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Abstract: Natural killer (NK) cells are innate-like lymphocytes that belong to the family of type-1
innate lymphoid cells and rapidly respond to virus-infected and tumor cells. In this study, we
have combined scRNA-seq data and bulk RNA-seq data to define the phenotypic and molecular
characteristics of peripheral blood NK cells. While the role of NX cells in immune surveillance against
virus'infections and tumors has been well established, their contribution to protective responses to
other intracellular microorganisms, such as Mycobacterium tuberculosis (Mtb), is still poorly understood.
In this study, we have combined scRNA-seq data and bulk RNA-seq data to illuminate the molecular
characteristics of circulating NK cells in patients with active tuberculosis (TB) disease and subjects
with latent Mtb infection (LTBI) and compared these characteristics with those of healthy donors
(HDs) and patients with non-TB other pulmonary infectious diseases (ODs). We show here that the
NK cell cluster was significantly increased in LTBI subjects, as compared to patients with active TB or
other non-TB pulmonary diseases and HD, and this was mostly attributable to the expansion of an
NK cell population expressing KLRC2, CD52, CCL5 and HLA-DRB1, which most likely corresponds
to memory-like NK2.1 cells. These data were validated by flow cytometry analysis in a small cohort
of samples, showing that LTBI subjects have a significant expansion of NK cells characterized by
the prevalence of memory-like CD52* NKG2C* NK cells. Altogether, our results provide some new
information on the role of NK cells in protective immune responses to Mtb.

Keywords: tuberculosis; Mycobacterium tuberculosis; latent Mycobacterium tuberculosis infection;
single-cell RNA sequence; NK cells; NKG2C

1. Introduction

NK cells are innate-like lymphocytes that belong to the family of type-1 innate lym-
phoid cells and rapidly respond to virus-infected and tumor cells. Unlike T and B lym-
phocytes, NK cells lack clonally distributed antigen-specific receptors, and their target cell
recognition and functional activities rely on germline-encoded killer activating receptors
(KARs) and killer inhibitory receptors (KIRs) [1]. According to the “missing self” hypoth-
esis, NK cells kill cells lacking MHC class I expression, which are ligands of KIRs, while
cells expressing MHC class I molecules are spared. Simultaneously, tumor transformation
or virus infections upregulate the expression of stress-related molecules, which are ligands
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of KARs on NK cells. In addition, NK cell activities may be modulated by stimulatory
cytokines, such as IL-2, IL-12, IL-15 and IL-18, or by KAR-binding soluble ligands or by
IgG-opsonized target cells recognized by the FcyRIII (CD16) receptor expressed on NK
cells (a phenomenon known as antibody-dependent cell-mediated cytotoxicity (ADCC)).
Upon interaction with target cells, NK cells perform cytolytic activity and secrete a variety
of pro-inflammatory cytokines such as IFN-y and TNF-a.

While the role of NK cells in immune surveillance against virus infections and tumors
has been well established, their contribution to protective responses to other intracellular
microorganisms, such as Mtb is still poorly understood. In mice, vaccination with Bacille
Calmette~Guerin (BCG) activates NK cells to produce IL-22 and IFN-y and inhibit Mtb
multiplication [2]. This protective effect is dependent on the NK cell killing of extracellular
Mtb and on cooperation with monocytes [3], ¥ T cells [4] or CD8 T cells [5]. In another
study on mice, BCG vaccination induced an IFN-y-producing memory-like NK cell subset,
which provided protection against Mtb [6]. In humans, BCG vaccination did not modify the
frequency of NK cells but promoted their production of IFN-y and other pro-inflammatory
cytokines [7]. In human TB disease, NK cells have been detected within granulomatous
lesions [8] and in pleural fluid [9,10], suggesting their participation in immune responses
against Mtb at the site of infection/disease. Some studies have reported reduced percent-
ages of circulating total NK cells [11,12], or their subsets [12,13], in patients with active
TB disease—as compared with LTBI subjects—and HD, which normalize after successful
therapy, suggesting a role in the control of Mtb infection [14]. Conversely, another study
did not report statistically significant differences in the frequencies of circulating NK cells
between patients with active TB disease, LTBI subjects and HD [15]. In addition, there are
also contrasting results on the percentages of the CD56™8 subset of NK cells in active
TB patients, which were reported reduced in one study [12] but increased in another [15].
Single-cell sequencing technology offers an unprecedented opportunity to deepen our
understanding of the transcriptomic, genomic, proteomic, epigenomic and metabolomic
information of single cells. Very recently, single-cell RNA sequencing (scRNA-seq) analysis
has yielded promising, yet preliminary, information on immune phenotypes in TB [16],
generally confirming a marked decrease in several lymphocyte subsets, including NK cells,
in active TB patients.

