
EXISTENCE AND APPROXIMATION OF A SOLUTION FOR A1

TWO POINT NONLINEAR DIRICHLET PROBLEM2
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Abstract. The existence of at least one positive solution to a second-order nonlin-
ear two-point boundary value problem, is established. Combining difference meth-
ods with Brouwer fixed point and Ascol̀ı-Arzelà theorems, we get a solution as the
limit of an appropriate sequence of piecewise linear interpolations. Furthermore, a
priori bounds on the infinite norm of a solution and its derivatives are pointed out.
Some examples are also discussed to illustrate our results.

1. Introduction4

Consider the following two point nonlinear Dirichlet boundary value problem5

(Pf )

{
−u′′ = f(x, u, u′) , x ∈ [a, b] ,

u(a) = u(b) = 0.

where f : [a, b] × R × R → R is a continuous function. The aim of this paper is6

to establish the existence of at least one classical positive solution for problem (Pf )7

combining some tools of functional analysis on a finite dimensional normed space, as8

Brouwer fixed point and Ascol̀ı-Arzelà theorems, with the discrete difference methods9

and a priori estimates given in Theorem 2.2. Roughly speaking, our goal is obtained10

in two main steps.11

First, putting together Brouwer’s fixed point theorem with some ideas arising from12

[2], we get the existence of at least one solution for the associated standard difference13

Dirichlet problem14

(Dn
h2
nf
)

−∆2un(k − 1) = h2
nf

n
k

(
un(k),

∆un(k − 1)

hn

)
, k ∈ [1, n] ,

u(0) = u(n+ 1) = 0 ,

where hn = b−a
n+1

is the step size, xn
k = a + khn are the grid points, and fn

k (t, s) =15

f(xn
k , t, s) for all k = 0, . . . , n + 1 and for every t, s ∈ R, while un(k) := u(xn

k),16
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EXISTENCE AND APPROXIMATION 2

∆un(k− 1) := un(k)−un(k− 1), ∆2un(k− 1) := ∆(∆un(k− 1)) are the forward and1

the second order differences, respectively, for k = 1, . . . , n.2

Next, the existence of at least one solution to problem (Pf ) is obtained, by applying3

Ascol̀ı-Arzelà theorem, as the limit of a sequence of piecewise linear interpolations4

of the solution un of the discrete problem Dn
h2
nf

(Theorem 3.1). Finally, the sign5

information on a solution has been obtained with truncation techniques in the case6

in which the problem does not admit the trivial one (Theorem 3.2). In particular, as7

consequence of our main results, we have the following8

Theorem 1.1. Let f : [a, b] × R × R → R be a continuous and bounded function9

such that f(x, 0, 0) > 0 for every x ∈ [a, b]. Then, problem (Pf) admits at least one10

positive classical solution u ∈ C2([a, b]) with11

∥u∥∞ ≤ (b− a)2

8
M, ∥u′∥∞ ≤ (b− a)

2
M,

where M := sup
(x,t,s)∈[a,b]×R×R

|f(x, t, s)| and fulfills condition (U) of Theorem 3.1.12

It is understood that Theorem 1.1 (Theorems 3.1 and 3.2), as existence results are13

well known, while the approximation of the solution by using the solutions of the14

corresponding sequence of difference equations seems new, see for instance, [15, The-15

orem 9.2]. More precisely, we can see that our conclusion, concerning mere existence,16

is a special case of the result given in the vector case in [14, Theorem 4.2, p. 424] as17

an application of Schauder fixed point theorem, and it can essentially be traced to18

[11], where the author proves it by using Euler approximations satisfying the bound-19

ary conditions obtained through the intermediate value theorem. The bounds of the20

solutions are exactly the same, although obtained with different approaches. More-21

over, in the one dimensional case, Theorem 1.1 gives a more precise version of [16,22

