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Abstract: We assess a scheme for measurement-free quantum teleportation from the perspective of
the resources underpinning its performance. In particular, we focus on claims recently made about
the crucial role played by the degree of non-Markovianity of the dynamics of the information carrier
whose state we aim to teleport. We prove that any link between the efficiency of teleportation and the
back-flow of information depends fundamentally on the way the various operations entailed by the
measurement-free teleportation protocol are implemented while—in general—no claim of causal link
can be made. Our result reinforces the need for the explicit assessment of the underlying physical
platform when assessing the performance and resources for a given quantum protocol and the need
for a rigorous quantum resource theory of non-Markovianity.
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1. Introduction

Quantum teleportation [1] shows the power of entanglement as a resource: by jointly
measuring the quantum states of two particles, we can transfer, without any actual exchange
of matter, a quantum state to a remote station. This process is commonly referenced in the
context of quantum communication over long distances, but its applications to quantum
computation are also paramount, as demonstrated by the success of the measurement-
based model for quantum computing [2]. The measurement-free teleportation protocol, put
forward in Ref. [3], helped illustrate the centrality of entanglement by entirely removing
measurements that, in contrast, are very important for the success of the original scheme [1].

Ref. [4] challenged the nearly dogmatic view on the essential role of entanglement
to explore the relation between the efficiency of measurement-free teleportation and non-
Markovianity [5–7]. Specifically, the analysis by Tserkis et al. drew links between the
information back-flow from the instrumental part of the computational register (considered
to be an environment) to its relevant part (the system), and the entanglement present in
the environment. It is worth noticing that the original teleportation protocol has previ-
ously been studied in the context of non-Markovianity [8–11], but such an assessment
has normally been done by introducing an external environment. A different take to
the role played by non-Markovianity in teleportation was addressed in Ref. [8], where
non-Markovianity was seen as an additive to performance rather than the mechanism
underpinning it. Ref. [11], instead, studied the use of non-Markovianity to mitigate against
the effects of noise on the resource state.

This paper arises from the work of Tserkis [4] and critically assesses the link be-
tween non-Markovianity and efficiency in the measurement-free teleportation protocol.
Methodologically, we model the teleportation circuit as a quantum channel for a system of
interest [12–17] and analyze the dynamics inherent within it.
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While we do not introduce non-Markovianity through any external means, by focusing
on the measurement-free teleportation approach, we are able to gain insight into the
underlying dynamics of teleportation and analyze the non-Markovianity which could be
inherently present in the protocol.

We show that such connections are—at best—very weak and delicately dependent on
the way the dynamics underpinning the protocol are implemented and interpreted. Only
a very fine-grained assessment of the various stages of the teleportation channel allows us
to unveil how non-Markovianity enters the dynamics of the register and, potentially, could
play a role in the establishment of the right fluxes of information from the instrumental part
of the teleportation register to its relevant part. On the one hand, our results point towards
the careful assessment of the way a dynamical map is implemented in all its sub-parts
before any conclusions on what embodies a resource of it can be made. On the other hand,
it indirectly points to the need for a deeper understanding of the role played by non-
Markovianity in quantum information problems and, in turn, the benefits of developing
a comprehensive quantum resource theory of non-Markovianity [18,19].

The remainder of this paper is organized as follows: in Section 2, we illustrate the
measurement-free teleportation protocol and address it from the perspective of open-
system dynamics, including the effects of its channel description on distinguishability of
input states. Section 3 reviews the key instruments for our quantitative assessment of
non-Markovianity and applies them to the evaluation of the information back-flow entailed
by the measurement-free teleportation protocol. Section 4 assesses in detail the link with
quantum correlations shared by the relevant and ancillary part of the register, highlighting
the controversial nature of claims linking such physical quantities and the performance of
the scheme itself. Finally, Section 5 offers our conclusions and perspectives.