In this study, we have combined scRNA-seq and bulk RNA-seq data to define the
phenotypic and molecular characteristics of peripheral blood NK cells. We report here that
LTBI subjects have a significant expansion of NK cells characterized by the prevalence of
memory-like CD52* NKG2C* NK cells. This study may provide some new information on
the role of NK cells in protective immune responses to Mtb. :

2. Materials and Methods
2.1. Sample Collection

Between 1 October 2023 and 30 January 2024, Policlinico Palermo University Hospital
in Italy conducted a prospective enrolment of adult patients with active TB. The study also
included subjects with LTBI during this timeframe and HD. The diagnosis of active TB
was based on clinical symptoms, chest radiography and microscopy for acid-fast bacilli
(AFB), sputum Mtb culture and response to anti-TB chemotherapy. On the other hand,
individuals with LTBI were identified by testing positive using QuantiFERON-TB Gold
Plus and were characterized by lacking clinical symptoms and radiologic signs of active
TB. Notably, individuals with human immunodeficiency virus infection (HIV) or other
immunosuppressive conditions were excluded from the study. This study included a total
of 36 participants (active TB [n = 12], LTBI [n = 12] and HD [n = 12]). Each participant
contributed 6 mL of blood, collected in EDTA tube, with samples obtained prior to the
initiation of anti-TB or TB preventive treatment. The collected blood underwent immediate
processing to isolate peripheral blood mononuclear cells (PBMCs). Subsequently, the
separated cells were meticulously preserved at —80 °C, maintaining their integrity until
the analytical phase.
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2.2. Data Collection

All datasets used in this study were retrieved from the National Center for Biotechnol-
ogy Information’s (NCBI) Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/ (accessed on 21 October 2023), a public repository for gene expression
data. A search of the GEO profiles related to TB and LTBI samples in GEO database using
the terms “Tuberculosis” [mesh terms] OR active tuberculosis [all fields] AND “Homo
sapiens” [porgn] led to identifying 12 distinct studies (GSE37250, GSE39939, GSE39940,
GSE40553, GSE42825, GSE42826, GSE42827, GSE42830, GSE42831, GSE42832, GSE83456
and GSEBruno [17]. To enhance the comprehensiveness of this study, a focused platform
was considered. Specifically, only Platform-GPL10558 Illumina Microarray was exclusively
utilized to mitigate batch effects, and peripheral whole blood samples were selectively cho-
sen as the primary biological material utilized for exploring the differential gene expression
profile between different conditions (Supplementary Table S1).

