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Chapter 1

Introduction

1.1 Description of the problem

In general many dynamical systems with parameters, like the flows studied in this
thesis, are structurally unstable, and it is important to search for critical parameter
values that identify the transition from stability to instability of the solutions (such
basic solutions are often equilibrium points or stationary solutions). Such parame-
ters are called threshold or bifurcation parameters.

Different methods are used for their determination:

1. linear analysis (study of the system of perturbations linearized around such
basic solutions)

2. methods of global analysis which are differentiated into:

• (approximate) perturbative methods (weakly nonlinear analysis): devel-
opment of the solution of the perturbation as a perturbative series of
which the coefficients are to be computed, the perturbative series is summed,
if convergent, and information is drawn from an appropriate number of
terms in the series, (if it is asymptotic);

• Lyapunov method (appropriate Lyapunov functions are sought that are
decreasing in time along the perturbations).

In particular, we study the stability of base flows using two of the listed ap-
proaches: a) Lyapunov investigation (also called non-modal) for the stability, and b)
spectral investigation (also called modal) for instability. The Reynolds number Re ,
which is a ratio between a reference velocity times the width of the channel divided
by the viscosity of the fluid, is the main parameter on which the stability of the type
of flows we investigated depends.
Often the critical parameters (linear and nonlinear) do not coincide, and sometimes
they do not coincide with the threshold-parameters obtained in experiments (one
of the notable cases is Couette’s paradox: linear analysis gives an infinite value for
the Reynolds number, nonlinear analysis gives values around 44, while experiments
give values in a range [340, 415]).
This fact is illustrated in Fig. 1.1. The nonlinear energy critical number is Re1, while
the linear critical number is Re2 (here Re1 refers to the monotonic stability in energy,
the other types of energies will be described in SubSec. 3.1).
For Re less than Re1 the energy (E in figure) is monotonically decreasing, therefore
we have sufficient conditions of energy stability. For Re greater than Re1, we can de-
duce nothing about stability/instability in energy. Indeed, according to this choice
of energy, the system is unstable, but this energy could not be the best choice and
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there could exist other energies (Lyapunov functions) such that the corresponding
critical number is greater that Re1.
For Re greater than Re2, there is at least one eigenvalue in the spectrum that has pos-
itive real part therefore we have spectral instability, to be more precise, there exist
at least one perturbation that, chosen as initial value, has increasing energy. For Re
less than Re2, all the eigenvalues of the spectrum have negative real parts. In finite
spaces this fact implies spectral stability, but, in our case, that is in infinite space, this
fact do not necessarily implies monotonic stability.
The critical parameter obtained through experiments Reexp usually does coincide
neither with Re1 nor Re2, but it is a value between them. Therefore the region be-
tween Re1 and Re2 is called subcritical region.

FIGURE 1.1: Critical Reynolds parameters obtained through
Lyaponov investigation (Re1), spectral investigation (Re2) and exper-

iments (Reexp).

In the next section the structure of the thesis is presented. In particular we de-
scribe the starting point of the work, related to the problem explained in this section,
and then we describe how the research went on.

1.2 Overview of the thesis

The first aim of the thesis is to study the stability of flows both from a theoretical and
an applied point of view, trying to solve the problem described in Fig. 1.1.
The idea to overcome the problem is to looking for, if they exist, classes of pertur-
bations for which suitable energies (possibly weighted) give the same critical pa-
rameters for both the linearized and the nonlinear systems and, in particular cases,
compare with the critical parameters obtained from the experimental data, if avail-
able. The study we carried out is presented in Sec. 8.

The second aim is to prove, at least numerically, that in the nonlinear case the most
destabilizing perturbations are the two-dimensional ones. Indeed, in the study of
the stability/instability of laminar flows in the linear case it has been proved that
the most destabilizing perturbations are the two-dimensional. In the nonlinear case,
on the contrary, this has not been proved but, classically, also in this case, sometimes
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only two-dimensional perturbations are studied. Most of the research are devoted
to this study and the related works are presented in Secs. 9-11. In particular in Sec. 9
we study this problem for the classical laminar flows of Couette and Poiseuille, we
run into a contradiction and we solve it through a conjecture. In Sec. 10 we change
the boundary conditions, we obtain the same problem and we solve it in a similar
way. Finally in Sec. 11 we extend this idea also in magnetohydrodynamic.

The last two works concern with the analysis of a flow between two horizontal
planes that occurs when the plates move in opposite directions and the flow is sub-
jected to a pressure with longitudinal and transversal components. The resulting
basic motion is a combination of Couette and Poiseuille flows in the streamwise di-
rection and just Poiseuille in the spanwise direction.
In particular in the first of these two works reported in Sec. 12 we simplify the basic
motion by imposing that the spanwise component was zero. The principal goal is
to study the transient growth of the energy obtaining, as particular cases, the Cou-
ette and the Poiseuille flows. Indeed the study of the transient growth in these two
particular cases could give a contribution in the understanding of the conjecture of
Sec. 9.
In the last work Sec. 13 we study the general basic motion with both streamwise and
spanwise components.

Before going deep into all these works, in Sec. 2 we recall the Navier Stokes equa-
tions because we need them to describe the evolution of flows. In Secs. 4 and 5 we
derive respectively the basic motions for laminar flows between horizontal planes
and flows in inclined channels, as they are object of our investigation. In Sec. 3 we
explain two approaches (see a) and b) above) we use to study the stability/instability
and in Sec. 6 we describe one of the numerical methods that these two approaches
require, that is the spectral method. Finally, in Sec. 7 we recall the classical linear
and non linear results for Couette and Poiseuille flows and the numerical and exper-
imental results. It is highlighted that the situation described in Fig. 1.1 takes place.

The results of the works presented in this thesis pose the problem of what is the
critical parameter of monotonic nonlinear stability. We remember that classically the
values proposed by Orr, 1907, Joseph, 1968 and Joseph and Carmi, 1969 give criti-
cal values on particular non-3D perturbations. We observe here that both Orr and
Joseph in their papers do not prove which are the maximizing perturbations, indeed
Joseph assumes that the maximizing perturbations are those which do not depend
on x, and Orr assumes that they are the two-dimensional perturbations which do
not depend on y. Observing that these parameters give only sufficient stability con-
ditions, a conjecture which corroborates Orr’s stability results has been proposed
by Falsaperla, Mulone, and Perrone, 2022a. Conversely, numerical analyses would
suggest that the results of Joseph and Joseph and Carmi are correct. The question
is still open and complex but some recent results proposed by Mulone, 2024 seem
to suggest that Orr’s solutions are correct. In the final comments I will deepen this
possible solution.
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Chapter 2

Navier Stokes equations

2.1 Fluid dynamics

In this section we recall how the Navier Stokes equations which govern the motion of
a Newtonian, homogeneous and incompressible fluid are derived by Rionero, 2000.
Let us first recall how the first and the second indefinite equations of the mechanics
of continuous systems are obtained.
We introduce:

R =
∫

C1(t)
ρF(P, t)dC1, MO =

∫
C1(t)

(P−O)ρF(P, t)dC1, (2.1.1)

which are respectively the resultant force and the corresponding resultant moment
with respect to the pole O, and ρ is the density of the fluid.
The Cauchy’s stress axiom states that:

R =
∫

σ
Φdσ, MO =

∫
σ
(Q−O)×Φdσ, (2.1.2)

We define the momentum Q and the moment of momentum KO as:

Q =
∫

C1

ρvdC1, KO =
∫

C1

(P−O)× ρvdC1. (2.1.3)

where v is the velocity of the fluid.
The following axiom holds:

Q̇ = R(e), K̇O = MO
(e). (2.1.4)

Therefore:
R(e) =

∫
C1

ρFdC1 +
∫

dC1

Φdσ (2.1.5)

MO
(e) =

∫
C1

(P−O)× ρFdC1 +
∫

dC1

(Q−O)×Φdσ.

Eq. (2.1.4) can be rewritten as:{ ∫
C1

ρadC1 =
∫

C1
ρFdC1 +

∫
dC1

Φdσ∫
C1
(P−O)× ρadC1 =

∫
C1
(P−O)× ρFdC1 +

∫
dC1

(Q−O)×Φdσ,
(2.1.6)

The Cauchy theorem states that:

Φ(P, n, t) = niΦ(P, ei, t) = niΦi, (2.1.7)



6 Chapter 2. Navier Stokes equations

as a result of this theorem, if we use the notation Tij to indicate the components of
Φi along the versor ej, we have:

Φi = Tijej, (2.1.8)

and eq. (2.1.7) becomes
Φ(P, n, t) = niTijej = n · T. (2.1.9)

By replacing eq. (2.1.9) in (2.1.6)1 we obtain:∫
C1

ρa =
∫

C1

ρFdC1 + ej

∫
dC1

niTijdσ =
∫

C1

(ρF + diTijej)dC1, (2.1.10)

which implies:
ρa = ρF +∇ · T. (2.1.11)

The latter equation is the local momentum balance equation, also called first in-
definite equation of the mechanics of continuous systems. Using, once again, the
Cauchy’s theorem, and applying the Gauss’s lemma, from (2.1.6)2 we obtain

T = TT. (2.1.12)

The latter equation is the local momentum balance equation, also called second in-
definite equation of the mechanics of continuous systems.
Finally, considering the continuity equation, i.e.:

ρ̇ + ρ∇ · v = 0, (2.1.13)

we obtain the following system{
ρ̇ + ρ∇ · v = 0
ρa = ρF +∇ · T

(T = TT). (2.1.14)

The acceleration can be written in the Eulerian form as:

a = vt + v·∇v. (2.1.15)

If the fluid is Newtonian, the stress tensor T is

T = (−p + λ∇·v)I + 2γD. (2.1.16)

where λ and γ are viscosity coefficients.

By replacing (2.1.15) and (2.1.16) in (2.1.11) we have:

ρ(vt + v·∇v) = ρF−∇p +∇(λ∇ · v) +∇ · (2γD). (2.1.17)

We observe that for small variations in temperature (of the order of 100), the viscosity
coefficients λ and γ can be held constant, so under these assumptions we have:

ρ(vt + v·∇v) = ρF−∇p + λ∇(∇ · v) + γ∇ · (2D). (2.1.18)

After having easily proved that

∇ · (2D) = ∆v +∇(∇ · v), (2.1.19)
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we obtain

ρ(vt + v·∇v) = ρF−∇p + (λ + γ)∇(∇ · v) + γ∆v. (2.1.20)

In particular, as the fluid is incompressible, that is ∇·v = 0, we have

vt + v·∇v = F−∇( p
ρ
) + ν∆v, (2.1.21)

where

ν =
γ

ρ
,

is the kinematic viscosity coefficient, while γ is called dynamic viscosity coeffi-
cient.

Therefore, system (2.1.14) becomes: vt + v·∇v = F−∇( p
ρ
) + ν∆v

∇·v = 0.
(2.1.22)

Eqs. (2.1.22) are the Navier-Stokes equations for incompressible fluids.
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2.2 Magnetohydrodynamics

Let us consider an incompressible fluid and conductor of electricity. It is evident
that the equations used to describe its motion will be a combination of the equa-
tions governing the motion of a fluid in absence of an electromagnetic field, suitably
modified, and the Maxwell’s equations.

• Case 1 First of all let us assume that there is no acceleration of gravity.

We introduce:

R =
∫

C1(t)
(j× B)dC1, MO =

∫
C1(t)

(P−O)× (j× B)dC1, (2.2.1)

which are respectively the resultant force and the corresponding resultant mo-
ment with respect to the pole O. Indeed the Lorentz force is:

F = q(E + v× B), (2.2.2)

therefore, dividing by the volume, we obtain the force per unit of volume:

Fvolume = ρ(E + v× B) = ρE + j× B, (2.2.3)

where j is the current density. Assuming that there are not free charges in the
fluid, eq. (2.2.3) becomes:

Fvolume = j× B. (2.2.4)

By using eqs. (2.1.2), (2.1.3), (2.1.4) and (2.2.1) we have:

R(e) =
∫

C1

(j× B)dC1 +
∫

dC1

Φdσ. (2.2.5)

MO
(e) =

∫
C1

(P−O)× (j× B)dC1 +
∫

dC1

(Q−O)×Φdσ.

Eq. (2.1.4) can be rewritten as:{ ∫
C1

ρadC1 =
∫

C1
(j× B)dC1 +

∫
dC1

Φdσ∫
C1
(P−O)× ρadC1 =

∫
C1
(P−O)× (j× B)dC1 +

∫
dC1

(Q−O)×Φdσ,
(2.2.6)

By using the Cauchy’s theorem, as we did before, substituting eq. (2.1.9) into
(2.2.6)1 we obtain:∫

C1
ρa =

∫
C1
(j× B)dC1 + ej

∫
dC1

niTijdσ =
∫

C1
(j× B + diTijej)dC1, (2.2.7)

and therefore:
ρa = j× B +∇ · T. (2.2.8)
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We can write the acceleration in the Eulerian form, as before, and we recall the
Maxwell’s equations: 

∇× B = µj + µε
∂E
∂t

∇× E = −∂B
∂t

∇·B = 0

∇·E =
ρ

ε
,

(2.2.9)

where µ is the magnetic permeability and ε is the dielectric constant.

If we assume that ε is small enough to neglect
∂E
∂t

, we have

j× B =
1
µ
(∇× B)× B =

1
µ
(B·∇B−∇B2). (2.2.10)

Substituting eqs. (2.1.15), (2.1.16) and (2.2.10) in eq. (2.2.8) we have:

ρ(vt + v·∇v) =
1
µ
(B·∇B−∇B2) +∇ · [(−p + λ∇·v)I + 2µD]. (2.2.11)

By using eq. (2.1.19) and the fact that the fluid is incompressible (∇·v = 0),
eq. (2.2.11) becomes:

vt + v·∇v =
1

µρ
(B·∇B−∇B2)−∇( p

ρ
) +

µ

ρ
∆v. (2.2.12)

The dimensional equations obtained are:
vt + v·∇v =

1
ρµ

B·∇B−∇Π + ν∆v

∇·v = 0
Bt + v·∇B− B·∇v = ψ ∆B
∇·B = 0,

(2.2.13)

where Π is the pressure (included the magnetic pressure) and ν and ψ are pos-
itive physics parameters, respectively the kinematic viscosity and the electrical
resistivity.
We observe that the first equation of the system is the first cardinal equation,
the second one is the incompressibility condition, the third one is the Faraday’s
law and the last one is the Gauss’s law on the non-existence of the magnetic
monopole.

• Case 2 We suppose to have the gravity acceleration.

We introduce:

R =
∫

C1(t)
(ρg + j× B)dC1, MO =

∫
C1(t)

(P−O)× (ρg + j× B)dC1, (2.2.14)

which are respectively the resultant force and the corresponding resultant mo-
ment with respect to the pole O.
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We follow the same procedure of Case 1 and we obtain the dimensional equa-
tions: 

vt + v·∇v =
1

ρµ
B·∇B−∇Π + ν∆v + g

∇·v = 0
Bt + v·∇B− B·∇v = ψ ∆B
∇·B = 0.

(2.2.15)



11

Chapter 3

Stability/instability

In this section we recall how to study the problem of stability and instability of a
base flow. As mentioned in the introduction, the methods used are usually differen-
tiated into approximate linear methods and strict Lyapunov methods.

We take, as an example, the case of an incompressible viscous fluid which is de-
scribed, as seen, by the Navier-Stokes equations (2.1.22).
Let Ω be an open limited set of R3 filled with a Newtonian incompressible fluid. Let
(v, p) be a solution (also called basic flow) of (2.1.22), that describes the motion of
the fluid, in Ω× (0, T) with the initial conditions

v(P, 0) = v0(P), P ∈ Ω, (3.0.1)

and at the boundaries

v(P, t) = a1(P, t), ∂Ω× [0, T), (3.0.2)

where the vector fields v0(P), a1 and F(P, t) are regular fields such that

∇ · v0(P) = 0,
∫

∂Ω
a1(P, t) · ndσ = 0. (3.0.3)

We perturb the basic motion at the initial instant, in correspondence with the same
external force and with the same boundary conditions. Also the perturbed basic
motion (v + u, p + p′) satisfies the system (2.1.22). Therefore, the difference basic
motion (u, p′) satisfies the following systemut + (v + u) · ∇u + u · ∇v = −∇ p′

ρ
+ ν∆u

∇ · u = 0,
(3.0.4)

for each (P, t) ∈ Ω× (0,+∞), with initial condition

u(P, 0) = u0(P), P ∈ Ω, (3.0.5)

and with boundary condition

u(P, t) = 0, (P, t) ∈ ∂Ω× [0, T). (3.0.6)

The study of the stability of the basic motion m0 = (v, p) is reduced to the study
of the perturbation (u, p′). If u0 “small", with respect to “some measure", implies
that also u(P, t) is “small" ∀t > 0, then m0 is stable; otherwise, if u0 can “increase"
regardless the smallness of u0, then m0 is unstable.
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3.1 Nonlinear energy stability

As a measure of the perturbation we choose

E(t) =
1
2
||u(P, t)||2, (3.1.1)

that is, except for a constant factor, the “kinetic energy" of the perturbation.

Let us recall some definitions of nonlinear energy stability (see Joseph, 1976, Schmid
and Henningson, 2001a).

• The basic motion is monotonically stable in the energy norm, and ReE is the critical
Reynolds number, if the time orbital derivative of the energy Ė is always less
than zero,

Ė < 0, (3.1.2)

when Re < ReE. In particular the stability is monotonic and exponential if
there is a positive number α such that E(t) ≤ E(0) exp{−αt} for any t ≥ 0 and
Re < ReE.

• The basic motion is globally stable to perturbations if the perturbation energy E
satisfies

lim
t→+∞

E(t)
E(0)

= 0, ∀E(0) > 0. (3.1.3)

The basic motion is unstable if and only if it is not stable.
The energy method was introduced by Orr and Reynolds but only in 1959 in an im-
portant article Serrin, 1959 showed that the problem of nonlinear stability could be
reduced to a variational problem (minimum or maximum) solved by calculating the
associated Euler-Lagrange equations. The Euler-Lagrange equations are precisely
an eigenvalue problem and they allow to obtain the nonlinear critical parameter.

3.2 Linear instability

From the previous definitions of nonlinear stability it can be deduced that the rig-
orous study of the stability of a basic motion is reduced to studying, through the
Lyapunov function, the evolution of the solutions of the system (3.0.4). However,
due to the presence of the nonlinear terms in (3.0.4), for a long time it was difficult to
study these solutions, and initially only qualitative results were obtained (Reynolds,
1895a, Orr, 1907, Thomas, 1943, Fériet, 1948).

Therefore, to simplify the problem and obtain significant quantitative and not only
qualitative results, the linearized method was used.

According to this method, the perturbation system is first linearized. Then, solu-
tions like est, with s complex number, are sought. We get a generalized eigenvalue
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problem where s is the eigenvalue. The problem of the study of stability is therefore
reduced to the solution of this generalized eigenvalue problem and the stability will
depend precisely on the eigenvalue s.

In general re(s) depends on a parameter Q, for example the Reynolds number, the
Taylor number, the Rayleigh number and, in the case of periodic perturbations also
by the wave numbers. Therefore, one would like to find the smallest value Qc (criti-
cal parameter) for which re(s) = 0, that is, the one for which instability arises.
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Chapter 4

Laminar flows between horizontal
planes

In this section we derive first of all the expression of the velocity field of non- elec-
troconductive fluids between horizontal planes, that is the velocity field of Couette
and Poiseuille flows.
Then we suppose that the fluid is electroconductive, we find also in this case the
expression of the velocity field and in addition the expression of the magnetic field.
We will see that the first case can be obtained from the second one as a particular
case.

1. Without magnetic field

We consider a fluid in motion and we suppose that the motion occurs in a
layer D = R2 × [−D, D] with depth 2D.
The layer may be considered in a reference frame Oxyz, with unit vectors i, j, k.
The sheet (channel) extends to infinity in the x and y directions and has a finite
depth 2D in the z direction.

FIGURE 4.1: A layer of width 2D filled with a fluid. The direction of
x-axis is the direction of the flow.

Assuming that the fluid is Newtonian, homogeneous and incompressible, the
equations governing the motion of the fluid are given by those of the system
(2.1.22).
We suppose that the only body force is that due to gravity, that is F = −gk.
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If we wanted to compare the coefficients that appear in the equations of the
system (2.1.22), we would have to calculate the value of each individual term.
To avoid this, we can divide each coefficient by a certain homogeneous refer-
ence quantity, so the coefficients will be dimensionless and comparing them
will be easier. We introduce the non-dimensional variables x∗, y∗, z∗, p∗, t∗, v∗,
F∗ defined by

x∗ =
x
D

, y∗ =
y
D

, z∗ =
z
D

, p∗ =
p

ρV2
0

, t? =
V0t
D

,

v? =
v
V0

, F∗ =
DF
V2

0
,

where V0 is a scaling factor (note that these definitions imply that ∇ = ∇∗
D ,

∇2 = ∇∗2

D2 ). With these new variables, system (2.1.22) becomes:


V2

0
D

∂v∗
∂t∗ +

V2
0

D v∗ ·(∇∗vx,∇∗vy,∇∗vz) =
V2

0 F∗

D
− V2

0
D ∇∗p + νV0

D2 (∇∗2v∗x,∇∗2v∗y,∇∗2v∗z )

V0
D∇∗ ·v∗ = 0,

(4.0.1)

If we define the following non-dimensional parameter

Re =
V0D

ν
,

i.e. the Reynolds number, we multiply (4.0.1)1 by D
V2

0
and (4.0.1)2 by D

V0
, and we

neglect “*", we obtain the following system (4.0.2) in the domain R2× [−1, 1]×
(0,+∞) in non-dimensional form:{

vt + v·∇v = F−∇p + Re−1∆v
∇·v = 0.

(4.0.2)

If we restrict the analysis to laminar solutions dependent on z, that is to non-
dimensional solutions of the kind

v(z) = (U(z), 0, 0)

from eq. (4.0.2)3 we obtain

viei ·
∂vj

∂xk
ekej = F−∇p + Re−1∆viei ⇒ (4.0.3)

vi
∂vj

∂xk
δikej = F−∇p + Re−1∆v1e1 ⇒ (4.0.4)

vi
∂vj

∂xi
ej = F−∇p + Re−1∆v1e1 ⇒ (4.0.5)

0 = (0, 0,−g)− (px, py, pz) + Re−1(U′′(z), 0, 0). (4.0.6)
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From the last equation we obtain the following system: −px + Re−1U′′(z) = 0
py = 0
g + pz = 0.

(4.0.7)

Eq. (4.0.7)2 implies that p(x, y, z) does not depend explicitly on y, therefore, by
integrating (4.0.7)3, we have:

p(x, y, z) = p(x, z) = p1(x)− gz. (4.0.8)

Eq. (4.0.7)1 can be rewritten as:

p1x(x) = Re−1U′′(z). (4.0.9)

The first member of the last equation depends only on x and the second one
depends only on z, this implies that:

p1x(x) ≡ b1, Re−1U′′(z) ≡ b1, (4.0.10)

where b1 is a constant. Therefore the basic motion U(z) is:

U(z) = b1Re
z2

2
+ c1z + d1

where c1 and d1 are unknown constants that we can find using the boundary
conditions.
• If we fix

U(1) = 0, U(−1) = 0,

we find b1 = −2d1

Re
, c1 = 0 and

U(z) = d1(1− z2).

If we impose that U(0) = 1 we have d1 = 1 and we find the velocity profile of
the Poiseuille flow:

U(z) = 1− z2.

• If we remove the pressure gradient, i.e. b1 = 0, and we suppose that the
motion of the fluid occurs just thanks to the motion of the plates along x and
−x, the boundary conditions we have to fix are:

U(−1) = −1, U(1) = 1

and the constants are c1 = 0 and d1 = 1. Therefore we find

U(z) = z

which is the velocity profile of the Couette flow.

2. With magnetic field
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We now consider an electroconductive fluid in motion. The layer and the ref-
erence frame are the same ones described in the Case 1.

FIGURE 4.2: A layer of width 2D filled with an electroconductive
fluid. The direction of x-axis is the direction of the flow.

Assuming that the fluid is Newtonian, homogeneous and incompressible, the
equations governing the motion of the fluid are given by those of the system
(2.2.13).
To non-dimensionalize the equations, as in Takashima, 1996, 1998, we intro-
duce the non-dimensional variables x∗, y∗, z∗, Π∗, t∗, v∗, B∗ defined by

x∗ =
x
D

, y∗ =
y
D

, z∗ =
z
D

, t? =
V0t
D

, Π∗ =
Π
V2

0
,

v? =
v
V0

, B∗ =
B
B0

,

where V0 and B0 are scaling factors (note that these definitions imply that∇ =
∇∗
D , ∇2 = ∇∗2

D2 ).
With these new variables (2.2.13) becomes:

V2
0

D
∂v∗
∂t∗ +

V2
0

D v∗ ·(∇∗vx,∇∗vy,∇∗vz) =
1

ρµ
B2

0
D B∗ ·(∇∗B∗x ,∇∗B∗y ,∇∗B∗z )+

−V2
0

D ∇∗Π + νV0
D2 (∇∗2v∗x,∇∗2v∗y,∇∗2v∗z )

V0
D∇∗ ·v∗ = 0

V0B0

D
∂B∗

∂t∗
+

V0B0

D
v∗ ·(∇∗B∗x ,∇∗B∗y ,∇∗B∗z )−

B0V0

d
B∗ ·(∇∗v∗x,∇∗v∗y,∇∗v∗z ) =

=
ηB0

D2 (∇∗2B∗x ,∇∗2B∗y ,∇∗2B∗z )

B0
D∇∗ ·B∗ = 0,

(4.0.11)

If we define the following non-dimensional parameters:
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• Re = V0D/ν, the Reynolds number,

• Rm = V0D/ψ, the magnetic Reynolds number,

• Ha =
B0D√
ρνµψ

, the Hartmann number,

• Pm =
ν

ψ
=

Rm
Re

, the Prandtl magnetic number,

• N = Ha2Re−1 the interaction parameter,

multiplying (4.0.11)1 by D
V2

0
, (4.0.11)2 by D

V0
, (4.0.11)3 by D

V0B0
, (4.0.11)4 by D

B0
and

neglecting “*", we obtain the following system (4.0.12) in the domain R2 ×
[−1, 1]× (0,+∞) in non-dimensional form:

vt + v·∇v = Ha2Re−1Rm−1 B·∇B−∇Π + Re−1∆v
∇·v = 0
Bt + v·∇B− B·∇v = Rm−1 ∆B
∇·B = 0,

(4.0.12)

If we restrict the analysis to laminar solutions dependent on z, that is to non-
dimensional solutions of the kind

v(z) = (U(z), 0, 0), B(z) = (B(z), 0, 1),

from eq. (4.0.12)3 we obtain

viei ·
∂Bj

∂xk
ekej − Biei ·

∂vj

∂xk
ekej = Rm−1 ∆Biei ⇒ (4.0.13)

⇒ vi
∂Bj

∂xk
δikej − Bi

∂vj

∂xk
δikej = Rm−1 ∆B1e1 ⇒ (4.0.14)

⇒ vi
∂Bj

∂xi
ej − Bi

∂vj

∂xi
ej = Rm−1 ∆B1e1 ⇒ (4.0.15)

⇒ (0, 0, 0)− (U′(z), 0, 0) = Rm−1 (B′′(z), 0, 0) (4.0.16)

and therefore:
B′′(z) = −Rm U′(z). (4.0.17)

Eq. (4.0.17) implies that B′(z) = −Rm (U(z) + a1/Ha2) where a1 is a constant
of integration. From eq. (4.0.12)1 it follows that:

viei ·
∂vj

∂xk
ekej = Ha2Re−1Rm−1 Biei ·

∂Bj

∂xk
ekej −∇Π + Re−1∆viei ⇒ (4.0.18)

vi
∂vj

∂xk
δikej = Ha2Re−1Rm−1 Bi

∂Bj

∂xk
δikej −∇Π + Re−1∆v1e1 ⇒ (4.0.19)

vi
∂vj

∂xi
ej = Ha2Re−1Rm−1 Bi

∂Bj

∂xi
ej −∇Π + Re−1∆v1e1 ⇒ (4.0.20)

0 = Ha2Re−1Rm−1 (B′(z), 0, 0)− (Πx, Πy, Πz) + Re−1(U′′(z), 0, 0). (4.0.21)
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From the last equation we obtain the following system: Ha2Re−1Rm−1 B′(z)−Πx + Re−1U′′(z) = 0
Πy = 0
−Πz = 0.

(4.0.22)

Eq. (4.0.22)2 implies that Π(x, y, z) does not depend explicitly on y, therefore,
by integrating (4.0.22)3, we have:

Π(x, y, z) = Π(x, z) = Π1(x). (4.0.23)

Eq. (4.0.22)1 can be rewritten as:

Ha2Re−1Rm−1 B′(z)−Π1x(x) + Re−1U′′(z) = 0⇒ (4.0.24)

Π1x(x) = Ha2Re−1Rm−1 B′(z) + Re−1U′′(z)⇒ (4.0.25)

Re Π1x(x) = Ha2Rm−1 B′(z) + U′′(z). (4.0.26)

The first member of the last equation depends only on x and the second one
depends only on z, this implies that:

Re Π1x(x) ≡ b1, Ha2Rm−1 B′(z) + U′′(z) ≡ b1, (4.0.27)

and from (4.0.16):

Re Π1x(x) ≡ b1, U′′(z)−Ha2U(z) ≡ b1 + a1. (4.0.28)

The solutions of this second-order, non-homogeneous differential equation are

U(z) = u1 cosh(Ha z) + u2 sinh(Ha z)− a1 + b1

Ha2 ,

and therefore

B(z) = −Rm
Ha

(
u1 sinh(Ha z) + u2 cosh(Ha z)− b1

Ha
z +

c1

Ha

)
.

We observe that Re depends on β because

Re =
V0D

ν
=

U(D)D
ν

. (4.0.29)

For the Couette and Hartmann flows we choose boundary conditions that cor-
respond to the rigid conditions for the velocity field and to non-conducting
boundaries.