2. Measurement-Free Teleportation

We follow the three-qubit measurement-free teleportation protocol put forward in
Ref. [3], whose quantum circuit we present in Figure 1. As our aim is to study the in-
formation back-flow and non-Markovianity in the protocol itself, it is appropriate to use
the language of open quantum systems when describing it. We thus use the label S for
the system whose state is being teleported, and E1,2 for the environmental particles that are
ancillary for the protocol.
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Figure 1. Quantum circuit of the measurement-free teleportation protocol. Each gate into which the
circuit is decomposed is labeled as Gi (i ∈ {1, . . . , 8}). They can be grouped into three unitary blocks
of operations Uj(j = 1, 2, 3) as defined in Equations (2)–(5). Here, G1,3,6 are CNOT gates, G2,4,7 are
Hadamard transforms, while G5,8 are SWAP gates.

Two agents, conventionally identified as Alice and Bob, hold control of the full register
consisting of system and environment as per Figure 1. Alice aims to teleport to Bob the state
|ψ(α)⟩ = α|0⟩+

√
1 − |α|2|1⟩, which she encodes in qubit S. On the other hand, qubits E1,2

make up a resource state.
In the original formulation of the measurement-free protocol in Ref. [3], the teleported

state was encoded in the degrees of freedom of one of the environmental qubits (specifically,
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E2). The authors of Ref. [4] proposed an altered version of the scheme where |ψ⟩ is recovered
from qubit S. This, as mentioned before, put them in a position to argue for a direct
relationship between the quality of retrieval of |ψ⟩ from the degrees of freedom of S and the
non-Markovian character of the system-environment dynamics. As our scope is to critically
assess the actual implications of non-Markovianity for the effectiveness of the protocol, we
will adhere to the formulation in Ref. [4]. We emphasize that, though this modification is
beneficial for studying and understanding the underlying dynamics, we would use the
original formulation in Ref. [3] to teleport states in a quantum computation context.

In an ideal teleportation scheme, the resource encoded in the E1-E2 compound would
be a maximally entangled Bell state. Here, to study the necessary correlations for the
protocol at hand, we weaken this strong requirement and take the resource to be the
Werner state

WE1E2(p) = p
∣∣ϕ+

〉〈
ϕ+
∣∣
E1E2

+
1 − p

4
1lE1E2 , (1)

where p ∈ [0, 1] and |ϕ+⟩E1E2
= (|00⟩+ |11⟩)E1E2 /

√
2 is a Bell state. Unless p = 0, there

are correlations present in WE1E2(p): it is entangled for p ∈ (1/3, 1] and carries quantum
discord and classical correlations for 0 < p ≤ 1.

Alice sends S and E1 through the circuit to Bob. The operations Gj(j = 1, ..., 8)
undergone by the S-E1 compound can be grouped into three blocks to highlight their roles
in the process. The first is

U1 = (HS ⊗ 1lE1E2)(CNOTSE1 ⊗ 1lE2). (2)

Here H = (X + Z)/
√

2 stands for the Hadamard gate and CNOTSE1 = |0⟩⟨0|S ⊗ 1lE1 +
|1⟩⟨1|S ⊗ XE1 is a controlled-NOT gate (with X and Z the Pauli x and z matrix, respectively).
Owing to the interaction entailed by such a gate, quantum correlations might be established
between S and E1 through the action of U1. At this point, at least some of the information
about the system state is encoded in the form of system-environment correlations. The
degree to which this happens, though, depends on the initial state of the system: for α = 0,
S and the environment remain uncorrelated, while the total correlations are maximized for
α = 1/

√
2. At this stage, due to the initial correlations within the environment, all elements

of the register would be quantum correlated, in general.
The second block takes the form of the unitary gate

U2 = (1lS ⊗ SWAPE1E2)(1lSE1 ⊗ HE2)(1lS ⊗ CNOTE1E2) (3)

with SWAPE1E2 the swap gate which, for any state |ϕ⟩E1
|η⟩E2

, acts as

SWAPE1E2 |ϕ⟩E1
|η⟩E2

= |η⟩E1
|ϕ⟩E2

. (4)

In the ideal case where the environment is initially maximally entangled (i.e., for
p = 1), the U2 operation acts to decouple S and E2, therefore localizing the information
encoded through U1 between S and E1 only. Some correlations do remain between all three
systems for p < 1.