2.3. Data Processing and Differential Gene Expression Analysis

The identification of differentially expressed genes (DEGs) across diverse TB condi-
tions was conducted using the R package DESeq2 v1.38.2. This package facilitated a robust
differential gene expression analysis on bulk RNA-seq data obtained from different condi-
tions. To prepare the data for downstream analysis, RNA-seq counts were normalized, and
variance stabilizing transformation (VST) was applied. The default Wald test in DESeq2
was employed for differential expression analysis, and p-values were adjusted using the
Benjamini-Hochberg method. Genes matching the criteria of an adjusted p-value less than
0.05 and an absolute fold change greater than 1 were considered DEGs. Logarithmically
transformed data were computed with DESeq2, and batch effects were eliminated using
the R package limma v3.44.3. Following batch effect correction, the data underwent prin-
cipal component analysis (PCA) and weighted correlation network analysis (WGCNA).
This comprehensive approach ensured the precise selection of genes displaying significant
expression alterations across various TB conditions, forming a foundation for subsequent
analyses. To visualize the results, a volcano plot illustrating the relationship between fold
change and statistical significance was generated. Additionally, a heatmap, created using
the ComplexHeatmap R package, provided a global view of gene expression levels across
conditions. The top upregulated genes were clustered based on Euclidean distance, and
each gene cluster underwent enrichment analysis using MSigDB 2023 gene sets. The results
were presented through a scatterplot depicting odds ratio (x-position) and —logl0 (p-value)
(y-position). The entire analysis, encompassing the construction and interpretation of
visualizations such as volcano plots and heatmaps, was executed using the latest version
of R.

2.4. Reference-Based Decomposition

The R toolkit, Bisque, was employed for reference-based decomposition to accurately
and efficiently estimate cell composition from bulk expression data using a single-cell
reference. This method leverages single-cell data for the decomposition of bulk expression,
implementing a regression-based approach that utilizes scRNA-seq or single-nucleus
RNA-seq (snRNA-seq) data. Bisque generates a reference expression profile and learns
gene-specific bulk expression transformations, enabling robust decomposition of RNA-seq
data. To enhance the precision of the analysis, we utilized a newly integrated single-cell
reference of human peripheral blood specifically developed for this study.

2.5. Peripheral Immune Cell and NK Cell Reference Map

scRNA-seq data from 30 different studies and 100 samples for total of 160K high-
quality cells were integrated (supplementary Table 52). scRNA-seq analyses were per-
formed using Seurat (Version 4.3.0) and SingleR (Version 2.0.0) [18]. Quality control was
primarily evaluated based on the number of feature genes and the expression percentage
of mitochondrial genes. To accurately identify the different immune cell subsets. Cells that
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had more than 1000 detected genes and had less than 10% mitochondrial gene expression
were considered high-quality. Cells with more than 10% mitochondrial gene expression
were excluded. Gene counts were normalized with the NormalizeData function of Seurat
and all the cells were integrated using RPCAlIntegration. Intergraded data from all samples
were clustered with 50 PCs in combination with the dimensional reduction method of uni-
form manifold approximation and projection (UMAP). Cell type annotation was performed
with ScType [19], and those cells annotated to be NK cells were extracted for subsequent
analyses. The Seurat package was used to calculate the feature genes of NK cell subsets,
while the single-cell atlas of peripheral NK cells was utilized as a reference map to estimate
cell composition (“decomposition”) from bulk expression data with single-cell information.

2.6. Preparation of PBMCs

PBMCs were isolated from blood samples using a conventional Ficoll-Paque density
gradient centrifugation protocol in tubes containing EDTA. Then, PBMCs were washed and
resuspended in RPMI 1640 medium supplemented with 10% FBS, penicillin (100 U/mL)-
streptomyecin (100 pg/mL) (all purchased from Sigma-Aldrich, Saint Louis, MO, USA).
PBMCs were counted in Trypan blue, collected into flow cytometry tubes, and then washed
with 1 mL of BD staining buffer.