• For the Couette flow we fix

U(1) = 1, U(−1) = −1, B(1) = B(−1) = 0 (4.0.30)

(cf. Alexakis et al., 2003).
We assume that there is no forcing pressure in the channel, that is b1 = 0. We
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obtain the following system:

0 = −Rm
Ha

(
u1 sinh(Ha) + u2 cosh(Ha) +

c1

Ha

)
0 = −Rm

Ha

(
−u1 sinh(Ha) + u2 cosh(Ha) +

c1

Ha

)
1 = u1 cosh(Ha) + u2 sinh(Ha)− a1

Ha2

−1 = u1 cosh(Ha)− u2 sinh(Ha)− a1

Ha2 ,

(4.0.31)

which is equivalent to:

0 = −2
Rm
Ha

(
u2 cosh(Ha) +

c1

Ha

)
0 = −2

Rm
Ha

u1 sinh(Ha)

1 = u1 cosh(Ha) + u2 sinh(Ha)− a1

Ha2

−1 = u1 cosh(Ha)− u2 sinh(Ha)− a1

Ha2 ,

(4.0.32)

obtained by adding and subtracting member by member eq. (4.0.31)1 and eq. (4.0.31)2.
Eq. (4.0.32)1 implies that u1 = 0 and the system becomes:

0 = −2
Rm
Ha

(
u2 cosh(Ha) +

c1

Ha

)
u1 = 0

1 = u2 sinh(Ha)− a1

Ha2

−1 = −u2 sinh(Ha)− a1

Ha2 ,

(4.0.33)

which is equivalent to:
0 = −2

Rm
Ha

(
u2 cosh(Ha) +

c1

Ha

)
u1 = 0
1 = u2 sinh(Ha)

0 = −2
a1

Ha2 ,

(4.0.34)

obtained by adding and subtracting member by member eq. (4.0.33)3 and eq. (4.0.33)4.
u1 = 0
a1 = 0

u2 =
1

sinh(Ha)
c1 = −Ha coth(Ha),

(4.0.35)

Therefore:

U(z) =
sinh(Ha z)
sinh (Ha)

, B(z) =
Rm
Ha

[cosh (Ha)− cosh(Ha z)]
sinh (Ha)

. (4.0.36)

• For the Hartmann flow we fix

U(−1) = U(1) = 0, B(−1) = B(1) = 0. (4.0.37)



22 Chapter 4. Laminar flows between horizontal planes

We obtain the following system:

0 = −Rm
Ha

(
u1 sinh(Ha) + u2 cosh(Ha)− b1

Ha
+

c1

Ha

)
0 = −Rm

Ha

(
−u1 sinh(Ha) + u2 cosh(Ha) +

b1

Ha
+

c1

Ha

)
u1 cosh(Ha) + u2 sinh(Ha)− a1 + b1

Ha2 = 0

u1 cosh(Ha)− u2 sinh(Ha)− a1 + b1

Ha2 = 0

⇒ (4.0.38)

⇒



0 = −2
Rm
Ha

(
u2 cosh(Ha) +

c1

Ha

)
0 = −2

Rm
Ha

(
u1 sinh(Ha)− b1

Ha

)
2(u1 cosh(Ha)− a1 + b1

Ha2 ) = 0

2u2 sinh(Ha) = 0

⇒ (4.0.39)

⇒



c1 = 0
b1 = u1Ha sinh(Ha)
a1 = Ha2u1 cosh(Ha)− b1

= Hau1(Ha cosh(Ha)− sinh(Ha))
u2 = 0.

⇒ (4.0.40)

By imposing U(0) = 1, we obtain the following system:



c1 = 0
b1 = u1Ha sinh(Ha)
a1 = Hau1(Ha cosh(Ha)− sinh(Ha))
u2 = 0

1 = u1 −
a1 + b1

Ha2

⇒ (4.0.41)

⇒



c1 = 0
b1 = u1Ha sinh(Ha)
a1 = Hau1(Ha cosh(Ha)− sinh(Ha))
u2 = 0

1 = u1 −
Hau1(Ha cosh(Ha)− sinh(Ha)) + u1Ha sinh(Ha)

Ha2

⇒ (4.0.42)

⇒



c1 = 0
b1 = u1Ha sinh(Ha)
a1 = Hau1(Ha cosh(Ha)− sinh(Ha))
u2 = 0

u1 =
1

1− cosh(Ha)

⇒ (4.0.43)
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⇒



c1 = 0
u2 = 0

u1 =
1

1− cosh(Ha)

b1 =
1

1− cosh(Ha)
Ha sinh(Ha)

a1 = Ha
1

1− cosh(Ha)
(Ha cosh(Ha)− sinh(Ha)),

⇒ (4.0.44)

and the solutions are:

U(z) =
cosh(Ha)− cosh(Haz)

cosh(Ha)− 1
, (4.0.45)

and

B(z) =
sinh(Haz)− z sinh(Ha)

Ha(cosh(Ha)− 1)
. (4.0.46)

If we define B̂ = Rm−1B, system (4.0.12) becomes
vt + v·∇v = Ha2Re−1Rm B̂·∇B̂−∇Π + Re−1∆v
∇·v = 0
B̂t + v·∇B̂− B̂·∇v = Rm−1 ∆B̂
∇·B̂ = 0.

(4.0.47)

The basic solution of the system is (U(z), 0, 0), (B̄(z), 0, Rm−1) where

U(z) =
sinh(Ha z)
sinh (Ha)

, B̄(z) =
1

Ha
[cosh (Ha)− cosh(Ha z)]

sinh (Ha)

for the Couette flow, and

U(z) =
cosh(Ha)− cosh(Haz)

cosh(Ha)− 1
, B̄(z) =

sinh(Haz)− z sinh(Ha)
Ha(cosh(Ha)− 1)

for the Hartmann flow.

The basic motions obtained in the Case 1 can be derived from the current one
as particular cases. Indeed, in absence of the magnetic field we have:

lim
Ha→0

U(z) =
sinh(Ha z)
sinh (Ha)

= z

which is the Couette flow, and

lim
Ha→0

U(z) =
cosh(Ha)− cosh(Haz)

cosh(Ha)− 1
= 1− z2

which is the Hartmann flow.
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Chapter 5

Laminar flows in inclined channel

In this section we consider first of all a fluid that flows in an inclined channel and that
is non-electroconductive. We derive the expressions of the velocity and the magnetic
fields.
Then we suppose that the fluid is electroconductive and we find also in this case the
expression of the velocity field and in addition the expression of the magnetic field.

1. Without magnetic field

Let D be a positive real number. Consider a layer D = R2 × [−D, D] of gap
2D filled with an electrically conducting fluid. As in Falsaperla et al. 2020b,
the layer may be considered, a sheet of fluid down an incline (open inclined
channel) with constant slope angle β, 0 < β < π/2 in a reference frame Oxyz,
with unit vectors i, j, k. The x-axis is taken along the slope direction while the
z-axis is perpendicular to the layer, and the y-axis is orthogonal to the slope
direction in the plane xy. The sheet (channel) extends to infinity in the x and y
directions and has a finite depth 2D in the z direction.

FIGURE 5.1: Inclined parabolic shear flow: the direction of x-axis is
the direction of the flow. The layer of depth 2D is inclined of an angle

β.

The motion is described by the equations (2.1.22) where F = g sin β i− g cos β k:{
Ut + U · ∇U = g sin β i− g cos β k−∇p/ρ + ν∆U
∇ ·U = 0.

⇔
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⇔
{

Ut + U · ∇U = −∇q/ρ + ν∆U
∇ ·U = 0.

(5.0.1)

In the second set of equations the function q is a pressure gradient incorporat-
ing the linear term coming from gravity (see Chandrasekhar, 1961). This shows
that the inclination produces a natural pressure gradient.

We plan to determine the stationary flows U that satisfy the equations above
with the addition of rigid conditions on the values of the field U on z = ±d,
the upper and lower boundaries of Ω, and assuming that such boundaries
are possibly in constant motion, one with respect to the other. Resorting to a
uniformly translating reference frame, such requirements can be recast in two
conditions U(x, y,−D) = −αi and U(x, y, D) = αi for every x, y. This fact
creates a inhomogeneity between the direction i, that we call streamwise and j,
that we call spanwise.

We seek for steady laminar solutions, that is solutions of the form U = (U(z), V(z), 0).
Therefore, from (1) we have that:

Uiei ·
∂Uj

∂xk
ekej = −∇q/ρ + ∆U⇔

⇔ (
�
�
�

W
∂U
∂z

,
�
�
�

W
∂V
∂z

,
�
�

��
W

∂W
∂z

) = ν(Uzz, Vzz,��Wzz )−
1
ρ
(qx, qy, qz)⇔ (5.0.2)

⇔


qx = ρνUzz

qy = ρνVzz

qz = 0

(5.0.3)

From the last equation of the system, one has that q does not depend on z, that
is, q = q(x, y). Therefore the left sides of the first two equations of the system
depend on x and y, but the right sides of them depend only on z. Therefore
there must exist two constants a and b such that:{

qx = ρνUzz = a
qy = ρνVzz = b.

(5.0.4)

This implies that the pressure must be a linear function q = ax + by and the
possible steady laminar solutions to eq. (1) that also satisfies the rigid bound-
ary conditions, is quadratic function and has analytic expression

U =
(α

d
z +

γ

D2 (z
2 − D2)

)
i +

δ

D2 (z
2 − D2)j. (5.0.5)

By computing, from the last expression of U, the second derivative with re-
spect to z, and by substituting it in (5.0.4), we obtain:

ρν
2γ

d2 = a

ρν
2δ

d2 = b,
(5.0.6)
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therefore γ = D2/(2νρ)a, δ = D2/(2νρ)b and these parameters have dimen-
sion of mt/sec, like α (see Joseph, 1976). The parameter α is the relative ve-
locity of the boundaries, and effects the solution because of the rigidity of
the boundaries. The parameters γ, δ depend on the particular choice of base
pressure, that is possibly due to gravity or to other physical phenomena that
create a pressure gradient. We nondimensionalise the system rescaling space
with D, time with D/(α + γ), denoting R = 2D(α + γ)/ν, ξ = γ/(α + γ),
η = δ/(α + γ), and calling P the consequent rescaling of q. The system re-
duces to {

Ut + U · ∇U = 1
R ∆U−∇P

∇ ·U = 0,
(5.0.7)

where

U =

(1− ξ)z + ξ(z2 − 1)
η(z2 − 1)

0

 =

 f (z)
g(z)

0

 . (5.0.8)

This choice of rescaling allows to include Poiseuille and Couette flows as spe-
cial cases. In fact Couette base flow corresponds to the choice ξ = 0, η = 0,
Poiseuille base flow corresponds to the choice of ξ = 1, η = 0.

We note that, despite being physically relevant, the pressure gradient induced
by gravity produces effects not different from those induced by a pump. Therefore
we can represent the setup and the basic flow also as illustrated in the figure
below: the upper boundary of the layer moves with velocity αi, the lower
boundary with velocity −αi and the base flow is also influenced by a pressure
gradient q.

FIGURE 5.2: A layer of width 2D filled with a fluid. The upper bound-
ary of the layer moves with velocity αi, the lower boundary with ve-
locity −αi. The base flow is also influenced by a pressure gradient q

non parallel to i.

2. With magnetic field

We now consider the same setup as in Case 1 but we suppose that the fluid
is electroconductive.



28 Chapter 5. Laminar flows in inclined channel

FIGURE 5.3: Electroconductive fluid that flows in a layer of depth 2D
inclined of an angle β. The direction of x-axis is the direction of the

flow.

Assuming that the fluid is Newtonian, homogeneous and incompressible, the
equations governing the motion of the fluid are given by those of the system
(2.2.15).
As we did before, we nondimensonalize (2.2.15) obtaining the following sys-
tem:

V2
0

D
∂v∗
∂t∗ +

V2
0

D v∗ ·(∇∗vx,∇∗vy,∇∗vz) =
1

ρµ
B2

0
D B∗ ·(∇∗B∗x ,∇∗B∗y ,∇∗B∗z )+

−V2
0

D ∇∗Π + νV0
D2 (∇∗2v∗x,∇∗2v∗y,∇∗2v∗z ) + g

V0
D∇∗ ·v∗ = 0

V0B0

D
∂B∗

∂t∗
+

V0B0

D
v∗ ·(∇∗B∗x ,∇∗B∗y ,∇∗B∗z )−

B0V0

d
B∗ ·(∇∗v∗x,∇∗v∗y,∇∗v∗z ) =

=
ψB0

D2 (∇∗2B∗x ,∇∗2B∗y ,∇∗2B∗z )

B0
D∇∗ ·B∗ = 0.

(5.0.9)

where g = g sin βi− g cos βk.
The parameters that appear in (5.0.9) are the same we introduced in (4.0.11).
Multiplying eq. (5.0.9)1 by D

V2
0

, eq. (5.0.9)2 by D
V0

, eq. (5.0.9)3 by D
V0B0

, eq. (5.0.9)4 by
D
B0

and dropping “*", we obtain equations (5.0.10) in the domain R2× [−1, 1]×
(0,+∞) and in nondimensional form

vt + v·∇v = Ha2Re−1Rm−1 B·∇B−∇Π + Re−1∆v + ĝ
∇·v = 0
Bt + v·∇B− B·∇v = Rm−1 ∆B
∇·B = 0,

(5.0.10)

where ĝ = D
V2

0
g.

Restricting our analysis to z-dependent laminar solutions, i.e. non-dimensional
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solutions of the form

v(z) = (v1, v2, v3) = (U(z), 0, 0), B(z) = (B1, B2, B3) = (B(z), 0, 1), (5.0.11)

we obtain from eq. (5.0.10)3 that

viei
∂Bj

∂xk
ekej − Biei

∂vj

∂xk
ekej = Rm−1 ∂2Bj

∂x2
k

ei ⇒ (5.0.12)

⇒ vi
∂Bj

∂xk
δikej − Bi

∂vj

∂xk
δikej = Rm−1 ∂2Bj

∂x2
k

ei ⇒ (5.0.13)

⇒ vi
∂Bj

∂xi
ej − Bi

∂vj

∂xi
ej = Rm−1 ∂2Bj

∂x2
k

ei ⇒ (5.0.14)

⇒
(vi

∂B1

∂xi
, vi

�
�
�∂B2

∂xi
, vi

�
�
�∂B3

∂xi
)− (Bi

∂v1

∂xi
, Bi

�
�
�∂v2

∂xi
, Bi

�
�
�∂v3

∂xi
) =

= Rm−1(∆B1,���∆B2 ,���∆B3 )

⇒ (5.0.15)

⇒
(v1

�
��

∂B1

∂x
+��v2

�
�
�∂B1

∂y
+��v3

∂B1

∂z
, 0, 0)− (B1

�
��

∂v1

∂x
+��B2

�
�
�∂v1

∂y
+ B3

∂v1

∂z
, 0, 0) =

= Rm−1(B′′(z), 0, 0)⇒
(5.0.16)

⇒ (0, 0, 0)− (U′(z), 0, 0) = Rm−1(B′′(z), 0, 0)⇒ (5.0.17)

⇒ B′′(z) = −Rm U′(z). (5.0.18)

Integrating, we have B′(z) = −Rm (U(z) + a1/Ha2), with a1 an integrating
constant. Substituting in eq. (5.0.10)1, we obtain that:

viei
∂vj

∂xk
ekej = Ha2Re−1Rm−1Biei

∂Bj

∂xk
ekej −Πiei + Re−1∇2viei + ĝ⇒

(5.0.19)

⇒ 0 = 0− (Πx, Πy, Πz) + Re−1(U′′(z), 0, 0) + (ĝ sin β, 0,−ĝ cos β). (5.0.20)

From the second component of the latter equation we deduce that Π(x, y, z) =
Π(x, z), and from the third component we deduce that

Π(x, z) = −ĝ cos βz + Π1(x). (5.0.21)

Finally, from the first component we deduce that:

Re Π1x(x) = −Ha2U(z) + U′′(z)− a1 + Re ĝ sin β. (5.0.22)
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The left side of eq. (5.0.22) only depends on x, while the right side depends
only on z. This means that the two sides of eq. (5.0.22) are equal to a constant,
that is, there exists a constant b1 such that:

{
Re Π1x ≡ b1

U′′(z)−Ha2U(z) = a1 + b1 − Re ĝ sin β.
(5.0.23)

The solutions of this second order, non homogeneous, differential equation are:

U(z) = u1 cosh(Ha z) + u2 sinh(Ha z)− a1 + b1 − Re ĝ sin β

Ha2 , (5.0.24)

and hence, as B′(z) = −Rm (U(z) + a1/Ha2),

B(z) = −Rm
Ha

(
u1 sinh(Ha z) + u2 cosh(Ha z)− b1 − Re ĝ sin β

Ha
z +

c1

Ha

)
,

(5.0.25)
where u1, u2 and c1 are constants of integration.

These solutions are called Hartmann solutions.

Now we choose the reference velocity V0 and the Reynolds number

Re =
V0d

ν
, (5.0.26)

with

V0 =
2gd2 sin β

ν
. (5.0.27)

This means that the reference speed V0 is equal to Ū(d) where Ū(d) is the speed
evaluated in d when there is not a magnetic field (cf. Falsaperla et al. 2022c,
eq. (5)).

Note that with this choice we have:

Re ĝ sin β =
1
2

. (5.0.28)

We choose boundary conditions for Hartmann flows which are appropriate to
the open channel. They correspond to rigid conditions for the kinetic field at
the boundary z = −1, stress-free conditions for the kinetic field at the bound-
ary z = 1. Moreover we assume that the boundaries are non-conducting.
Therefore, we have:

∂U
∂z z=1

= U(−1) = 0, B(−1) = B(1) = 0. (5.0.29)

By assuming that there is no gradient of pressure along the x axis, we have
b1 = 0. Substituting (5.0.29) in (5.0.24), (5.0.25), we obtain
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⇒



u1 = − 1
2Ha sinh(Ha)

u2 = −u1
sinh(Ha)
cosh(Ha)

=
1

2Ha cosh(Ha)

a1 = Ha2(u1 cosh(Ha)− u2 sinh(Ha)) +
1
2
=

= −Ha
1
2

(cosh(Ha)
sinh(Ha)

+
sinh(Ha)
cosh(Ha)

)
+

1
2

b1 = 0, c1 = −1
2

.

(5.0.30)

From this it follows

U(z) =
1
2

[
sinh(Haz) + sinh(Ha)

Ha cosh(Ha)
+

cosh(Ha)− cosh(Haz)
Ha sinh(Ha)

]
and

B(z) =
Rm
2Ha

[
sinh(Haz)

Ha sinh(Ha)
− cosh(Haz)

Ha cosh(Ha)
+

1− z
Ha

]
.
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Chapter 6

Spectral methods

Since spectral methods are fundamental both for the study of linearized equations
and for the study of Euler-Lagrange equations related to the Lyapunov energy method,
in this section we recall spectral methods in general and then we focus on one of
them, namely the Chebychev collocation method, the one we adopted.
The term “spectral methods" (see Schlatter, 2009) refers to methods which are based
on an expansion of the solution as a finite sum of basis functions that are multiplied
by coefficients. The collocation methods are a special case of spectral methods in
which collocation nodes are chosen and it is imposed that the differential equation
is satisfied exactly on these points. Chebychev collocation methods use Chebychev
polynomials as basis functions. The latter will be the ones to which we will refer.
Spectral methods are generally global methods which means, for example, that the
derivative in a certain point depends on the solution in all the other points of the
space and not only on that in the “nearby points". From this it follows that spec-
tral methods are high-order methods: they have exponential convergence, contrary
to finite-difference methods which have polynomial convergence. This makes these
methods better than finite difference methods, however they are less flexible than
finite difference methods and difficulties may arise in the presence of shocks or dis-
continuities for example. However, for certain problems, such as those related to
fluid dynamics, it has been been proved that they are the best choice because the
fact that they have a high order of accuracy implies that an accurate solution can be
obtained with a not too large number of basis functions.

6.1 Basic principle

Suppose we want to find the solution u(x) of the partial differential equation:

P[u] = 0, (6.1.1)

in a domain D and with the boundary conditions B(u) = 0. We approximate the
solution with a finite sum of functions:

uN(x) =
N

∑
k=0

ak · φk(x). (6.1.2)

The functions φk(x) are called basis functions and ak are their coefficients.
If we put (6.1.2) in (6.1.1) we obtain the residual, defined as:

R(x) := P(uN(x)). (6.1.3)
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To determine the N + 1 coefficients ak, the method of weighted residuals is used: the
residual R(x) multiplied by the N + 1 test functions wj(x), which will be described
in the next section, and integrated over the domain D must be zero, that is:∫

D
wj(x) · R(x)dx = 0, j = 0, . . . , N, (6.1.4)

or written using the scalar product ( f , g) =
∫

D f · gdx

(R, wj) = 0, j = 0, . . . , N.

This means that the residual R is required to be orthogonal to all test functions
(weights) wj.
If there is time dependence, an initial condition is added on u(x, t), the coefficients
ak will be of the type ak(t) and the residuals R(x) will be of the type R(x, t).

6.2 Choice of the test functions

There are several methods to choose the test functions. The most common ap-
proaches are the Galerkin method and the collocation method. There are other meth-
ods as well, such as the tau method and the Petrov-Galerkin method.

Galerkin method: after the choice of the basic functions φk(x), one has to require
that:

φj = wj, j = 0, . . . , N. (6.2.1)

Collocation method: a set of N + 1 collocation nodes in the domain D is chosen such
that the residual R is zero on the nodes, that is:

R(xj) = 0, j = 0, . . . , N. (6.2.2)

The consequence of this is that the PDE is satisfied in the collocation nodes, P(uN) =
0 in x = xj. Therefore the test functions become:

wj = δ(x− xj), j = 0, . . . , N, (6.2.3)

where δ is the Dirac delta function

δ(x) =

{
+∞, for x = 0
0, otherwise.

6.3 Choice of the basis functions

The basis functions are regular functions defined throughout the domain D. Several
choices are possible, for example, Fourier functions or Chebychev or Legendre poly-
nomials.
The approach using Fourier functions gives rise to Fourier series which are useful
for problems with periodic boundary conditions. For problems with non-periodic
boundary conditions, on the other hand, it is preferable to consider orthogonal poly-
nomials such as Chebychev polynomials as basis functions.
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Chebychev polynomials: the Chebychev polynomials are defined in the interval
[−1, 1] in the following way:

Tk(x) = cos(k arccos x), k = 0, 1, 2, . . . (6.3.1)

A function u(x) is approximated with a finite series of Chebychev polynomials such
that:

uN(x) =
N

∑
k=0

akTk(x), (6.3.2)

where ak are the Chebychev coefficients.

6.4 Chebychev collocation method

The Chebychev collocation method is, therefore, a spectral method in which the
function u(x) is approximated with a finite series of Chebychev polynomials, and
a set of nodes in which the PDE is satisfied is considered (collocation). A common
distribution of nodes for Chebychev polynomials is the one given by the Gauss-
Lobatto points:

xj = cos(π
j

N
), j = 0, ..., N. (6.4.1)
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Chapter 7

Results for classical Couette and
Poiseuille flows

The stability and instability of the classical laminar flows of an incompressible fluid
have been studied analytically, numerically and with experiments (see Poiseuille,
1843, Reynolds, 1883, Couette, 1890, Orr, 1907, Sommerfeld, 1908, Squire, 1933,
Joseph, 1968, Joseph and Carmi, 1969, Busse, 1972, Romanov, 1973, Joseph, 1976,
Falsaperla et al. 2019b).

The current problem with the object of study is the transition from laminar flows
to instability, turbulence and chaos. It is not completely understood and there are
some discrepancies (see Fig. 1.1) between the critical Reynolds numbers of linear and
nonlinear analysis and the experiments (also called “paradox" in Galdi and Rionero,
1985, pag. 7).

Firstly we recall the definitions of two particular classes of perturbations, i.e the
streamwise and the spanwise perturbations, as we will refear to them in the discus-
sions that follow.

Definition 7.0.1. We define streamwise (or longitudinal) perturbations the perturbations
u, p which do not depend on x.

Definition 7.0.2. We define spanwise (or transverse) perturbations the perturbations u, p
which do not depend on y.

Secondly we recall some classical results:
a) For the linear perturbation system, the Squire theorem holds (Squire, 1933): the
least stabilizing perturbations are the two-dimensional spanwise perturbations (see
Drazin and Reid, 2004, p. 129);

b1) plane Poiseuille flow is unstable for Re > 5772 (Orszag, 1971) and the critical
Reynolds number is obtained on the spanwise perturbations;

b2) plane Couette flow is linearly stable for any Reynolds numbers (Romanov, 1973);
c) in laboratory experiments plane Poiseuille flows undergo transition to three-

dimensional turbulence for Reynolds numbers on the order of 1000. In the case of
plane Couette flow the lowest Reynolds numbers at which turbulence can be pro-
duced and sustained have been shown to be between 300 and 450 both in the numer-
ical simulations and in the experiments (see Barkley and Tuckerman, 2007, Prigent
et al., 2003);

d) nonlinear monotonic L2-energy stability has been proved for Reynolds num-
bers Re below some critical nonlinear value ReE which is of the order 102. In partic-
ular Joseph, 1968, 1976 proved that ReE = Rey = 20.65 for plane Couette flow, and
Joseph and Carmi, 1969 proved that ReE = Rey = 49.55 for plane Poiseuille flow. Orr
proved instead that ReE = Rex = 44.3 for plane Couette flow and ReE = Rex = 87.6
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for plane Poiseuille flow.
With the symbol Rey we mean the critical Reynolds value for streamwise perturba-
tions, and Rex is the critical Reynolds value for spanwise perturbations.

Therefore for the classical laminar flows of Couette and Poiseuille the situation de-
scribed in Fig. 1.1 occurs. Falsaperla et al. 2019b partially solved this paradox by
studying the tilted perturbations. This idea came from some experiments and from
numerical studies.

Prigent et al., 2003 made experiments at the CEA-Sanclay Centre to study, by de-
creasing the Reynolds number, the reverse transition from the turbulent to the lam-
inar flow. They observed “a continuous transition towards a regular pattern made
of periodically spaced, inclined stripes of well-defined width and alternating turbu-
lence strength ...". “For lower Re, a regular pattern is eventually reached after a tran-
sient during which domains, separated by wandering fronts, compete. The oblique
stripes have a wavelength of the order of 50 times the gap. The pattern is stationary
in the plane Couette flow case... The pattern was observed for 340 < Re < 415 in
the plane Couette flow" (see Fig. 7.1).

FIGURE 7.1: Photograph of a turbulent-laminar pattern in plane Cou-
ette flow from the Saclay experiment. Light regions correspond to
turbulent flow and dark regions to laminar flow. The striped pattern
of alternating laminar and turbulent flow forms with a wavevector
k oblique to the streamwise direction. The wavelength is approxi-
mately 40 times the half-gap between the moving walls. The lateral
dimensions are 770 by 340 half-gaps and the Reynolds number is Re

= 385.
Source: Barkley and Tuckerman Barkley and Tuckerman, 2007

Barkley and Tuckerman, 1999, 2005, 2007, studied numerically a turbulent-laminar
banded pattern in plane Couette flow which is statistically steady and is oriented
obliquely to the streamwise direction with a very large wavelength relative to the
gap. They wrote: “Regimes computed for a full range of angle and Reynolds num-
ber in a tilted rectangular periodic computational domain are presented ... The un-
usual but key feature of our study of turbulent-laminar patterns is the use of simu-
lation domains aligned with the pattern wave vector and thus tilted relative to the
streamwise-spanwise directions of the flow." For their numerical simulations they
are guided by the experiments of Prigent et al., 2003.

Falsaperla et al. 2019b proved that the plane Couette and Poiseuille flows are non-
linearly stable if the Reynolds number is less then

R̄θ(λ) =
1

sin θ
ReOrr(

2π

λ sin θ
), (7.0.1)

when a perturbation is a tilted perturbation which forms an angle θ ∈ (0, π/2]
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with the direction of the basic motion. ReOrr is the critical Orr-Reynolds number for
spanwise perturbations which is computed for wave number 2π/(λ sin θ), λ being
any positive wavelength. By taking the minimum with respect to λ they obtained
the critical energy Reynolds number for a fixed inclination angle and any wave-
length: for plane Couette flow it is ReOrr = 44.3/ sin θ and for plane Poiseuille flow
it is ReOrr = 87.6/ sin θ (in particular, for θ = π/2 we have the classical values
ReOrr = 44.3 for plane Couette flow and ReOrr = 87.6 for plane Poiseuille flow).
These results improve those obtained by Joseph, who found for streamwise per-
turbations a critical nonlinear value of 20.65 in the plane Couette case, and those
obtained by Joseph and Carmi who found the value 49.55 for plane Poiseuille flow
for streamwise perturbations. For fixed wavelengths taken from the experimental
data and the numerical simulations, the critical Reynolds numbers obtained are in a
very good agreement both with the experiments and the numerical simulations.

For instance, if we consider the case of the experiments of Prigent et al., 2003 (see
also Fig. 29 of Barkley and Tuckerman, 2007), we have:

i) θ = 25◦, λ = 46, experimental Reynolds number is about 395, Falsaperla et al.
2019b obtain approximately R̄ = 369

ii) θ = 26◦, λ = 48, experimental Reynolds number is about 385, Falsaperla et al.
2019b obtain approximately R̄ = 383

iii) θ = 27, 5◦, λ = 51, experimental Reynolds number is about 375, Falsaperla et
al. 2019b obtain approximately R̄ = 404

iv) in the simulation of Barkley and Tuckerman, 2007 θ = 24◦, λ = 40, Reynolds
number is about 350, Falsaperla et al. 2019b obtain approximately R̄ = 325

v) θ = 30◦, λ = 57, experimental Reynolds number is about 350, Falsaperla et al.
2019b obtain approximately R̄ = 450 and R = 398 in Barkley and Tuckerman, 2007.

The study presented by Falsaperla et al. 2019b was then extended by them in 2020b
to laminar flows down an open inclined channel (particular case of the flow de-
scribed in Sec. 5) and in 2020a to laminar flows between horizontal planes subjected
to a magnetic field with a component in the direction of the flow and a constant com-
ponent orthogonal to the layer (see Sec. 4).

The starting point of my phd work was the study of a flow given by the combi-
nation of the flows studied by Falsaperla et al. 2020a,b as described in the following
Section. In particular the idea was to focus on the analysis of tilted perturbation also
in the more general case of an inclined channel where an electroconductive fluid
flows.
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Chapter 8

Stability of Hartmann shear flows
in an open inclined channel

The results presented in this Section have been published by Falsaperla, Mulone,
and Perrone, 2022c.