Theorem 2.3] obtained by using set-valued methods.23

For the reader’s convenience, we mention the historical paper [18] for a complete24

and exhaustive survey on the above mentioned classical existence results, as well as25

for an overview on classic methods developed to study boundary value problems for26

nonlinear ordinary differential equations.27

Concerning second order nonlinear differential problems with nonlinearities de-28

pending on the derivative there is a huge literature, involving more general quasilin-29

ear operators, as p−Laplacian, ϕ−laplacian, strongly nonlinear differential operators,30

and/or functional boundary value conditions covering, amongst others, many inter-31

esting settings as Sturm-Liouville and multipoint boundary data. On these topics,32

deeper results are established in [3, 6, 13, 17, 20]. It is worth noting that com-33

pared to the approach developed in the above mentioned papers, to obtain a priori34

bounds on the derivative we do not make any assumptions about the existence of35

lower and upper solutions for problem (Pf ) as well as there are no requests of some1

Bernstein–Nagumo–Hartman type condition. We get the a priori estimates on the2
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derivative adapting some arguments contained in [2], where the non-linearity does3

not involve u′ and the discrete problem (Dn
h2
nf
) is solved by variational methods.4

More precisely, exploiting the a priori estimates occurring for the unique solution5

of the linear problem Dn
h2
nw
, w ∈ Rn, and its first differences, cfr. Theorem 2.2 below,6

we give a slightly more refined version of [12, Lemma 2.4], see also [15, 21, 22, 23],7

(Proposition 2.1). The latter result not only ensures that the discrete problem does8

not generate “irrelevant”solutions which tend to +∞ as n → ∞, but also allows us to9

obtain a solution u of the continuous problem (Pf ), by using Ascoli-Arzelà theorem,10

as a uniform limit of an appropriate sequence of piecewise linear interpolations. In11

addition, in our setting, it gives also a priori estimates on the L∞ norms of a solution12

and its derivatives.13

For further insights on second order differential problems with nonlinearities de-14

pending of the derivative of the solution, we also refer the reader to [1, 9, 10, 19] and15

the references therein.16

2. Preliminaries17

Consider the n-dimensional space18

X = {u ∈ Rn+2 : u(0) = u(n+ 1) = 0} ,

endowed with the norm19

(2.1) ∥u∥X :=

(
n+1∑
k=1

|∆u(k − 1)|2
) 1

2

∀u ∈ X,

which is equivalent to the norm20

∥u∥2 =

(
n∑

k=1

|u(k)|2
) 1

2

∀u ∈ X.

In the sequel, we will also use the following (equivalent) norm21

∥u∥∞ = max
k∈[1,n]

|u(k)| ∀u ∈ X.

To obtain the existence of at least one solution for problem (Dn
h2
nf
), we will use the22

following consequence of Brouwer’s fixed point theorem, see also [4] for an infinite23

dimensional version involving set-valued analysis.24

Theorem 2.1. Let X, Y be two finite dimensional normed spaces, let K be a bounded,25

closed and convex subset of X and let L,G : K → Y be two continuous functions.26

Assume that27

(j) L is one-to-one with G(K) ⊆ L(K).28

Then, there exists a point of coincidence x0 ∈ K for L and G, i.e. L(x0) = G(x0).29
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Proof. We apply Brouwer’s fixed point theorem, see [9], to the map F : K → K
defined by

F (x) = L−1(G(x)) for all x ∈ K,

which owing to (j) is well-posed and continuous. □1

Now, we arrange to our goals some results contained in [2], see also [15, Theorem2

6.8], which in addition to a priori estimations of the solution un for a linear differ-3

ence problem of type (Dn
h2
nf
) give also a useful information on the sup-norm of its4

differences ∆un.5

Theorem 2.2. Let n ≥ 1, and w ∈ Rn. Then, the problem6

(Dn
h2
nw
)

{
−∆2un(k − 1) = h2

nw(k) , k ∈ [1, n] ,

u(0) = u(n+ 1) = 0 ,

admits a unique solution un ∈ X, with7

(2.2) un(k) = h2
n

n∑
j=1

G(k, j)w(j) ∀k ∈ [1, n] ,

where G(k, j) is the discrete Green’s function G : [1, n]×[1, n] → R, defined as follows8

(2.3) G(k, j) =


j(n+ 1− k)

n+ 1
, if j ≤ k ,

k(n+ 1− j)

n+ 1
, if j ≥ k .