2.7. Staining of Surface Antigens for Flow Cytometry

PBMCs (10° cells) were aliquoted into flow cytometry tubes and monoclonal antibod-
ies (mAbs) to CD3 (PerCP-Vio700-conjugated, clone REA613, Miltenyi Biotec, Koto City,
Japan), CD19 (VioBlue-conjugated, clone REA613, Miltenyi Biotec), CD16 (PE-Cyanine7-
conjugated, clone REA613, Miltenyi Biotec), CD56 (PE-conjugated, BD Bioscience San
Jose, CA, USA), CD14 (PerCP-conjugated, BD Bioscience San Jose, CA, USA), NKG2C
(FITC-conjugated, clone REA613, Miltenyi Biotec), CD127 (APC-Vio770-conjugated, clone
REA613, Miltenyi Biotec), CD52 (FITC-conjugated, clone REA164, Miltenyi Biotec) were
added for cell surface antigen staining. After incubating for 30 min in the dark at room tem-
perature, the cells were washed twice with 1 mL of BD Staining Buffer (PBS without Ca®*
and Mg?*, 1% FBS, 0.09% sodium azide) and resuspended in 300 uL of BD Staining Buffer
before being analyzed using flow cytometry. Samples were run on a BD FACS Lyric™ flow
cytometer, and data were evaluated with BD FACSuite™ V1.5 Application (BD Biosciences,
San Jose, CA, USA) after collecting 200,000 gated events (lymphocytes). Peripheral blood
lymphocytes were gated using forward (FSC) and side scatter (S55C) parameters, single cells
and live cells. NK cells were identified in the CD3-negative, CD19-negative, CD14-negative
and CD127-negative cells to exclude T cells, B cells, monocytes and ILCs, respectively,
referred to as lineage (Lin)-negative cells, expressing CD16 and CD56 surface markers.
Relevant isotype controls were also used.

2.8. Statistical Analysis

The statistical analysis was performed using R software version 4.0.3. The Wilcoxon
test was used to compare continuous variables between two groups, whereas the Kruskal-
Wallis test was used to compare continuous variables among three or more groups. A test
was considered statistically significant if the p-value was less than 0.05. For data analysis
and visualization, we used the R packages ggplot2, ggstatsplot and ggpubr [20].

3. Results
3.1. DEG and GSEA Analysis Reveal Specific Enrichment of NK-Mediated Immune Responses in
LTBI Subjects

Since peripheral blood from individuals with different Mtb infectious statuses could ex-
hibit distinct transcription profiles, we used RNAseq data from 1467 samples
(TB = 896, LTBI = 298, HD = 273) to analyze gene expression and functional enrichment
in the peripheral blood of TB patients and LTBI subjects. In addition, we also included
RNAseq data from 633 OD samples. To this aim, we utilized differential gene expression
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analysis alongside the Gene Ontology Biological Processing (GO) gene set (Figure 1A). This
approach allowed us to assess a diverse array of biological responses, particularly focusing
on immune responses. By employing these methodologies, we gained insights into the
intricate molecular landscapes associated with TB and LTBI conditions, shedding light on
the specific genes and biological processes that contribute to the observed differences in the
peripheral blood profiles. We determined the fold changes of gene expression levels, and
the ratios of the fold changes were compared among three pair-wise comparisons (LTBI
versus HD; TB versus LTBI; and TB versus HD) (Figure 1B). Transcriptional profiles of LTBI
and HD samples exhibited relatively similar patterns, with 242 differentially expressed
genes being observed, while TB samples exhibited much more differentially expressed
genes when compared with LTBI and HD samples (n = 1786 and 1866, respectively; Sup-
plementary Table S3). Differentially expressed genes in these three pair-wise comparisons
with ratio >3 are presented in Supplementary Table S3. To identify shared transcriptional
patterns among HD, LTBI and TB samples, we employed a Venn diagram analysis. This
method allowed us to visualize the overlap in gene expression changes between HD versus
TB and LTBI versus TB. Notably, our findings revealed that 611 genes exhibited a consistent
differential expression across these pair-wise comparisons. Interestingly, this shared pat-
tern was predominantly associated with genes related to NK cell activity. The significant
representation of NK-related genes suggests a potential role of NK cells in the immune
response against Mtb.