8.1 Summary

We study the stability of laminar flows in a sheet of fluid (open channel) down an
incline with constant slope angle β ∈ (0, π/2) assuming that the fluid is electri-
cally conducting and subjected to a magnetic field as described in Sec. 5. We study
the local (linear) stability and instability, and we obtain critical Reynolds numbers
for the onset of instability by solving a generalised Sommerfeld equation. We also
study the nonlinear Lyapunov stability by solving the Orr equation for the associ-
ated maximum problem of the Reynolds-Orr energy equation. As in Falsaperla et
al. 2019b we finally study the nonlinear stability of tilted rolls. The critical Reynolds
numbers we obtain allow us to determine, for every inclination angle β, the critical
velocity.

8.2 State of the art

Stationary flows of electrically conducting fluids with an imposed magnetic field
play an important role in many applications, for instance in geophysics, astrophysics,
e.g. when dealing with solar winds, industry, biology, metallurgy, biofilms, and
medicine, see Ferraro and Plumpton, 1961, Kakutani, 1964, Takashima, 1996, 1998,
Davidson, 2001, Alexakis et al., 2003, Falsaperla et al. 2016, 2017, 2017, 2020a, Fal-
saperla, Mulone, and Perrone, 2022c.
One of the first applications of laminar flows of a liquid in the presence of a mag-
netic field was done by Michael Faraday. He tried in 1832 to measure the potential
difference between each side of the two river-banks of the Waterloo bridge in Lon-
don caused by the ebbing salt water flowing that interacts with the Earth’s magnetic
field (Faraday, 1839, p. 55).
Many research papers have been devoted to the study of stability of an electro-
conducting fluid at rest confined in a horizontal layer between two parallel planes.
If the layer is heated from below, we have the magnetic Bénard problem. This prob-
lem has been studied by many authors both in the linear case, see for instance the
book of Chandrasekhar, 1981, and in the nonlinear case Rionero, 1967 - Mulone and
Rionero, 2003.
When the basic motion is not the rest, like laminar flows, many theoretical and exper-
imental studies have been done after the experiments of Hartmann, see Hartmann,
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1937, Alboussière and Lingwood, 2000, Alexakis et al., 2003. Usually, the fluid is con-
fined in a horizontal layer bounded by to rigid parallel boundaries, see Falsaperla
et al. 2020a; 2016, 2017; 2017. Some experimental and computational results ob-
tained for flows in pipes, ducts and channels in the presence of a magnetic field are
reviewed by Zikanov et al., 2014.
Sometimes, in the applications (geophysical studies, and materials processing), lam-
inar flows in a sheet of fluid (open channel) down an incline with constant slope
angle β must be considered. Falsaperla et al., 2016 investigated analytical solutions
of stationary laminar flows of an inclined layer filled with a hydromagnetic fluid
heated from below and subjected to the gravity field. Falsaperla et al., 2017 studied
the linear instability and nonlinear stability of some of the above solutions. The in-
clined layer is bounded by two rigid non-conducting planes heated from below. An
energy norm has been used, the Euler-Lagrange equations have been written but
not solved. Only sufficient nonlinear stability conditions have been given. Other
stability conditions have been considered by Xu, 2020.
The problem of stability for classical Couette and Poiseuille flows, in a horizontal
layer, has been studied for many years. In the previous section we have said that
recently, Falsaperla et al. 2019b obtained values for “critical" linear and nonlinear
energy Reynolds number (see Reynolds, 1883) which are in good agreement with
the experiments of Prigent et al., 2003 and with the numerical simulation of Barkley
and Tuckerman, 2007. Falsaperla et al. 2020a have generalised these results for a
fluid which is electrically conducting and subjected to a magnetic field. The stability
of the stationary magnetic Couette and Hartmann flows has been investigated and
it has been proved that such flows are nonlinearly stable if the Reynolds number Re
is less then

R̄θ = Re(m)
Orr(2π/(λ sin θ))/ sin θ.

In the expression above Re (m)
Orr(µ) is the magnetic Orr-Reynolds number evaluated

at the wavenumber µ = 2π/(λ sin θ), where λ is the wavelength of the perturbation
(see Falsaperla et al. Falsaperla, Giacobbe, and Mulone, 2020a).
Here we reconsider the paper by Falsaperla et al., 2017 with the method introduced
in 2019b, 2020a, and study the more realistic physical case of Hartmann flow in an
open channel down an incline with constant slope angle β ∈ (0, π/2).
We investigate local stability and instability of the basic laminar flow (Hartmann
flow) with the Chebyshev collocation method, for many different values of the mag-
netic Prandtl number and Hartmann number, by solving the generalised Sommer-
feld equations. The more relevant result we obtain is that, below a critical value of
the Hartmann number depending on Pm, the flow is linearly stable for any Reynolds
number.
We study nonlinear stability of the Hartmann flow by the Lyapunov energy method.
We achieve optimal nonlinear stability conditions by solving the generalised Orr
equation obtained with the Euler-Lagrange equations of the related maximum vari-
ational problem. We also study stability with respect to tilted perturbations, which
are the more appropriate for flows at the onset of turbulence, (see Falsaperla et al.
Falsaperla, Giacobbe, and Mulone, 2019b), and generalise to MHD the results by
Falsaperla et al. 2020a.
The plan of the paper is the following. In Sec. 8.3 we introduce the basic motion and
the perturbation equations.
In Sec. 8.4 we give conditions of local (linear) stability and instability by using the
Chebyshev collocation method, in the limit case Pm → 0 and in the general case
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Pm > 0. We check, for Pm > 0, that the less stabilizing perturbations at the onset of
instability are the spanwise perturbations. We show our results in Figs. 8.1-8.4.
In Sec. 8.5, by assuming that the less stabilizing perturbations for the onset of in-
stability are two-dimensional, we study the nonlinear stability of the laminar flow
with respect to streamwise perturbations and prove that they are always stabilizing
for any Reynolds, Prandtl and Hartmann numbers. Moreover, we study the nonlin-
ear stability with respect to tilted perturbations of an angle θ with the direction of
motion and prove that they are nonlinearly exponentially stable for any Reynolds
number less than a critical value R̄θ which depends on the tilted angle θ.
Sec. 8.6 is dedicated to the discussion of the results.

8.3 Basic motion and perturbation equations

The adimensional equations of the magnetohydrodynamics (MHD) system are those
given by (5.0.10).

In Sec. 5 we have proved that:

Theorem 8.3.1. The basic solution of system (5.0.10) for the Hartmann flow down an in-
clined open channel, with boundary conditions (5.0.29), is given by (U(z), 0, 0), (B̄(z) =
Rm−1B(z), 0, Rm−1) where

U(z) =
1
2

[
sinh(Haz) + sinh(Ha)

Ha cosh(Ha)
+

cosh(Ha)− cosh(Haz)
Ha sinh(Ha)

]
(8.3.1)

and

B̄(z) =
1

2Ha

[
sinh(Haz)

Ha sinh(Ha)
− cosh(Haz)

Ha cosh(Ha)
+

1− z
Ha

]
, (8.3.2)

with z ∈ [−1, 1]. This solution must be completed with the pressure Π given by (5.0.21),
(5.0.22), (5.0.23).

Now, we plan to investigate linear and nonlinear stability of the basic solution (8.3.1)-
(8.3.2). To this end we consider a perturbation to the stationary solution:

v + u = (U(z), 0, 0) + (u, v, w), B̄ + h = (B̄(z), 0, Rm−1) + (h, k, `), Π + π̄,

with u, h and π̄ regular functions depending on x, y, z, t.
Introducing the quantity

A = Ha2 Re−1Rm = N Rm = Ha2 Pm,

the equations which govern the evolution of the “difference fields" u, h, π̄ are:

ut + U(z)ux + U′(z)wi + u · ∇u = A[B̄(z)hx + Rm−1hz+

+B̄′(z)`i + h · ∇h]−∇π̄ + Re−1∆u

ht + B̄′(z)wi + U(z)hx + u · ∇h− B̄(z)ux − Rm−1uz −U′(z)`i− h · ∇u = Rm−1∆h

∇·u = 0, ∇·h = 0 .

(8.3.3)
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The boundary conditions for u, h are rigid conditions, u = v = w = 0 and non-
conducting conditions h = k = ` = 0 on the bottom of the layer z = −1, and stress-
free conditions uz = vz = w = 0 and non-conducting conditions h = k = ` = 0 on
the top plane z = 1:

{
u = v = w = 0, h = k = ` = 0 on z = −1,

uz = vz = w = 0, h = k = ` = 0 on z = 1 .
(8.3.4)

8.4 Local (linear) stability and instability

In this section we study the local stability and the instability of the shear Hartmann
flow. Linearising eq. (8.3.3), we obtain:


ut + Uux + U′wi = A[B̄hx + Rm−1hz + B̄′`i]−∇π̄ + Re−1∆u

ht + B̄′wi + Uhx − B̄ux − Rm−1uz −U′`i = Rm−1∆h

∇·u = 0, ∇·h = 0 .

(8.4.1)

Since the system is autonomous, we consider solutions of the form (cf. Straughan,
2004):

f (x, y, z, t) = f (z)ei(ax+by)+act , (8.4.2)

with f = u, v, w, h, k, ` or π̄, in the domain R2× (−1, 1)× (0,+∞), a ≥ 0, b ≥ 0, and
c is a complex number. By substituting (8.4.2) in (8.4.1), we have the system:

acu + iaUu + U′wi = A(iaB̄h + Rm−1hz + B̄′`i)−∇π̄ + Re−1∆u

ach + B̄′wi + iaUh− iaB̄u− Rm−1uz −U′`i = Rm−1∆h

∇·u = 0, ∇·h = 0.

(8.4.3)

By writing system (8.4.3) in components, we have:

acu + iaUu + U′w = A(iaBh + Rm−1Dh + B̄′`)+
+Re−1(D2 − (a2 + b2))u− iaπ̄

acv + iaUv = A(iaBk + Rm−1Dk) + Re−1(D2 − (a2 + b2))v− ibπ̄

acw + iaUw = A(iaB`+ Rm−1D`) + Re−1(D2 − (a2 + b2))w− Dπ̄

ach + wB̄′ + iaUh− iaBu− Rm−1Du− `U′ = Rm−1(D2 − (a2 + b2))h

ack + iaUk− iaBv− Rm−1Dv = Rm−1(D2 − (a2 + b2))k

ac`+ iaU`− iaBw− Rm−1Dw = Rm−1(D2 − (a2 + b2))`

iau + ibv + Dw = 0, iah + ibk + D` = 0 ,

(8.4.4)

where D and D2 indicate first and second derivatives with respect to z. The Squire
transformation is:

ã = (a2 + b2)1/2, c̃ = c, ãũ = au + bv, ãh̃ = ah + bk, w̃ = w, ˜̀ = `,
a ˜̄π = ãπ̄, ãR̃e = aRe , H̃a = Ha, ãR̃m = aRm .

(8.4.5)
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Hunt, 1966 considered coplanar magnetic fields and noted that there is a relation
between Re and Rm , and for rigid boundaries and large Hartmann numbers he
proved that the Squire theorem (see Squire, 1933) does not hold.
However in our case, as we see below, in the limit case Pm → 0, it holds (in this
case we do not have the last transformation of (8.4.5), cf. also and Takashima, 1996,
1998 and Drazin and Reid, 2004, p. 129). In the limit case Pm→ 0 (that is Rm → 0)
system (8.4.4) becomes:

acu + iaUu + U′w = Ha2Re−1Dh + Re−1(D2 − (a2 + b2))u− iaπ̄

acv + iaUv = Ha2Re−1Dk + Re−1(D2 − (a2 + b2))v− ibπ̄

acw + iaUw = Ha2Re−1D`+ Re−1(D2 − (a2 + b2))w− Dπ̄

Du = (D2 − (a2 + b2))h

Dv = (D2 − (a2 + b2))k

Dw = (D2 − (a2 + b2))`

iau + ibv + Dw = 0, iah + ibk + D` = 0 .

(8.4.6)

After substituting the Squire transformation into each equation of system (8.4.6), and
adding the first and the second equation, and the fourth and the fifth equations, the
result is:



ãc̃ũ + iãUũ + U′w̃ = H̃a2R̃e−1Dh̃ + R̃e−1
(D2 − ã2)u− iã ˜̄π

ãc̃w̃ + iãUw̃ = H̃a2R̃e−1D ˜̀ + R̃e−1
(D2 − ã2)w̃− D ˜̄π

Dũ = (D2 − ã2)h̃

Dw̃ = (D2 − ã2) ˜̀

iãũ + Dw̃ = 0, iãh̃ + D ˜̀ = 0 .

(8.4.7)

These equations are the same as (8.4.6) when b = 0, v = 0 and R̃e replaces Re.
“Thus, to each three-dimensional problem there corresponds an equivalent two-
dimensional one. Moreover, Squire’s transformation shows that the equivalent two-
dimensional problem is associate with a lower Reynolds number as ã ≥ a. It follows
that, the critical Reynolds number at which the instability starts is reached first by
two-dimensional disturbances as Re increases, so we only need to consider a two-
dimensional disturbance to determine the minimum Reynolds number for the onset
of instability" (Ira M. Cohen, 2007, p. 509). Therefore the following theorem holds:

Theorem 8.4.1. Assuming that Pm → 0, to obtain the minimum critical linear Reynolds
number, for a given Hartmann number Ha, it is sufficient to consider only two-dimensional
disturbances.

We note that our numerical calculations show (see Fig. 8.4) that also for Pm > 0 the
Squire theorem holds at least for some values of the Hartmann number, (cf. also Jédidi
et al., 2005.)

We note that for the spanwise perturbations a simple calculation shows that either
v → 0 and k → 0 exponentially fast as t → ∞, or v ≡ 0 and k ≡ 0, see Falsaperla et
al. 2020a and Drazin and Reid, 2004.
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By taking the third component of the double-curl of the first equation in (8.4.3) and
the third component of the second equation in (8.4.3), we obtain the system:

(c + i a U)(D2 − α2)w− i a U′′ w = A[i a B̄(D2 − α2)`+
+Rm−1D(D2 − α2)`)− i a B̄′′ `] + Re−1(D4 − 2α2D2 + α4)w,

(c + i a U)`− i a B̄ w− Rm−1Dw = Rm−1(D2 − α2)`,
(8.4.8)

where α2 = a2 + b2.
It is not hard to see (cf. Falsaperla, Giacobbe, and Mulone, 2019b and Moffatt, 1990)
that the basic motion is always stable with respect to streamwise perturbations. In
fact, it is easy to prove (numerically) that the real part of c is always negative, (see
also Sec. 8.5 where non linear stability on streamwise perturbations is proved analit-
ically).
In order to obtain the critical linear Reynolds number, as in Falsaperla et al. 2020a,
we investigate the stability of the basic solutions with respect to transverse (span-
wise) perturbations, that are those corresponding to b = 0 and a 6= 0 in (8.4.4). From
(8.4.8), putting b = 0, we obtain the generalised Sommerfeld equations (cf. Sommer-
feld, 1908, Drazin and Reid, 2004):


(c + i a U)(D2 − a2)w− i a U′′ w = A[i a B̄(D2 − a2)`+
+Rm−1D(D2 − a2)`− i a ` B̄′′] + Re−1(D4 − 2a2D2 + a4)w,

(c + i a U)`− i a B̄ w− Rm−1Dw = Rm−1(D2 − a2)`,
(8.4.9)

with boundary conditions

w(−1) = Dw(−1) = `(−1) = 0, w(1) = D2w(1) = `(1) = 0. (8.4.10)

We note that these equations are formally equal to those obtained by Falsaperla et
al. 2020a, nevertheless the expressions of U and B̄ and the boundary conditions
are different from those of Falsaperla et al. 2020a, because here we have an open
channel.
We recall that A = Ha2Pm, this implies that if we fix Ha and Pm we obtain a system
which depends only on the parameter Re . We also observe that these equations
coincide with those of Takashima, 1996, (2.36)-(2.37), and Takashima, 1998, (2.31)-
(2.32) if we put w = Rm φ, ` = Re ψ.
In order to solve (8.4.9) - (8.4.10), we use the Chebyshev collocation method. We
adopt 100 up to 150 Chebyshev polynomials both in the cases Pm = 0 and Pm > 0.
The results we obtain are:
a) In the limit case Pm = 0, from (8.4.9) we have

(c + i a U)(D2 − a2)w− i a U′′ w = Re−1[(D2 − a2)2w−Ha2D2w]. (8.4.11)

In Fig. 8.1, left panel, we show the curve of the critical Reynolds number as a function
of the Hartmann number. Each point of the curve corresponds to the real part of
c equal to 0, R(c) = 0. We note that below a threshold value of Ha = Ha?0 '
3.22890, the critical Reynolds number diverges and we have always stability (cf. a
similar result in Takashima, 1998). The magnetic field is then destabilizing up to
Hartmann number Ha ' 4.106 (Re ' 1.24361× 106). In the right panel, we show
the critical curves in the a−Re plane for Pm = 0 and selected values of the Hartmann
number. For each value of the Hartmann number the system is unstable inside the
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corresponding critical curve. Indeed, by fixing a wavenumber ā, when the vertical
line a = ā intersects the curve in two points (ā, Re1), (ā, Re2), with Re1 < Re2, the
perturbation with the wavenumber ā is destabilizing in the interval (Re1, Re2).

FIGURE 8.1: Left panel: critical Reynolds number versus Hartmann
numbers for Pm = 0. Right panel: critical curves in the a−Re plane
for Pm = 0 and selected values of the Hartmann number. The arrows

point to the minima of each curve.

We note that contrary to the behaviour of other systems, see Falsaperla et al. 2016,
2017, 2019a, where an instability region is bounded and it disappears contracting
in a point, here we have instability regions which are unbounded and disappear at
infinity (see right panel of Fig. 8.3, for a detail of this phenomenon for Pm > 0).
b) In Fig. 8.2, in the left panel we show the critical Reynolds number versus Hart-
mann number for different Prandtl numbers. We observe that the curves diverge
at some value Ha?(Pm) of the Hartmann number. For very small values of Pm the
threshold value Ha?(Pm) decreases, and we find Ha?(10−6) = 3.22889, Ha?(10−5) =
3.22871, Ha?(10−4) = 3.22845 (cf. with Ha?(0) = Ha?0 = 3.22890). For larger values
of Pm the value Ha?(Pm) increases as shown for the sample values in Fig. 8.2, left
panel, where Ha?(10−2) ' 3.30, Ha?(10−1) ' 3.65. This result is similar to those ob-
tained by Takashima, 1996 and by Falsaperla et al. 2020a. In the right panel we have
plotted the critical curves in the a−Re plane for some values of magnetic Prandtl
number and Ha = 4.106. We choose this last value because it gives the minimum
critical Reynolds number in Fig. 8.1, left panel. For other values of Ha we obtain
curves which are similar to those shown in this figure.
Fig. 8.2 shows that the minima of the curves increase as Pm increases from 10−4 to
10−1, but for small values of Pm we observe instead a slight decrease of the mini-
mum, as shown in Fig. 8.3, left panel.
In Fig. 8.3, right panel, we show a detail of the critical curves for values of Ha close
to the threshold value Ha? at Pm = 10−4. We observe the same behaviour close to
the threshold value Ha? for all Pm.
c) We checked numerically the three-dimensional case (a > 0 and b > 0) for Pm = 0
and several values Pm > 0 and Ha ≤ 10. Our results show that the critical Reynolds
number is always obtained, in the range of values of parameters considered in the
present paper, for two-dimensional spanwise perturbations (b = 0). Fig. 8.4 shows
the dependency of the critical Reynolds number on the wavenumber b for a sample
value of Ha = 4.106 and different values of Pm. For each value of b we show the
minimum of Re with respect to the wavenumber a.
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FIGURE 8.2: Left panel: Critical Reynolds number versus Hartmann
number for some Prandtl numbers. Note that the critical curves di-
verge at some thresholds depending on Pm. Right panel: Critical
curves in the a−Re plane for some values of magnetic Prandtl num-

ber, and Ha = 4.106 (minimum of the curve in Fig. 8.1, left panel).

FIGURE 8.3: Left panel: Critical Reynolds number Re for Ha = 4.106
and small values of Pm. Right panel: Critical curves in the a−Re
plane for Pm = 10−4 and values of Ha close to the threshold value
Ha?(10−4) = 3.22845. We note how the curves diverge towards in-

finity.

FIGURE 8.4: Critical Reynolds number as function of the wavenum-
ber b for Ha = 4.106 and different values of Pm. For each value of Pm

the minimum of is achieved at b = 0.
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8.5 Nonlinear stability

In this section we study the nonlinear energy stability of the Hartmann shear flow
by using the Lyapunov second method with the classical energy.
We assume that u, h and ∇p are x, y-periodic with periods a and b in the x and y
directions, respectively, with wave numbers (a, b) ∈ R2

+. In the following it suffices
therefore to consider functions over the periodicity cell

Ω = [0,
2π

a
]× [0,

2π

b
]× [−1, 1]. (8.5.1)

As the basic function space, we take L2(Ω), which is the space of square-summable
functions in Ω with the scalar product denoted by

(g, h) =
∫ 2π

a

0

∫ 2π
b

0

∫ 1

−1
g(x, y, z)h(x, y, z)dxdydz,

and the norm given by

‖g‖ =
[∫ 2π

a

0

∫ 2π
b

0

∫ 1

−1
g2(x, y, z)dxdydz

] 1
2
.

We introduce the classical energy:

V(t) =
1
2
(‖u‖2 + A‖h‖2), (8.5.2)

and coupling parameter A = Ha2Pm.

Firstly we note that, following Falsaperla et al. 2020a, it is easy to see that the
streamwise perturbations are stabilizing for any Prandtl, Hartmann, and Reynolds
numbers.

From (8.3.3) and (8.3.4), we obtain the Reynolds energy equation for V(t):

V̇ = I − Re−1[‖∇u‖2 − ARm−1‖∇h‖2], (8.5.3)

where
I = −(U′w, u) + A(B̄′`, u)− A(B̄′w, h) + A(U′`, h). (8.5.4)

From (8.5.3), it follows

V̇ = I − Re−1[‖∇u‖2 + Ha2‖∇h‖2] ≤ (8.5.5)

≤ (R̄−1 − Re−1)[‖∇u‖2 + Ha2‖∇h‖2], (8.5.6)

with
R̄−1 = max

S

I
‖∇u‖2 + Ha2‖∇h‖2

, (8.5.7)

and S is the space of the admissible perturbations: S is the space of solenoidal fields
u, h in the Sobolev space W1,2(Ω), satisfying the boundary conditions (8.3.4) and
‖∇u‖+ ‖∇h‖ > 0.
From the previous inequality and the Poincaré’s inequality, it follows
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Theorem 8.5.1. Let U(z) and B(z) be given by (8.3.1) and (8.3.2) (the basic Hartmann
shear flow). If Re < R̄, where R̄ is given by (8.5.7), then the Hartmann flow is exponen-
tially nonlinearly stable in the energy norm (8.5.3): V(t) ≤ V(0)eC0(R̄−1−Re−1)t, with C0 a
positive constant.

In order to compute R̄, we have to solve the Euler-Lagrange equations of the maxi-
mum problem (8.5.7). They are given by equations:{

R̄[U′wi + U′uk− A`B̄′i + AB̄′hk]− 2∆u = ∇λ1

AR̄[B̄′uk− wB̄′i + U′`i + U′hk] + 2Ha2∆h = ∇λ2,
(8.5.8)

where λ1 and λ2 are Lagrange multipliers, and boundary conditions (8.3.4). Follow-
ing Orr, 1907 (p. 125), we consider here two-dimensional perturbations and prove
below that the less stable perturbations are the spanwise.
By taking the double curl of (8.5.8) and applying the solenoidality of u and h, i.e. ux +
wz = 0 and hx + `z = 0, we have the magnetic Orr-Reynolds equations, see Falsaperla
et al. 2020a, 

R̄
2
[U′′wx + 2U′wxz − AB̄′′`x] + ∆∆w = 0

AR̄
2

[B̄′′wx − 2U′`xz −U′′`x] + Ha2∆∆` = 0,
(8.5.9)

with the boundary conditions w = Dw = ` = D` = 0 on the bottom and w =
D2w = ` = D` = 0 on the top.
By assuming, as in the linear case,

f (x, y, z) = f (z)eiax , (8.5.10)

with f = w, `, we have


R̄
2
[U′′iaw + 2U′iaDw− AB̄′′ia`] + (D2 − a2)2w = 0

AR̄
2

[B̄′′iaw− 2U′iaD`−U′′ia`] + Ha2(D2 − a2)2` = 0.
(8.5.11)

These equations are the generalized Orr-Reynolds equations for the magnetic Orr-
Reynold number R̄ = maxa Re (m)

Orr(a), a being the wave number. Re (m)
Orr(a) is the

the Orr-Reynolds number for a fixed wave number a. The critical magnetic Orr-
Reynolds number is given by R̄ = Re c = Re (m)

Orr(ac) with ac the value of wave num-

ber that minimizes Re (m)
Orr(a). We note that if Ha → 0, then A → 0 and this system

reduces to the classical Orr equation for an open channel in hydrodynamics.
This system with the boundary conditions w = Dw = ` = D` = 0 on the bottom and
w = D2w = ` = D` = 0 on the top has been solved with the Chebyshev collocation
method. In Fig. 8.5, left panel, we use 120 polynomials and show the critical Orr-
Reynolds number Rec as a function of the Hartmann number. The magnetic Prandtl
number Pm is fixed to 10−4. In the right panel we use 100 polynomials and plot the
Orr-Reynolds number Re = Re(m)

Orr(a) for wave numbers a ∈ [0, 10], and Pm = 10−4.
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FIGURE 8.5: Left panel: Orr-Reynolds critical number Re as a func-
tion of Hartmann number. The magnetic Prandtl number Pm is fixed
to 10−4. Right panel: Orr-Reynolds number Re = Re(m)

Orr (a) for wave
numbers a ∈ [0, 10], and Pm = 10−4.

8.5.1 Nonlinear stability with respect to tilted perturbations

Now we prove that, for 2-D perturbations, the less stabilizing perturbations, as in
Falsaperla et al. 2019b, are the spanwise, and the best stability results, in the energy
norm, are those obtained by the generalized Orr equations (8.5.9), (8.5.11).
For this, we consider an arbitrary tilted perturbation which forms an angle θ with
the direction of motion i (the x-direction).
We easily have:

u = ui + vj + wk = u′i′ + v′j′ + wk, b = hi + kj + `k = h′i′ + k′j′ + `k,

with {
u′ = cos θ u + sin θ v

v′ = − sin θ u + cos θ v,

{
h′ = cos θ h + sin θ k

k′ = − sin θ h + cos θ k,
(8.5.12)

i′ = cos θi + sin θj, j′ = − sin θi + cos θj, (8.5.13)

and {
x = cos θ x′ − sin θ y′

y = sin θ x′ + cos θ y′.
(8.5.14)

Following the same procedure of Falsaperla et al. 2020a, we obtain the system in the
new fields u′, v′, w, h′, k′, `:
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

u′t = −u·∇u′ + Re−1∆u′ − (Uu′x + U′ cos θ w)− ∂π̄

∂x′
+

+A(B̄h′x + Rm−1h′z + B̄′ cos θ`+ h · ∇h′)

v′t = −u·∇v′ + Re−1∆v′ −Uv′x + U′ sin θ w− ∂π̄

∂y′
+

+A(B̄k′x + Rm−1k′z − B̄′ sin θ`+ h · ∇k′)

wt = −u·∇w + Re−1∆w−Uwx −
∂π̄

∂z
+

+A(B̄`x + Rm−1`z + h · ∇`)
h′t = −u·∇h′ + Rm−1∆h′ − (Uh′x + B̄′ cos θ w) + B̄u′x+

+Rm−1u′z + U′ cos θ`+ h · ∇u′

k′t = −u·∇k′ + Rm−1∆k′ −Uk′x + B̄′ sin θw + B̄v′x+
+Rm−1v′z −U′ sin θ `+ h · ∇v′

`t = −u·∇`−U`x + Rm−1∆`+ B̄wx + Rm−1wz + h · ∇w

∂u′

∂x′
+

∂v′

∂y′
+

∂w
∂z

= 0,
∂h′

∂x′
+

∂k′

∂y′
+

∂`

∂z
= 0.

(8.5.15)

Now we consider tilted-stream perturbations in the x′-direction, i.e, those with
∂

∂x′
≡ 0

(they physically are rolls in the x′-direction).

For these perturbations we easily have the energy equations:

d
dt

[
‖u′‖2 + A‖h′‖2

2

]
= −(U′ cos θu′, w)− Re−1‖∇u′‖2 − ARm−1‖∇h′‖2+

+ A cos θ[(B̄′`, u′) + (−B̄′w + U′`, h′)],
(8.5.16)

and

d
dt

[
‖v′‖2 + ‖w‖2

2
+ A
‖k′‖2 + ‖`‖2

2

]
= −Re−1(‖∇v′‖2 + ‖∇w‖2)− ARm−1(‖∇k′‖2

+ ‖∇`‖2) + sin θ[(U′v′, w)− A((B̄′v′, `)− (B̄′k′, w) + (U′k′, `))].
(8.5.17)

We note that equation (8.5.17) does not contain the fields u′ and h′. Moreover the
solenoidality conditions for u and h are now given by

∂v′

∂y′
+

∂w
∂z

= 0,
∂k′

∂y′
+

∂`

∂z
= 0. (8.5.18)

So, we first study the energy equation (8.5.17).
Denoting by

E2 =

[
‖v′‖2 + ‖w‖2

2
+ A
‖k′‖2 + ‖`‖2

2

]
, (8.5.19)

from (8.5.17), taking into account that ARm−1 = Ha2Re−1, we have the estimate

Ė2 ≤ −(Re−1 − R̄−1
θ )[(‖∇v′‖2 + ‖∇w‖2) + Ha2(‖∇k′‖2 + ‖∇`‖2)], (8.5.20)
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where
1

R̄θ
= max

S

Iθ

‖∇v′‖2 + ‖∇w‖2 + Ha2(‖∇k′‖2 + ‖∇`‖2)
, (8.5.21)

Iθ = sin θ
[
(U′v′, w)− A

(
(B̄′v′, `)− (B̄′k′, w) + (U′k′, `)

)]
, (8.5.22)

and S is the space of the kinematically admissible fields: S is the space of fields v′, w, k′, `
in the Sobolev space W1,2(Ωxz), Ωxz = [0, 2π/a] × [−1, 1], satisfying v′y′ + wz =

0, k′y′ + `z = 0, ‖∇v′‖+ ‖∇w‖+ ‖∇k′‖+ ‖∇`‖ > 0 and the boundary conditions
v′ = w = k′ = ` = 0 at z = −1 and v′z = w = k′ = ` = 0 at z = 1.
In order to find R̄θ we have to solve the maximum problem (8.5.21).
As before, we write the Euler-Lagrange equations for this maximum problem. As in
Falsaperla et al. 2020a, p. 6, we obtain the system:


R̄θ [U′′wx + 2U′wxz − AB̄′′`x] + 2

(
wxxxx

sin4 θ
+ 2

wxx

sin2 θ
+ wzzzz

)
= 0,

AR̄θ [B̄′′wx −U′′`x − 2U′`xz] + 2Ha2
[
(
`xxxx

sin4 θ
+ 2

`xx

sin2 θ
+ `zzzz)

]
= 0,

(8.5.23)

with boundary conditions w = w′ = ` = `′ = 0 at z = −1 and w = w′′ = ` = `′ = 0
at z = 1.
These equations coincide with the magnetic Orr-Reynolds equations (8.5.9) if we

substitute the critical Reynolds number R̄ in (8.5.9) with R̄θ sin θ and x with
x

sin θ
.