Moreover, one has9

(2.4) ∥un∥∞ ≤ (b− a)2

8
∥w∥∞ ,

and10

(2.5)

∥∥∥∥∆un

hn

∥∥∥∥
∞

≤ (b− a)

2
∥w∥∞ ,

Proof. Fix n ≥ 1, put11

(2.6) Bn =


(n+ 1)2

8
, if n is odd ,

n(n+ 2)

8
, if n is even ,

and let un ∈ X be the unique solution of the linear problem (Dn
h2
nw
). Bearing in mind12

[2, Theorem 2.1, Remark 4.1], see also [15, Theorem 6.8], it remains to prove (2.5).13
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To this end, it easy to show that, for every k ∈ [2, n], one has1 ∣∣∣ n∑
j=1

[G(k, j)−G(k − 1, j)]
∣∣∣ ≤ 1

n+ 1

(
k(k − 1)

2
+

(n+ 2− k)(n+ 1− k)

2

)
,

while, if k = 1 or k = n+ 1, if we agree that G(0, j) = G(n+ 1, j) = 0,2 ∣∣∣ n∑
j=1

[G(k, j)−G(k − 1, j)]
∣∣∣ ≤ 1

n+ 1

n(n+ 1)

2
.

From this, for every k ∈ [1, n+ 1], we get3

|∆un(k − 1)| =h2
n

∣∣∣∣∣
n∑

j=1

[G(k, j)−G(k − 1, j)]

∣∣∣∣∣ |w(k)|
≤ (b− a)2

(n+ 1)3

(
n(n+ 1)

2

)
∥w∥∞

=
(b− a)

(n+ 1)

n

n+ 1

(b− a)

2
∥w∥∞,

which clearly ensures (2.5) and our conclusion is achieved. □4

Now, we recall a slightly more refined version of [12, Lemma 2.4], which represents5

the core of the so-called constructive method for determining a solution to problem6

(Pf ) as the limit of piecewise linear interpolations generated starting from the solu-7

tions of the discrete problem (Dn
h2
nf
). On this argument, for a detailed proof, we refer8

to [22, 23], see also [2, Proposition 4.1].9

Hereafter, when we fix n, unless explicitly stated, it means that n is as large as10

needed.11

For n ≥ 1 and k = 1, ..., n+ 1, we put12

(2.7) vn(k − 1) :=
∆un(k − 1)

hn

,

and we define two functions αn, βn : [a, b] → R as follows:13

(2.8) αn(x) := un(k − 1) + vn(k − 1)(x− xn
k−1), ∀xn

k−1 ≤ x ≤ xn
k ,

(2.9) βn(x) := vn(k − 1) +
∆vn(k − 1)

hn

(x− xn
k−1), ∀xn

k−1 ≤ x ≤ xn
k ,

for all x ∈ [a, b].14

Proposition 2.1. Assume that there exists n0 ≥ 1 such that problem (Dn
h2
nf
) admits15

at least one solution un ∈ X, for all n ≥ n0. In addition, we suppose that there exist16

two positive constants R and Q such that17

(A1) ∥un∥∞ ≤ R and ∥vn∥∞ ≤ Q, for all n ≥ n0.18
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Then, arguing by sub-sequences if necessary, there exist two functions α, β ∈ C([a, b])1

fulfilling the following conditions:2

(U1) lim
n→∞

∥αn − α∥∞ = 0,3

(U2) lim
n→∞

∥βn − β∥∞ = 0,4

where, for all x ∈ [a, b],5

(2.10) α(x) =

∫ x

a

β(s) ds and β(x) = β(a)−
∫ x

a

f(s, α(s), α′(s)) ds.