To elucidate the specific pathways within the shared genes, we conducted an enrich-
ment analysis utilizing 611 identified genes and referencing the human KEGG pathway
database. The analysis revealed significant enrichment in the NK-cell-mediated cytotoxicity
pathway among these shared genes (p-value < 0.001 and odds ratio > 1000) (Figure 1C). This
finding underscores the pronounced involvement of NK cell activities within the identified
gene set, shedding light on their potential role in the immune response associated with
these genes.

Lastly, we curated a signature of NK-cell-related genes by integrating information
from nine distinct reference NK signatures (Supplementary Table S2). Of the 611 shared
genes, only 26 were identified to be part of our NK cell signature dataset. Employing these
genes, we constructed a heatmap, providing a visual representation of their expression
patterns across all samples. Intriguingly, our findings unveiled a discernible separation
between individuals with LTBI and HD based on these NK-cell-related genes (Figure 1D).
Notably, key genes driving this separation included SH2D1B, KLRF1, PRF1 and GZMB,
indicating their significant involvement in the distinctive molecular profiles observed in
LTBI and HD subjects. In the TB immune landscape and NK cell interactions, SH2D1B
(SH2 Domain Containing 1B) and KLRF1 emerge as pivotal players. SH2D1B, also known
as EAT-2, is implicated in the immune response against Mtb, suggesting its potential role
in shaping the host defense mechanisms during TB infection. On the other hand, KLRF1,
a gene associated with NK cells, contributes to the expansion of specific NK cell subsets,
such as NKp46"CD27*KLRG1" cells, observed in LTBI individuals in an IL-21-dependent
manner [6]. These insights into the functions of SH2D1B and KLRF1 provide valuable clues
to the nuanced dynamics of NK cell involvement in TB.

3.2. Computational Exploration into Immune Cell Composition in Different TB Conditions

Understanding the immune cell composition in individuals with TB is pivotal for
developing effective biomarkers that can help in monitoring TB treatment progress and
informing clinical decisions [21]. A comparative analysis of gene expression profiles among
diverse TB subjects holds the key to unraveling phenotypes unique to LTBL Notably,
variations in the composition of immune cells in peripheral blood emerge as a pivotal factor
in evaluating the activity of the immune system.
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Figure 1. Integration of RNAseq data and gene expression analysis shows NK activity in TB. (A) Com-
prehensive RNAseq data, including HD (1 = 273), LTBI (n = 298), TB (n = 896) and OD (1 = 633).
(B) Volcano plots illustrate gene expression variations in three key comparisons: HD versus LTBI, HD
versus TB and LTBI versus TB. Each point on the plot represents a gene, with x-axis indicating log2
fold change and y-axis showing —log10 p-value. Only genes with significant regulation (>0.2-fold
change, p-value < 0.001) are highlighted, focusing on upregulated genes related to the NK signature.
A Venn diagram explores upregulated gene overlap in LTBI versus TB and HD versus TB. (C) En-
richment analysis on human KEGG pathways reveals shared significant pathways, depicted in a
Volcano plot. Each point represents a term based on odds ratio (x-axis) and —log10 (p-value) (y-axis)
from the overlapping gene set. Notably, NK-cell-mediated cytotoxicity is the most significantly
enriched pathway shared between LTBI versus TB and HD versus TB. (D) A heatmap showcases
gene expression profiles of significantly upregulated genes overlapping in LTBI versus TB and HD
versus TB, specifically associated with NK-cell-mediated cytotoxicity.
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Examining immune cell populations at the single-cell level provides invaluable in-
sights into their dynamic changes, especially in the context of TB. However, it is noteworthy
that a comprehensive single-cell sequencing immune landscape specific to TB is currently
unavailable.