The final block of unitaries of the protocol is

U3 = (SWAPSE1 ⊗ 1lE2)(1lS ⊗ HE1 ⊗ 1lE2)(CNOTSE1 ⊗ 1lE2). (5)

2.1. Effective Depolarizing-Channel Description

In the original protocol with p = 1 [3], all system-environment correlations vanish
after the application of U3, and all the information about the input state is localized in the
desired system. In the version discussed here, with an imperfect resource, the success of
the protocol grows with p.

To see this quantitatively, we resort to an effective description of the dynamics under-
gone by system S as a result of the action of the quantum circuit and its coupling to the
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environmental qubits. We call ρi
S = |ψ⟩⟨ψ|S the initial state of the system qubit, label as

U = U3U2U1 the total unitary of the circuit and decompose the identity 1lE1E2 in the Hilbert

space of the environmental compound over the Bell basis {
∣∣∣Bα

j

〉
}E1E2 ≡ {|ϕ±⟩, |ψ±⟩}E1E2 ,

where α = ϕ, ψ and j = ± and we introduce the remaining Bell states∣∣ϕ−〉
E1E2

=
1√
2
(|00⟩ − |11⟩)E1E2

,

∣∣ψ±〉
E1E2

=
1√
2
(|01⟩ ± |10⟩)E1E2

.
(6)

The final state of S thus reads

ρ
f
S = TrE1E2

[
U
(

ρi
S ⊗ WE1E2(p)

)
U †
]
. (7)

Upon inserting Equation (1) into this expression, we have

ρ
f
S = p ∑

j,k=0,1
E1E2⟨jk|U

∣∣ϕ+
〉

E1E2
ρi

SE1E2

〈
ϕ+
∣∣U †|jk⟩E1E2

+
1 − p

4 ∑
j,k,α,l

E1E2⟨jk|U |Bα
l ⟩E1E2

ρi
SE1E2⟨B

α
l |U

†|jk⟩E1E2

=
1 + 3p

4 ∑
j,k=0,1

Vϕ+

jk ρi
SV

ϕ+†
jk +

1 − p
4

′
∑

j,k,α,l
Vαl

jk ρi
SVαl †

jk ,

(8)

where the symbol ∑′
α,l stands for the summation over all the elements of the Bell basis

except |ϕ+⟩E1E2
and we have introduced the operators Vαl

jk = E1E2⟨jk|U
∣∣Bα

l
〉

E1E2
of the open-

system dynamics undergone by S. An explicit calculation leads to the results summarized
in Table 1.

Table 1. Summary of the explicit form taken by the operators Vαl

jk acting in the Hilbert space of S
[cf. Equation (8)].

Vαl

jk j = 0, k = 0 j = 0, k = 1 j = 1, k = 0 j = 1, k = 1

Vϕ+

jk
1lS/2 1lS/2 1lS/2 1lS/2

Vϕ−

jk
ZS/2 −ZS/2 ZS/2 −ZS/2

Vψ+

jk
XS/2 XS/2 −XS/2 −XS/2

Vψ−

jk
−iYS/2 iYS/2 iYS/2 −iYS/2

Using such expressions, we are finally able to recast the final state of the system in the
form of the operator-sum decomposition ρ

f
S = ∑4

j=1 Kjρ
i
SK†

j with

K1 =

√
1 + 3p

4
1lS, K2 =

√
1 − p

4
ZS,

K3 =

√
1 − p

4
XS, K4 =

√
1 − p

4
YS,

(9)

which immediately gives ∑4
j=1 K†

j Kj = 1lS and allows us to conclude that the action of the
measurement-free teleportation protocol on the state of the system is that of a depolarizing
channel acting with a resource-dependent rate q = 1 − p. The corresponding state fidelity
with ρi

S reads

F(p)=S⟨ψ|ρ
f
S|ψ⟩S = (1 + p)/2, (10)
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thus increasing linearly from 1/2 when p = 0, to 1 when p = 1. The role of the SWAPSE1
gate in U3 is to transfer the information on |ψ⟩ otherwise encoded in the state of E1 to the
system qubit S. As already anticipated, the inclusion of this gate in the protocol allows us
to characterize the quality of the teleportation performance in terms of state-revival in the
system qubit.