Thus we obtain as critical nonlinear Reynolds number for x′-independent perturba-
tions, R̄θ , the critical number

R̄θ = min
a>0

Re(m)
Orr(a/ sin θ)/ sin θ, (8.5.24)

where Re(m)
Orr(a/ sin θ) is the Orr-Reynolds number for a given wave number ā eval-

uated at the wave number a/ sin θ = 2π/(λ sin θ) and λ is the wavelength of the
perturbation. From (8.5.24), we easily have that

R̄θ = R̄/ sin θ, (8.5.25)

with R̄ given by (8.5.7). This, in particular gives R̄θ → +∞ if θ → 0 (streamwise
perturbations), and R̄θ → R̄ as θ → π/2 (spanwise perturbations).
We now introduce the energy:

E(t) =
β(‖u′‖2 + A‖h′‖2)

2
+ E2(t), β > 0 (8.5.26)

where β is an arbitrary positive number to be chosen. The energy equation is

Ė = −β[(U′ cos θu′, w) + Re−1‖∇u′‖2 + ARm−1‖∇h′‖2 + A cos θ((B̄′`, u′)+

+ (−B̄′w + U′`, h′))]− Re−1(‖∇v′‖2 + ‖∇w‖2)− ARm−1(‖∇k′‖2+

+ ‖∇`‖2) + sin θ[(U′v′, w)− A((B̄′v′, `)− (B̄′k′, w) + (U′k′, `))].
(8.5.27)
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Taking into account that Rm = Re Pm, A = Ha2Re−1Rm , the previous equation
becomes:

Ė = −βRe−1‖∇u′‖2 − β(U′ cos θu′, w)− Re−1(‖∇v′‖2 + ‖∇w‖2)+

+ (U′ sin θv′, w) + A[−βPm−1Re−1‖∇h′‖2 − β(B̄′ cos θ`, u′)+

− β cos θ(−B̄′w + U′`, h′))]−Ha2Re−1(‖∇k′‖2 + ‖∇`‖2)+

+ A sin θ(−(B̄′v′, `) + (B̄′k′, w)− (U′k′, `)).

(8.5.28)

Remembering (8.5.21) and (8.5.22), the sum of the fourth term and the last three
terms of 8.5.28 is less or equal than R̄−1

θ [‖∇v′‖2 + ‖∇w‖2 + Ha2(‖∇k′‖2 + ‖∇`‖2)],
and we have the following estimate:

Ė ≤ −βRe−1‖∇u′‖2 − β(U′ cos θu′, w)− Re−1(‖∇v′‖2 + ‖∇w‖2)+

+ A[−βPm−1Re−1‖∇h′‖2 − β(B̄′ cos θ`, u′)− β cos θ(−B̄′w+

+ U′`, h′)]−Ha2Re−1(‖∇k′‖2 + ‖∇`‖2) + R̄−1
θ [‖∇v′‖2 + ‖∇w‖2+

+ Ha2(‖∇k′‖2 + ‖∇`‖2)].

(8.5.29)

Now define

r =
1

Re
− 1

R̄θ
,

and suppose r > 0, i.e., Re < R̄θ . Since for functions f of the Sobolev space
W1,2(−1, 1) which vanish at the boundaries z = ±1, or that vanish at z = −1 and

whose first derivative vanishes at z = 1 the Poincaré inequality
π2

4
‖ f ‖2 ≤ ‖∇ f ‖2

holds, we have the following estimate:

Ė ≤ −π2

4
βRe−1‖u′‖2 − β(U′ cos θu′, w)− π2

4
Re−1(‖v′‖2 + ‖w‖2)+

+ A[−π2

4
βPm−1Re−1‖h′‖2 − β(B̄′ cos θ`, u′)− β cos θ(−B̄′w+

+ U′`, h′))]− π2

4
Ha2Re−1(‖k′‖2 + ‖`‖2) +

π2

4
R̄−1

θ [‖v′‖2 + ‖w‖2+

+ Ha2(‖k′‖2 + ‖`‖2)] ≤ −π2

4
βRe−1‖u′‖2 + Mβ‖u′‖‖w‖+

− π2

4
Re−1(‖v′‖2 + ‖w‖2) + A[−π2

4
βPm−1Re−1‖h′‖2+

+ Mβ‖`‖‖u′‖+ Mβ‖w‖‖h′‖+ M‖`‖‖h′‖]− π2

4
Ha2Re−1(‖k′‖2+

+ ‖`‖2) +
π2

4
R̄−1

θ [‖v′‖2 + ‖w‖2 + Ha2(‖k′‖2 + ‖`‖2)],

(8.5.30)

where

M = max(max
[−1,1]

|U′|, max
[−1,1]

|B′|, max
[−1,1]

|AU′|, max
[−1,1]

|AB′|).

Moreover
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Ė ≤ −r
π2

4
[‖v′‖2 + ‖w‖2 + Ha2(‖k′‖2 + ‖`‖2)] + βM(‖w‖‖u′‖+

+ ‖`‖‖u′‖+ ‖w‖‖h′‖+ ‖l‖‖h′‖)− βRe−1 π2

4
(‖u′‖2 + Ha2‖h′‖) ≤

≤ −r
π2

4
[‖v′‖2 + ‖w‖2 + β‖u′‖2 + Ha2(‖k′‖2 + ‖`‖2)]+

+ βM(‖w‖‖u′‖+ ‖`‖‖u′‖+ ‖w‖‖h′‖+ ‖`‖‖h′‖)− βr
π2

4
Ha2‖h′‖.

(8.5.31)

By arithmetic-geometric mean inequality, we have

Mβ‖u′‖‖w‖ ≤ βM2

2ε1
‖w‖2 +

βε1

2
‖u′‖2, (8.5.32)

Mβ‖l‖‖u′‖ ≤ βM2

2ε2
‖l‖2 +

βε2

2
‖u′‖2, (8.5.33)

Mβ‖w‖‖h′‖ ≤ βM2

2ε3
‖w‖2 +

βε3

2
‖h′‖2, (8.5.34)

Mβ‖l‖‖h′‖ ≤ βM2

2ε4
‖l‖2 +

βε4

2
‖h′‖2, (8.5.35)

where ε1, ε2, ε3, ε4, are arbitrary positive numbers to be chosen.
Therefore,

Ė ≤ −r
π2

4
(‖v′‖2 + Ha2‖k′‖2) + (

βM2

2ε1
+

βM2

2ε3
− r

π2

4
)‖w‖2+

+(
βM2

2ε2
+

βM2

2ε4
−Ha2r

π2

4
)‖`‖2 + β(

ε1

2
+

ε2

2
− r

π2

4
)‖u′‖2+

+β(
ε3

2
+

ε4

2
−Ha2r

π2

4
)‖h′‖2.

(8.5.36)

By choosing ε1 = ε2 = r
π2

8
and ε3 = ε4 = r

π2Ha2

8
, we obtain

Ė ≤ −r
π2

4
(‖v′‖2 + Ha2‖k′‖2)− βr

π2

8
‖u′‖2 − βr

π2Ha2

8
‖h′‖2+

+ [
4βM2

rπ2 (1 +
1

Ha2 )− r
π2

4
]‖w‖2 + [

4βM2

rπ2 (1 +
1

Ha2 )+

−Ha2r
π2

4
]‖l‖2.

(8.5.37)

If we choose
4βM2

rπ2 (1 +
1

Ha2 ) ≤ min
rπ2

8
(1, Ha2), we have

Ė < −r
π2

4
E, (8.5.38)

and finally we obtain

E(t) < E(0)e−
π2
4 rt, t ≥ 0. (8.5.39)
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Taking into account that Re < R̄, i.e., r > 0, we have that the energy E(t) goes
exponentially to zero. In particular all the components, ‖u′‖, ‖h′‖, ‖v′‖, ‖w‖, ‖k′‖,
‖`‖ of the energy go to zero as t→ +∞.
From (8.5.39) the following theorem and corollary hold

Theorem 8.5.2. Let U(z) and B(z) be given by (8.3.1) and (8.3.2) (the basic Hartmann
shear flow). If Re < R̄θ , where R̄θ is given by (8.5.24), then the Hartmann flow is exponen-
tially nonlinearly stable with respect to tilted perturbations according to inequality (8.5.39).

Corollary 8.5.1. The critical nonlinear Orr-Reynolds number with respect to two-dimensional
perturbations is achieved with spanwise perturbations.

8.6 Discussion of the results

We study stability and instability of the Hartmann laminar flow (8.3.1) - (8.3.2) of an
electrically conducting liquid in an inclined open channel. We assume that the upper
plane is stress-free and the lower plane is rigid. We also adopt electrically insulating
boundaries.
We generalise here the results of Falsaperla et al. for laminar flows in fluid-dynamics
2019b and for a laminar flow in MHD for a horizontal layer with rigid boundaries
2020a to laminar flows in an inclined open channel in MHD. We use the method
they introduced in 2019b and in 2020a and consider the more realistic physical case
of Hartmann flow in an open channel down an incline. We study the local stability
and the instability with the spectral method and the nonlinear stability with the
Lyapunov second method.
As in Takashima, 1996, 1998, we obtain critical linear Reynolds numbers in two cases,
the limit case Pm = 0 and the case Pm > 0. In particular, for Pm = 0 we prove
a Squire theorem: the critical Reynolds number is obtained with two-dimensional
perturbations. For Pm > 0 our calculations show that, in a range of the Hartmann
number, the critical Reynolds number is also obtained with two-dimensional pertur-
bations.
Our linear results show that, for any given Pm the basic flow remains stable up to a
threshold Ha?(Pm). For larger values of Ha the magnetic field destabilizes the flow
up to a minimum of Re and then is always stabilizing (see Fig. 8.1 and Fig. 8.2).
Moreover, we observe that we obtain an instability region which is unbounded for
any fixed Prandtl number. We have studied also the stabilizing effect of Pm for a
fixed Ha as it is shown in Fig. 8.3. We note an initial destabilizing character of Pm
and then a stabilizing effect.
In the nonlinear case, we define as Lyapunov function an energy (sum of the kinetic
and magnetic energy) with a coupling parameter A and study the variational prob-
lem which arises from the Reynolds-Orr equation. We then study the variational
maximum problem and solve the Euler-Lagrange equations with the Chebyshev
collocation method by using 100 and 120 Chebyshev polynomials. We conjecture
and assume that, as in the fluid-dynamics case (see Orr, 1907), the less stabilizing
perturbations are two-dimensional (cf. also Kaiser and Mulone, 2005 where condi-
tional nonlinear stability has been studied and the critical Reynolds number has been
reached with two-dimensional perturbations). Moreover we prove that the critical
nonlinear Reynolds number is obtained with spanwise perturbations.
We observe that the Reynolds number we have introduced in (5.0.26) - (5.0.27) de-
pends on the inclination angle β. Thus, the critical Reynolds number we obtain,
in the linear and nonlinear cases, allows us to determine, for any inclination angle
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β, the characteristic velocity at criticality. The velocity increases when the angle β
increases, according to the relation

V0crit = Re crit sin β.
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Chapter 9

Energy stability of plane Couette
and Poiseuille flows: A conjecture

The results presented in this Section have been published by Falsaperla, Mulone,
and Perrone, 2022a.

9.1 Summary

With this article we start the study of the stability on three dimensional perturba-
tions in the nonlinear case. In particular we study the nonlinear stability of Couette
and Poiseuille flows with the Lyapunov second method by using the classical L2-
energy. First of all we prove that the streamwise perturbations are L2-energy stable
for any Reynolds number. This contradicts the results of Joseph, 1968, Joseph and
Carmi, 1969 and Busse, 1972. Then we study the three-dimensional perturbations
and we run into a contradiction. Indeed, by using the results of Joseph and Busse,
we obtain that the critical Reynolds number is reached on the streamwise pertur-
bations. We suggest how to solve this contradiction through a conjecture. In this
way we are able to prove that the critical nonlinear Reynolds numbers are obtained
along two-dimensional perturbations, the spanwise perturbations, as Orr Orr, 1907
had supposed. This conclusion combined with the results by Falsaperla et al. 2019b
on the stability with respect to tilted rolls, provides a possible solution to the “mis-
match" between the critical values of linear stability, nonlinear monotonic energy
stability and the experiments.

9.2 State of the art

Here we recall the most important results of stability in the nonlinear case.
As we have highlighted in Sec. 1.2, in the nonlinear case it is often assumed that the
least stabilizing perturbations, as in the linear case, are the two-dimensional span-
wise perturbations, see Orr, 1907. However, Joseph in his paper on Couette flow,
see Joseph, 1968, proved that the least stabilizing perturbations are the streamwise
perturbations and concluded that the Orr result was wrong. Joseph and Carmi, 1969
and Busse, 1972 obtained a similar result of Joseph, 1968 for Poiseuille flow. We have
already reported all these results more in detail in Sec. 7.
Moffatt, 1990 studied the stability of classical laminar flows with respect to stream-
wise perturbations. For the case of inhomogeneous perturbation flow of a particular
type (see Moffatt, 1990, pp. 250-252), in the case of a semi-space, y ∈ [0,+∞), with
a hypothesis about pressure that vanishes at infinity, he proved stability for any
Reynolds number. Even if he doesn’t say so explicitly, he used a weighted energy
argument.
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The nonlinear stability results have been also obtained with some weighted energies
(see Straughan, 2004). Rionero and Mulone, 1991, Kaiser, Tilgner, and Wahl, 2005,
Kaiser and Mulone, 2005 studied the nonlinear stability by introducing weighted
energies. Kaiser and Mulone, 2005 and Kaiser, Tilgner, and Wahl, 2005 obtained
conditional nonlinear stability up to the critical Reynolds numbers for spanwise per-
turbations Rex. The velocity field has been represented in terms of poloidal, toroidal
and the mean field components, and an explicit calculation of so-called stability balls
in the E -norm has been done.
The problem of finding the best conditions for monotonic nonlinear energy stability
with respect to three-dimensional perturbations is still an open problem. This prob-
lem is equivalent to finding the maximum of a functional ratio that arises from the
Reynolds energy equation, see Reynolds, 1895a.
We note that the critical values of Re yielded by monotonic energy stability meth-
ods do not correspond to any growing eigenmode of the dynamics. Above such a
critical value we only know that there exists at least one perturbation vector whose
evolution might be “non-monotonic" in the chosen energy norm. By no means does
it ensure transition to a turbulent state, nor even the existence of such a state (see e.g.
Schmid and Henningson, 2001a, Eckhardt et al., 2007). This perturbation eventually
decays after a long time.
The plan of this paper is the following.
In Sec. 9.3 we write the non-dimensional perturbation equations of laminar flows be-
tween two horizontal rigid planes, and we recall the classical linear stability/instability
results.
In Sec. 9.4 we prove analytically that the basic motions are nonlinear monotonic stable
in the energy norm, with respect to the streamwise perturbations, for any Reynolds
number (i.e. Rey = +∞) in three ways: we first use a weighted energy with a pos-
itive coupling parameter, then we use the classical L2-energy norm to prove global
and monotonic stability. As far as we know, in the literature there is no precise
mathematical proof of this theorem apart from Moffatt’s proof in a semi-space, see
Moffatt, 1990.
However our numerical calculations obtained from the maximum problem (see Sec. 9.4)
and done with the Chebyshev polynomials method (see Fig. 9.2), show that the min-
imum Reynolds number for the energy method is obtained with respect to stream-
wise perturbations. In particular we obtain the same numerical results of Joseph for
Couette case, Joseph and Carmi and Busse for Poiseuille case (ReE = Rey = 20.6 in
Couette case, and ReE = Rey = 49.55 in Poiseuille case). These results contradict the
previous one Rey = +∞.
Therefore, for the first time in the literature, we suggest how to solve this contradic-
tion through a conjecture: the maximum must be sought in a subspace of the space
of kinematically admissible perturbations, the space of physically admissible perturba-
tions competing for the maximum. In this way, we are able to prove that the maxi-
mum is reached on two-dimensional perturbations, the spanwise perturbations, as
Orr, 1907 had supposed and that the results of Joseph, 1968, 1976, Joseph and Carmi,
1969, and Busse, 1972, and our numerical results are not correct.
Sec. 9.5 is dedicated to the discussion of the results.

9.3 Laminar flows between two parallel planes

Given a reference frame Oxyz, with unit vectors i, j, k, consider the layer D = R2 ×
[−1, 1] of thickness 2 with horizontal coordinates x, y and vertical coordinate z.
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Plane parallel shear flows are solutions of the stationary Navier-Stokes eqs. (4.0.2).
The velocity field U has the form U = f (z)i. In particular, for fixed velocity at the
boundaries z = ±1, we have the well known profiles already computed in Sec. 4
(Case 1):
a) Couette f (z) = z,
b) Poiseuille f (z) = 1− z2.

9.3.1 Perturbation equations

The perturbation equations to the plane parallel shear flows, in non-dimensional
form, are 

ut = −u·∇u + Re−1∆u− ( f ux + f ′w)− ∂p
∂x

vt = −u·∇v + Re−1∆v− f vx −
∂p
∂y

wt = −u·∇w + Re−1∆w− f wx −
∂p
∂z

∇ · u = 0.

(9.3.1)

In (9.3.1) u is the perturbation velocity field. It has components (u, v, w) in the direc-
tions x, y, z, respectively. p denotes the perturbation to the pressure field.
Here we use the symbols gx as ∂g

∂x , gt as ∂g
∂t , etc., for any function g.

To system (9.3.1) we append the rigid boundary conditions

u(x, y,±1, t) = 0, (x, y, t) ∈ R2 × (0,+∞),

and the initial condition

u(x, y, z, 0) = u0(x, y, z), in D,

with u0(x, y, z) solenoidal vector which vanishes at the boundaries.

9.3.2 Linear stability/instability

As we did in the previous work (see 8.5), we assume that both u and ∇p are x, y-
periodic with periods a and b in the x and y directions, respectively, with wave num-
bers (a, b) ∈ R2

+. Therefore we consider functions over the periodicity cell Ω (see
8.5.1).
With the symbols (·, ·) and ‖ · ‖we denote the scalar product and the norm in L2(Ω).

Linear stability/instability is obtained by studying the linearised system neglecting
the nonlinear terms in (9.3.1).
We recall that the classical results of Romanov, 1973 prove that Couette flow is lin-
early stable for any Reynolds number.
Instead, Poiseuille flow is unstable for any Reynolds number bigger than 5772 (Orszag,
1971). However, if we restrict the linearized equations to streamwise perturba-
tions, considering eigen-solutions of the form estu(y, z) for some complex number
s = σ + iω, we find that all eigenvalues have negative real part, and hence the sys-
tem is always spectrally stable.
Moreover, the Squire theorem (see Squire, 1933) holds for the linearised system: the
most destabilizing perturbations are two-dimensional spanwise perturbations. The
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critical Reynolds numbers for Poiseuille flows ReL can be obtained by solving the
Orr-Sommerfeld equation (Drazin and Reid, 2004, p. 155).

9.4 Nonlinear energy stability

In SubSec. 3.1 we have recalled some definitions of nonlinear energy stability.

Here we study the nonlinear energy stability with the Lyapunov method, by using the
classical energy

E(t) =
1
2
[‖u‖2 + ‖v‖2 + ‖w‖2].

We obtain sufficient conditions of monotonic nonlinear energy stability.
Taking into account the solenoidality of u and the boundary condition, we write the
energy equation (see Reynolds, 1895a)

Ė = −( f ′w, u)− Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2], (9.4.1)

and we have

Ė = −( f ′w, u)− Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2] =

=

(
−( f ′w, u)

‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2 −
1

Re

)
‖∇u‖2 ≤

≤
(

1
Re E
− 1

Re

)
‖∇u‖2,

(9.4.2)

where

1
Re E

= m = max
S

−( f ′w, u)
‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2 , (9.4.3)

and S is the space of the kinematically admissible fields

S = {u, v, w ∈ H1(Ω), u = v = w = wz = 0 on the boundaries,

periodic in x, and y, ux + vy + wz = 0, ‖∇u‖ > 0}.
(9.4.4)

H1(Ω) is the Sobolev space of the functions which are in L2(Ω) together with their
first generalized derivatives.
To solve this problem, we assume that the components of the velocity field are of the
form

u = ũ + εη1 v = ṽ + εη2 w = w̃ + εη3

where ũ = (ũ, ṽ, w̃) maximizes the quotient (9.4.3) and εηηη = ε(η1, η2, η3) denotes
a small deviation from the velocity field u, 0 < ε � 1. We impose that the first
variation of the quotient (9.4.3) is zero, that is

∂

∂ε

(
1

Re

)∣∣∣∣
ε=0

= 0.
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This leads to the Euler-Lagrange equations (see Schmid and Henningson, 2001a
pp.189-192)

( f ′wi + f ′uk)− 2m∆u = ∇λ, (9.4.5)

where λ(x, y, z) is a Lagrange multiplier. Assuming as Orr, 1907 that the maximum

is achieved for spanwise perturbations,
∂

∂y
≡ 0, by taking the third component of

the double-curl of (9.4.5) and by using the solenoidality condition ux + wz = 0 and
the boundary conditions, we obtain the Orr equation (see Orr, 1907)

ReE

2
( f ′′wx + 2 f ′wxz) + ∆∆w = 0. (9.4.6)

By solving this equation we obtain the Orr results: for Couette and Poiseuille flows,
we have ReOrr = ReE = 44.3 (see Orr, 1907 p. 128) and ReOrr = ReE = 87.6 (see
Drazin and Reid, 2004 p. 163), respectively (the critical values are converted to the
dimensionless form we have used here).
These nonlinear stability conditions have been obtained by Orr, 1907 in a celebrated
paper, by using the Reynolds, 1895a energy equation (9.4.1) (see Orr, 1907 p. 122).
In his paper Orr, 1907 writes: “Analogy with other problems leads us to assume that
disturbances in two dimensions will be less stable than those in three; this view is con-
firmed by the corresponding result in case viscosity is neglected". He also says: “The three-
dimensioned case was attempted, but it proved too difficult".
Orr considers two-dimensional spanwise perturbations: v ≡ 0 and ∂

∂y ≡ 0 (see also
Squire, 1933, Drazin and Reid, 2004). The critical value he finds, in the Couette case,
Rex = 44.3, is the critical Reynolds number with respect to spanwise perturbations (see
Orr, 1907 p. 128, Joseph, 1976 p. 181).
Joseph in his monograph, see Joseph, 1976, p. 181, says: “Orr’s assumption about
the form of the disturbance which increases at the smallest Re is not correct since we shall
see that the energy of an x-independent disturbance (streamwise perturbations) can increase
when Re > 2

√
1708 ' 82.65" (in our dimensionless form Rey=20.6).

Busse, 1972 in his paper (p. 29) writes “Numerical computations suggest that the eigen-
value RE is attained for x-independent solutions. Since this result has contradicted the
physical intuition of earlier investigators in this field, it is desirable to find a rigorous proof
for this property". However he remarks in a note on p. 29: “Joseph first found that the
minimizing solution in the case of Couette flow was independent of x. He also gave a proof
of this fact. A gap of his proof has been found, however, recently by J. Serrin (private com-
munication by D. D. Joseph) who pointed out that Joseph did not account for the possibility
that the required minimum could appear at the end point kx = k". (Note that according to
the notations adopted by Joseph k2 = k2

x + k2
y where kx and ky are respectively a and

b we use throughout the thesis.)

Drazin and Reid, 2004, p. 430, note: “The determination of the least eigenvalue of equa-
tions (53.21) (in our case, Rec = 1/m in equation (9.4.5)) is clearly a formidable problem
in general and results are known for only a few cases". They cite the results of Joseph,
1968 for Couette flow, Joseph and Carmi, 1969 and Busse, 1972 for Poiseuille flow.
They also say: “the least eigenvalue ... is still associated with a two dimensional disturbance
but one which varies only in the yz-plane, i.e. the perturbed flow consists of rolls whose axes
are in the directions of the basic flow" (streamwise perturbations).
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We note that our numerical calculations, with the Chebyshev polynomials method
(see Fig. 9.2), also show that the minimum Reynolds number for the energy method
is obtained with respect to streamwise perturbations. Therefore, we obtain the same
numerical results of Joseph for Couette case, Joseph and Carmi and Busse for Poiseuille
case (ReE = Rey = 20.6 in Couette case, and ReE = Rey = 49.5 in Poiseuille case).
Despite the results of Joseph, 1968, 1976, Joseph and Carmi, 1969, Busse, 1972 and the
observations of Drazin and Reid, 2004, we shall prove below that the numerical cal-
culations of Joseph are correct, however the conclusion of Joseph, 1976 is not correct.
In fact, in the classical L2-energy, the streamwise perturbations are always stabilizing.
This result for the first time has been proved by Moffatt, 1990 for the case of inho-
mogeneous perturbation flow of a particular type (see Moffatt, 1990, pp. 250-252)
and y ∈ [0,+∞), with a hypothesis about pressure that vanishes at infinity.
In the next subsection we prove that the streamwise perturbations are stable (mono-
tonic stability in the energy norm E) for all Reynolds numbers. Moreover, in what
follows, we make a conjecture and we prove that the least stabilizing physical per-
turbations competing for maximum are two-dimensional, and they are the spanwise.
This means that the result of Orr is correct (see Falsaperla et al. 2019b and Falsaperla,
Mulone, and Perrone, 2022a) as Serrin had also observed (see Busse, 1972).

9.4.1 Stability of streamwise perturbations for any Reynolds number

We assume that the perturbations are streamwise, i.e. they do not depend on x ( ∂
∂x ≡ 0).

Therefore the perturbation equations (9.3.1) become



ut = −u·∇u + Re−1∆u− f ′w

vt = −u·∇v + Re−1∆v− ∂p
∂y

wt = −u·∇w + Re−1∆w− ∂p
∂z

vy + wz = 0.

(9.4.7)

We introduce two energy norms: a weighted norm Eβ and the classical energy E
both evaluated in the streamwise perturbations.

i) Weighted energy
We define a weighted energy Eβ (Lyapunov function) equivalent to the classical energy
norm E, and show that the streamwise perturbations cannot destabilize the basic
Couette or Poiseuille flows in the energy Eβ.
First we introduce an arbitrary positive number β. Then, we multiply (9.4.7)1 by βu
and integrate over Ω. Besides, we multiply (9.4.7)2 and (9.4.7)3 by v and w and inte-
grate over Ω. By taking into account the solenoidality of u, the boundary conditions
and the periodicity, we have

d
dt
[
β‖u‖2

2
] = −β( f ′w, u)− βRe−1‖∇u‖2

d
dt
[
‖v‖2 + ‖w‖2

2
] = −Re−1(‖∇v‖2 + ‖∇w)‖2.

By using the arithmetic-geometric mean inequality, we have
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−β( f ′w, u) ≤ β
M2

2ε
‖w‖2 + β

ε

2
‖u‖2,

where M = max[−1,1] | f ′(z)| and ε is an arbitrary positive number to be chosen.
Now we define the Lyapunov function (weighted energy norm)

Eβ(t) =
1
2
[β‖u‖2 + ‖v‖2 + ‖w‖2], (9.4.8)

and choose ε =
π2

4Re
. From the above inequality and the use of the Poincaré inequal-

ity
π2

4
‖g‖2 ≤ ‖∇g‖2 (g = u, g = v, g = w), we have

Ėβ ≤
1
2
[(β

4M2Re
π2 − π2

2Re
)‖w‖2 − π2

2Re
‖v‖2 − β

π2

4Re
‖u‖2].

By choosing β =
π4

16M2Re2 , we finally have

Ėβ ≤ −
π2

4Re
Eβ.

Integrating this inequality, we have the exponential decay

Eβ(t) ≤ Eβ(0) exp{− π2

4Re
t}. (9.4.9)

This inequality implies monotonic nonlinear exponential stability, in the Eβ-norm, of the
basic Couette or Poiseuille flows, with respect to the streamwise perturbations, for
any Reynolds number.
This result does not rule out that there might be a eigenmode in which the energy E
initially grows.

ii) Classical L2-energy (global stability)

Now we use the classical energy norm E and we show that the streamwise pertur-
bations cannot destabilize the basic Couette or Poiseuille flows.
We multiply (9.4.7)1 by u and integrate over Ω. Besides, we multiply (9.4.7)2 and
(9.4.7)3 by v and w and integrate over Ω. By taking into account of the solenoidality
of u, the boundary conditions and the periodicity, as before we have

d
dt
‖u‖2

2
= −( f ′u, w)− Re−1‖∇u‖2

d
dt
(
‖v‖2

2
+
‖w‖2

2
) = −Re−1[‖∇v‖2 + ‖∇w‖2].

(9.4.10)

By using the Poincaré inequality and integrating last equation, we have:
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d
dt
(
‖v‖2

2
+
‖w‖2

2
) = −Re−1[‖∇v‖2 + ‖∇w‖2] ≤ −C(‖v‖2 + ‖w‖2)

⇒ ‖v‖2 + ‖w‖2 ≤ H0e−2Ct, C =
π2

4Re
, H0 = ‖v0‖2 + ‖w0‖2.

(9.4.11)

Now we consider the equation depending on u and define M = max[−1,1] | f ′(z)|. We
have the following inequalities:

d
dt
‖u‖2

2
= −( f ′u, w)− Re−1‖∇u‖2 ≤ M‖u‖‖w‖ − Re−1‖∇u‖2 ≤

≤ M(
‖u‖2

2ε
+

ε

2
‖w‖2)− Re−1‖∇u‖2 ≤ M(

‖u‖2

2ε
+

ε

2
‖w‖2)−

− C‖u‖2 = (
M
2ε
− C)‖u‖2 +

ε

2
M‖w‖2 = −C

2
‖u‖2 +

M2

C
‖w‖2

2

(9.4.12)

where ε =
M
C

, and C =
π2

4Re
.