In pursuit of a comprehensive understanding of immune cell composition in TB, we
embarked on a computational exploration, recognizing the pivotal role of deciphering
distinct phenotypes, particularly in LTBL To delve into the intricate landscape of TB-
related immune cell variations, we curated a comprehensive scRNA-seq reference panel
from 110 different studies, encompassing a diverse array of subjects containing a total
of 160K cells scRNA-seq data from 30 different studies, including a total of 100 subjects.
Leveraging this extensive integrated dataset, PBMC cells were aligned and projected in
two-dimensional space through uniform manifold approximation and projection (UMAP)
to allow the identification of cell populations. Unsupervised clustering and canonical
marker gene assessment generated eight major cell clusters (T lymphocytes, B lymphocytes,
NK lymphocytes, monocytes, neutrophils, MAIT cells and v5 T cells) (Figure 1A). This
reference panel served as a valuable resource for decomposing bulk expression data from
15 distinct datasets, encompassing a total of 2100 samples across 4 clinical groups. These
groups included HD (n = 273), LTBI (n = 298), TB (n = 896) and OD (n = 633). Notably,
645 samples from HIV-positive individuals were excluded from the analysis, resulting
in a final dataset of 1467 samples. To ensure data integrity, batch effect correction was
employed to mitigate variations introduced by different studies. This method allowed us
to dissect the complex gene expression profiles associated with different TB phenotypes.
Through the decomposition of bulk expression data, our analysis revealed noteworthy
findings. Specifically, among the examined subsets, only three demonstrated significant
changes. Most notably, NK cells exhibited a substantial increase in the LTBI samples, with
a statistically significant p-value < 0.01 (Figure 2B). In contrast, other cell subsets, such
as monocytes and y& T cells, displayed minimal alterations across the conditions. The
remaining six clusters exhibited only minor and no statistically significant differences
between all tested groups (Figure 1). The marked increase in NK cell abundance in LTBI,
compared to HD and TB, suggests the potential of NK cells as a distinguishing biomarker
for LTBL

3.3. Comparison of NK Cell Transcriptional Landscape in Peripheral Blood of Different
TB Conditions

Leveraging previous results, we virtually sorted all NK cells from the obtained maps,
generating an additional NK reference map. This specialized map allows us to focus specif-
ically on the dynamic changes within NK cell subsets across the spectrum of TB conditions.
By re-clustering around 16,000 NK cells, we aim to unravel the nuanced variations in their
phenotypic and functional profiles during different stages of Mtb infection. After new
dimensional reduction on virtually sorted NK cells, we found six distinct NK subclusters
(Figure 3A), based on the differential expression of canonical genes (Figure 3B). The largest
cluster (C4) consisted of cytotoxic NK cells (FCGR3A, FCERIA and SPON2), and a second
smaller cluster (C3) consisted of similar cytotoxic NK cells (FCGR3A and SPON2), which
also expressed genes related to an antiviral state (IFI6, [FI127, [FITM3 and MX1). The second
most represented cluster (C5) consisted of CD52-positive NK cells (KLRC2, CD52, CCL5 and
HLA-DRB1), which most likely correspond to memory-like NK2.1 cells, which accumulate
with age, exhibit proinflammatory characteristics and display a type-I interferon response
state [22]. Cluster C2 included cytokine NK cells (CCL4 and IFNG) [23], while cluster C6
expressed genes related to immune response regulation (CD38, IFI144, I[F144L and GZMB).
Finally, the smaller cluster C1 included CD56"8" NK cells (SELL, IL7R and GZMK) [24].
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Figure 2. Virtual single-cell RNAseq shows a significant change in NK cells in different TB conditions.
(A) A total of 160K cells from 30 different studies including a total of 100 subjects were integrated and,
after normalization and dimensional reduction, led to identification of 8 different clusters. (B) The
integrated PBMC map served as a guide for bulk expression deconvolution and revealed 3 cell
subtypes significantly changed. Statistical significance was assessed using a two-way t-test, and
p-values are denoted by symbols (** < 0.01, * < 0.05).