2.2. Distinguishability and Non-Markovianity Resulting from the Dynamics

While this analysis shows the non-trivial nature of the overall action of the quantum
circuit on the state of S, it is instructive to dissect the effects of the individual Uj, particu-
larly in terms of the degree of distinguishability of different input states of S. To do this
quantitatively, we make use of the instrument embodied by the trace distance between two
quantum states. This is defined as

D(ρ1, ρ2) =
1
2
∥ρ1 − ρ2∥1, (11)

where ρ1,2 are two arbitrary density matrices and ∥A∥1 = Tr[
√

A† A] is the trace norm of
an arbitrary matrix A.

First, let us consider the action of U1 on the initial state of S. Following an approach
fully in line with the one formalized in Equation (8) but for U → U1 and by labeling the
state of S resulting from the application of this block of unitaries alone as ρ1

S(α), so as to
emphasize the dependence on the initial-state parameter α, we have

ρ1
S(α) = ∑

i=1,2
Kiρ

i
SK†

i = α2|+⟩⟨+|S + (1 − α2)|−⟩⟨−|S, (12)

where we have introduced the Kraus operators K1 = |+⟩⟨0|S and K1 = |−⟩⟨1|S, which are
written in terms of the eigenstates |±⟩S of XS such that XS|±⟩S = ±|±⟩S. We thus consider

D(ρ1
S(α1), ρ1

S(α2)) = |α2
1 − α2

2|, (13)

where α1,2 ∈ R (without loss of generality) identifies two different initial states of the
system. Having in mind the analysis of the degree of non-Markovianity that will be
presented later in this work, we take α1 = 1 and α2 = 0 (so as to prepare S in eigenstates
of ZS) and thus consider fully distinguishable input states. For such a choice, we have
D(ρ1

S(α1), ρ1
S(α2)) = 1, achieving again full distinguishability regardless of the properties

of the environmental system (as ρ1
S(α) does not depend on p).

As for U2, it is clear from Figure 1 that this block of unitaries is local with respect to
the bipartition S-(E1E2), i.e., U2 does not contain degrees of freedom of S, which implies
that the corresponding operator-sum decomposition of the effective channel acting on the
system involves only the identity operator 1lS. The evolved state ρ2

S after U2 is thus identical
to Equation (12). Notice, though, that the state of the environment will be changed by this
part of the circuit.

Finally, block U3 will need to be applied to the—in general quantum correlated—
joint state of S-(E1E2). This immediately gives evidence of the fundamental difference
between the action entailed by U3 and the other blocks of operations: while, as for U1, this
operation couples S to the environment, the input state to U3 is a state that features, as
mentioned above, system-environment correlations that may play a key role in determining
the nature of the dynamics of S. Technically, such correlations prevent us from using the
same approach as above to identify the effective channel acting on S. Instead, we will have
to calculate

ρ3
S ≡ ρ

f
S = Φp(ρ

i
S) = TrE1E2

[
U3ρ2

SE1E2
U†

3

]
=

1
2

(
2α2 p − p + 1 2α

√
1 − α2 p

2α
√

1 − α2 p −2α2 p + p + 1

) (14)
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with ρ2
SE1E2

the output state of the system-environment compound after application of
U2U1, and Φp(·) the p-dependent dynamical map resulting from taking the trace over the
environmental degrees of freedom. The trace distance between two input states of S reads

D(ρ
f
S(α1), ρ1

f (α2)) = p
∣∣∣∣α1

√
1 − α2

2 − α2

√
1 − α2

1

∣∣∣∣
= pD(|ψ(α1)⟩⟨ψ(α1)|S, |ψ(α2)⟩⟨ψ(α2)|S).

(15)

This shows that the last block of the quantum circuit at hand is the only one that could
change the degree of distinguishability between the input state and the evolved one, which,
in general, shrinks linearly with the depolarization rate.

