 3

4
1
4

81.4 71.0 69.4 94.6 86.4 85.2 100.0 97.2 96.9
1 0 83.4 67.4 67.7 94.2 84.2 81.0 100.0 96.9 95.7
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experimentally compared it with 𝑔𝑇𝑂𝑃 verifying that the latter one
guarantees better profits; for this reason, we adopt the greedy approach
to solve TOP.

Of course, any solution output by 𝑔𝑇𝑂𝑃 is in general not feasible
for m3DIP, because it does not guarantee weak coverage of all sites (see
Table 2).

Heuristics 𝑔𝑟𝑒𝑒𝑑𝑦 and 𝑇𝑆𝑃𝑁
For what concerns CEmTSP, it is clearly NP-hard as not easier than

TSP (Miller, 2013), so we determine feasible solutions by means of two
different heuristics. Although CEmTSP does not require respect for any
battery constraint, our heuristics do, in order to guarantee the cycles’
feasibility.

The first heuristic is inspired by an algorithm in Calamoneri et al.
(2022) that solves a different problem but involves anyway UAVs with
a battery constraint, so we adapt it to this context. It follows a greedy
approach, and hence it is denoted 𝑔𝑟𝑒𝑒𝑑𝑦.

𝑔𝑟𝑒𝑒𝑑𝑦 constructs all the 𝑚 cycles at the same time; at each step,
considers one by one all the 𝑚 current portions of cycles and, for each
of them, starting from the node selected last 𝑣𝑙𝑎𝑠𝑡 (at the beginning 𝑣0),
selects the next one, 𝑣𝑛𝑒𝑥𝑡, randomly choosing among the three sites
with the highest ratio between the number of sites weakly covered by
𝑣𝑛𝑒𝑥𝑡 and the sum given by the cost to reach 𝑣𝑛𝑒𝑥𝑡 plus the cost of weak
covering all these nodes. Clearly, we have to guarantee that the whole
cycle with the addition of 𝑣𝑛𝑒𝑥𝑡 can be flown over within battery 𝐵.

Note that the solutions output by 𝑔𝑟𝑒𝑒𝑑𝑦 are feasible for m3DIP,
because they guarantee weak coverage of all sites within battery 𝐵, as
shown in Table 2.

The second heuristic is inspired by an algorithm called m-TSPN
(multiple-Traveling Salesman Problem with Neighborhood) (Kim et al.,
2014, 2017) and hence denoted 𝑇𝑆𝑃𝑁 . The original is an approxima-
tion algorithm with a provable constant approximation ratio. Never-
theless, it provides no battery constraints, so we need to modify the
algorithm to let it work correctly in our setting. Unfortunately, in this
way, the algorithm loses the guarantee of complete weak coverage,
although it is reached in most of the cases (see Table 2).

𝑇𝑆𝑃𝑁 gives as part of the input 𝑚 sites (one for each UAV) and uses
them as children of the root of a minimum spanning tree rooted at 𝑣0;
the 𝑚 sub-trees of this minimum spanning tree are then transformed,
using the Christofides’s approximation algorithm for TSP (Christofides,
1976), into 𝑚 cycles covering all sites and intersecting only at the root;
finally, some operations are executed in order to equalize the weight.

Heuristics  and 
6

𝑔𝑇𝑂𝑃+𝑥% 𝑇𝑆𝑃𝑁−𝑦% w
The reason why we use approaches tackling different problems is
that the cycles they produce have diverse properties and hence are
somehow complementary. In particular, as far as the two problems
TOP and CEmTSP are defined, 𝑔𝑇𝑂𝑃 tends to produce cycles very
focused on strong coverage (and hence containing few sites with high
profit), while 𝑔𝑟𝑒𝑒𝑑𝑦 and 𝑇𝑆𝑃𝑁 produce cycles very focused on weak
overage (and hence passing through as many sites as possible).

In this way, the produced cycles are very suitable to address only
ither weak or strong coverage, but not both together. So, besides the
reviously described algorithms, we propose some modifications that
ttenuate the main objective of each approach (either weak or strong
overage) to introduce also the other one.