Next, we analyzed the distribution of the six NK cell subtypes across different groups.
Cluster C2 was significantly reduced in active TB patients, as compared to HD and LTBI
subjects and OD patients. Conversely, cluster C5 showed an opposite behavior, as it
was significantly increased in LTBI individuals, as compared to other groups (Figure 3C).
Clusters 1, 3, 4 and 6 showed similar distribution among all tested groups.

To validate our in silico results, we applied flow cytometry analysis to study peripheral
blood NK cells across the different groups. Figure 4A shows the FACS gating strategy
of one sample per group, while Figure 4B shows the cumulative data from TB patients,
LTBI subjects and HD. As shown in Figure 4B, NK cells, identified as described under
Materials and Methods, and herein reported as CD16* CD56* cells for the sake of simplicity,
among PBMC, were increased in LTBI subjects, as compared to TB patients and HD
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Figure 4. Flow cytometry analysis of NK cell subsets in peripheral blood of active TB patients,
LTBI subjects and HD. (A) Gating strategy to access NK cell subsets: lymphocytes were gated using
forward (FSC) and side scatter (SSC) parameters, single cells and live cells. NK cells were identified
as CD3-negative, CD19-negative, CD14-negative, CD127-negative (Lin-negative) (B): cells expressing
CD16 and CD56 along with the relative gating strategy used to identify memory-like NK2.1 cells.
(C-F) Flow cytometry analysis of total NK (C), or NK cells expressing CD52 (D), NKG2C (E) and both
CD52 and NKG2C (F), in PBMC of HD, LTBI subjects and TB patients. Each symbol represents one
sample; bars represent mean with SEM values. p-values were calculated using the Kruskal-Wallis
test, including multiple test correction. * p < 0.05; ** p < 0.01; *** p < 0.001; *** p < 0.0001.

4. Discussion

Understanding the nature of protective immune responses to Mtb, as well as identify-
ing biomarkers that may distinguish LTBI subjects from patients with active TB disease
and these latter from patients with pulmonary diseases other than TB, is essential for the
management of TB worldwide. While the importance of conventional CD4 and CD8 T
cells in immune responses to Mtb has been well established, there is recent evidence of
the participation of other unconventional lymphoid cells. In this regard, several studies
have revealed the importance of NK cells, although their contribution to the control of Mtb
infection is still unclear. Similarly, studies on the frequency and phenotype of NK cells
in the peripheral blood of patients with active TB disease or LTBI subjects have yielded
sometimes contrasting results.

In the present study, we have combined scRNA-seq and bulk RNA-seq data of hepato-
cellular cancer to analyze the molecular characteristics of circulating NK cells at different
stages of Mtb infection, i.e., active TB disease versus LTBI, and compared these characteris-
tics with those of HD and OD patients. We found that an NK cell cluster was significantly
different among all four tested groups. In line with previously reported results from both
phenotypic and molecular studies, we found that NK cells were decreased in active TB
patients, probably reflecting the lymphopenia characteristic of TB [25]. Thus, our results
are in agreement with another study that showed that NK-associated genes were signif-
icantly downregulated in active TB patients compared with LTBI subjects [26]. These
findings suggest that NK cells contribute to the control of Mtb infection and that there
are significant quantitative modifications in the NK cell population according to different
infection conditions.