3. Analysis of Non-Markovianity in the Measurement-Free Teleportation Circuit

We are now able to leverage the tools and results achieved so far to assess the non-
Markovian features of the dynamics entailed by the measurement-free teleportation proto-
col. We start by briefly reviewing some of the most popular measures of non-Markovianity
reported so far in the literature.

3.1. Review of Measures of Non-Markovianity

In this short review, we do not aim to be comprehensive and refer the interested reader
to Refs. [5–7].

3.1.1. Breuer–Laine–Piilo Measure

The measure of non-Markovianity, which we will rely on the most, is the one pro-
posed by Breuer, Laine, and Piilo (BLP) in Ref. [20]. It builds on the fact that the trace
distance decreases monotonically under Markovian dynamics, any increase signaling
non-Markovianity.

The measure is, therefore, calculated as

NBLP = max
ρ1,2(0)

∫
σ>0

σ(t, ρ1,2(0)) dt, (16)

where σ(t, ρ1,2(0)) = ∂tD(ρ1(t), ρ2(t)) is the rate of change of the trace distance between
two initial states ρ1,2(0) of the systems we are hoping to distinguish, considered over all
the time intervals (ai, bi) where σ > 0 (i.e., where the trace distance increases). This can
alternatively be expressed in a simpler form as

NBLP = max
ρ1,2(0)

∑
i
[D(ρ1(bi), ρ2(bi))− D(ρ1(ai), ρ2(ai))]. (17)

Please note that growth in trace distance is a necessary but not sufficient condition for
non-Markovianity. We, therefore, include other measures in this paper to ensure that we
are not missing non-Markovian dynamics in the protocol even when NBLP = 0.

We can simplify the optimization procedure using the result that optimal initial-state
pairs will be antipodal points on the surface of the Bloch sphere [21].

3.1.2. Rivas-Huelga-Plenio Measure

The Rivas-Huelga-Plenio (RHP) measure [22], on the other hand, is based on a neces-
sary and sufficient condition for Markovianity. A dynamical map between two times t + ϵ
and t where t > 0 can be written as

E(t+ϵ,t) = E(t+ϵ,0)E−1
(t,0), (18)
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where the inverse map E−1
(t,0) may not be completely positive. Given a maximally entangled

state of the system and an ancilla, such as |ϕ+⟩SA, we apply the dynamical map E(t+ϵ,t) ⊗ 1l.
The dynamics are Markovian if and only if fNCP = 1 where

fNCP(t + ϵ, t) = ∥(E(t+ϵ,t) ⊗ 1l)
∣∣ϕ+

〉〈
ϕ+
∣∣∥1, (19)

which can be recast as g(t) = 0 with

g(t) = lim
ϵ→0+

fNCP(t + ϵ, t)− 1
ϵ

. (20)

The corresponding measure of non-Markovianity is then

NRHP =
∫ ∞

0
g(t) dt. (21)

The quantity measureNRHP/2 is a lower bound of the robustness of non-Markovianity [19].
We can, therefore, attribute a physical meaning to it, i.e., the amount of noise that must be added
to a non-Markovian operation before it becomes Markovian.

3.1.3. Luo-Fu-Song Measure

The correlations-based measure proposed by Luo, Fu, and Song (LFS) in Ref. [23]
follows a similar reasoning as the BLP one. The quantum mutual information between
a system and an ancilla I(ρSA), which can be calculated as

I(ρSA) = S(ρS) + S(ρA)− S(ρSA), (22)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy of state ρ, is monotonically
decreasing under Markovian dynamics acting on the system only. Therefore, any increase
in mutual information witnesses non-Markovianity.

We write the rate of change in the mutual information as γ(ρSA(t)) = ∂t I(ρSA(t))
with ρSA(t) = (ΦS ⊗ 1lA)ρSA(0). The measured building on this rate is therefore given by

NLFS =
∫

γ>0
γ(ρSA(t)) dt, (23)

where the integral is taken, once more, in the regions where γ > 0. In line with the Choi-
Jamiołkowski isomorphism, we take the initial state ρSA(0) to be any maximally entangled
state to evaluate the measure.