We use this inequality and (9.4.11) to obtain

d
dt
‖u‖2 ≤ −C‖u‖2 +

M2

C
‖w‖2 ≤ −C‖u‖2 +

M2

C
(‖v‖2 + ‖w‖2) ≤

≤ −C‖u‖2 +
M2

C
H0e−2Ct.

(9.4.13)

Integrating last inequality, we have

‖u‖2 ≤ e−Ct[k− M2

C2 H0e−Ct] = ke−Ct − M2

C2 H0e−2Ct, (9.4.14)

with k = K0 +
M2

C2 H0, K0 = ‖u0‖2.

We introduce the classical energy

L(t) =
1
2
[‖u‖2 + ‖v‖2 + ‖w‖2], (9.4.15)

and observe that the initial energy is given by L0 =
H0 + K0

2
. Adding the (9.4.11)

and the (9.4.14) we finally have:

L(t) ≤ H0e−2Ct + (K0 +
M2

C2 H0)e−Ct − M2

C2 H0e−2Ct ≤

≤ L0e−2Ct + (L0 +
M2

C2 L0)e−Ct =

= L0(e−2Ct + e−Ct +
M2

C2 e−Ct).

(9.4.16)

This inequality implies global nonlinear exponential stability of the basic Couette
or Poiseuille flows with respect to the streamwise perturbations for any Reynolds
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number.

Also this result does not rule out that there might be a eigenmode in which the

energy E initially grows. Indeed Eq. (9.4.16) implies that L(t) ≤ L0(2 +
M2

C2 ) and

not that L(t) ≤ L0. Therefore a situation like the one illustrated in Fig. 9.1 could
arise.

FIGURE 9.1: The red line represents the function of Eq. (9.4.16) that
majorates L(t) which is represented by the blue line. The schematic
representation shows that Eq. (9.4.16) does not exclude the possibility

that the energy L(t) grows initially and then decays.

iii) Classical L2-energy (monotonic stability)

Consider eqs. (9.4.10)

d
dt
‖u‖2

2
= −( f ′u, w)− Re−1[‖uy‖2 + ‖uz‖2],

d
dt
(
‖v‖2

2
+
‖w‖2

2
) = −Re−1[‖vy‖2 + ‖vz‖2 + ‖wy‖2 + ‖wz‖2].

(9.4.17)

Summing these two equations and rearranging, we have

Ė = −( f ′u, w)− Re−1[‖uz‖2 + ‖vy‖2 + ‖wz‖2]− Re−1[‖uy‖2 + ‖vz‖2 + ‖wy‖2].
(9.4.18)

Define the new maximum problem

m1 =
1

Rey = max
S

−( f ′w, u)
‖uz‖2 + ‖vy‖2 + ‖wz‖2 , (9.4.19)

and S is the space of the kinematically admissible fields (9.4.4). From (9.4.18) we get

Ė ≤ (m1 − Re−1)[‖uz‖2 + ‖vy‖2 + ‖wz‖2]− Re−1[‖uy‖2 + ‖vz‖2 + ‖wy‖2]. (9.4.20)

The Euler-Lagrange equations of this maximum problem are given by
− f ′w + 2m1uzz = 0
2m1vyy = λy

− f ′u + 2m1wzz = λz,

(9.4.21)
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where λ is a Lagrange multiplier λ(y, z). These equations must be solved with
boundary conditions u = v = w = wz = 0 on the planes z = ±1.
We take the partial derivative of (9.4.21)2 with respect to z and the partial derivative
of (9.4.21)3 with respect to y, subtract and use the solenoidality vy +wz = 0, to obtain{

− f ′w + 2m1uzz = 0
− f ′uy + 4m1wyzz = 0.

(9.4.22)

Multiplying the first equation by f ′ and differentiating with respect to y, substituting
in the second equation, we finally obtain

8m2
1[φzzzz − 2

f ′′

f ′
φzzz + 2(

f ′′

f ′
)2φzz]− ( f ′)2φ = 0, (9.4.23)

with φ = wy, and the boundary conditions φ = φz = φzz = 0 on the planes
z = ±1. By solving this equation we get wy = 0 (in the case of Couette flow the
equation with boundary conditions is very simple to solve, for Poiseuille flow one
can use a software like Mathematica or MatLab). As in Joseph, 1976 (see Schmid
and Henningson, 2001a, Drazin and Reid, 2004) we expand the variables in (9.4.21)
as f = f̂ (z)eiβy. From wy = 0 we deduce that β = 0. Therefore we have also
vy = 0 and the solenoidality of u implies wz = 0. Recalling the boundary conditions
w(x, y,±1) = 0, we conclude w = 0 and so m1 = 0, Rey = +∞.
From (9.4.20) we get the monotonic energy stability for all Reynolds number on the
streamwise perturbations

Ė ≤ −Re−1[‖uz‖2 + ‖vy‖2 + ‖wz‖2 + ‖uy‖2 + ‖vz‖2 + ‖wy‖2], (9.4.24)

E(t) ≤ E(0) exp{− π2

2Re
t}. (9.4.25)

Theorem 9.4.1. Assuming the perturbations to the basic shear flows U = f (z)i are stream-
wise, then we have nonlinear monotonic stability according to (9.4.25).

9.4.2 Nonlinear stability with respect to three-dimensional perturbations

Here consider three-dimensional perturbations. We study the nonlinear stability by
using the energy of disturbances E,

E(t) =
1
2
[‖u‖2 + ‖v‖2 + ‖w‖2].

By writing the Reynolds-Orr energy equation

Ė = −( f ′w, u)− Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2], (9.4.26)
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we have

Ė = −( f ′w, u)− Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2] =

=

(
−( f ′w, u)

‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2 −
1

Re

)
‖∇u‖2 ≤

≤
(

m− 1
Re

)
‖∇u‖2,

(9.4.27)

where

1
ReE

= m = max
S

−( f ′w, u)
‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2 , (9.4.28)

and S is the space of the kinematically admissible fields (9.4.4).
The Euler-Lagrange equations are

− f ′wi− f ′uk + 2m∆u = ∇λ, (9.4.29)

where λ is a Lagrange multiplier.
We define the third component of the vorticity of velocity field,

ζ = vx − uy

(it is linked to the toroidal part of the decomposition of the velocity vector u in the
poloidal, toroidal and the mean flow, see Kaiser and Mulone, 2005, Kaiser, Tilgner,
and Wahl, 2005) and take the third component of the double curl of (9.4.29) and the
third component of the curl of (9.4.29). We obtain the system of the Euler-Lagrange
equations written in terms of ζ and w:{

f ′(ζy + 2wxz) + f ′′wx + 2m∆∆w = 0
f ′wy + 2m∆ζ = 0,

(9.4.30)

with the boundary conditions

w = wz = 0, ζ = 0. (9.4.31)

The eigenvalue problem (9.4.30) - (9.4.31) is solved with the Chebyshev method by
using 80 polynomials. The maximum we obtain corresponds exactly to the critical
Reynolds numbers obtained by Joseph, 1968 and Joseph and Carmi, 1969 and Busse,
1972 (i.e. the minimum Reynolds number is reached for the streamwise perturba-
tions). In the Couette case, we report these results in Fig. 9.2.
This conclusion and the results we have obtained in SubSec. 9.4.1 for streamwise
perturbations are in an obvious contradiction. Most likely this contradiction is due to
the choice of the space of kinematically admissible perturbations where we look for the
maximum. This space is too large and likely contains perturbations which are not
admissible as physical perturbations competing for the maximum.

How can we solve this contradiction?

We first observe that the streamwise perturbations (now wx = 0 and ζx = 0) are stable
for any Reynolds number. Then m = 0 and this implies, from (9.4.30)1, that ζy = 0.
Eq. (9.4.30)2 implies that also wy = 0. If now we consider plan-form perturbations
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FIGURE 9.2: Plane Couette energy Orr-Reynolds number Re = Rec
as function of the wave numbers kx (i.e. a) and ky (i.e. b), for system
(9.4.30) with rigid boundary conditions. The absolute minimum is
Rc = 20.6 and it is achieved for wavenumbers a = 0, b = 1.6. For

Poiseuille flow a similar picture can be drawn.

(see Chandrasekhar, 1961, p.24 formula (111)) we have v =
1

a2 + b2 [wyz − ζx] = 0.

For three-dimensional disturbances, we see that, in the numerator of the maximum
(9.4.28), the second component v of the vector u does not appear explicitly (it ap-
pears implicitly from the divergence free constraint). Furthermore, the presence of a
positive term ‖∇v‖2 in the denominator reduces the value of the fraction.

So we are led to speculate:

Conjecture

A possible answer to the contradiction is this: we introduce the subspace S0 of the
physical admissible perturbations which is the subspace of S consisting of maximiz-
ing functions u, v, w ∈ S such that v = 0 and we conjecture that the maximum m is
assumed among the functions of this subspace.

With this conjecture, we prove that the maximum is achieved on the spanwise per-
turbations.
In fact, we have

m = max
S0

−( f ′w, u)
‖∇u‖2 + ‖∇w‖2 , (9.4.32)

where S0 is the space of the “physically" admissible fields

S0 = {u, 0, w ∈ H1(Ω), u = w = wz = 0 on the boundaries,

periodic in x, and y, ux + wz = 0, ‖∇u‖+ ‖∇w‖ > 0}.
(9.4.33)
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The Euler-Lagrange equations of this maximum problem are given by

− f ′wi− f ′uk + 2m∆u = ∇λ, (9.4.34)

where λ is a Lagrange multiplier,∇λ = (λx, 0, λz)T. We take the third component of
the double curl of (9.4.34) and the third component of the curl of (9.4.34). We obtain
the system of the Euler-Lagrange equations written in terms of ζ and w:

{
f ′(ζy + 2wxz) + f ′′wx + 2m∆∆w = 0
f ′wy + 2m∆ζ = 0,

(9.4.35)

with the boundary conditions

w = wz = ζ = 0, (9.4.36)

where now ζ = −uy.
We take the second component of the double curl of (9.4.34) to get

f ′ζz + f ′′ζ − f ′wxy = 0. (9.4.37)

From this equation and (9.4.35)2 we have that ζ and all its derivatives with respect to
z are zero on the boundaries. Let’s prove this in a particular case: Couette between
rigid planes. The proof in the case of Poiseuille is done in a similar way.
In the case of RR Couette, from (9.4.35) and (9.4.37), we have:

ζy + 2wxz + 2m∆∆w = 0
wy + 2m∆ζ = 0
ζz − wxy = 0.

(9.4.38)

On the boundaries z = ±1 we have ζ = 0, from (9.4.38)3 evaluated on z = ±1, we

have ζ ′ = 0 (ζ ′ =
dζ

dz
). From (9.4.38)2, evaluated on z = ±1, we have ζ ′′ = 0. Now if

we differentiate (9.4.38)2 with respect to z and evaluate the result on the boundaries
we have ζ ′′′ = 0. From this, if we differentiate twice (9.4.38)3 with respect to z we
have that the second derivative of w with respect to z is zero on the boundaries. And
so, from (9.4.38)2 differentiated twice with respect to z we have ζ ′′′′ = 0, ad so on.

This implies that ζ ≡ 0, hence uy = 0 and from (9.4.35)2 also wy = 0. Therefore,
u = u(x, z), v = 0, w = w(x, z) and the less stabilizing perturbations which satisfy
the equation

2 f ′wxz + f ′′wx + 2m∆∆w = 0, (9.4.39)

with boundary conditions w = wz = 0 on z = ±1, are the spanwise perturbations,
as Orr, 1907 had assumed.
We report these results in Fig. 9.3 where the critical Reynolds number versus wave
numbers for spanwise perturbations are shown.
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FIGURE 9.3: Reynolds number versus wave number for spanwise
perturbations for plane Couette (left) and Poiseuille (right) flows.

9.5 Discussion of the results

We have proved sufficient conditions of nonlinear monotonic energy stability of
plane Couette and Poiseuille flows for any Reynolds number less than the ordinary
limit of spanwise perturbations, ReOrr. For streamwise perturbations, we have ri-
gorously proved monotonic nonlinear L2-energy stability results for any Reynolds
number and we have suggested a way to overcome an obvious contradiction with
classical numerical results. We have introduced a space of “physical" admissible
perturbations competing for the maximum problem and we have proved that the least
stabilizing perturbations are two-dimensional (spanwise perturbations). In the past
this result has been only assumed (see Orr, 1907). This conclusion justifies the pre-
vious study by Falsaperla et al. 2019b on the stability of two-dimensional tilted rolls

with axes in the Oxy-plane. They proved that, for a fixed wavelength λ =
2π

a
and a

given tilted angle θ, one has

Rec = ReOrr(
2π

λ sin θ
)/ sin θ, (9.5.1)

where ReOrr(
2π

λ sin θ ) is the critical Reynolds number for given wavelength λ and an-

gle θ ∈ (0,
π

2
]. Formula (9.5.1) gives the critical value for a fixed positive wavelength

λ. The minimum with respect to λ in (0,+∞) is the nonlinear critical Reynolds num-
ber for tilted perturbations of an angle θ:

Rec = min
λ>0

ReOrr(
2π

λ sin θ
)/ sin θ = ReOrr/ sin θ, (9.5.2)

where ReOrr = 44.3 for plane Couette flow and ReOrr = 87.6 for plane Poiseuille
flow.
These results are in a very good agreement with the experiments done by Prigent
et al., 2003 and the numerical simulations carried out by Barkley and Tuckerman,
2007.
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Chapter 10

Nonlinear energy stability of
magnetohydrodynamics Couette
and Hartmann shear flows: A
contradiction and a conjecture

The results presented in this Section have been published by Falsaperla, Mulone,
and Perrone, 2022b.

10.1 Summary

Here we extend the results presented in the previous section 9 to magnetohydrody-
namics plane Couette and Hartmann shear flows.
In particular we study the nonlinear stability. We prove that the streamwise pertur-
bations are stable for any Reynolds number. This result is in a contradiction with the
numerical solutions of the Euler-Lagrange equations for a maximum energy prob-
lem. We solve this contradiction with a conjecture. Then, we rigorous prove that the
least stabilizing perturbations, in the energy norm, are the spanwise perturbations
and give some critical Reynolds numbers for some selected Prandtl and Hartmann
numbers.

10.2 State of the art

In SubSec. 8.2 we have already underlined that laminar flows of electrically con-
ducting fluids have many applications.
The study of the stability of magnetohydrodynamics laminar fluid motions in a
channel between parallel planes, the magnetic Couette and Hartmann flows, was
done with different boundary conditions for the velocity field (rigid conditions and
stress-free conditions) and for the magnetic field (conducting and non-conducting
planes) both in the linear case, see Kakutani, 1964, Takashima, 1996, and in the non-
linear case Alexakis et al., 2003, Falsaperla et al. 2016, 2017; 2017, Moresco and Al-
boussiere, 2004. Furthermore, both the cases of a horizontal and an inclined channel
have been studied, see Falsaperla et al. 2016, 2017; 2017 and Falsaperla, Mulone, and
Perrone, 2022c .
As for laminar motions in fluid dynamics (Couette and Poiseuille), also in the mag-
netohydrodynamics case (see Falsaperla et al. Falsaperla, Giacobbe, and Mulone,
2020a) the critical linear (obtained with the spectral analysis) and nonlinear (ob-
tained with the Lyapunov method) Reynolds numbers for the onset of instability
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are very different from each other and they do not coincide with the experimental
values.
There are still some unsolved mathematical problems: in both linear and nonlinear
cases it is not clear whether a Squire theorem holds (even if in the linear case its
validity is assumed by Takashima, 1996, 1998): the most destabilizing perturbations
are two-dimensional; in the nonlinear case, the critical Reynolds number is deter-
mined by looking for the maximum or a minimum of appropriate functional ratios
and it is assumed (without any proof) that this maximum or minimum is obtained
on spanwise perturbations, see Alexakis et al., 2003, Falsaperla et al. 2020a.
For nonlinear system, Falsaperla et al. 2020a the authors recall that Alexakis et al.,
2003 studied shear flows with an applied cross-stream magnetic field using dissi-
pative incompressible magnetohydrodynamics, using the energy E = 1/2(u2 + h2)
(sum of kinetic and magnetic energy of perturbations). In Alexakis et al., 2003
the associated minimum problem (of a suitable functional ratio) is solved and
they say that “... It is believed, and assumed here, that the global minima of
interest also have kx = 0)" (i.e. they suppose that the minimum is achieved on the
streamwise perturbations). However, in Falsaperla et al. 2020a, it is proved that
the streamwise perturbations, for any fixed Hartmann and Prandtl numbers, are
nonlinear energy stable for any Reynolds number. Moreover, as we recalled in
SubSec. 8.2, in Falsaperla et al. 2020a the authors investigated the stability with
respect to two-dimensional perturbations that are rolls inclined by an angle θ with
respect to the direction of the fluid motion and found that such flows are nonlinearly
stable if the Reynolds number Re is less then R̄θ = Re(m)

Orr(2π/(λ sin θ))/ sin θ (see
SubSec. 8.2).
In Sec. 8 we have reported the principal results we obtained in 2022a where we
study the stability of laminar flows in a sheet of fluid (open channel) down an

incline with constant slope angle β ∈ (0,
π

2
) assuming that the fluid is electrically

conducting and subjected to a magnetic field. In particular in Falsaperla, Mulone,
and Perrone, 2022a we study the nonlinear Lyapunov energy stability by solving
the Orr equation for the associated maximum problem of the Reynolds-Orr energy
equation. We write “following Orr, we consider here two-dimensional perturbations
and prove below that the stable perturbations are the spanwise" despite the fact that
it is still an open problem to analytically prove that the critical nonlinear Reynolds
number R̄ is achieved with two-dimensional perturbations.

Therefore the main purpose of this paper is to study the nonlinear energy sta-
bility of Couette and Hartmann basic motions with respect to three-dimensional
perturbations. For this purpose in Sec. 10.3 we introduce the basic motions and the
perturbation equations.
In Sec. 10.4 we study the nonlinear energy stability with respect to three-dimensional
perturbations and find that the critical Reynolds numbers are obtained, with the
Chebyshev collocation method, with respect to two-dimensional perturbations:
the streamwise perturbations. This gives a contradiction that we solve making a
conjecture as in the case of fluid dynamics, see 2022a.
With this conjecture we are able to analytically prove that the maximum is reached
on two-dimensional perturbations, the spanwise perturbations. Therefore a Squire
theorem holds: the least stabilizing perturbations in energy are two-dimensional
perturbations. We also give some critical Reynolds numbers for selected Prandtl
and Hartmann numbers.
In Sec. 10.5 we report some graphs of the critical Reynolds numbers obtained with
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the Chebyshev collocation method for fixed Prandtl and Hartmann numbers.
Sec. 10.6 is dedicated to the discussion of the results.

10.3 Basic motions and perturbation equations

Consider a layerD = R2× [−1, 1] filled with an electrically conducting fluid, David-
son, 2001. The magnetohydrodynamics system in the non-dimensional form is the
one given by (4.0.12) (see Davidson, 2001; Falsaperla, Mulone, and Perrone, 2022a;
Takashima, 1996):
In Sec.4 we have proved that:

Theorem 10.3.1. The basic solution of system (4.0.12) satisfying the boundary conditions
(4.0.30) is the magnetic Couette flow

U(z) =
sinh(Ha z)
sinh (Ha)

, B̄(z) =
cosh (Ha)− cosh(Ha z)

Ha sinh (Ha)

Theorem 10.3.2. The basic solution of system (4.0.12) satisfying the boundary conditions
4.0.37 is the Hartmann flow

U(z) =
cosh(Ha)− cosh(Ha z)

cosh(Ha)− 1
, B̄(z) =

sinh(Ha z)− z sinh(Ha)
Ha(cosh(Ha)− 1)

.

We want to investigate the nonlinear stability of these basic solutions. To this end
we consider a regular (at least C2) perturbation of the stationary solution

v + u = (U(z), 0, 0) + (u, v, w), B̂ + h = (B̄(z), 0, Rm−1) + (h, k, `), Π + π̄.

Denoting with
A = Ha2Re−1Rm = Ha2Pm, (10.3.1)

the equations which govern the evolution of the difference fields u, h, π̄ (often such
difference fields are improperly called perturbations) are:

ut + U(z)ux + wU′(z)i + u · ∇u = A[B̄(z)hx +
hz

Rm
+ `B̄′(z)i + h · ∇h]−∇π̄ +

∆u
Re

ht + wB̄′(z)i + U(z)hx + u · ∇h− B̄(z)ux −
uz

Rm
− `U′(z)i− h · ∇u =

∆h
Rm

∇·u = 0, ∇·h = 0 ,
(10.3.2)

where the suffixes x and z denote derivatives with respect to the corresponding vari-
ables, the superscript denotes first derivative with respect to z.
We assume that the perturbations are periodic in the variables x and y and denote
with L2(Ω) the space of real square-integrable functions in Ω, where Ω is the peri-
odicity cell (see (8.5.1)). We denote with the symbols (·, ·) and ‖ · ‖ the usual scalar
product and the norm in L2(Ω).
The most common boundary conditions for u, h on the planes z = ±1 are

1. rigid (r), u = v = w = 0

2. stress-free (sf ), uz = vz = w = 0

3. non-conducting (n), h = k = ` = 0
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4. conducting (c), hz = kz = ` = 0

Here we consider only the rigid and non-conducting case. Similar results to the ones
we will show also hold true with the other boundary conditions.

10.4 Nonlinear stability

In this section we study (and recall some results presented in Falsaperla et al. 2020a)
the nonlinear stability of the shear flows by using the Lyapunov second method with
the classical energy

V(t) =
1
2
(‖u‖2 + A‖h‖2),

with the coupling parameter A given by (10.3.1).
Taking the orbital derivative of V(t), taking into account eqs. (10.3.2), the periodicity,
the boundary conditions and the solenoidality of u and h, we obtain the Reynolds-
Orr (Orr, 1907, Reynolds, 1883) equation (see Falsaperla et al. 2020a)

V̇ = −(wU′, u) + A((`B̄′, u)− (wB̄′, h) + (`U′, h))− Re−1‖∇u‖2 − A Rm−1‖∇h‖2.
(10.4.1)

10.4.1 Nonlinear stability with respect to three-dimensional perturba-
tions

Applying classical methods, see Joseph, 1976; Rionero, 1968b; Straughan, 2004, we
define

I = −(U′w, u) + A(B̄′`, u)− A(B̄′w, h) + A(U′`, h), (10.4.2)

and assume that the perturbations u and b satisfy the condition ‖∇u‖+ ‖∇h‖ > 0.
We can write the energy equality in this way

V̇ = I − Re−1‖∇u‖2 − ARm−1‖∇h‖2 =

=

[
I

‖∇u‖2 + Ha2‖∇h‖2
− 1

Re

]
[‖∇u‖2 + Ha2‖∇h‖2]

(10.4.3)

Introducing the space S of the kinematically admissible perturbations periodic in x
and y,

S = {u, h ∈W1,2(Ω), u = h = 0 when z = ±1,∇ · u = ∇ · h = 0, ‖∇u‖+ ‖∇h‖ > 0},
(10.4.4)

where W1,2(Ω) is the Sobolev space defined as the subspace of the space of vector
fields with their components fi (i = 1, 2, 3) in L2(Ω) such that fi and its weak deriva-
tives up to order 1 have a finite L2-norm.
A theorem due to Rionero, 1968b proves that the functional ratio

F =
I

‖∇u‖2 + Ha2‖∇h‖2

admits maximum in S . Denoting this maximum with

R̄−1 = m = max
S

I
‖∇u‖2 + Ha2‖∇h‖2

, (10.4.5)
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we have the inequality

V̇ ≤ (R̄−1 − Re−1)[‖∇u‖2 + Ha2‖∇h‖2]. (10.4.6)

From this inequality and the Poincaré’s inequalities

π2

4
‖u‖2 ≤ ‖∇u‖2,

π2

4
‖h‖2 ≤ ‖∇h‖2,

it follows that the condition
Re < R̄

implies nonlinear asymptotical stability of magnetic Couette and Hartmann mo-
tions:

Theorem 10.4.1. Assuming that the Reynolds number satisfies the condition

Re < R̄,

the basic magnetic Couette and Hartmann motions are globally asymptotically stable in the
energy norm V according to the inequality

V(t) ≤ V(0)ec0(Re−R̄)t,

with a positive constant c0 depending on Ha and Pm.

In order to compute the critical Reynolds number for nonlinear energy stability, we
have to compute R̄ or m = 1/R̄. For this purpose we must calculate the Euler-
Lagrange equations of the functional F .
The Euler-Lagrange equations of the maximum problem (10.4.5) are (see Joseph,
1976, Falsaperla et al. 2020a){

[−U′wi−U′uk + AB̄′`i− AB̄′hk] + 2m∆u = ∇λ1

A[B̄′uk− wB̄′i + U′`i + U′hk] + 2mHa2∆h = ∇λ2,
(10.4.7)

where λ1 and λ2 are Lagrange multipliers.
We define

ζ = vx − uy, ζM = kx − hy,

where ζ is the third component of the curl of velocity field and ζM is the third compo-
nent of curl the magnetic field. The eqs. (10.4.7) are linear and we may assume that
the fields are sufficiently smooth, see Chandrasekhar, 1961; G. Galdi and Padula,
1990; Mulone and Rionero, 2003. Therefore we take the third component of the
double curl of (10.4.7) and the third component of the curl of (10.4.7). With simple
calculations we obtain the system of the Euler-Lagrange equations written in terms
of ζ, w, ζM and `:



U′wy − AB̄′`y + 2m∆ζ = 0

AB̄′wy − AU′`y + 2mHa2∆ζM = 0

U′(ζy + 2wxz) + U′′wx − AB̄′′`x + AB̄′ζMy + 2m∆∆w = 0

−U′A(ζMy + 2`xz)−U′′A`x + AB̄′′wx − AB̄′ζy + 2mHa2∆∆` = 0,

(10.4.8)
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with the boundary conditions

w = wz = ` = `z = 0, ζ = ζM = 0. (10.4.9)

We observe that the boundary conditions for wz and for `z are obtained from the
solenoidality of u and b and from the boundary conditions for u, v, h and k.
Since system (10.4.8) is linear, we seek solution of the form (see Chandrasekhar, 1961;
Drazin and Reid, 2004; Straughan, 2004):

F(x, y, z) = f (z)ei(ax+by) , (10.4.10)

with F = w, `, ζ, ζM in the domain R2 × [−1, 1], a ≥ 0, b ≥ 0, a2 + b2 > 0 (we note
that the two-dimensional streamwise and spanwise perturbations are obtained by
taking the limit for a or b which tends to zero). By substituting (10.4.10) in (10.4.8),
we have the system

ibU′w− ibAB̄′`+ 2m(D2 − (a2 + b2))ζ = 0,

ibAB̄′w− ibAU′`+ 2mHa2(D2 − (a2 + b2))ζM = 0,

U′(ibζ + 2iaDw) + iaU′′w− iaAB̄′′`+ ibAB̄′ζM+
+2m(D4 − 2(a2 + b2)D2 + (a2 + b2)2)w = 0,

−U′A(ibζM + 2iaD`)− iaU′′A`+ iaAB̄′′w− ibAB̄′ζ+
+2mHa2(D4 − 2(a2 + b2)D2 + (a2 + b2)2)` = 0,

(10.4.11)

where D and D2, D4 indicate first, second and fourth derivatives with respect to z.
The boundary condition are

w = Dw = ` = D` = 0, ζ = ζM = 0, (10.4.12)

on z = ±1.
This ordinary linear differential system with coefficients that depend on z is an
eigenvalue problem for m (or Re ).
The critical Reynolds numbers we obtain from this system correspond exactly to the
critical Reynolds numbers obtained by Joseph, 1968, Joseph and Carmi, 1969, Busse,
1972 and Falsaperla, Mulone, and Perrone, 2022a in fluid dynamics (i.e. the critical
Reynolds number is reached for the streamwise perturbations, R̄ = Re y). We report
some of these results in Sec. 10.5.

10.4.2 Stability for streamwise perturbations and a contradiction

Now we prove that this result contradicts what was proved in Falsaperla et al. 2020a.
In fact it has been proved that the following theorem holds:

Theorem 10.4.2. For any fixed Hartmann Ha and Prandtl Pm numbers, the Couette and
Hartmann motions are energy-stable, with respect to streamwise perturbations, for any
Reynolds number, that is Re y = +∞

Here for completeness we recall the proof made in Falsaperla et al. 2020a in more
detail.
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Taking into account that for streamwise perturbations the derivatives with respect
to x are zero, system (10.3.2) for streamwise perturbations becomes

ut + wU′(z)i + u · ∇u = A(Rm−1hz + `B̄′(z)i + h · ∇h)−∇π̄ + Re−1∆u

ht + wB̄′(z)i + u · ∇h− Rm−1uz − `U′(z)i− h · ∇u = Rm−1∆h

∇·u = 0, ∇·h = 0 .

(10.4.13)

Introducing

V1 =
1
2
[
‖v‖2 + ‖w‖2 + A(‖k‖2 + ‖`‖2)

]
,

and taking into account the boundary conditions and the divergence-free conditions
vy + wz = 0, ky + `z = 0, we easily have

V̇1(t) = −Re−1(‖∇v‖2 + ‖∇w‖2)− ARm−1(‖∇k‖2) + ‖∇`‖2)). (10.4.14)

From this equation, and the Poincaré’s inequality, we have the exponential decay

V1(t) ≤ V1(0)e−
π2
2 Re−1 max(1,Pm−1)t. (10.4.15)

Now we consider the perturbation equations for u and h:{
ut + wU′(z) + u · ∇u = A(Rm−1hz + `B̄′(z) + h · ∇h) + Re−1∆u

ht + wB̄′(z) + u · ∇h− Rm−1uz − `U′(z)− h · ∇u = Rm−1∆h.
(10.4.16)

From this it follows that

1
2

d
dt
(‖u‖2 + A‖h‖2) = I1 − Re−1‖∇u‖2 − ARm−1‖∇h‖2, (10.4.17)

where
I1 = −(U′w, u) + A(B̄′`, u)− A(B̄′w, h) + A(U′`, h). (10.4.18)

Now we estimate each term of I1.
Applying the Cauchy-Schwarz and the arithmetic-geometric mean inequality, we
have

I1 ≤ M(
1

2ε1
+

A
2ε2

)‖u‖2 + MA(
1

2ε3
+

1
2ε4

)‖h‖2+

+ M(
ε1

2
+

Aε3

2
)‖w‖2 + MA(

ε2

2
+

ε4

2
)‖`‖2,

(10.4.19)

where M = max(max[−1,1] |U′(z)|, max[−1,1] |B̄′(z)|) and ε1, ε2, ε3, ε4 are positive
numbers to be chosen.
Denoting with

V2(t) =
1
2
(‖u‖2 + A‖h‖2), (10.4.20)

applying the Poincaré’s inequality, we have

V̇2(t) ≤ [M(
1

2ε1
+

A
2ε2

)− Re−1 π2

4
]‖u‖2 + A[M(

1
2ε3

+
1

2ε4
)+

− Rm−1 π2

4
]‖h‖2 + M(

ε1

2
+

Aε3

2
)‖w‖2 + MA(

ε2

2
+

ε4

2
)‖`‖2.