Namely, concerning 𝑔𝑇𝑂𝑃 , we propose a simple variant: we run the
ame algorithm with an increased battery 𝐵 + 𝑥% instead of simply 𝐵,
or certain fixed values of 𝑥; in this way, we obtain cycles that contain,
n general, more sites than any solution of the original algorithm; then,
e run a post-processing phase in which we keep only the cycles that

an be flown over within battery 𝐵 guaranteeing the largest possible
eak coverage, but possibly renouncing to the strong coverage of some

ites. We call this heuristic 𝑔𝑇𝑂𝑃+𝑥% and, as expected, it increases the
eak coverage (see Table 2), at the expense of the strong coverage (i.e.,
f the profit), as highlighted in Table 3.

For 𝑇𝑆𝑃𝑁 , we propose a symmetric variant: we run the same
lgorithm with a decreased battery 𝐵 − 𝑦% instead of simply 𝐵, for
ertain fixed values of 𝑦; in this way, we obtain cycles that contain, in
eneral, fewer sites to be weakly covered (as shown in Table 2) but a
igher residual battery; this can be exploited by a post-processing phase
o strongly cover some sites more (see Table 3). We call this heuristic
𝑇𝑆𝑃𝑁−𝑦%, and we expect that it increases the strong coverage, possibly

t the expense of the weak coverage.

euristic 𝛼𝛽
Here we introduce a new simple greedy heuristic addressing from

he beginning both weak and strong coverage. Calling 𝛾 ′(𝑣𝑖) the set
f sites located within a radius 𝑅 from 𝑣𝑖 that have not been weakly
overed by any other site, this heuristic chooses the next site 𝑣𝑛𝑒𝑥𝑡
o be included in the current cycle after the last one 𝑣𝑙𝑎𝑠𝑡 as the one
aximizing the following value:

𝛼 ⋅ 𝑝(𝑣𝑛𝑒𝑥𝑡) + 𝛽 ⋅ |𝛾 ′(𝑣𝑛𝑒𝑥𝑡)|
𝑞𝑙𝑎𝑠𝑡𝑛𝑒𝑥𝑡 + 𝑏𝑠𝑛𝑒𝑥𝑡 +

∑

𝑣∈𝛾′(𝑣𝑛𝑒𝑥𝑡) 𝑏
𝑤
𝑖

here 𝛼 and 𝛽 are two parameters such that 0 ≤ 𝛼, 𝛽 ≤ 1 and 𝛽 = 1− 𝛼.
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Clearly, varying the values of 𝛼 and 𝛽 we expect to give a different
mportance to the two kinds of coverage. Indeed, a large value of

corresponds to favoring strong coverage, while a large value of
implies strengthening the requirement of weak coverage. This is

onfirmed by Tables 2 and 3.
It is worth noting that the heuristic corresponding to 𝛼 = 1 is differ-

nt from 𝑔𝑇𝑂𝑃 , although following the same philosophy, because the
unction optimized by the greedy approach includes anyway informa-
ion about weak coverage. Analogously, the heuristic corresponding to
= 1 follows the same approach as the ones solving CEmTSP although

s different from both of them; in particular, due to the optimized
unction, it chooses sites even with respect to their possible strong
overage, while 𝑔𝑟𝑒𝑒𝑑𝑦 and 𝑇𝑆𝑃𝑁 base their choices only on weak
overage. In all three heuristics, it is decided by a post-processing phase
a heuristic for the knapsack problem) which sites to strongly cover.

In the following, we consider some variants of 𝛼𝛽 . Namely: when
and 𝛽 are not given, they are randomly chosen, and many iterations

re executed on the same instance, saving as profit the best value over
ll their runs; then, some special values for 𝛼 and 𝛽 are given, that are
= 0 and 𝛽 = 1; 𝛼 = 1∕4 and 𝛽 = 3∕4; 𝛼 = 𝛽 = 1∕2; 𝛼 = 3∕4 and 𝛽 = 1∕4;
= 1 and 𝛽 = 0.

. Experimental results

In this section, we run some experiments, setting all the parameters
o some realistic values, as follows:

• battery 𝐵: we perform three series of experiments, with battery
0.75 MJ, 1 MJ and 1, 5 MJ, respectively, in agreement with some
UAVs sold at moment (e.g., 0.75 MJ is close to the battery of
DJI Matrice 200 while 1.5 MJ is about the single battery of DJI
Matrice 3002); in this way, we aim to understand whether 
and the other heuristics change their behavior when UAVs have
poor, medium, and high batteries.