3.2. Information Back-Flow and Non-Markovianity

We begin by taking a straightforward approach to the description of the generator of
the dynamical map. We provide an effective Hamiltonian of the system and environment
by considering

Heff = −i lnU , (24)

where we have assumed units such that h̄ = 1. Fixing a branch for the logarithm makes it
single-valued and H uniquely determined from U . The inspection of Heff, which we do
not report here as too complex, reveals that—in general—such a Hamiltonian involves
three-body interactions between S, E1 and E2.

Considering the corresponding time-evolution operator e−iHefft and varying the pa-
rameter p, we evaluate each of the measures reviewed in Section 3.1. The results are plotted
in Figure 2. The degree of non-Markovianity of the dynamics of S remains small for each of
the measures and is virtually negligible for states of the environment with p ≲ 0.7. How-
ever, as expected, the RHP measure is the most sensitive and detects non-Markovianity
within a larger range of values of the mixing parameter in Equation (1): the lowest value
witnessing non-Markovianity through RHP is p = 0.41, to be compared to p = 0.5 for BLP
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and p = 0.65 for LFS. As Werner states are inseparable for p > 1/3; the environment is
always entangled when the dynamics are non-Markovian.

0.5 0.6 0.7 0.8 0.9 1.0p
0.02
0.04
0.06
0.08
0.10
0.12

BLP

RHP

LFS
0.5 0.6 0.7 0.8 0.9 1.0p

0.02
0.04
0.06
0.08
0.10
0.12

BLP

RHP

LFS

0 0.25 0.5 0.75 1
0.5

0.75

1

Figure 2. Non-Markovianity of the dynamics given by Equation (24). Results are plotted only for
p ≥ 0.4 as all the measures listed in Section 3.1 are zero for 0 ≤ p ≤ 0.4. Inset: Non-Markovianity of
the effective Hamiltonian in Equation (25) as measured by the NBLP measure.

We can, however, take a different approach to the dynamics. Instead of working
block by block, we use a fine-grained approach that considers each Gj gate in sequence
[cf. Figure 1]. We thus address the eight effective Hamiltonian operators

Heff,j = −i log Gj (j = 1, ..., 8) (25)

and use the corresponding time-evolution operators to describe the dynamics. This as-
sumption results in dramatically different values of the BLP measure, which are displayed
in Figure 2, thus proving that the unitary block-based approach was too coarse-grained
to gather the features of the circuit dynamics. Surprisingly, in this case, we find non-
Markovianity even when the environment is prepared in a maximally mixed state (i.e., for
p = 0). The BLP measure gives much larger values in this case compared to the previous
modeling. While the initial states of S that should be used in the calculation of the BLP
measure in the block-based approach are the eigenstates of ZS, in the individual gate-based
model, such states change depending on p.

What is the physical origin of the non-null degree of non-Markovianity for p = 0? In
Figure 3, we plot the trace distance when p = 0 and we begin with |0⟩ and |1⟩ in S (the
optimal states when the environment is completely uncorrelated). We see that the trace
distance increases only during the last gate, a SWAP operation between S and E1. This is
true even when we change the initial state of the system. We remark that this gate is not in
the original measurement-free teleportation circuit but was added in Ref. [4] to consider
the impact of the protocol on one single system. The original circuit starts with the same
gates G1–G4 as in Figure 1, followed by a CNOT between S and E2 and a Hadamard gate
acting on E2 [3]. The initial system state |ψ⟩ is therefore teleported to E2 without returning
to S. If we revert to the original protocol and consider the dynamics of E2, tracing out S
and E1, we can see if there is any increase in trace distance. This is similar to the method
used in Ref. [12], for example. We have plotted the results in Figure 4.