(10.4.21)
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Now we choose εi, (i = 1, 2, 3, 4), in such a way that the coefficients of ‖u‖2 and ‖h‖2

are negative. For instance, ε1 =
8MRe

π2 , ε2 =
8AMRe

π2 , ε3 = ε4 =
8MRm

π2 , we have

V̇2(t) ≤ −
π2

8Re
‖u‖2 − π2

8Rm
‖h‖2 + h1‖w‖2 + h2A‖`‖2 (10.4.22)

where h1 and h2 are the coefficients of ‖w‖2 and ‖`‖2 in (10.4.21) and we have now
replaced the values of εi. Since, by (10.4.15), we have that ‖w‖2 + A‖`‖2 ≤ C1e−α0t,
with C1 a positive constant and α0 = π2

2 Re−1 max(1, Pm−1), we have

V̇2(t) ≤ −max(
π2

8Re
,

π2

8ARm
)V2 + C1e−α0t. (10.4.23)

Integrating this last inequality and taking into account(10.4.15), the exponential de-
cay of V(t) = V1 + V2 for any Reynolds number is easily obtained.
This means that the streamwise perturbations are always nonlinearly (and linearly)
stable, i.e. Re y = +∞.

This conclusion and the results we have obtained in SubSec. 10.4.1 for streamwise
perturbations are in an obvious contradiction. As in the fluid dynamics case (see Fal-
saperla, Mulone, and Perrone, 2022a) probably this contradiction is due to the choice
of the space of kinematically admissible perturbations where we look for the maxi-
mum. This space is too large and likely contains perturbations which are not admis-
sible as physical perturbations competing for the maximum.
In the next subsection, we propose a conjecture to overcome this contradiction.

10.4.3 Conjecture and rigorous proof that spanwise perturbations are the
least stabilizing perturbations

We observe that in the numerator of (10.4.5) do not appear explicitly the fields v and
k. Therefore we are led to make the following conjecture:

Conjecture 10.4.1. Let S0 the subspace of S consisting of functions u, v, w, h, k, ` ∈ S
such that v = k = 0. We call this space the space of the physical admissible perturbations
competing for the maximum of the functional F . We conjecture that the maximum m is
assumed among the functions of this subspace.

With this conjecture, we see immediately that the perturbations least stabilizing are
two-dimensional and that they are the spanwise perturbations.
Indeed, from (10.4.5), we now have

m = max
S0

I
‖∇u‖2 + ‖∇w‖2 + Ha2(‖∇h‖+ ‖∇`‖)

. (10.4.24)

The Euler-Lagrange equations of this maximum problem are given by

{
[−U′(wi + uk) + AB̄′(`i− hk)] + 2m∆u = ∇λ1

A[B̄′(uk− wi) + U′(`i + hk)] + 2mHa2∆h = ∇λ2,
(10.4.25)

where now the Lagrange multipliers λ1 and λ2 are such that ∇λ1 = (λ1x, 0, λ1z)
T,

∇λ2 = (λ2x, 0, λ2z)
T (this is because v = k = 0).

We take the third component of the double curl of (10.4.25) and the third component
of the curl of (10.4.25). We obtain the system of the Euler-Lagrange equations written
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in terms of ζ, w, ζM and `:
U′wy − AB̄′`y + 2m∆ζ = 0
AB̄′wy − AU′`y + 2mHa2∆ζM = 0
U′(ζy + 2wxz) + U′′wx − AB̄′′`x + AB̄′ζMy + 2m∆∆w = 0
−U′A(ζMy + 2`xz)−U′′A`x + AB̄′′wx − AB̄′ζy + 2mHa2∆∆` = 0,

(10.4.26)

with the boundary conditions

w = wz = ` = `z = 0, ζ = ζM = 0. (10.4.27)

where now ζ = −uy and ζM = −hy.
We take the second component of the double curl of (10.4.25) to get{

U′ζz + AB̄′ζMz + U′′ζ + AB̄′′ζM −U′wxy + AB̄′`xy = 0
B̄′ζz + U′ζMz + B̄′′ζ + U′′ζM + B̄′wxy −U′`xy = 0.

(10.4.28)

From w = 0 when z = ±1 we have that wxy = 0 when z = ±1. Similarly, we have
that ` = 0 when z = ±1. Furthermore, taking into account, that also wz = ζ = `z =
ζM = 0 when z = ±1, (10.4.28) evaluated in z = ±1 becomes{

U′ζz + AB̄′ζMz = 0, z = ±1
B̄′ζz + U′ζMz = 0, z = ±1,

(10.4.29)

This system implies that ζz = ζMz = 0 when z = ±1, if the determinant of the
system, that is det = U′2 − AB̄′2 6= 0.
In the case of Couette flow

det = U′2 − AB̄′2 =
Ha2

sinh2 (Ha)
(cosh2(Ha)− Pm sinh2(Ha))

which is nonzero at least if Pm ≤ 1.

In the case of Hartmann flow

det = U′2 − AB̄′2 =
Ha2

(cosh (Ha)− 1)2 (sinh2(Ha)− Pm(cosh(Ha)− sinh (Ha)
Ha

)2)

which is nonzero at least if Pm ≤ 1 (this is a simple calculation that can also be
checked with a math software).
From (10.4.26)1−2 we have ζzz = ζMzz = 0 when z = ±1.
Evaluating the derivative of (10.4.26)1−2 with respect to z in z = ±1, we have that
ζzzz = ζMzzz = 0 when z = ±1.
In order to prove that also the fourth derivative of ζ and ζMz is zero when z = ±1,
we compute the second derivative of (10.4.28) with respect to z and evaluate it in
z = ±1.
We obtain: {

−U′wxyzz + AB̄′`xyzz = 0, z = ±1
B̄′wxyzz −U′`xyzz = 0, z = ±1.

(10.4.30)
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As the determinant of this system is the same as before, that is det = U′2− AB̄′2 6= 0,
we have that wxyzz = `xyzz = 0 when z = ±1.
Therefore, evaluating the second derivative of (10.4.26)1−2 with respect to z on z =
±1, we have that ζzzzz = ζMzzzz = 0 when z = ±1.
Iterating this procedure we find that ζ and all its derivatives with respect to z are zero
on the boundaries. The same for ζM and all its derivatives with respect to z. This
implies that ζ = ζM ≡ 0, hence uy = hy = 0 and from (10.4.26)1−2 also wy = `y = 0.
Therefore, u = u(x, z), v = 0, w = w(x, z), h = h(x, z), k = 0, l = l(x, z) and the least
stabilizing perturbations which satisfy the system{

2U′wxz + U′′wx − AB̄′′`x + 2m∆∆w = 0
−2U′`xz −U′′`x + B̄′′wx + 2mPm−1∆∆` = 0,

(10.4.31)

with the boundary conditions w = wz = ` = `z = 0 on z = ±1, are the spanwise
perturbations. We note that (10.4.31) is the generalized Orr-Reynolds system for the
maximum of F .
Moreover, if we consider streamwise perturbations, from the system (10.4.31) we
have: {

2m‖∆w‖2 = 0
2mPm−1‖∆`‖2 = 0,

(10.4.32)

which implies m = 0, i.e. Re y = +∞.
Therefore we have proved:

Theorem 10.4.3. Supposing that U′2− AB̄′2 6= 0, then ζ, ζM and all their derivatives with
respect to z are zero.

Corollary 10.4.1. In the hypothesis of the previous theorem, then uy = wy = hy = ly = 0
and a Squire theorem holds (see Squire, 1933): the least stabilizing perturbations in the
energy norm V(t) are two-dimensional and they are the spanwise perturbations.

10.5 Some numerical results

We show here some numerical results. These results are obtained solving system
(10.4.11) with boundary condition (10.4.12), where we fix respectively a = 0 for
streamwise perturbations and b = 0 for spanwise perturbations. The generalized
eigenvalue problem (10.4.11)-(10.4.12) is then solved with a Chebyshev collocation
method, using between 50 and 70 base polynomials.
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FIGURE 10.1: Orr-Reynolds critical number Re for magnetic Couette
flow (left panel) and Hartmann flow (right panel) as a function of the
wave numbers and magnetic Prandtl number Pm = 0.1. The wave
numbers are respectively a and b for the spanwise and streamwise

perturbations.

In Fig. 10.1 we fix Pm = 0.1 and Ha = 0.1, 1, 10 and we obtain the critical Reynolds
number Re = 1/m as a function of either a or b. We note from Fig. 10.1 that in
all the cases the minima on streamwise curves are lower than the minima on the
corresponding (same Ha) spanwise curves.

FIGURE 10.2: Orr-Reynolds critical number Re for magnetic Couette
flow (left panel) and Hartmann flow (right panel) as a function of both

wave numbers, magnetic Prandtl number Pm = 0.1 and Ha = 1.

In Fig. 10.2 we fix Pm = 0.1 and Ha = 1 and show Re as a function of both a
and b. In this way we can check (at least for these sample values of Pm, Ha) that
the global minimum with respect to a, b is achieved on streamwise perturbations.
In both panels of Fig. 10.2 the streamwise and spanwise curves are highlighted by
bolder curves (on the a = 0 or b = 0 planes), and they are a portions of the curves
showed in Fig. 10.1 (for Ha = 1).

10.6 Discussion of the results

In this paper we study the nonlinear stability of magnetohydrodynamics plane Couette
and Hartmann shear flows. We prove that the streamwise perturbations are always
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stable. However our numerical calculations for the solutions of the Euler-Lagrange
equations for the maximum of the functional ratio (10.4.5) give critical Reynolds
numbers on the streamwise perturbations.
To resolve this contradiction, we propose a conjecture relating to the choice of phys-
ically admissible perturbations competing for the maximum (10.4.24) that gives the
critical Reynolds number on the spanwise perturbations.
With this conjecture here we rigorously prove that the least stabilizing perturba-
tions, in the energy norm, are the spanwise perturbations (we recall that in the fluid
dynamics case the critical Reynolds number for spanwise perturbations was only
supposed by Orr, 1907). This results implies a Squire theorem for nonlinear stability.
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Chapter 11

Stability of plane shear flows in a
layer with rigid and stress-free
boundary conditions

The results presented in this Section have been published by Falsaperla, Mulone,
and Perrone, 2022d.

11.1 Summary

We study the stability of shear flows of an incompressible fluid contained in a
horizontal layer. We consider rigid - rigid, rigid - stress-free and stress-free -
stress-free boundary conditions. We study (and recall some known results) linear
stability/instability of the basic Couette, Poiseuille and a laminar parabolic flow
with the spectral analysis by using the Chebyshev collocation method. We then use
an L2-energy with Lyapunov second method to obtain nonlinear critical Reynolds
numbers, by solving a maximum problem arising from the Reynolds energy equa-
tion. We obtain this maximum (which gives the minimum Reynolds number) for
streamwise perturbations Rec = Rey. However, this contradicts a theorem which
proves that streamwise perturbations are always stabilizing, Rey = +∞. Following
Falsaperla, Mulone, and Perrone, 2022a (see Sec. 9) we solve this contradiction with
a conjecture and prove that the critical nonlinear Reynolds numbers are obtained for
two-dimensional perturbations, the spanwise perturbations, Rec = Rex, as Orr had
supposed in the classic case of Couette flow between rigid planes.

11.2 State of the art

In Sec. 9 we presented the results of Falsaperla, Mulone, and Perrone, 2022a where
we have studied the nonlinear stability of plane Couette and Poiseuille flows with
rigid (and periodic) boundary conditions.
Here we investigate the stability for the classical shear flows, Couette and Poiseuille,
in the cases of one rigid an the other stress-free (also called slip-free) boundaries, RF,
and both stress-free FF boundaries, for completeness we also add the results for rigid
RR boundaries. We also consider a case of a parabolic laminar flow where we assign
the velocity at the bottom and the third component of the velocity and the tangential
stress at top boundary, this problem is more appropriate for studying the flow of
water in a river, see Falsaperla, Mulone, and Perrone, 2022c.
Although the case of stress-free planes is an ideal case (which is more appropriate
in astrophysics and meteorology) in some applications it is useful to consider such
boundary conditions. For example at the interface of a multiphase flow FF boundary



86
Chapter 11. Stability of plane shear flows in a layer with rigid and stress-free

boundary conditions

conditions can occur in situations including micro-and nano-fluid flow, flow over
hydrophobic surfaces, rising bubbles in quiescent liquid, and polymer extrusion pro-
cesses, see Tan, 2018 where the free-slip boundary condition with an adaptive Carte-
sian grid method has been implemented. In numerical applications, the possibility
of using free-slip conditions within the context of the particle finite element method
(PFEM) has been investigated Cerquaglia et al., 2017 “for high Reynolds number en-
gineering applications in which tangential effects at the fluid-solid boundaries are
not of primary interest, the use of free-slip conditions can alleviate the need for very
fine boundary layer meshes".
In Rao and Rajagopal, 1999 a history of slip and no-slip boundary conditions and a
list of references can be found. The authors in particular observe that “it has been
found that a large class of polymeric materials slip or stick-slip on solid boundaries.
For instance, when polymeric melts flow due to an applied pressure gradient, there
is a sudden increase in the throughput at a critical", see Rf. Rao and Rajagopal, 1999
p. 113.
The existence of slip between the velocity of the fluid at the wall and the speed of
the wall sometimes is considered, see Khaled and Vafai, 2004, the relative velocity is
assumed to be proportional to the shear rate at the wall with a suitable slip coefficient
(here we do not consider this interesting case that will be object of future study).
In Sec. 7 we have already recalled the classical results for Couette and Poiseuille for
RR boundary conditions.
Rionero and Mulone, 1991 studied the nonlinear stability of Couette and Poiseuille
flows with the Lyapunov second method in the case of stress-free boundary condi-
tions. By using a weighted energy they proved that plane Couette flows and plane
Poiseuille flows are conditionally asymptotically nonlinear stable for any Reynolds
numbers. They observed that, by applying the classical L2-energy method, it is pos-
sible to obtain global nonlinear stability. However, they have not studied the maxi-
mum problem obtained from the Reynolds-Orr equation, and by introducing a suit-
able kinematically admissible velocity field, they proved that the nonlinear critical
Reynolds numbers are less than 80 and 40 in the FF case of Couette and Poiseuille
flows, respectively.
In Falsaperla, Mulone, and Perrone, 2022a we have pointed out that the problem
of finding the best conditions for global nonlinear energy stability with respect to
three-dimensional perturbations is a complex problem. This problem is equivalent
to finding the maximum of a functional ratio that arises from the Reynolds-Orr en-
ergy equation, see Reynolds, 1883. In particular in Falsaperla, Mulone, and Perrone,
2022a, using the RR boundary conditions, we run into a contradiction. Also here,
using RF and FF boundary conditions, a similar problem arises.
The plan of the paper is the following.
In Sec. 11.3 we write the non-dimensional perturbation equations of laminar flows:
plane Couette, plane Poiseuille and “parabolic" flow, and we recall the classical lin-
ear stability/instability results.
In Sec. 11.4 we prove nonlinear exponential stability of streamwise perturbations for
any Reynolds number and any boundary conditions, i.e. Rey = +∞ with respect
to the L2-energy norm. Furthermore, we study the maximum problem arising from
the Reynolds energy, we arrive at a contradiction and make a conjecture to solve
it by introducing the space of physical admissible perturbations competing for the
maximum problem. In this space we find the optimal perturbations which give the
critical Reynolds number: the spanwise perturbations, as Orr, 1907 had supposed in
the case RR.
Sec. 11.5 is dedicated to the discussion of the results.
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11.3 Laminar flows between two parallel planes

Given a reference frame Oxyz, with unit vectors i, j, k, consider the layer D = R2 ×
[−1, 1] of thickness 2 with horizontal coordinates x, y and vertical coordinate z.
Plane parallel shear flows are solutions of the stationary Navier-Stokes eqs. (4.0.2).
The velocity field U has the form U = f (z)i. In particular, for fixed velocity at the
boundaries z = ±1, we have the well known profiles:
a) Couette f (z) = z,
b) Poiseuille f (z) = 1− z2.
If the velocity vanishes at z = −1 and its derivative with respect to z vanishes at
z = 1, we have the

c) laminar parabolic flow f (z) =
1
4
[−z2 + 2z + 3] (see eq. (6) in Falsaperla et al. 2020b).

11.3.1 Perturbation equations

The perturbation equations to the plane parallel shear flows, in non-dimensional
form, are 

ut = −u·∇u + Re−1∆u− ( f ux + f ′w)− ∂p
∂x

vt = −u·∇v + Re−1∆v− f vx −
∂p
∂y

wt = −u·∇w + Re−1∆w− f wx −
∂p
∂z

∇ · u = 0,

(11.3.1)

where u = ui+ vj+wk is the perturbation to the velocity field, p is the perturbation
to the pressure field.
Throughout the paper, we use the symbol hx as ∂h

∂x , ht as ∂h
∂t , etc., for any function h,

f ′ =
d f
dz

.
To system (11.3.1) we append the
rigid (R) boundary conditions

u(x, y,±1, t) = 0, (x, y, t) ∈ R2 × (0,+∞),

stress-free (F) boundary conditions

uz(x, y,±1, t) = vz(x, y,±1, t) = w(x, y,±1, t) = 0,

(x, y, t) ∈ R2 × (0,+∞),
in this case, in order to guarantee the uniqueness we must add the average condi-
tions ∫

Ω
u dz dy dz =

∫
Ω

v dz dy dz = 0

Kloeden and Wells, 1983 (Ω is the cell of periodicity, see eq. (8.5.1)),
or mixed (RF, rigid - stress-free) boundary conditions

u(x, y,−1, t) = 0, (x, y, t) ∈ R2 × (0,+∞),

uz(x, y, 1, t) = vz(x, y, 1, t) = w(x, y, 1, t) = 0,

(x, y, t) ∈ R2 × (0,+∞).
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We also give the initial condition

u(x, y, z, 0) = u0(x, y, z), in D,

with u0(x, y, z) solenoidal vector which vanishes at the boundaries.

11.3.2 Linear stability/instability

The linear stability/instability is obtained by studying the linearised system by ne-
glecting the terms u·∇u, u·∇v, u·∇w in (11.3.1).
The linear perturbation equations become



ut = Re−1∆u− ( f ux + f ′w)− ∂p
∂x

vt = Re−1∆v− f vx −
∂p
∂y

wt = Re−1∆w− f wx −
∂p
∂z

∇ · u = 0.

(11.3.2)

Since the system is autonomous, we consider solutions of the form (cf. Drazin and
Reid, 2004; Straughan, 2004):

f (x, y, z, t) = f (z)ei(ax+by)+ct , (11.3.3)

with f = u, v, w or p, in the domain R2× (−1, 1)× (0,+∞), a ≥ 0, b ≥ 0, a2 + b2 > 0,
and c is a complex number. By substituting (11.3.3) in (11.3.2), we have the system

cu + ia f u + f ′w = Re−1(D2 − (a2 + b2))u− iap

cv + ia f v = Re−1(D2 − (a2 + b2))v− ibp

cw + ia f w = Re−1(D2 − (a2 + b2))w− Dp

iau + ibv + Dw = 0 ,

(11.3.4)

where D and D2 indicate first and second derivatives with respect to z.
We recall that, for rigid boundary conditions, the classical result of Romanov, 1973
proves that Couette flow is linearly stable for any Reynolds number. Instead, Poiseuille
flow is unstable for any Reynolds number bigger that 5772 (Orszag, 1971).
We observe that, in the linear case, the Squire theorem (see Squire, 1933) holds, and
the most destabilizing perturbations are two-dimensional, in particular the spanwise
perturbations (see Drazin and Reid, 2004, p. 155). The critical Reynolds value, for
Poiseuille flow, can be obtained by solving the celebrated Orr-Sommerfeld equation
(see Drazin and Reid, 2004).
Applying the Squire transformation, we are led to study the system of the spanwise
perturbations: 

cu + ia f u + f ′w = Re−1(D2 − a2)u− iap

cw + ia f w = Re−1(D2 − a2)w− Dp

iau + Dw = 0 ,

(11.3.5)
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We differentiate the first and second member of (11.3.5)1 with respect to z, then
multiply by ia; multiply both sides of (11.3.5)1 by a2. Taking into account (11.3.5)3,
adding term to term the equations so obtained, we get the Orr-Sommerfeld equation,
Sommerfeld, 1908 (cf. Drazin and Reid, 2004, p. 156)

c(D2 − a2)w + ia f (D2 − a2)w− f ′′iaw = Re−1(D2 − a2)2w. (11.3.6)

This equation can also be obtained by taking the third component of the double curl
of the equation

cu + f ux + f ′wi = Re−1∆u−∇p (11.3.7)

and applying the solenoidality of the velocity field and the Squire transformation.
It is easy to see that both Couette and Poiseuille flows under stress-free boundary
conditions are linearly stable for any Reynolds number. This is in agreement with
the result of Rionero and Mulone, 1991. Moreover, plane Couette flow, with rigid
boundary conditions is linearly stable for any Reynolds numbers (Romanov, 1973).
By solving this equation with the Chebyshev collocation method, we obtain the fol-
lowing results for linear stability/instability:

Couette

1. In the stress-free - stress-free case we have stability for any Reynolds number,
see Rionero and Mulone, 1991 (Fig. 11.1).

2. In the rigid - stress-free case we have stability for any Reynolds number (in
this case we obtain a graph very similar to the FF case).

3. In the rigid - rigid case we have stability for any Reynolds number, see Ro-
manov, 1973 (in this case we obtain a graph very similar to the FF case).

Poiseuille

1. In the stress-free - stress-free case we have stability for any Reynolds number,
see Rionero and Mulone, 1991, (Fig. 11.2).

2. In the rigid - stress-free case we have instability for Re > 169785 (see Fig. 11.3,
left panel).

3. In the rigid - rigid case we have instability for Re > 5772 ( Orszag, 1971), (see
Fig. 11.4, right panel).

Laminar parabolic flow

1. In the stress-free - stress-free case we have stability for any Reynolds number
(see Fig. 11.5, top panel)

2. In the rigid - stress-free case we have stability of any Reynolds number, see
Falsaperla, Mulone, and Perrone, 2022c ( Fig. 11.5, middle panel).

3. In the rigid - rigid case we have stability for any Reynolds number (see
Fig. 11.5, bottom panel).
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FIGURE 11.1: Plane Couette (linear) stability. The surface gives the
maximum real part of the time decay coefficient Real(c), when a runs
from 0 to 4, and the Reynolds number Re is in the interval [103.5, 106.5]
for Orr-Sommerfeld equation (11.3.6) with FF boundary conditions
(for RF and RR boundaries the graphics are very similar). The hor-
izontal plane corresponds to Real(c) = 0. Other computations in

larger ranges of Re and a confirm these stability results.

FIGURE 11.2: Plane Poiseuille (linear) stability. The surface gives the
maximum real part of the time decay coefficient Real(c), when a runs
from 0 to 4, and the Reynolds number Re is in the interval [103.5, 106.5]
for Orr-Sommerfeld equation (11.3.6) with FF boundary conditions.

The horizontal planes correspond to Real(c) = 0.
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FIGURE 11.3: On the top: the surface gives the real part of the time
decay coefficient Real(σ) for Orr-Sommerfeld equation (11.3.6) with
RF boundary conditions, a runs from 0.45 to 0.75, and the Reynolds
number Re is in the interval [105.2, 105.8]. The meshed plane corre-
sponds to Real(c) = 0, the surface corresponds to the set of points
(a, log10(Re ), Real(c)). On the bottom: the correspondent critical
curve in the a-Re plane is plotted; the minimum is highlighted by
a circle and its numerical value is marked on the horizontal axis. The

minimum is equal to Re = 169785.

11.4 Nonlinear energy stability

Assume that both u and ∇p are x, y-periodic with periods a and b in the x and y
directions, respectively, with wave numbers (a, b) ∈ R2

+. In the following it suffices
therefore to consider functions over the periodicity cell Ω (see 8.5.1).
As the basic function space, we take L2(Ω), which is the space of square-summable
functions in Ω.
Here we study the nonlinear energy stability with the Lyapunov method, by using the
classical energy

V(t) =
1
2
[‖u‖2 + ‖v‖2 + ‖w‖2].

We obtain sufficient conditions of global nonlinear stability.
Taking into account the solenoidality of u and the boundary condition, we write the
Reynolds-Orr energy identity, see Reynolds, 1883,

V̇ = −( f ′w, u)− Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2], (11.4.1)
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FIGURE 11.4: On the top: the surface gives the real part of the time
decay coefficient Real(σ) for Orr-Sommerfeld equation (11.3.6) with
RR boundary conditions, a runs from 0.45 to 0.75, and the Reynolds
number Re is in the interval [103.7, 104.2]. The meshed plane corre-
sponds to Real(c) = 0, the surface corresponds to the set of points
(a, log10(Re ), Real(c)). On the bottom: the correspondent critical
curves in the a-Re plane are plotted; the minimum is highlighted by
a circle and its numerical value is marked on the horizontal axis. The

minimum is equal to Re = 5772, the Orszag, 1971 result.

and we have

V̇ = −( f ′w, u)− Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2] =

=

(
−( f ′w, u)

‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2 −
1

Re

)
‖∇u‖2 ≤

≤
(

1
Re c
− 1

Re

)
‖∇u‖2,

(11.4.2)

where
1

Re c
= m = max

S

−( f ′w, u)
‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2 , (11.4.3)

S is the space of the kinematically admissible fields

S = {u, v, w ∈ H2(Ω), satisfying the boundary
conditions RR, RF, FF, periodic in x, and y,
ux + vy + wz = 0, ‖∇u‖ > 0},

(11.4.4)

and H2(Ω) is the Sobolev space of the functions which are in L2(Ω) together with
their first and second generalized derivatives.
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FIGURE 11.5: Plane parabolic (linear) stability. Each surface gives
the real part of the time decay coefficient Real(c), when a runs from
0 to 4, and the Reynolds number Re is in the interval [103.5, 106.5]
for Orr-Sommerfeld equation (11.3.6) with FF, RF and RR bound-
ary conditions (from top to bottom). Each meshed plane corre-
sponds to Re (c) = 0, the surface corresponds to the set of points

(a, log10(Re ), Real(c)).

The Euler-Lagrange equations of this maximum problem are given by

− f ′wi− f ′uk + 2m∆u = ∇λ, (11.4.5)

where λ is a Lagrange multiplier in the cases RR and RF.
In the case FF, the Euler-Lagrange equations of this maximum problem are given by

− f ′wi− f ′uk + 2m∆u = ∇λ + h, (11.4.6)

where the function λ and the constant vector h = (h1, h2, 0)T are Lagrange multipli-
ers which come from the zero divergence of the velocity vector u, and the zero mean
conditions of u and v, respectively.
It is easy to prove that h = 0. For this we write equation (11.4.6) in components
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
− f ′w + 2m∆u = λx + h1

2m∆v = λy + h2

− f ′u + 2m∆w = λz .

(11.4.7)

Integrating (11.4.7)2 over Ω we have

2m
∫

Ω
∆vd Ω =

∫
Ω

λyd Ω +
∫

Ω
h2d Ω.

Due to the boundary conditions and the periodicity it follows

h2(meas(Ω)) = 0

and so h2 = 0. Integrating (11.4.7)1 over Ω we have

−
∫

Ω
f ′wd Ω + 2m

∫
Ω

∆ud Ω =
∫

Ω
λxd Ω +

∫
Ω

h1d Ω.

As before we deduce
−
∫

Ω
f ′wd Ω = h1(meas(Ω)).

Computing this integral and using the boundary conditions and the divergence-free
equation, we have

−
∫

Ω
f ′wd Ω =

∫
Ω

f wzd Ω = −
∫

Ω
[( f u)x + ( f v)y]d Ω = 0,

and so also h1 = 0. Therefore the Euler-Lagrange equations are given by (11.4.5) for
any boundary condition.
We define

ζ = vx − uy

(it is linked to the toroidal part of the decomposition of the velocity vector u in the
poloidal, toroidal and the mean flow, see Kaiser and Mulone, 2005; Kaiser, Tilgner,
and Wahl, 2005) and take the third component of the double curl of (11.4.5) and the
third component of the curl of (11.4.5). We obtain the system of the Euler-Lagrange
equations written in terms of ζ and w:{

f ′(ζy + 2wxz) + f ′′wx + 2m∆∆w = 0
f ′wy + 2m∆ζ = 0,

(11.4.8)

with the boundary conditions

w = wz = 0, ζ = 0 (11.4.9)

on z = ±1 in the RR case,

w = wz = 0, ζ = 0 on z = −1 and w = wzz = 0, ζz = 0 on z = 1 (11.4.10)

in the RF case,
and

w = wzz = 0, ζz = 0, (11.4.11)

on z = ±1 in the FF case.
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By solving this system with the Chebyshev collocation method, and using 80 poly-
nomials, we obtain that the critical Reynolds numbers are reached for streamwise
perturbations, Rec = Rey.

FIGURE 11.6: Plane Couette energy Orr-Reynolds number Re = Re c
as function of the wave numbers a and b, for system (11.4.8) with FF,
RF and RR boundary conditions (from top to bottom). The absolute
minimum of each surface is achieved on the streamwise perturba-

tions (a = 0).

FIGURE 11.7: Plane Poiseuille energy Orr-Reynolds number Re =
Re c as function of the wave numbers a and b, for system (11.4.8) with
FF, RF and RR boundary conditions (from top to bottom). The abso-
lute minimum of each surface is achieved on the streamwise pertur-

bations (a = 0).

FIGURE 11.8: Plane parabolic energy Orr-Reynolds number Re =
Re c as function of the wave numbers a and b, for system (11.4.8) with
RF and RR boundary conditions (from top to bottom). The absolute
minimum of each surface is achieved on the streamwise perturba-

tions (a = 0).