• UAV energy consumption for traveling and hovering can vary sig-
nificantly based on several factors, including the model, payload,
and environmental conditions such as weather, and particularly
wind speeds. We chose the following values, commonly utilized
in the literature, e.g., Khochare et al. (2021), Sorbelli et al.
(2024), and aligned with the ones found in recent publications
such as Alyassi et al. (2022) and Baek et al. (2019), where
rigorous experiments to measure drone energy consumption were
conducted:

– unit battery cost 𝑞′: 200 J/m (Joule per meter); hence 𝑞𝑖𝑗 =
𝑞′ ⋅ 𝑑𝑖𝑠𝑡(𝑣𝑖, 𝑣𝑗 ), where 𝑑𝑖𝑠𝑡 represents the distance in meters
between 𝑣𝑖 and 𝑣𝑗 ;

– hovering cost ℎ of 700 J/s (Joule per second); we set 𝑏𝑠𝑖 as ℎ
multiplied by a random number of seconds ranging between
100 and 300; instead, 𝑏𝑤 is set for all sites to 700 J;

• 𝑅 is set to 150 m;
• the area of interest is 1 km × 1 km, and in the same dimension we

randomly allocate sites; we consider three different values of their
number 𝑛: 20, 50, and 70, in order to see how the matheuristic
may change its behavior when sites are more or less densely
distributed.

All our experiments have been performed on a computer equipped
ith an Intel(R) Core(TM) i5-1135G7 CPU (8 cores clocked at 2.4 GHz)
nd 16 GB RAM. All simulation runs have been repeated 10 times with
ifferent seeds, the tables show mean values. For each simulation, to
enerate the cycles, we run each heuristic 100 times with different
eeds.

With the aim of allowing people the reproducibility of the exper-
ments, we provide the code of the matheuristics and the instances

2 See https://www.dji.com/it/matrice-200-series-v2 and https:
/www.aprflytech.it/dji-matrice-300-rtk.
7
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here: github.com/ulisse91/LightHeavyDataCollectionCycleGen, while
the solvers for AM and PM straightforwardly follow from the con-
straints in Sections 4 and 5.

In order to analyze the performance of the considered heuristics, we
compare different measures.

First, we compare the weak coverage reached by each heuristic
(see Table 2). As already discussed in Section 6, only our matheuristic
and 𝑔𝑟𝑒𝑒𝑑𝑦 guarantee full weak coverage; heuristics 𝑇𝑆𝑃𝑁 , originally
olving a problem very similar to CEmTSP, and 01, completely focused
n the weak coverage, are very close to complete weak coverage; also
𝑔𝑇𝑂𝑃+50% achieves a very good result w.r.t. this parameter because the
attery is artificially increased by a quantity large enough to guarantee
lmost total weak coverage at the expense of strong coverage. Finally,
learly, when the battery is very large (1.5 MJ), almost all the heuristics
re able to achieve full weak coverage, so they produce a feasible
olution for m3DIP and can be compared w.r.t. the profit they gain.

Second, we compare the profit achieved by every heuristic (see
able 3).

Note that it is meaningful to compare the results of  only with
hose of the heuristics that are able to guarantee full weak coverage
and that are highlighted with white background in Table 3). In this
ay, it is clear that our matheuristic highly outperforms 𝑔𝑟𝑒𝑒𝑑𝑦 and
ll the other heuristics, whenever they are able to reach full weak
overage.

Besides the performance of the heuristics, we studied the distribu-
ion of the cycles selected by . More precisely, we checked whether
here are some heuristics that contribute less to the solution provided
y , in the sense that their cycles are rarely chosen.

Preliminarily, it must be said that a few cycles are generated exactly
he same by more than one heuristic; in this case, we keep only
ne copy but store the different heuristics that generated them. (The
umber of these cycles largely changes with 𝑛 and 𝐵.)

In Table 4, an ‘‘x’’ on the row corresponding to heuristic  means
hat at least one cycle generated exclusively by  has been selected by
he matheuristic, somehow meaning that excluding  would damage
he performance of the matheuristic. Vice versa, a ‘‘o’’ means that at
east one cycle generated by  was selected by the matheuristic, but it
as also generated by another heuristic, and no other cycles produced
y  have been exploited. More in detail, we assign an ‘‘x’’ to the
euristic with the largest number of used cycles, remove the heuristic
nd all its cycles, and repeat.