We find that the trace distance remains zero for p = 0 but does grow for p > 0. In
fact, in terms of the BLP measure, we find that NBLP = p. Therefore, only for p = 0 can
we claim that the non-Markovianity comes merely from the extra SWAP gate. Though
the results in Figure 4 are limited to the initial state pair {|0⟩, |1⟩}, we find that there is no
increase in trace distance for any alternative initial states. However, for p > 0, we can see
that trace distance does indeed increase, and non-Markovianity is therefore present even
when we label E2 as our “system” instead of S.
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Figure 3. Trace distance between the two states of S as they go through the teleportation circuit. Gate Gi

acts when i − 1 < t < i. We plot only 5 ≤ t ≤ 8 as the trace distance remains constant at 1 for t < 5.
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Figure 4. Trace distance between the two states of E2 for the original BBC protocol [3] as time evolves.
The dashed lines are boundaries between the gates acting on the system and the environment. Gates
G1–G4 correspond to those in Figure 1, while G5 is a CNOT operation on SE2 and G6 is a Hadamard
gate on E2.

4. Information Back-Flow and Correlations

In the previous section, we discovered that the relation between non-Markovianity,
the performance of the teleportation scheme, and the entanglement in the initial state of
the environment depends on whether the implementation of the circuit allows for the
consideration of the individual Gj gates rather than the blocks of unitaries playing key
roles in the evolution of the state of S. In the latter arrangement, the dynamics of S is non-
Markovian for p ≥ 0.41; in the former, non-Markovianity is present in the map evolving S
even when the environment is in a separable state, thus breaking the connection established
in Ref. [4]. We now study the relation between non-Markovianity of the dynamics and
system-environment correlations as time evolves.

Initially, correlations are only present in the environmental Werner state. As done
previously, we begin by describing the dynamics using the Hamiltonian in Equation (24).
Figure 5a displays the entanglement between the system and environment as time evolves
from an input state of |ψ⟩S = |0⟩, as measured by the logarithmic negativity [24,25]

E = log2 ∥ρ
TS
SE1E2

∥1 (26)



Entropy 2024, 26, 780 10 of 13

to quantify the entanglement in the bipartition S-vs-(E1E2), where ρ
TS
SE1E2

is the partial
transpose of the evolved state S-(E1E2) compound with respect to S. As might have been
expected, the larger the initial environmental entanglement (as related to p), the more
entanglement is shared between S and (E1E2) during the protocol, and this corresponds to
a larger degree of non-Markovianity.

Figure 5. Correlations in the splitting S-vs-(E1E2), as quantified by (a) logarithmic negativity, (b) discord
and (c) classical correlations as the system evolves according to Equation (24). Time is denoted t, and p
determines the Werner state of the environment at t = 0. The system is initially in the vacuum state |0⟩.

However, the growth in entanglement when p ≈ 0 is quite surprising: S and the
environment are more entangled when p = 0 than when such parameter takes a small
(≲ 0.2) yet non-zero value, even though the environment has more quantum and classical
correlations, initially, in this case. This could also relate to correlations of a nature that are
different from entanglement. To address this, we use figures of merit for quantum and
classical correlations defined as in Refs. [26,27]. First, we quantify classical correlations in a
bipartite system composed of A and B using the generalized conditional entropy

J(A|B) = max
B†

i Bi

(
S(ρA)− ∑

i
piS(ρi

A)

)
, (27)

where B†
i Bi is a POVM on system B, ρA = TrB[ρAB] and ρi

A is the state of ρA after system B
has been measured with B†

i Bi. This enables us to find the maximum information we can
gain about system A by measuring system B. As for quantum correlations, we resort to
discord [28], namely the difference between total correlations (as measured by the quantum
mutual information) and classical correlations

D(A|B) = I(ρAB)− J(A|B). (28)

For simplicity, the maximum entailed by the definition of J(A|B) will be sought over
all projective measurements only, following the examples in Refs. [29,30]. While this is
accurate and rigorous only for two-qubit systems, for our three-qubit problem, we will
only be able to quantify lower (upper) bounds to classical (quantum) correlations.