However, and most notably, the NK cell cluster was significantly increased in LTBI
subjects, as compared to patients with active TB or OD and HD.
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Since alterations in the frequency of circulating lymphocytes have not previously been
uniquely associated with LTBI status, we became interested in further investigating the
composition of different NK cell subclusters in the four tested groups. We re-clustered
16,000 peripheral blood NK cell transcriptomes extracted from the 160,000 PBMC scRNA-
seq data from 30 different studies including a total of 100 subjects. UMAP analysis identified
six distinct subclusters (Figure 3A), based on differential expression of canonical genes
(Figure 3B), corresponding to well-known NK cell subtypes. An analysis of NK subcluster
distribution across different tested groups revealed that only two clusters, C2 and C5,
significantly changed between LTBI and all other groups. Cluster C2 was significantly
reduced in LTBI subjects, as compared to HD, TB and OD patients. Conversely, cluster
C5 showed an opposite behavior, as it was significantly increased in LTBI individuals,
as compared to other groups. Clusters 1, 3, 4 and 6 showed similar distribution among
all tested groups. Cluster C2 included cytokine NK cells (CCL4 and IFN-y) [23], while
cluster C5 consisted of CD52°M81 NK cells (KLRC2, CD52, CCL5 and HLA-DRB1), which
most likely correspond to memory-like NK2.1 cells, which accumulate with age, exhibit
proinflammatory characteristic and display a type-I interferon response state [23]. NK2.1
cells have been shown to reduce the expression levels of the FCGR3A and FCER1A genes
and elevate the expression of KLRC2 (NKG2C), among others. Since it has been reported
that KLRC2 (NKG2C) is the hallmark of NK2.1 cells and can be used to distinguish NK2.1
subsets from other NK subsets, we have used flow cytometry to confirm the expansion
of this subset in LTBI subjects. As shown in Figure 4, we confirmed in a small group
of peripheral blood samples that LTBI subjects had significantly higher percentages of
CD56dim CD16brisht NKG2C* NK cells, than active TB patients. However, differences
between LTBI subjects with HD did not attain statistical significance, probably because of
the small cohort samples.

‘In humans, infections with Cytomegalovirus (CMV) [27], hepatitis B and C virus [28],
hantavirus [29] and Chikungunya virus (CHIKV) [30] lead to imprinted NK cell receptor
repertoires with increased frequencies of specific NK cell subsets. Interestingly, in CMV
infection, NKG2C* NK cells are elevated during the acute phase of the disease, and the
level is then sustained for a year post-infection [31]. In response to CHIKV infection, the
repertoire of activating and inhibitory NK cell receptors is modulated and the increase in
NKG2C* NK cells correlates with viral load [30,32].

“Adaptive-memory” NKG2C* NK cells are increased during CMV infection [32,33].
Similarly, and relevant to our study, NKG2C expression was increased in tuberculin skin test
(TST)-positive (most likely latently infected) individuals, as compared to active TB patients
and HD [26,34]. In our study, we did not find statistically significant differences in IgG
antibody titers to several common pathogenic viruses including EBV, HSV-1/2, VZV and
CMYV, excluding the possibility that differences reported may be attributable to preexisting
viral infections. NKG2C expression highlights the adaptive nature of NK cells during
chronic diseases, i.e., the specific expansion of an NK cell subset upon antigen re-exposure.
NKG2C is an activating receptor that binds to HLA-E [35] and is expressed mainly on
CD56%™ NK cells [36]. NK cells expressing NKG2C expand during viral infection [27,28,32]
and have enhanced effector functions [37]. Our molecular and phenotypic results are in full
agreement with previous studies [26,37], showing that the proportion of NKG2C* CD564m
CD16~ NK cells is significantly elevated in tuberculin skin test-positive healthy individuals
(presumably LTBI subjects). The increased frequency of imprinted NK cell memory in LTBI
individuals could be the result of continuous exposure to Mtb antigens, suggesting that this
cell subset might be somehow involved in the control of Mtb infection at a latency stage
and Mtb reactivation. Accordingly, higher adaptive NK cell expansion is associated with
better disease-free survival after bone marrow transplantation [38].

While this work has limits due to the relatively low number tested phenotypically
(i.e., by flow cytometry analysis), we believe it has merits since, to our knowledge, this is
the first study combining scRNA-seq and bulk transcriptomics on very large datasets to
identify changes in immune cell composition in human TB. Overall, such an approach that
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has been found recently helpful in cancer [39,40] may provide new opportunities for the
evaluation of biomarkers and/or correlates of protection in human TB.
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