In particular, α ∈ C2([a, b]) and it turns out that α is a solution of problem (Pf) with6

(2.11) ∥α∥∞ ≤ R, ∥α′∥∞ ≤ Q, ∥α′′∥∞ ≤ M,

where M = max
(x,t,s)∈[a,b]×[−R,R]×[−Q,Q]

|f(x, t, s)|.7

Proof. Since we are arguing in a standard way, for the reader’s convenience we limit8

ourselves to recalling the fundamental steps of the proof. First, we point out that9

the sequences {αn}n and {βn}n are equi-bounded and equi-continuous in [a, b], that10

is, for n ∈ N, we can show that11

(a1) ∥αn∥∞ ≤ R, ∥βn∥∞ ≤ Q;12

(a2) |αn(s1)− αn(s2)| ≤ Q|s1 − s2| for all s1, s2 ∈ [a, b];13

(a3) |βn(s1)− βn(s2)| ≤ M |s1 − s2| for all s1, s2 ∈ [a, b].14

Next, (U1) and (U2) are easily proved by applying Ascoli-Arzelà’s Theorem, while15

(2.10) can be easily proved by using (U1), (U2) and bearing in mind that16

αn(x
n
k) = un(k) = un(0) + hn

k∑
i=1

vn(i− 1)(2.12)

= αn(a) + hn

k∑
i=1

βn(x
n
i−1),

and17

βn(x
n
k) = vn(k) = vn(0) + hn

k∑
i=1

∆vn(i− 1)

hn

(2.13)

= βn(a)− hn

k∑
i=1

fn
i (un(i), vn(i− 1))

= βn(a)− hn

k∑
i=1

fn
i (αn(x

n
i )), βn(x

n
i )).

Moreover, (2.10), clearly ensures that α is a solution of problem (Pf ). Finally, the18

estimates (2.11) are a direct consequence of conditions (A1) above. □19
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3. Main results1

Our main results are the following.2

Theorem 3.1. Assume that there exist two positive constants r1 and r2 such that3

(3.1) max
(x,t,s)∈[a,b]×[−r1,r1]×[−r2,r2]

|f(x, t, s)| ≤ min

{
8r1

(b− a)2
,

2r2
(b− a)

}
.

Then, problem (Pf) admits at least one classical solution u ∈ C2([a, b]) with4

∥u∥∞ ≤ r1, ∥u′∥∞ ≤ r2, ∥u′′∥∞ ≤ min

{
8r1

(b− a)2
,

2r2
(b− a)

}
.

Moreover, the following conditions hold:5

(U) u(x) = lim
n→+∞

αn(x) and u′(x) = lim
n→+∞

βn(x) uniformly in [a, b], αn and βn6

being the functions described in (2.8) and (2.9), respectively.7

Proof. Claim. Let n ≥ 1. Then, problem (Dn
h2
nf
) has a solution un ∈ X fulfilling8

(3.2) ∥un∥∞ ≤ r1 ,
9

(3.3)

∥∥∥∥∆un

hn

∥∥∥∥
∞

≤ r2.

Fix n ≥ 1 and let r1 and r2 be as in (3.1). In the finite dimensional normed space10

X, we consider the bounded closed and convex subset11

(3.4) Kn :=

{
un ∈ X : ∥un∥∞ ≤ r1,

∥∥∥∥∆un

hn

∥∥∥∥
∞

≤ r2.