Starting from the same initial state of |ψ⟩S = |0⟩, discord and classical correlations for
the bipartition S-vs-(E1E2) are shown in Figure 5b,c, where we can appreciate a behavior
that is, qualitatively, the inverse of entanglement: larger degrees of discord and mutual
information are found in the state at hand as p decreases, which is somewhat counterin-
tuitive. Therefore, while entanglement and non-Markovianity may be connected, we can
conclude that discord and classical correlations are not linked to non-Markovianity.

It is important to note that at the end of the protocol (i.e., for t = 1), only classical
system-environment correlations remain for p < 1. The information about |ψ⟩ is encoded in
such correlations, and thus, information back-flow is prevented. This is the reason behind
the reduced success of the protocol as p diminishes.
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As the initial state of the system directly affects how entanglement is shared during
the protocol (as highlighted in Section 2), without affecting the performance of the protocol,
we addressed the case of inputting state |+⟩ rather than |0⟩. However, the results were
similar to all the same features visible in the behavior of each figure of merit of correlations.

As in Section 3.2, we now change the dynamics to that in Equation (25), and thus
assume that each gate can be independently performed one by one. We begin, as before,
with the initial system state |ψ⟩S = |0⟩. The correlations are shown in Figure 6, which
displays some similarities with the study performed in Figure 5. As in the previous case,
the entanglement between S and E1E2 is larger for larger p [cf. Figure 6a]. However, for
this implementation of the quantum circuit operations, there is no unexpected growth
in entanglement for p ≃ 0. Moreover, entanglement only appears when the final gate
of the circuit is performed, which is precisely when the trace distance rises in Figure 3,
signaling non-Markovianity. This all heavily implies that entanglement is necessary for
non-Markovian dynamics in the protocol.

Figure 6. Correlations in the partition S|E1E2 as quantified by (a) logarithmic negativity, (b) discord
and (c) classical correlations when the Hamiltonian of the system and environment is given by
Equation (25). We take the initial state of the system to be |0⟩ and the environment W(p). Here t
is a dimensionless time. We only show 5 ≤ t ≤ 8 as there are no system-environment correlations
before t = 5.

The discord and classical correlations in Figure 6b,c also share features of those in
Figure 5; they are both larger for smaller p. When p = 1, these correlations grow and vanish
only during G8, the SWAP gate between S and E1. However, they can also appear during
G6 when p < 1.

At first glance, the two types of dynamics seem to result in similar dynamics. However,
we see stark changes when we change the system’s initial state. Although the features of
the correlation dynamics remain much the same for the dynamics in Equation (24), they are
remarkably different when we change the initial state from |0⟩ to |+⟩ when the Hamiltonian
is that in Equation (25). This can be easily seen by comparing Figures 6 and 7. After the
initial CNOT operation, the system and environment become entangled; this is reflected in
both Figure 7a,b. This means that we now see more discord between S and E1E2 for larger p
rather than smaller; the opposite trend when the initial state is |0⟩. However, entanglement
is similar; the more entanglement, the more non-Markovianity. Now, we see a small spike
during the final gate of the circuit, similar to the unusual resurgence of entanglement when
p = 0 in the overlapping gates case.
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Figure 7. Correlations in the partition S|E1E2 as quantified by (a) logarithmic negativity, (b) discord
and (c) classical correlations when the Hamiltonian of the system and environment is given by
Equation (25). We take the initial state of the system to be |+⟩ and the environment W(p).

5. Conclusions

We have critically addressed a measurement-free quantum teleportation protocol
against the claim that non-Markovianity is needed to boost the teleportation perfor-
mance [4]. We have shown that such a connection crucially depends on the way the
operations entailed by the protocol are actually implemented. When chopping the circuit in
individual gates acting on—in general multiple—elements of the register, a more definite
relation between the performance of teleportation and non-Markovianity can be spotted,
while the evidence of a key role played by non-Markovianity remains weak. On the one
hand, the negative results reported here reinforce the need for a comprehensive and rig-
orous resource theory of non-Markovianity for quantum information processing (some
interesting initial attempts at establishing such a theory have been made [18,19]). On the
other hand, it emphasizes the relevance of the actual way a given quantum protocol is
implemented in determining the quantities that are fundamental to its performance.
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