It turns out that 𝑇𝑆𝑃𝑁 and all its variants do not seem very useful
o . Nevertheless, we decided to keep them, because 𝑇𝑆𝑃𝑁 is
ot a heuristic designed by us, but it derives from a well-established
lgorithm in the literature.

.1. Adding grid-points to improve the solution of m3DIP

In agreement with certain works dealing with CEmTSP (e.g., Carrabs
t al., 2017; Di Placido et al., 2023) we now take into account the
ossibility of weakly covering a site from a point that does not belong
o the set of sites but is simply close to it; so, in our model, we
ntroduce some additional dummy points that may be close to more
han one site and can be exploited to collect light information from
ll its neighborhood. Clearly, these dummy nodes do not need to be
overed (neither weakly nor strongly), and hence the value of functions
𝑤 and 𝑏𝑠 is null on them. For the sake of simplicity, in this setting, we
eep the same notation, just extending its meaning. So, with 𝑉 + we now
ean the set of sites plus the depot and the newly introduced dummy
odes; moreover, by 𝛾𝑖 we intend the number of sites that are located
ithin a radius 𝑅 from 𝑖 (where 𝑖 is either a site or a dummy node) and
y 𝑞𝑖𝑗 the battery cost of flying between 𝑖 and 𝑗, where 𝑖 and 𝑗 are now
ither sites or dummy nodes.

As dummy nodes, we introduce points at integer coordinates, i.e.
he cross points of a grid. We execute experiments considering grids of

𝑅 , 𝑅 , 3𝑅, and 𝑅 (see Table 5),
ifferent dimensions: the unit is set to 4 2 4

https://www.dji.com/it/matrice-200-series-v2
https://www.aprflytech.it/dji-matrice-300-rtk
https://www.aprflytech.it/dji-matrice-300-rtk
https://www.github.com/ulisse91/LightHeavyDataCollectionCycleGen
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Table 3
Average profit due to the strong coverage. The values corresponding to feasible solutions (i.e.,
guaranteeing 100% weak coverage) are highlighted with white background; the performance of 
can be compared only with these values.

Battery 𝐵 7.5 MJ 1 MJ 1.5 MJ

No. of nodes 𝑛 20 50 70 20 50 70 20 50 70

 63.6 59.1 65.6 92 112.4 132.6 103.5 195.8 221.9

𝑔𝑇𝑂𝑃 66.8 97.1 106.8 88.1 134.1 148.7 103.5 195.6 220.4
𝑔𝑇𝑂𝑃+10% 65.3 95.0 102.3 86.4 129.3 142.9 103.5 192.6 217.3
𝑔𝑇𝑂𝑃+20% 62.9 91.1 100.2 86.0 129.7 141.5 103.5 187.8 215.3
𝑔𝑇𝑂𝑃+30% 62.1 88.2 97.2 83.4 124.6 136.3 103.5 182.6 209.0
𝑔𝑇𝑂𝑃+40% 57.8 84.4 91.5 81.6 119.2 131.8 103.5 177.0 204.0
𝑔𝑇𝑂𝑃+50% 56.5 80.9 87.5 80.7 114.0 127.4 103.5 167.3 198.0

𝑔𝑟𝑒𝑒𝑑𝑦 50.9 55.9 52.5 68.0 88.0 93.2 72.2 117.6 128.2
𝑇𝑆𝑃𝑁 42.7 49.3 49.8 50.2 60.7 60.9 59.6 78.3 78.9
𝑇𝑆𝑃𝑁−10% 50.3 64.1 60.1 56.8 79.1 80.4 66.3 103.5 108.8
𝑇𝑆𝑃𝑁−20% 55.1 66.6 70.9 63.8 90.1 94.3 74.0 128.3 132.3
𝑇𝑆𝑃𝑁−30% 54.1 66.5 68.1 69.3 97.8 99.6 80.4 143.7 148.4
𝑇𝑆𝑃𝑁−40% 49.2 64.2 65.0 68.7 95.4 100.2 85.4 151.6 162.1
𝑇𝑆𝑃𝑁−50% 40.9 54.1 57.0 59.4 76.4 84.5 88.7 147.2 153.9