In Table 11.1 we report the critical energy Orr-Reynolds numbers obtained for
streamwise Rey, and for spanwise perturbations Rex, corresponding to the solutions
of system (11.4.8).
In the next subsection we prove that the streamwise perturbations are stable for any
Reynolds number. This means that the previous results, even if numerically correct
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Couette Poiseuille Parabolic

RR
Re x = 44.30 a = 1.89 Re x = 87.59 a = 2.09 Re x = 84.95 a = 1.92

Re y = 20.66 b = 1.55 Re y = 49.59 b = 2.05 Re y = 39.86 b = 1.58

RF
Re x = 34.88 a = 1.57 Re x = 62.64 a = 1.70 Re x = 72.98 a = 1.62

Re y = 12.93 b = 1.04 Re y = 22.25 b = 1.15 Re y = 30.63 b = 1.13

FF
Re x = 26.34 a = 1.21 Re x = 48.89 a = 1.39 Re x = 50.51 a = 1.27

Re y = 19.22 b = 1.14

FR
Re x = 34.88 a = 1.57 Re x = 62.64 a = 1.70 Re x = 61.73 a = 1.57

Re y = 12.93 b = 1.04 Re y = 22.25 b = 1.15 Re y = 21.19 b = 1.02

TABLE 11.1: We report the Reynolds numbers and wave numbers for
spanwise (Re x, a) and streamwise (Re y, b) perturbations, obtained
from system (11.4.8) for different basic laminar flows and boundary
conditions. The case FR corresponds to consider stress-free perturba-

tions at the bottom plane.

(see for example the case of the Couette flow with rigid boundary conditions studied
by Joseph, 1968) do not match the physics of the problem, see Falsaperla, Mulone,
and Perrone, 2022a. This is due to a possible wrong choice of the space of the fields
competing for a maximum problem (see below).

11.4.1 Stability of streamwise perturbations for any Reynolds number

We assume that the perturbations are streamwise, i.e. they do not depend on x ( ∂
∂x ≡ 0).

Therefore the perturbation equations (11.3.1) become



ut = −u·∇u + Re−1∆u− f ′w

vt = −u·∇v + Re−1∆v− ∂p
∂y

wt = −u·∇w + Re−1∆w− ∂p
∂z

vy + wz = 0.

(11.4.12)

We use the classical energy norm and show that the streamwise perturbations cannot
destabilize the basic laminar flows: Couette, Poiseuille and laminar parabolic flow
(see Falsaperla, Mulone, and Perrone, 2022a).
We multiply (11.4.12)1 by u and integrate over Ω (now Ω = Ωyz = [0, 2π

b ]× [−1, 1]).
Besides, we multiply (11.4.12)2 and (11.4.12)3 by v and w and integrate over Ω. By
taking into account of the solenoidality of u, the boundary conditions and the peri-
odicity, we have

d
dt
‖u‖2

2
= −( f ′u, w)− Re−1‖∇u‖2,

d
dt
(
‖v‖2

2
+
‖w‖2

2
) = −Re−1[‖∇v‖2 + ‖∇w‖2].

By using the Wirtinger inequality, see Kaiser and Mulone, 2005; Kaiser and Xu, 1998,
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d
dt
(
‖v‖2

2
+
‖w‖2

2
) = −Re−1[‖∇v‖2 + ‖∇w‖2] ≤

≤ −C(‖v‖2 + ‖w‖2).
(11.4.13)

and integrating we have

‖v‖2 + ‖w‖2 ≤ H0e−2Ct, H0 = ‖v0‖2 + ‖w0‖2, (11.4.14)

where C is a positive constant which depends on the domain and the boundary

conditions: C =
1

Re
min{π2

4
, b2} for FF boundaries, C =

π2

16Re
for RF boundaries,

and C =
π2

4Re
for RR boundaries. v0 and w0 are the initial values of v and w.

Now we consider the equation depending on u and define M = max[−1,1] | f ′(z)|. We
have the following inequalities:

d
dt
‖u‖2

2
= −( f ′u, w)− Re−1‖∇u‖2 ≤ M‖u‖‖w‖+

− Re−1‖∇u‖2 ≤ M(
‖u‖2

2ε
+

ε

2
‖w‖2)+

− Re−1‖∇u‖2 ≤ M(
‖u‖2

2ε
+

ε

2
‖w‖2)+

− C‖u‖2 = (
M
2ε
− C)‖u‖2 +

ε

2
M‖w‖2 =

= −C
2
‖u‖2 +

M2

C
‖w‖2

2
.

(11.4.15)

where ε =
M
C

.
We use this inequality and (11.4.14) to obtain

d
dt
‖u‖2 ≤ −C‖u‖2 +

M2

C
‖w‖2 ≤ −C‖u‖2+

+
M2

C
(‖v‖2 + ‖w‖2) ≤ −C‖u‖2 +

M2

C
H0e−2Ct.

(11.4.16)

Integrating last inequality, we have

‖u‖2 ≤ e−Ct[k− M2

C2 H0e−Ct] = ke−Ct − M2

C2 H0e−2Ct, (11.4.17)

with k = K0 +
M2

C2 H0, K0 = ‖u0‖2, and u0 are the initial value of u.
We introduce the classical energy

L(t) =
1
2
[‖u‖2 + ‖v‖2 + ‖w‖2], (11.4.18)

and observe that the initial energy is given by L0 =
H0 + K0

2
. Adding the (11.4.14)

and the (11.4.17) we finally have:
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L(t) ≤ H0e−2Ct + (K0 +
M2

C2 H0)e−Ct − M2

C2 H0e−2Ct ≤

≤ L0e−2Ct + (L0 +
M2

C2 L0)e−Ct =

= L0(e−2Ct + e−Ct +
M2

C2 e−Ct).

(11.4.19)

This inequality implies nonlinear exponential stability of the basic laminar flows
(Couette, Poiseuille and parabolic) with respect to the streamwise perturbations for
any Reynolds number.

Therefore, we have proved:

Theorem 11.4.1. Assuming the perturbations to the basic shear flows U = f (z)i are
streamwise, then we have nonlinear stability according to (11.4.19) for any Reynolds num-
ber.

From this Theorem we have Rey = +∞, i.e., the streamwise perturbations cannot desta-
bilize the basic flows. This contradicts the numerical results we have reached (cf.
Joseph, 1968, Joseph and Carmi, 1969 and Busse, 1972, in the RR case).

11.4.2 Possible solution of the contradiction

To solve this contradicton we suppose, as in Falsaperla, Mulone, and Perrone, 2022a,
whose principal results are reported in Sec. 9, that this space is too large and likely
contains perturbations which are not admissible as physical perturbations competing
for the maximum.

With this conjecture, we see immediately that the streamwise perturbations are al-
ways stable and the maximum is achieved on the spanwise perturbations.
In fact, from the Reynolds-Orr equation, we obtain the Euler-Lagrange equations
(see eq. (9.4.34) for more details) :

− f ′wi− f ′uk + 2m∆u = ∇λ, (11.4.20)

The system of the Euler-Lagrange equations written in terms of ζ and w:{
f ′(ζy + 2wxz) + f ′′wx + 2m∆∆w = 0
f ′wy + 2m∆ζ = 0,

(11.4.21)

with the boundary conditions (11.4.11), (11.4.10), (11.4.9), where now ζ = −uy.
We take the second component of the double curl of (11.4.20) to get

f ′ζz + f ′′ζ − f ′wxy = 0. (11.4.22)

From this equation and (11.4.21)2 we have that ζ and all its derivative with respect
to z are zero on the boundaries. We have already proved this in the particular case
of Couette between rigid planes in SubSec. 9.4.2.
Let’s prove now this in another particular case of Couette with FF boundary con-
ditions. The proof in the case of the other laminar flows and different boundary
conditions is done in a similar way.
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In the case of RR Couette, from (11.4.21) and (11.4.22), we have:
ζy + 2wxz + 2m∆∆w = 0
wy + 2m∆ζ = 0
ζz − wxy = 0.

(11.4.23)

On the boundaries z = ±1 we have ζ = 0, from (11.4.23)3 evaluated on z = ±1, we

have ζ ′ = 0 (ζ ′ =
dζ

dz
). From (11.4.23)2, evaluated on z = ±1, we have ζ ′′ = 0. Now if

we differentiate (11.4.23)2 with respect to z and evaluate the result on the boundaries
we have ζ ′′′ = 0. From this, if we differentiate twice (11.4.23)3 with respect to z we
have that the second derivative of w with respect to z is zero on the boundaries. And
so, from (11.4.23)2 differentiated twice with respect to z we have ζ ′′′′ = 0, ad so on.
In the case of FF Couette we have ζ ′ = 0 on the boundaries. From ζ = −uy and the
solenoidality of velocity field, we have ζx = −uxy = wzy. Moreover, by taking the
Laplacian of (11.4.23)3 we have ∆ζz = ∆wxy. Evaluating this on z = ±1, we have
∆ζz = 0 on the boundaries. From (11.4.23)2 we now have wyz = ζx = 0. This implies
that ζ = 0 on the boundaries. (11.4.23)2, evaluated on z = ±1, implies that ζ ′′ = 0
on z = ±1. From this and ∆ζz = 0 on the boundaries, we also have ζ ′′′ = 0 on the
boundaries. Now we take the Laplacian of (11.4.23)2 and we get also ζ ′′′′ = 0 on
z = ±1. And so on.
This implies that ζ ≡ 0, hence uy = 0 and from (11.4.21)2 also wy = 0. Therefore,
u = u(x, z), v = 0, w = w(x, z) and the less stabilizing perturbations which satisfy
the equation

2 f ′wxz + f ′′wx + 2m∆∆w = 0, (11.4.24)

with boundary conditions (11.4.11), (11.4.10), (11.4.9), are the spanwise perturba-
tions, as Orr, 1907 had supposed for RR Couette case. Moreover, if we consider
streamwise perturbations, from the equation

m‖∆w‖2 = 0,

we immediately find m = 0, i.e. Rey = +∞. We report these results in Figs. 11.9,
11.10, 11.11 (similar graphs can be done in the case FR), where the critical Reynolds
number versus wave numbers for spanwise perturbations are shown.
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FIGURE 11.9: The energy Orr-Reynolds number, for Couette shear
flow, as function of the wavenumber a, for eq. (11.4.24) with rigid-
rigid, rigid-free, free-free boundary conditions (from the top to the
bottom curve). For each curve, the minimum is highlighted by an as-
terisk and its numerical value is marked on the y-axis. Note that the
minimum of the curve corresponding to the rigid-free boundary con-
ditions is greater than the one corresponding to the free-free bound-
ary conditions and lower than the one corresponding to the rigid-

rigid boundary conditions.

FIGURE 11.10: The energy Orr-Reynolds number, for Poiseuille shear
flow, as function of the wavenumber a, for eq. (11.4.24) with rigid-
rigid, rigid-free, free-free boundary conditions (from the top to the
bottom curve). For each curve, the minimum is highlighted by an as-
terisk and its numerical value is marked on the y-axis. Note that the
minimum of the curve corresponding to the rigid-free boundary con-
ditions is greater than the one corresponding to the free-free bound-
ary conditions and lower than the one corresponding to the rigid-

rigid boundary conditions.



11.5. Discussion of the results 101

FIGURE 11.11: The energy Orr-Reynolds number, for parabolic shear
flow, as function of the wavenumber a, for eq. (11.4.24) with rigid-
rigid, rigid-free, free-free boundary conditions (from the top to the
bottom curve). For each curve, the minimum is highlighted by an as-
terisk and its numerical value is marked on the y-axis. Note that the
minimum of the curve corresponding to the rigid-free boundary con-
ditions is greater than the one corresponding to the free-free bound-
ary conditions and lower than the one corresponding to the rigid-

rigid boundary conditions.

11.5 Discussion of the results

We study linear instability and nonlinear stability in the L2-energy norm for laminar
Couette, Poiseuille and parabolic flows when at least one of the planes bounding the
layer is stress-free. We also recall the classic case of rigid boundaries for Couette and
Poiseuille flows.
We observe that the classical Couette and Poiseuille basic motions are obtained with
RR boundary conditions, however it is possible to study the stability also with re-
spect to stress-free perturbations. In fact, as can be verified, such basic motions can
be obtained when one of the two planes has an assigned tangential stress (stress-free
perturbations), for example in the case of the Couette motion U(z) = z, the value of
U(z) can be assigned in the lower plane - rigid plane - and its first derivative in the
upper plane, or both have a fixed tangential stress (in this case, for the purpose of
uniqueness of the motion, an assigned average condition must be requested).
By using the energy norm, we prove nonlinear stability conditions with respect to
streamwise perturbations for any Reynolds number, and for any boundary condition
RR, RF and FF i.e. we have Rey = +∞. On the other hand, the numerical calcula-
tions made with the Chebyshev collocation method give critical Reynolds numbers
Rey < +∞ for nonlinear energy stability on streamwise perturbations. This, as seen
in the work of Falsaperla, Mulone, and Perrone, 2022a, gives rise to a contradic-
tion. We make a conjecture to overcome this contradiction: we introduce a space
of physical perturbations competing for the maximum problem and we prove that
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the least stabilizing perturbations are two-dimensional (spanwise perturbations), for
any boundary conditions RR, RF, FF.
We note that the critical Reynolds numbers we obtain for each basic flow Cou-
ette, Poiseuille and parabolic, show the stabilizing effect of the no slip boundaries
as Figs. 11.9 - 11.11 also indicate. This happens also in the Bénard problem, see
Chandrasekhar, 1961 for a fluid in a layer between rigid or stress-free boundaries.
Moreover, we observe that the least critical Reynolds numbers (on the spanwise per-
turbations) are given for Couette case (for any boundary conditions).
We observe that in Table 11.1, in the FF case, we left two empty lines because our
calculations, for streamwise perturbations, give some problems of convergence and
numerical instability for b→ 0.
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Monotonic energy stability for
inclined laminar flows

In the previous sections we have analysed the perturbations of a basic laminar mo-
tion (e.g. Couette, Poiseuille) without being interested in the study of the transient,
i.e. for a finite time interval [0, T], and which can give information on the possible de-
velopment of turbulence (only a mention of the transient was made in SubSec. 9.4.1,
see Case ii)). Therefore in Giacobbe, Mulone, and Perrone, 2022 the transient growth
has been investigated in the wake of Henningson’s works. In this section the main
results of this work are presented.

12.1 Summary

In this article we consider the family of basic flows introduced in Sec. 5 (see eq. (5.0.8)
and Fig. 5.2). We simplify the basic motion by considering that the plates of the layer
where the fluid flows are in relative motion and the fluid is subjected to a gradient
of pressure with only a non zero component in direction of the boundaries’ relative
motion. In this setup the possible laminar steady state solutions becomes a combi-
nation of Couette-Poiseuille flow in the direction parallel to the boundaries’ relative
motion (the transverse component is equal to zero). We use analytical methods and
a Chebyshev collocation method with many different approaches to investigate the
monotonic behaviour of the energy along perturbations. One of these approaches is
related to the transient growth. We obtain in different ways an extension of known
results for general shear flows, and we confirm the validity of some approaches that
can be found in the literature. The basic motion includes the Poiseuille flow and the
Couette flow as special cases. Therefore the results obtained may give a contribution
to the conjecture.

12.2 State of the art

There are many physical applications of laminar flows in the real world. For
example, to geophysics (sea, rivers and water flows in channels), astrophysics,
biology (blood flow), industry, etc. Many articles are devoted to the study of these
flows, also in the magnetic case, and to their stability/instability regimes, see for
example Reynolds, 1895b, Orr, 1907, Joseph, 1976, Schmid and Henningson, 2001b,
Drazin and Reid, 2004, Blasio, 2011, Falsaperla et al. 2019b, Falsaperla, Mulone,
and Perrone, 2022a. The stability of inclined flows has received also attention
due to its applications to rivers flows and to geophysical applications such as the
evolution of landslides (see Blasio, 2011). Finally, the stability of Couette flows or
Poiseuille flows has been studied separately for each of these flows. Sometimes
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the combination of Poiseuille-Couette flows has been examined (see Potter, 1966,
Cowley and Smith, 1985, Balakumar, 1997, Höink and Lenardic, 2010).

In this work we consider the monotonic stability of an inclined Poiseuille-Couette
flows. The basic motion is given by (5.0.8) which depends only on the parameter
ξ, because η = 0, In particular we investigate the monotone behaviour of energy
along perturbations and the nonlinear Reynolds critical parameters for monotonic
stability. We compute with two different methods some critical stability surfaces
for a-few values of the coupling parameter ξ, which is a parameter in [0, 1] that
interpolates from Couette (ξ = 0) to Poiseuille (ξ = 1), and we show how these
surfaces change as ξ varies. We finally compare our results with those obtained in
the literature. In the limit cases of Couette flows and Poiseuille flows we find results
in agreement with previous studies (see, e.g., Reddy and Henningson, 1993).
In Sec. 12.4 we introduce the Reynolds-Orr energy equations, in Sec. 12.5 we com-
pute the critical threshold using an Euler-Lagrange equation approach, in Sec. 12.6
we compute the same critical threshold using a maximal initial growth rate ap-
proach, in Sec. 12.7 we make comparisons with the maximal total growth and draw
some conclusions.

12.3 Basic flow and perturbations equations

Consider the setup described in Sec. 5 Case 1.
Let us for now assume that η = 0 (the case η 6= 0 is intestigated in the next section
13). The linear equations for the perturbations u i + v j + w k, p to the steady state
are 

ut =
1
R ∆u− f ux − f ′w− px

vt =
1
R ∆v− f vx − py

wt =
1
R ∆w− f wx − pz

ux + vy + wz = 0
u = v = w = 0 on the boundary.

(12.3.1)

Considering w and ζ = vx − uy, the vorticity of (u, v, w), one can reduce the equa-
tions to 

∆wt =
1
R ∆2w− f ∆wx + f ′′wx

ζt =
1
R ∆ζ − f ζx + f ′wy

w = wz = ζ = 0 on the boundary.

(12.3.2)

The first equation of (12.3.2) can be obtained considering the third component of the
double curl of equations (12.3.1). The system of equations (12.3.2) is deduced from
(12.3.1) but there are means of reconstructing solutions of (12.3.1) starting from so-
lutions of (12.3.2). In fact if u, v, w is a divergence-free vector field satisfying (12.3.1)
then w, ζ are two functions satisfying (12.3.2). Vice versa, if w, ζ satisfy (12.3.2), by
the divergence-free condition one has that u and v can be obtained using equations

∆′u = −ζy − wxz

∆′v = ζx − wyz

u = v = 0 on the boundary,

(12.3.3)

where ∆′ = ∂2
x + ∂2

y (see Chandrasekhar, 1961).
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Indeed {
ux + vy + wz = 0
ζ = vx − uy

⇔
{

wzx = uxx − vxy

ζy = vxy − uyy.
(12.3.4)

The sum of these two equations gives ζy + wzx = −∆′u. Similarly, one can obtain
the equation for ∆′v of (12.3.3). As we can see the complete equivalence of these two
sets of equations is, in our understanding, not settled. In fact in the literature authors
(see Schmitt and Wahl, 1992) seem to resort to the poloidal, toroidal, and mean field
decomposition, but that is only a partial solution to the problem. The projection
Π : (u, v, w) 7→ (vx − uy, w) = (ζ, w) is linear from the space of divergence-free
vector fields to 2-dimensional fields that we call stream-fields. The kernel of such
map are the velocity fields of the type (Fx, Fy, 0) where F is a function of (x, y, z),
periodic on x and y like the perturbation, zero on the boundaries, and such that
∆′F = 0 (harmonic function).
It might seem that from (ζ, w) we are not able to reconstruct (u, v, w) because from
eq. (12.3.3) we have that if there exist F(x, y, z) with ∆′F = 0, which means that
there are non zero functions in the kernel of the map, if ∆′u = −(ζy + wzx), also
∆′(u + F) = −(ζy + wzx) (similarly for v) and we do not have a bijection. There-
fore the solutions of (12.3.3) would not be uniquely defined. However Liouville’s
theorem asserts that every bounded harmonic function is constant. Our function
F is bounded and is zero on the boundaries. This implies that it must be zero ev-
erywhere. Therefore there are not non zero functions in the kernel of the map and
equations (12.3.3) really define a bijection between incompressible velocity fields and
stream functions.

12.4 The Orr-Reynolds energy equations

Eqs. (12.3.1) can be thought as constrained equations in the space

S = {(u, v, w) | ux + vy + wz = 0, u(x, y,±1) = v(x, y,±1) = w(x, y,±1) = 0},

where u, v, w are sufficiently regular. The space S can be decomposed into Fourier
components S = ⊕a,bSa,b where a, b ∈ R, a, b ≥ 0 and k2 = a2 + b2 > 0.

Sa,b =
{(

u(z)ei(ax+by), v(z)ei(ax+by), w(z)ei(ax+by)) ∣∣∣ iau + ibv + wz = 0, u(±1) = v(±1) = w(±1) = 0
}

.

The same can be done forR = ⊕a,bRa,b, where

Ra,b =
{(

w(z)ei(ax+by), ζ(z)ei(ax+by)) ∣∣∣ ζ(±1) = w(±1) = wz(±1) = 0
}

.

Behind this technique lays the common extension to complex-valued velocity fields
and the understanding that, given a complex component of the velocity field e.g.
wei(ax+by) there corresponds a real-valued physical component of the velocity field
Re (w) cos(ax + by)− =(w) sin(ax + by). This fact is particularly important to un-
derstand the expression of (ū, v̄, w̄) in (12.5.6) which, with appropriate choices of
wave numbers a, b, becomes Joseph’s (when a = 0) or Orr’s (when b = 0) extremal
velocity field perturbations (see Falsaperla, Mulone, and Perrone, 2022a).
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In each Sa,b one can define an energy

Ea,b =
1
2

∫∫∫
Ω

(
|u|2 + |v|2 + |w|2

)
dxdydz =

1
2k2

∫∫∫
Ω

(
|∇w|2 + |ζ|2

)
dxdydz

(12.4.1)
where Ω is the periodicity cell (see eq. 8.5.1). The second expression of the energy is
easily obtained from the first one by using the Fourier modes. Indeed |u|2 = u · ū.
ζ = vx − uy. We plan to investigate the growth of the energy function along the
solutions. In particular we would like to determine which, among all solutions, is
the one whose energy grows the fastest at t = 0 (or decreases the slowest), and
which, among all solutions, at a given time t attains the maximal value.
The first question can be stated more directly: on which perturbation velocity field
the orbital derivative of the energy has its maximum? To do so let us compute the
orbital derivative of Ea,b. Indicating ( f , g) =

∫∫∫
C f ḡ dxdydz one has that for every

(u, v, w) 6= (0, 0, 0), (i.e. E(u, v, w) 6= 0).

Ėa,b =

[
−( f ′u, w)

|∇u|2 + |∇v|2 + |∇w|2 −
1
R

](
|∇u|2 + |∇v|2 + |∇w|2

)
=

=
1
k2

[
( f ′ζ, wy) + ( f w, ∆wx)

(∆w)2 + |∇ζ|2 − 1
R

](
(∆w)2 + |∇ζ|2

)
.

(12.4.2)

Denoting

Fa,b(u, v, w) = −( f ′u,w)
|∇u|2+|∇v|2+|∇w|2 , Ga,b(w, ζ) =

( f ′ζ,wy)+( f w,∆wx)

(∆w)2+|∇ζ|2 .
(12.4.3)

one has that Ea,b is strictly decreasing if and only if 1/R > m where m is the maxi-
mum of either of the two functionals. A very special case is that a = b = 0, that we
do not consider, and in which the energy is always decreasing.

12.5 The general and the particular solutions of Joseph and
Orr

The stationary solutions for the functionalFa,b(u, v, w), i.e. the solutions to the Euler-
Lagrange equations are the perturbation vector fields (u, v, w) such that

2m∆u− f ′w = λx

2m∆v = λy

2m∆w− f ′u = λz

ux + vy + wz = 0,
u = v = w = 0 on the boundary.

(12.5.1)

Denoting ζ = vx − uy, the above equations are equivalent, in every space Sa,b, to the
system of equations 12.5.1 we are solving the last system

2m∆ζ + f ′wy = 0
f ′ζy + 2m∆2w + f ′′wx + 2 f ′wxz = 0
w = wz = ζ = 0 on the boundary.

(12.5.2)



12.5. The general and the particular solutions of Joseph and Orr 107

These are the stationary solutions of the functional Ga,b(w, ζ). Both systems can be
recast as a linear equation of order 6 in w only with three boundary conditions in
z = −1 and three in z = 1, more precisely, by deriving (12.5.2)1 with respect to
y, by computing the ∆ of (12.5.2)2, if one get ∆ζy from (12.5.2)2 and substitute it in
(12.5.2)1, obtain

4m2∆ ∆2w
f ′ + 4m∆wxz + 2m f ′′∆ wx

f ′ − f ′wyy = 0, w = wz = (wzz + 2∆′w)zz = 0,
(12.5.3)

where the last boundary condition has been obtained from (12.5.2)2. Indeed, by
taking into account the boundary conditions of (12.5.2), (12.5.2)2 computed on the
boundaries, becomes 2m∆(wxx + wyy + wzz) = 0 ⇔ wxxxx + 2wxxyy + wyyyy +
2wxxzz + 2wyyzz + wzzzz = 0 ⇔ 2wxxzz + 2wyyzz + wzzzz = 0 ⇔ (wzz + 2∆′w)zz = 0.
Eqs. (12.5.3) are linear but, except for Couette case, with non-constant coefficients,
and when ξ ≥ 1/3 there is a point zξ ∈ [−1, 0] in which some denominator be-
comes zero, and hence the differential equation becomes singular (the computation
has been done with the software Mathematica). This poses interesting questions,
but we can analytically solve the problem only when ξ = 0 (Couette) in which the
equation has constant coefficients and becomes{

−wyy + 4m∆wxz + 4m2∆3w = 0
w = wz = (wzz + 2∆′w)zz = 0.

(12.5.4)

We note that when w is independent of x the equations depend on m2 only, but a
solution w̄ corresponds only to one possible choice, the positive m or the negative m
whose square is m2. In Sec. 14 will be explained how to overcome this problem.
In each space Sa,b, if we seek for solution of the type w = H(z)ei(kxx+kyy), from (12.5.4)
we obtain:{

b2H(z) + 4iam
(

D2 − k2)H′(z) + 4m2 (D2 − k2)3 H(z) = 0
H(±1) = H′(±1) = H′′′′(±1)− 2k2H′′(±1) = 0.

(12.5.5)

Where H(z) = F(z) + iG(z) is a non zero solution of (12.5.5).
It can be shown (the computation has been done with the software Mathematica)
that the stationary solutions of (12.5.4) have physical, real form

ū =
(
−4a2mG′′(z) + aF′(z)− 4b2mG′′(z) + 2mG(4)(z) + 2k4mG(z)

)
sin(ax + by)+

+
(

4a2mF′′(z) + aG′(z) + 4b2mF′′(z)− 2mF(4)(z)− 2k4mF(z)
)

cos(ax + by)

v̄ =
sin(ax + by)

b

(
−2a2F′(z)− 2amG(4)(z) + 4amk2G′′(z)− 2ak4mG(z)− b2F′(z)

)
+

+
cos(ax + by)

b

(
−2a2G′(z) + 2amF(4)(z)− 4amk2F′′(z) + 2ak4mF(z)− b2G′(z)

)
w̄ = cos(ax + by)k2F(z)− k2G(z) sin(ax + by).

(12.5.6)
The idea is that first one has to solve (12.5.5). The solution H(z) gives F(z) and G(z)
that allow to find w̄. Indeed w̄ is obtained by taking the real part of H(z)ei(kxx+kyy),
which is cos(ax+ by)F(z)−G(z) sin(ax+ by). Then from (12.5.2) ζ can be computed
and finally this value and w̄ are used to find ū and v̄ through (12.3.3). We observe
that in order to obtain ū and v̄ we have to divide the two sides of the equations in
(12.3.3) by k2 = a2 + b2. If we want to avoid to have a fraction in the vector (ū, v̄, w̄),
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we can multiply all the components by k2 obtaining (12.5.6).

The existence of a non-zero complex valued function H satisfying (12.5.5) is
equivalent to the question of finding, given a, b, m = 1/R, a non-zero solution
satisfying the boundary conditions on which F has a critical value. Such non-zero
solutions exists for every a, b, m = 1/R at which vanish the determinant of the
matrix  B

Be2A

 with B =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 −2k2 0 1 0


and

A =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

k6 − b2

4m2
a
m k2i −3k4 − a

m i 3k2 0


=

=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

k6 − b2

4 R2 iaRk2 −3k4 iaR 3k2 0


Indeed if we define

H̄ =



H

H′

H′′

H′′′

H′8′

H8′


,

(12.5.5) can be rewritten as a system of six differential equations such that:

H̄′ = AH̄ ⇔ H̄(t) = etAH̄0.

The boundaries conditions can be written as:
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(
1 0 0 0 0 0

)
e±AH̄0 = 0,

(
0 1 0 0 0 0

)
e±AH̄0 = 0,(

0 0 −2k2 0 1 0
)

e±AH̄0 = 0.

which means that BeAH̄0 = 0 and Be−AH̄0 = 0.
If we define K̄0 = e−AH0, we have that the two last conditions become Be2AK̄0 =
0, BK̄0 = 0. Therefore K̄0 is in the kernel of B

Be2A


and then we seek for a, b, m such that the determinant of the latter matrix is zero.