}
We look for a solution un ∈ X of problem (Dn

h2
nf
) as a point of coincidence u0 ∈ Kn12

between the continuous vector fields L,G : Kn → Rn defined by putting13

(3.5) L(u)k := −∆2u(k − 1) and G(u)k := h2
nf

n
k

(
un(k),

∆un(k − 1)

hn

)
,

for all k = 1, ..., n.14

Clearly, Theorem 2.2 ensures that L is one-to-one. To show that G(Kn) ⊆ L(Kn),15

take z ∈ G(Kn) and prove that there exist a unique u ∈ Kn such that L(u) = z.16

Taking into account that z ∈ G(Kn) one has that there exists y ∈ Kn such17

that z = G(y), so to achieve our goal we need to prove that the linear system18

L(u) = G(y) admits a unique solution u ∈ Kn. Applying Theorem 2.2, with19

w(k) = fn
k

(
yn(k),

∆yn(k − 1)

hn

)
, for all k = 1, ..., n, one has that the previous system20

admits an unique solution u.21

Moreover, since y ∈ Kn, by (2.4) and (2.5), it is easy to see that

∥u∥∞ ≤ h2
n∥w∥∞ ≤ (b− a)2

8
max

(x,t,s)∈[a,b]×[−r1,r1]×[−r2,r2]
|f(x, t, s)| ≤ r1,
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hn

∥∥∥∥
∞

≤ (b− a)

2
max

(t,s,ξ)∈[a,b]×[−r1,r1]×[−r2,r2]
|f(x, t, s)| ≤ r2,

that is, u ∈ Kn and the claim is proved.1

Therefore, combining the previous claim with (3.1), our conclusions follow by ap-2

plying Proposition 2.1 with R = r1, Q = r2. □3

Remark 3.1. Theorem 3.1 in addition to [4, Theorem 3.1] shows that u fulfills4

condition (U). In particular, in [4], the main result is shown by applying an abstract5

coincidence point theorem and the estimates on the L∞ norms are obtained involving6

the embedding of the space W 2,2
0 (0, 1) in C1(0, 1).7

To look for a positive solution, we need to combine Theorem (3.1) with some8

truncation techniques as in [7] and [8].9

Theorem 3.2. Let f : [a, b] × R × R → R be a continuous function such that10

f(x, 0, 0) > 0 for every x ∈ [a, b]. Assume that there exist two positive constants r111

and r2 such that12

(3.6) max
(x,t,s,)∈[a,b]×[0,r1]×[−r2,r2]

|f(x, t, s)| ≤ min

{
8r1

(b− a)2
,

2r2
(b− a)

}
.

Then, problem (Pf) admits at least one positive classical solution u ∈ C2([a, b]) ful-13

filling condition (U) and with14

∥u∥∞ ≤ r1, ∥u′∥∞ ≤ r2, ∥u′′∥∞ ≤ min

{
8r1

(b− a)2
,

2r2
(b− a)

}
.

Proof. Let f̂ : [a, b]× R× R → R be the function defined by15

(3.7) f̂(x, t, s) =

{
f(x, t, s) if t ≥ 0,
f(x, 0, s) if t < 0.

Clearly, applying Theorem 3.1, problem (Pf̂ ), admits at least one non-trivial classical

solution ũ ∈ C2([a, b]) which satisfies our conclusions provided that ũ is positive in
(a, b). Since, ũ is continuous in [a, b], Weierstrass Theorem ensures that there exists
x1 ∈ [a, b] such that ũ(x1) = minx∈[a,b] ũ(x). If x1 = a or x1 = b, we are done. If
x1 ∈ (a, b) we have ũ(x1) ≤ 0 and, since Fermat’s Theorem implies that ũ′(x1) = 0,
one has

0 ≥ −ũ′′(x1) = f̂(x1, 0, 0) = f(x1, 0, 0) > 0.

We have obtained a contradiction and this completes the proof. □16

In the applications of the previous theorem, the following is very useful, where17

roughly speaking we work only with one parameter.18
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Corollary 3.1. Let f : [a, b] × R × R → R be a continuous function such that1

f(x, 0, 0) > 0 for every x ∈ [a, b]. Assume that there exists r > 0 such that2

(3.8)

(
b− a

2

)
max

{
(b− a)

4
, 1

}
≤ r

max
(x,t,s,)∈[a,b]×[0,r]×[−r,r]

|f(x, t, s)|

Then, problem (Pf) admits at least one positive classical solution u ∈ C2([a, b]) ful-3

filling condition (U) with4

∥u∥∞ ≤ r, ∥u′∥∞ ≤ r, ∥u′′∥∞ ≤ 2

b− a
min

{
4

b− a
, 1

}
r.