𝛼𝛽 66.1 95.8 103.7 87.8 130.5 143.6 103.5 192.3 217.7
0 1 53.8 71.3 74.1 69.2 93.0 100.0 72.3 114.8 130.5
 1

4
3
4

64.8 88.1 92.9 86.2 123.3 131.9 103.5 183.9 207.2
 1

2
1
2

66.3 95.1 103.0 87.9 130.1 143.4 103.5 192.5 216.1
 3

4
1
4

66.3 97.3 107.1 88.4 134.4 147.8 103.5 195.4 220.0
1 0 66.9 96.9 106.4 88.0 134.6 148.6 103.5 196.6 220.6
Table 4
Usage of cycles generated by heuristics: an ‘‘x’’ on the row corresponding to heuristic  means that at least one cycle generated exclusively by
 has been selected by the matheuristic; a ‘‘o’’ means that  generated a cycle that was selected by the matheuristic, but another heuristic
also generated it, and no other cycles produced by  have been exploited.
Battery 𝐵 7.5 MJ 1 MJ 1.5 MJ

Number of nodes 20 50 70 20 50 70 20 50 70

𝑔𝑇𝑂𝑃 o o x x x x
𝑔𝑇𝑂𝑃+10% o o o x x o x
𝑔𝑇𝑂𝑃+20% x x x x x x x x
𝑔𝑇𝑂𝑃+30% x x x x x o x x
𝑔𝑇𝑂𝑃+40% x x x o x x o
𝑔𝑇𝑂𝑃+50% x x x x x x o x x

𝑔𝑟𝑒𝑒𝑑𝑦 x x x o x x x
𝑇𝑆𝑃𝑁 x x x
𝑇𝑆𝑃𝑁−10% o x x
𝑇𝑆𝑃𝑁−20% o x
𝑇𝑆𝑃𝑁−30% o
𝑇𝑆𝑃𝑁−40% o
𝑇𝑆𝑃𝑁−50% o

𝛼𝛽 x o x x x x
01 o o x
 1

4
3
4

o x x x x x
 1

2
1
2

o x x x x x
 3

4
1
4

o o x o x x x x
10 o o o o x x
a

w
a

t
p
h
i
t
i
p
t

in order to study possible differences in the performance of . Of
course, a grid unit larger than 𝑅 is meaningless, and the larger the grid
dimension, the smaller the number of grid points and vice-versa. We
vary the battery dimension and the number of sites as in the previous
experiments (𝐵 = 7.5 MJ, 𝐵 = 1 MJ; 𝑛 = 20, 𝑛 = 50, and 𝑛 = 70) in
rder to compare the resulting profits in the two settings (without and
ith dummy grid points). We did not perform experiments with the

argest value of battery 𝐵 = 1.5 MJ, since the battery level is so high
hat allows us to strongly cover almost all the sites, even without the
nsertion of grid-based additional points. Therefore, this set of interests
s not relevant for this experiment.

Observe that adding grid points is always favorable for our problem,
ecause:
the lengths of the cycles are never longer, so saving battery;
the cost of the overall weak coverage is the same, i.e., ∑𝑣𝑖∈𝑉 𝑏𝑤𝑖 ;
8

o having more battery energy at disposal for strong coverage. w
In Table 5, we focus only on the comparison of the unique heuristics
ble to always guarantee a feasible solution for m3DIP, that is  and
𝑔𝑟𝑒𝑒𝑑𝑦. In order to ease the reading of the table, we added the columns
ith 𝑅 = 0 corresponding to the values without grid points (the same
s in Table 3).

Looking at the results in general, it is very clear that, while 
akes advantage of the insertion of dummy grid nodes, instead 𝑔𝑟𝑒𝑒𝑑𝑦
roduces much worse solutions; the reason is that, as far as this
euristic works, it can only behave worse when grid point are added;
ndeed, first it aims at the weak coverage greedily trying to keep small
he length of the produced cycles, so tending to choose grid points
nstead of sites; secondly it tries to strongly cover as many sites as
ossible with the residual battery, but it is not able to find enough of
hem because many grid points have been exploited.

It is worth noting that  often takes less time to be executed

hen grid points are added (see Table 5); the reason is twofold:
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Table 5
Experiments with grid-points. The values with 𝑅 = 0 correspond to the experiments without grid-points (i.e., the same as in Table 3).

Number of sites 𝑛 20 50 70

Grid unit 0 𝑅
4

𝑅
2

3
4
𝑅 𝑅 0 𝑅

4
𝑅
2

3
4
𝑅 𝑅 0 𝑅

4
𝑅
2

3
4
𝑅 𝑅

Battery 𝐵 = 7.5 MJ:
 63.6 67.6 67.6 67 66.33 59.1 97.5 86.67 105.78 104.33 65.6 105.78 105.11 104.11 101.44
𝑔𝑟𝑒𝑒𝑑𝑦 50.9 6.8 16.5 26.2 32.1 55.9 20.7 29.9 28.4 39.4 52.5 20.4 32.9 52.5 31.6

Time of  (s) 4.06 14.97 8.83 7.35 7.26 31.09 48.45 17.25 15.64 10.29 101.14 46.98 25.37 16.13 15.05

Battery 𝐵 = 1 MJ:
 92 103.11 92.6 92.6 92.4 112.4 135.22 133.89 113.6 132.5 132.6 147.9 146.4 144.3 142.8
𝑔𝑟𝑒𝑒𝑑𝑦 68 6.8 14.4 29.4 32.2 88 22 35.4 33.8 48.5 93.2 22 41.2 78.7 44.8

Time of  (s) 11 36.67 20.41 31.23 19.82 165.72 299.19 232.1 291.7 207.12 689.94 371.83 458.06 743.82 520.07
o
S
o
e
o
S

D

R

A

B

B

B

B

B

C

C

C

C

D

D

D

G

G

G

G

G

on the one hand, the larger number of nodes impacts the heuristics
generating cycles (taking much more time), but not ; on the other
and, the most time-demanding issue faced by the matheuristic is to
uarantee complete weak coverage, and it becomes easier in presence
f dummy grid points. Note that we computed the running times of all
he heuristics; nevertheless, we decided to report only the ones of 
ecause the times of the other ones always remain largely under 1 s

More in detail, when 𝐵 = 7.5 MJ and 𝑛 is either 20 or 70, 
eaches the best performance when the grid is finer (small values of
he grid unit). Even the times are higher for the finer grid since there
re many more points to be processed. The results are less regular when
= 50, but the trend is similar.

Even when 𝐵 = 1 MJ the considerations for the profit are similar
hile it is more evident the gain in terms of time, especially for larger 𝑛.

. Conclusions and future perspectives

In this paper, we introduced a novel problem, called m3DIP, based
n a real-life situation involving a fleet of UAVs, consisting of guar-
nteeing complete weak coverage of a set of sites that, at the same
ime, maximizes the profit of a partial strong coverage. We expressed
3DIP as an integer linear programming problem and proposed a
atheuristic  that exploits several (mostly greedy) heuristics to

ive as an additional input an opportune subset of cycles so that the
earch space is reduced only to this subset instead of the whole set of
ll possible cycles. We showed the results of a large set of experiments,
alidating  and showing that each heuristic exploited to produce
portion of input cycles alone is not able to achieve a good result but

ctively contributes with some cycles to the solution output by ;
oreover,  – that exploits cycles collected from all the heuristics
achieves the largely best profit. Then, we extended the setting with

he possibility of using some dummy nodes for the weak coverage and
howed that they are very useful for  to get an even better solution.

We highlight two interesting open problems arising in the attempt
o make the model more true to life.

First, cooperation among UAVs leads to autonomous decisions of
he fleet, while the definition of our problem implicitly assumes that
here is a central unit. Of course, introducing cooperation makes the
odel more powerful and interesting, but the problem is even more

omplicated.
Second, some papers (e.g., Sorbelli et al., 2022) allow UAVs to fly

at different heights from the floor, implying different radii for weak
coverage; in particular, the higher the flight, the larger the radius.
Nevertheless, if a UAV flies high, its ability to strongly cover sites
decreases because precise information can be acquired only from very
close. So, such a model would require balancing the advantage of
augmenting the radius for better weak coverage and the disadvantage
coming from the decreased ability to strongly cover. This would be a
very challenging variant of our problem.

Finally, from a methodological point of view, it could be interesting
to exploit the path-based model within a column generation framework,
or in a branch-and-price algorithm, to provide an exact method to
address m3DIP.
9
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