Proof. Clearly, since f(x, 0, 0) > 0, (3.8) is well posed. Moreover, (3.8) implies that5

(3.6) is satisfied with r1 = r2 = r. So, applying Theorem 3.2 the proof is completed.6

□7

Remark 3.2. In the spirit of the above results, we explicitly observe that the con-8

clusions of Theorem (3.2) continue to hold provided that at least one of the following9

conditions is verified:10

(3.9)
(b− a)2

8
< sup

r>0

r

max
(x,t,s,)∈[a,b]×[0,r]×[− 4

b−a
r, 4

b−a
r]
|f(x, t, s)|

;

11

(3.10)
(b− a)

2
< sup

r>0

r

max
(x,t,s,)∈[a,b]×[0, b−a

4
r]×[−r,r]

|f(x, t, s)|
.

More precisely, we have12

∥u∥∞ ≤ r, ∥u′∥∞ ≤ 4

b− a
r, ∥u′′∥∞ ≤ 8

(b− a)2
r,

and13

∥u∥∞ ≤ b− a

4
r, ∥u′∥∞ ≤ r, ∥u′′∥∞ ≤ 2

b− a
r,

according to either (3.9) or (3.10) is satisfied, respectively. Indeed, in the first case,14

it is enough to apply Theorem 3.2 with r = r1 and r2 =
4

b−a
r and, in the second one,15

r1 =
b−a
4
r and r2 = r.16

Finally, it is worth noticing that (3.9) or (3.10) are always satisfied if the size of the17

interval [a, b] is small enough.18

Proof. of Theorem 1.1. It is enough to apply Theorem (3.2) with r1 = (b−a)2

8
M and19

r2 =
(b−a)

2
M that is M = 8

(b−a)2
r1 =

2
(b−a)

r2. □20

Remark 3.3. In the previous results, in order to study the sign of the solution21

found, the principle of the discrete strong maximum is not used, as for example in22
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[5, Theorem 3.1 and Proposition 2.2], but the dependence of the non-linearity from1

the convective term u′ is fully exploited.2

To illustrate the results obtained we present some examples. For simplicity, we drop3

the dependence on x. Clearly, for the autonomous equation −u′′ = f(u, u′), because4

translates of solutions are again solutions, without loss of generality, problem (Pf )5

may be set in an interval [−a, a], for some a > 0.6

Example 3.1. Let a > 0. The function u(x) = M
2
(a2 − x2) is the unique solution of

the problem

−u′′(x) = M, u(−a) = u(a) = 0, for all x ∈ [−a, a],

where M > 0, so that7

∥u∥∞ =
M

2
a2, ∥u′∥∞ = Ma.

So, the estimates furnished by Theorem 1.1 seem to be sharp.8

Example 3.2. If a ≤ 1
2e
, then problem{

−u′′ = eu+u′
, in (−a, a),

u(−a) = u(a) = 0,

admits at least one classical and positive solution u fulfilling condition (U) and with9

∥u∥∞ ≤ 1

2
, ∥u′∥∞ ≤ 1

2
, ∥u′′∥∞ ≤ 1

2a
.

To this end, it is enough to apply Corollary 3.1, with r = 1
2
.10

Example 3.3. If 0 < a ≤
√
17−1
4

, then problem{
−u′′ = u(u′)2+1

1+u2 , in (−a, a),
u(−a) = u(a) = 0,

admits at least one classical and positive solution u fulfilling condition (U) with11

∥u∥∞ ≤ a, ∥u′∥∞ ≤ 2, ∥u′′∥∞ ≤ 2

a
.

To apply Theorem 3.2 with r1 = a and r2 = 2 we need to have

1 ≤ 4a+ 1

1 + a2
≤ 2

a
,

which is satisfied for 0 < a ≤
√
17−1
4

.12
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