The level set of det(a, b, R) = 0 in a, b, R space is represented in Fig. 12.1.
Particularly important is the limiting case a = 0, where the solutions and the
equations become{

b2H(z) + 4m2 (D2 − b2)3 H(z) = 0
H(±1) = H′(±1) = H′′′′(±1)− 2b2H′′(±1) = 0

which are Joseph’s equations, and b = 0, where the equation becomes{(
D2 − a2) (4iamH′(z) + 4m2 (D2 − a2)2 H(z)

)
= 0

H(±1) = H′(±1) = H′′′′(±1)− 2a2H′′(±1) = 0,
⇔

⇔
{

4iamH′(z) + 4m2 (D2 − a2)2 H(z) = 0
H(±1) = H′(±1) = 0,

(12.5.7)

which are Orr’s equations. The equivalence of the two systems of equations is easily
proven by observing that in the equation to the left the two last boundary conditions
and the equation imply that the argument of

(
D2 − a2) must be zero. This allows to

neglect the differential operator
(

D2 − a2) and to drop the last two boundary condi-
tions. The eqs. (12.5.7)-right can also be deduced directly from (12.5.2).
For all other cases ξ 6= 0 (non-Couette) we can make a spectral numerical investiga-
tion of equations (12.5.2), using m = 1/R as spectral parameter. In each space Sa,b
we use a Chebyshev collocation algorithm with N + 1 nodes, considering w, ζ func-
tions of z in the interval [−1, 1]. Chebyshev collocation method, see Wright, 1964,
Boor and Swartz, 1973, Trefethen, 2000, consists of a discretization of functions in
an interval by means of their values on N + 1 Gaussian points in the interval. This
identifies the function w, ζ with N + 1-dimensional vectors wN , ζN . The derivation
operator ∂z = D becomes a (matrix) linear operator DN on N + 1 vectors. In this
way a differential equation becomes a linear system, and a differential equation de-
pending on parameters becomes a generalized eigenvalue problem. We thus reduce
eq. (12.5.2) into a finite dimensional spectral equationD4

N − 2k2D2
N + k4 0

0 D2
N − k2

+ R

 0 ib f ′
2

ib f ′
2

ia f ′′
2 + ia f ′DN

wN

ζN

 =

0

0

 ,

(12.5.8)
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where these apparently 2× 2 matrices are 2(N + 1)× 2(N + 1) matrices, and DN is a
(N + 1)× (N + 1) matrix which approximates the derivative with respect to z. The
results are extremely stable with the increase of nodes, and we use N = 100. The
lowest eigenvalue 1/R gives the threshold for monotonic stability. In Fig. 12.1 (right
pane) we plot the threshold curve of minimal values for R as a function of a, b for
the choices of ξ = 0, 0.2, 0.5, 0.8, 1.

FIGURE 12.1: In the left pane, for every wave number pair a, b, the
values of R at which there exists an analytical critical vector field
(u, v, w) critical for Fa,b with f = z (Couette). In the left pane, the
component of the below surface corresponds to minima critical val-
ues while the component of the above surface corresponds to saddle
critical values. In the right pane the same problem solved numeri-
cally using a Chebyshev collocation algorithm. We plot in different
colours only the minima for each steady state solution with ξ = 0
(yellow), ξ = 0.2 (orange) ξ = 0.5 (red) ξ = 0.8 (green) and ξ = 1
(blue). (5.0.7). A feature to be observed is the change of monotonicity

as the parameter moves close to 1.

12.6 Maximal initial growth rate of the energy

In this section we always fix ξ, and then we use a spectral method to compute, for
every choice of wave numbers a, b and Reynolds number R, the initial velocity field
(wa,b,R, ζa,b,R) at which Ė attains its maximum. We also compute such maximal value
of the derivative that we denote maxd(a, b, R). The computation is numerical and it
is performed writing independently in Mathematica and Matlab an algorithm that
implements a Chebyshev collocation method.
The energy is a quadratic functional, that is E(λv) = λ2E(v) for every λ real, and
therefore the investigation must be restricted to initial values of the velocity field
that have with energy 1.
In Trefethen et al., 1992 this type investigation is called maximal initial growth rate.
The maximal initial growth rate differs from the investigation performed in Reddy
and Henningson, 1993 in which, for every (a, b, R, t), the authors find the veloc-
ity field (wa,b,R,t, ζa,b,R,t) on which, at time t, the energy attains the highest value
maxe(a, b, R, t). This investigation has been given the name of maximal total growth
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in Trefethen et al., 1992. Explicitly, we denote

maxd(a, b, R) = sup
(ζ0,w0)
E(ζ0,w0)=1

Ė(ζ0, w0), maxe(a, b, R, t) = sup
(ζ0,w0)
E(ζ0,w0)=1

E(ζt, wt),

where (ζ0, w0) is a generic velocity field and (ζt, wt) is, at frozen time t, the solution
to eqs. (12.3.2) that at t = 0 is (ζ0, w0).
The maximal initial growth rate has not been, to our knowledge, thoroughly inves-
tigated in the literature. This because most authors are interested in computing the
highest value of the energy, and consider such maximal value as possibly respon-
sible of the onset of instability. In fact K.M. Butler, 1992; Reddy and Henningson,
1993 are devoted to the second type of investigation, and there the authors compute
the graph of the maximal total growth for particular cases of a, b and R far above
the threshold that we investigate in this work. In the next section we will explicitly
compare maximal initial growth with maximal total growth.
The computation of the maximal initial growth allows to define a surface. For every
fixed ξ let Tξ = {(a, b, R) |maxd(a, b, R) = 0}. This surface is the threshold which
separates the region in parameter space where the energy is always decreasing from
the region in parameter space where the energy does increase at least along a so-
lution. In this section we investigate the coincidence of the surfaces Tξ computed
using the maximal initial growth rate with those computed in the previous section
(see Fig. 12.1) computed using Euler-Lagrange equation for the functional Fa,b. The
surfaces Tξ are drawn in Fig. 12.2 (left pane) for choices of ξ = 0 (yellow), ξ = 0.2
(orange), ξ = 0.5 (red), ξ = 0.8 (green) and ξ = 1 (blue). This manifold should be
compared with the manifolds obtained in the previous section.
Our computation is based on the following facts: the eigenfunctions (eλtw, eλtζ) of
system (12.3.2) are associated to the eigenvalue problem

λ∆w = 1
R ∆2w− f ∆wx + f ′′wx

λζ = 1
R ∆ζ − f ζx + f ′wy

w = wz = ζ = 0 on the boundary.

(12.6.1)

with λ a complex spectral parameter. When the system is linearly stable, i.e. when
all eigenvalues λ have negative real part, it is reasonable to assume that the most
important modes are those associated to eigenfunctions whose eigenvalue λ have
real part negative but close to zero, we call such eigenvalues and eigenfunctions
dominating. We thus discretise eq. (12.6.1) using a Chebyshev approximation with
N + 1 nodes, and then consider only the first n < N dominating eigenvalues and
eigenvectors of the discretised operator.
Indeed if we consider the generic initial field v0 = (v1, ..., vN)k = v1k1 + · · ·+ vNkN ,
(k ∈ CN), where N is the number of eigenvectors of (12.6.1), we have that it evolves
according to

v(t) = (v1, ..., vN)eΛN tk =
N

∑
i=1

vieλitki

The last expression is due to the fact that if we want to find the solution of ẋ = Ax,
which is analogous to our system (12.3.2), we have that x(t) = eAtx0. There-
fore, in our case, each eigenvector vi evolves according to vi(t) = eAtviki,
where eAt = 1 + tA + t2/2A + t3/3A + . . . . This implies that eAtvi =
vi + tAvi + t2/2Avi + t3/3Avi + · · ·+ tN/NAvn. As vi is an eigenvector, Avi = λivi.
Therefore eAtvi = vi + tλivi + t2/2λivi + t3/3λivi + · · ·+ tN/NλivN = eλitvi.
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If l ≤ N and m ≤ N are two indices such that Real(eλl t) ≈ 0 while Real(eλmt) � 0,
then the first exponential dominates the second one.
Furthermore it is not restrictive to assume that the eigenvalues are ordered by
increasing real part.

Therefore we denote by λi, i = 1, ..., n the dominating eigenvalues, vi the cor-
responding eigenvectors, and Λ = diag(λ1, ..., λn) the diagonal matrix of the
eigenvalues. Using the common symbols to indicate conjugate, transpose, and
adjoint of a matrix, it follows that the generic initial velocity field v0 = (v1, ..., vn)k,
(k ∈ Cn), evolves according to

v(t) = (v1, ..., vn)eΛtk ⇒ E(v(t))
E(v0)

=
k∗eΛt AeΛtk

k∗Ak
,

E(v(t)) = 1
2
|v(t)|2 =

1
2

v(t)∗v(t) =
1
2

k∗eΛt


v̄T

1

. . .

v̄T
n

 (v1, ..., vn)eΛtk =
1
2

k∗eΛt AeΛtk

and hence

maxd(a, b, R) = sup
E(v0)=1

Ė(v0) = sup
v0

Ė(v0)

E(v0)
= sup

k

k∗
(
ΛA + AΛ

)
k

k∗Ak
,

where A = (Ai,j) with Ai,j = vi
∗vj a positive definite Hermitian matrix (remember

that ∗ indicates the Hermitian conjugate, that is the transpose conjugate, also
called adjoint). Denoting H = ΛA + AΛ and recalling that every positive-definite
Hermitian matrix admits a square-root, we have that A = F∗F, where F :=

√
ΣU∗,

Σ is the diagonal matrix of positive real eigenvalues of A, and the columns of U are
the corresponding right eigenvectors.

Indeed Avi = ˘ivi, i = 1, . . . , n, therefore

A(v1, · · · , vn) = (v1, · · · , vn)


λ1 . . . . . . 0

0 λ2 . . . 0
...

...
...

...

0 . . . . . . λn

⇒

⇒ (v1, · · · , vn)
∗A(v1, · · · , vn) =


λ1 . . . . . . 0

0 λ2 . . . 0
...

...
...

...

0 . . . . . . λn

 ,

if we define U := (v1, · · · , vn) and Σ = diag(λ1, · · · , λn), we obtain U∗AU = Σ,
which implies that A = UΣU∗ = (U

√
Σ)(
√

ΣU∗) = F∗F. Note that the square
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root of Σ can be computed because A is a positive definite Hermitian matrix, which
implies that its eigenvalues are real positive.

Following fact Reddy and Henningson, 1993 one has that

maxd(a, b, R) = sup
k∈Cn
k 6=0

k∗Hk
k∗Ak

= sup
k∈Cn
k 6=0

k∗Hk
k∗F∗Fk

= sup
h∈Cn
h 6=0

h∗(F∗)−1HF−1h
h∗h

=

= sup
h∈Cn
h 6=0

h∗ (F∗)−1 HF−1h
|h|2 = sup

h∈Cn
h 6=0

h∗

|h| (F∗)−1 HF−1 h∗

|h| =

= sup
|h|2=1

h∗ (F∗)−1 HF−1h,

(12.6.2)

where the third equality is obtained defining k := F−1h.

It follows that the maximal value of the derivative maxd(a, b, R) is the max-
imal eigenvalue of the Hermitian matrix (F∗)−1 HF−1. Indeed computing
sup|h|2=1 h∗ (F∗)−1 HF−1h means to find the critical values of h∗ (F∗)−1 HF−1h,
with the constraint |h|2 = 1, and then to select the greatest one. If we define
H̃ := (F∗)−1 HF−1, first we have to solve ∇h∗H̃h = 0, that is

∇(h̄1, · · · , h̄n)H̃


h1
...

hn

 = 0.

If hi = xi + iyi, then the partial derivatives of this function with respect to xi an yi
are respectively equal to

eT
i H̃


h1
...

hn

+ (h̄1, · · · , h̄n)H̃ei

−ieT
i H̃


h1
...

hn

+ i(h̄1, · · · , h̄n)H̃ei.

(12.6.3)

We recall that we have to find the maximum of a function subjected to the constraint
|h|2 = 1. The derivatives of the constraint with respect to xi and yi are respectively
2xi and 2yi. Therefore, according to the method of Lagrange multipliers, one has
that (12.6.3)1 and (12.6.3)2 are parallel respectively to 2xi and 2yi:
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

eT
i H̃


h1
...

hn

+ (h̄1, · · · , h̄n)H̃ei ‖ 2xi

−ieT
i H̃


h1
...

hn

+ i(h̄1, · · · , h̄n)H̃ei ‖ 2yi.

(12.6.4)

From (12.6.4) follows that

Real(eT
i H̃


h1
...

hn

+ (h̄1, · · · , h̄n)H̃ei) ‖ Real(2xi)

Real(−ieT
i H̃


h1
...

hn

+ i(h̄1, · · · , h̄n)H̃ei) ‖ Real(2yi).

⇔ (12.6.5)

that is:

⇔



Real(eT
i H̃


h1
...

hn

) + Real((h̄1, · · · , h̄n)H̃ei)) ‖ 2xi

Imag(eT
i H̃


h1
...

hn

)− Imag((h̄1, · · · , h̄n)H̃ei)) ‖ 2yi,

⇔ (12.6.6)

⇔



Real(eT
i H̃


h1
...

hn

) + Real(eT
i H̃∗


h1
...

hn

)) ‖ 2xi

Imag(eT
i H̃


h1
...

hn

) + Imag(eT
i H̃∗


h1
...

hn

)) ‖ 2yi,

⇔ (12.6.7)

⇔



2Real(eT
i H̃


h1
...

hn

) ‖ 2xi

2Imag(eT
i H̃


h1
...

hn

) ‖ 2yi

⇔ eT
i H̃


h1
...

hn

 ‖ xi + iyi = hi. (12.6.8)

Therefore:
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H̃


h1
...

hn

 ‖


h1
...

hn

⇒ H̃


h1
...

hn

 = µ


h1
...

hn


This means that the critical vectors are the eigenvectors of the matrix H̃ and from the
last equality we have that

(h1, · · · , hn)H̃


h1
...

hn

 = µ.

Therefore the value that the function h∗H̃h assumes in correspondence to each eigen-
vector is equal to the related eigenvalue. Therefore sup|h|2=1 h∗(F∗)−1H̃F−1h is equal
to the maximum eigenvalue of H̃, which is the same as the maximal eigenvalue of
the matrix A−1H, because these two matrices are similar.
We have hence, fixing a, b, a function from R to the real numbers, R 7→ maxd(a, b, R).
Such a function is monotonically increasing, and hence a bisection algorithm allows
us to determine the particular value of R at which maxd(a, b, R) = 0, which is what
is needed to obtain sample points of the surfaces Tξ and then produce Fig. 12.2 (left
pane). In our computations we use N = 100 and n = 50. We have also used N = 150
and n = 60, with no change in the results.

12.7 Comparison between maximal initial growth and maxi-
mal total growth, and conclusions

To compare the graph of the energy of the solution with maximal initial growth with
the graph of maximal total growth we need to find the eigenvector of (F∗)−1HF−1

associated to the maximal eigenvalue maxd(a, b, R). Indeed, as we have observed,
the matrices (F∗)−1HF−1 and A−1H are similar, which implies that they have the
same eigenvalues but not the same eigenvectors. To be more precise, if λm :=
maxd(a, b, R) is the maximum eigenvalue of the matrix A−1H, and hm the corre-
spondent eigenvector, we have that A−1Hhm = λmhm, but hm does not coincide with
the eigenvector of (F∗)−1HF−1. In order to find it we recall that, as the two matrices
are similar, we have that

F−1((F∗)−1HF−1)F = A−1H ⇔ ((F∗)−1HF−1)F = FA−1H ⇔

⇔ ((F∗)−1HF−1)Fhm = Fλmhm ⇔ ((F∗)−1HF−1)Fhm = λmFhm,

and the last equality implies that Fhm is the eigenvector of the matrix (F∗)−1HF−1

associated to λm.
We note that in (12.6.2) we made a change of variable from k to h such that Fk = h.
In our case h is Fhm, therefore Fkm = Fhm, that implies k = hm. We conclude that,
in this particular case, the eigenvector hm we had found coincides with the one
associated to the matrix (F∗)−1HF−1.

This eigenvector km is such that (v1, ..., vn)km is the initial data of a solution
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with maximal initial growth. The graph of the energy at time t of such solution
must lay below the graph of maximal total growth at time t, that is the function
t 7→ maxe(a, b, R, t). The two graphs must have identical first derivative at t = 0. In
Reddy and Henningson, 1993 the authors compute maxe(a, b, R, t).

The procedure to find the maximal total growth, described in Reddy and Henning-
son, 1993, is the following:

maxe(a, b, R, t) = sup
k∈Cn
k 6=0

E(v(t))
E(v0)

=
k∗eΛt AeΛtk

k∗Ak
= sup

k∈Cn
k 6=0

k∗eΛtF∗FeΛtk
k∗F∗Fk

=

= sup
k∈Cn
k 6=0

||FeΛtk||22
||Fk||22

= sup
|h|2=1

||FeΛtF−1h||22.

We define F̃ := FeΛtF−1 and we rewrite ||FeΛtF−1h||22 as (F̃h)∗(F̃h) = h∗ F̃∗Fh. As
in (12.6.2) we compute the gradient of h∗ F̃∗Fh that is equal to F̃∗ F̃h and we im-
pose that it is parallel to h, i. e. the gradient of the constraint. The solutions h
we are seeking for are the eigenvectors of F̃∗ F̃ which means that F̃∗ F̃h = λh. This
implies that h∗ F̃∗ F̃h = λ. Therefore the function whose maximum we are seek-
ing for, in correspondance to the eigenvectors, assumes a value which is equal to
the related eigenvalues. λ is the eigenvalue of F̃∗ F̃ which means the eigenvalue of
(FeΛtF−1)∗(FeΛtF−1). Therefore:

maxe(a, b, R, t) = ||FeΛtF−1||22.

In Fig. 12.2 (right pane) we show four graphs of maximal total energy growth and
energy evolution of the solution with maximal initial energy growth. The computa-
tions are done for Poiseuille flow (ξ = 1) and a = 2.1, b = 0, and R = 50, 87.55, 110
and 1000. The results are in line with what is expected because the energy starts to
grow for Reynolds number greater than 87.55 which is the Orr’s critical Reynolds
number. Computations can be done for any choice of ξ, a, b, R. We remark that
Fig. 12.1 right and Fig. 12.2 (left pane) are computed with completely different meth-
ods and, taking into account that the second one is much more computationally
heavy and hence has less sampling points, are identical. Both these figure are con-
sistent with classical results for the flows of Couette ξ = 0 and of Poiseuille ξ = 1.
Moreover, the surfaces are monotonically staked when ξ grows up to about 0.8.
Above that value the surfaces intersect (this fact could be interesting to investigate).
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FIGURE 12.2: On the left pane, the threshold values Ra,b for some
choices of ξ = 0 (yellow), ξ = 0.2 (orange) ξ = 0.5 (red) ξ = 0.8
(green) and ξ = 1 (blue). The surfaces are computed determining, for
sampling choices of a, b, the value of R at which the maximal initial
growth rate is zero. This graph is identical to that of Fig. 12.1 right,
it only contains fewer sampling points and doesn’t diverge as clearly
when a = b = 0 because the algorithm is less effective. On the right
pane, four plots of maximal energy growth (solid) and energy growth
along the solution with maximal initial growth (dashed). In the four
pictures ξ = 1 (Poiseuille), a = 2.1, b = 0, and the value of R is

declared in the figure.

Similar computations done for Poiseuille flow by fixing the Orr’s critical wave
numbers and that produce Fig. 12.2 (right pane), can be done for the same flow but
by fixing the Joseph’s critical wave number a = 0, b = 2.05.
The results are showed in Fig. 12.3 and they are obtained in correspondence to
R = 35, 49.55, 80 and R = 100. They are in agreement with Joseph’s results because
the energy starts to grow for Reynolds numbers greater than 49.55 which is the
Joseph’s critical Reynolds number, but they are in contradiction with the proof
that the streamwise perturbation are always stabilizing (see SubSec. 9.4.1). Indeed,
according to such proof (see case iii) in SubSec. 9.4.1), the energy was expected to be
always decreasing, for each value of Reynolds number.
A possible explanation of this contradiction between the proof and the results
reported in Fig. 12.3 will be given at the end of the next section.

Finally we observe that in inclined channel the boundary conditions are typically
stress free at the above boundary and temperature is often taken into account. In
this work for simplicity we imposed rigid boundary conditions at both boundaries
and isothermal fluid, this allows to disregard inclination.
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R = 35 R = 49.55

R = 80 R = 100

FIGURE 12.3: Four plots of maximal energy growth (solid) and en-
ergy growth along the solution with maximal initial growth (dashed).
In the four pictures ξ = 1 (Poiseuille), a = 0, b = 2.05, and the value

of R is declared in the figure.
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Chapter 13

Spectral and Energy–Lyapunov
stability of streamwise
Couette–Poiseuille and spanwise
Poiseuille base flows

In this last work we extend the study reported in Sec. 12. The setup is the one we
introduced in Sec. 5 (Case 1). In Sec. 12 we simplified the basic motion by putting
η = 0. Here we consider the more general case η 6= 0. Therefore we assume that the
pressure gradient can have also a component transverse to the relative velocity of the
moving plates. This adds to the Couette-Poiseuille base flow a Poiseuille component
along the transverse direction (see eq. (5.0.8)). The results presented in this section
have been published in a work carried out by Giacobbe and Perrone, 2023.

13.1 Summary

When a fluid fills an infinite layer between two rigid plates in relative motion, and
it is simultaneously subject to a gradient of pressure not parallel to the motion, the
base flow is a combination of Couette–Poiseuille in the direction along the bound-
aries’ relative motion, but it also it possesses a Poiseuille component in the trans-
verse direction. For this reason the linearised equations include all variables x, y, z,
and not only explicitly two variables x, z as it typically happens in the literature.
For convenience, we indicate as streamwise the direction of the relative motions of
the plates, and spanwise the orthogonal direction. We use Chebyshev collocation
method to investigate the monotonic behaviour of the energy along perturbations of
general streamwise Couette–Poiseuille plus spanwise Poiseuille base flow, thus ob-
taining energy-critical Reynolds numbers depending on two parameters. We finally
compute the spectrum of the linearisation at such base flows, and hence determine
spectrum-critical Reynolds numbers depending on the two parameters. The choice
of convex combinations of Couette and Poiseuille flows along the streamwise direc-
tion, and spanwise Poiseuille flow, affects the value of the energy-critical Reynolds
and wave numbers in interesting ways. Also the spectrum-critical Reynolds and
wave numbers depend on the type of base flow in peculiar ways. These dependen-
cies are not described in the literature.
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Couette–Poiseuille and spanwise Poiseuille base flows

13.2 State of the art

Laminar steady state solutions for a fluid layer with rigid moving boundaries and
a non-zero pressure gradient can be a combination of Couette and Poiseuille flows,
see for example Drazin and Reid, 2004, pag. 223. The first investigation of linear
stability of a base flow that is a combination of Couette and Poiseuille motions has
been performed by Potter, 1966 and Hains, 1967. The first theoretical investigation
in the same setup using Lyapunov’s functions is a much more recent study of the
evolution of energy (see Bergström, 2005). Experiments of such theoretical results
have been performed by Klotz and Wesfreid, 2017. Such experiments lead to sub-
critical transition to turbulence, which is a debated argument in the field of stability
of fluid flows Klotz et al., 2017.
The articles of Potter and Hains, and that of Bergstrom as well, are particular cases
of our analysis for base flows that have vanishing spanwise Poiseuille component.
The presence of cross-flow is particularly important in filtration, where the medium
is porous and the Poiseuille type flow, due to a pressure gradient, is transversal with
respect to a Poiseuille-Couette flow due to the motion of the filtrating substrate, see
Lilley, 1959, Hains, 1971, Guha and Frigaard, 2010, Samanta, 2020. Most modern
investigations deal with this type of flows in presence of porous media, few recent
articles deal with the stability of Couette-Poiseuille flow, some in relation with Som-
merfeld paradox (see for example Barkley and Tuckerman, 2005 or Falsaperla et al.
2019b), some with the addition of a magnetic field, see Ghosh and Das, 2019. None,
to our knowledge, deal with base flows having two non-zero components.
Our setup generates base flows that depend on two parameters, that we call ξ and η
(see eq. (5.0.8)). The first parameter ξ indicates the type of combination of Couette
and Poiseuille flows along the streamwise direction, the second parameter η indi-
cates the relative strength of the Poiseuille flow along the spanwise component. To
every choice of parameters ξ, η there corresponds a threshold value of the Reynolds
number above which there exist perturbations which correspond to eigenvectors
whose eigenvalue has positive real part. We call this critical value spectral-critical
Reynolds number. The spectral analysis requires heavy numerical computations, for
this reason we plot graphs of the energy-critical Reynolds number and its corre-
sponding critical wave number as functions of ξ with η fixed to zero (retracing Potter
and Hains results) and as functions of η with ξ fixed to zero (Couette plus a spanwise
increasingly strong Poiseuille flow) and to one (Poiseuille flow of given strength
along the streamwise direction plus a spanwise increasingly strong Poiseuille flow).
On the other hand, for every choice of parameters ξ, η there corresponds a thresh-
old value of the Reynolds number above which there exist perturbations that have
increasing energy. We call this critical value energy-critical Reynolds number. We com-
pute both critical Reynolds numbers as functions of ξ, η. Together with the energy-
critical Reynolds number we determine the associated critical perturbation and, in
particular, its energy-critical wave numbers. We will make considerations on the 3D
graph of energy-critical Reynolds numbers as function of ξ, η, and we will observe
interesting features of energy-critical wave numbers.
The layout of the paper is the following: in Sec. 13.3 we write the equations for per-
turbations to the base flow in the original velocity fields and also in the stream fields,
we conclude the section computing the orbital derivative of the energy. In Sec. 13.4
we compute the Euler-Lagrange equations for the critical values of the orbital deriva-
tive of the energy, we make an investigation of the energy-critical Reynolds number,
and we compute the energy-critical wave numbers. In Sec. 13.5 we make a spectral
investigation. Sec. 13.6 is dedicated to the discussion of the results and conclusions.
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13.3 Base motions, perturbation equations, and Orr-
Reynold’s energy equations

We consider the setup we introduced in Sec. 5 (Case 1). The basic motion is given by
eq. (5.0.8).
Observe that the choices ξ = 1 and η ∈ R do not allow the definition of spanwise
and streamwise directions, and they all correspond to Poiseuille flow along a well
defined direction, depending on η, parallel to i only when η = 0, but inclined with
respect to our choice of i, j when η 6= 0 (we will return to this observation when
describing Fig. 13.4). This observation can be done in any case, and the base flow
is always a combination of Couette in the streamwise direction and Poiseuille along
any other direction, not necessarily streamwise.
The linear equations for the perturbations u i + v j + w k, p to the base flow are

ut =
1
R ∆u− f ux − guy − f ′w− px

vt =
1
R ∆v− f vx − gvy − g′w− py

wt =
1
R ∆w− f wx − gwy − pz

ux + vy + wz = 0
u = v = w = 0 on the boundary.

(13.3.1)

Considering w and ζ = vx− uy, the vorticity of (u, v, w) and performing the common
reduction by means of the double curl of eqs. (13.3.1), one reduces the equations
above to 

∆wt =
1
R ∆2w− f ∆wx − g∆wy + f ′′wx + g′′wy

ζt =
1
R ∆ζ − f ζx − gζy + f ′wy − g′wx

w = wz = ζ = 0 on the boundary.

(13.3.2)

As we have observed in Giacobbe, Mulone, and Perrone, 2022 (SubSec. 12.3),
eqs. (12.3.3) define a bijection between incompressible velocity fields and stream
functions (w and ζ).
Following Giacobbe, Mulone, and Perrone, 2022 (see SubSec. 12.4), eqs. (13.3.1) can
be thought as constrained equations in the space S and eqs. (13.3.2) can be thought as
unconstrained equations in the space R. The space S can be decomposed in Fourier
components S = ⊕a,bSa,b. The same can be done forR = ⊕a,bRa,b.
In each Sa,b andRa,b one can define an energy Ea,b.
We plan to investigate, depending on ξ, η, the energy-critical Reynolds number Rξ,η
of R at which the energy stops being a Lyapunov function, and the energy-critical
wave numbers (aξ,η , bξ,η) of the perturbation (uξ,η , vξ,η , wξ,η) that first violates strict
monotonic decrease of the energy.
The problem we posed can be stated in analytic terms: on which perturbation of the
velocity field the orbital derivative of the energy has its maximum, and for which
R this maximum is zero? To solve this problem we numerically compute, for every
ξ, η the maximum mξ,η of the functional

Ga,b(w, ζ) =
( f ′wx, wz) + (g′wy, wz) + ( f ′wy, ζ)− (g′wx, ζ)

(∆w)2 + |∇ζ|2 , (13.3.3)

together with the associated wave numbers (aξ,η , bξ,η) (and the functions
(wξ,η(z), ζξ,η(z)) that realise such maximum). The functional G is deduced from the
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orbital derivative of Ea,b in its stream functions form. In fact

Ėa,b =

[
Ga,b(w, ζ)− 1

R

](
(∆w)2 + |∇ζ|2

)
, (13.3.4)

and hence Ea,b is strictly decreasing if and only if 1/R > mξ,η , from which it fol-
lows that the energy-critical Reynolds number Rξ,η = 1/mξ,η , and the energy-critical
wave numbers are the wave numbers (aξ,η , bξ,η) computed above.

13.4 Energy (non-modal) investigation of the system

The critical stream fields for the functional Ga,b(w, ζ) are the solutions to the Euler-
Lagrange equations

2m∆2w = − f ′′wx − g′′wy − 2 f ′wxz − 2g′wyz − f ′ζy + g′ζx

2m∆ζ = − f ′wy + g′wx

w = wz = ζ = 0 on the boundary.

(13.4.1)

We stress the often disregarded fact that if there exists an m such that eqs. (13.4.1)
admit a non-zero solution (wm, ζm), then m is a critical value for G and (wm, ζm) is a
critical point only if in addition G(wm, ζm) = m.
Starting from eqs. (13.4.1), we use a spectral method to compute the critical values
m of G. We can in fact consider eqs. (13.4.1) as a generalised eigenvalue problemm

D4 − 2k2D2 + k4 0

0 D2 − k2

−
−i a f ′′+bg′′

2 − ia f ′D− ibg′D −i b f ′−ag′
2

−i b f ′−ag′
2 0



w(z)

ζ(z)

 = 0,

(13.4.2)
where D represents the derivative with respect to z. We use a standard Chebyshev
collocation algorithm to compute the values m that admit a non-zero solution, in
other words we writem


(

D2
N − k2I

)2 0

0 D2
N − k2I

+ i


a f ′′N + bg′′N

2
+ a f ′N DN + bg′N DN

b f ′N − ag′N
2

b f ′N − ag′N
2

0



wN

ζN

 = 0,

(13.4.3)
where DN is a (N + 1)× (N + 1) matrix fN is a diagonal matrix that on the diagonal
has the values of f on the N + 1 Chebyshev nodes (same for g and their derivatives),
I is the (N + 1)× (N + 1) identity matrix, and wN , ζN are n + 1 vectors whose com-
ponents are the values of w, ζ along the Chebyshev nodes. This approach allows to
compute, for every ξ, η, the maximum mξ,η , its associated energy-critical Reynolds
numbers Rξ,η = 1/mξ,η , and the associated energy-critical wave numbers (aξ,η , bξ,η).
An idea of the critical wave numbers aξ,η and bξ,η can be given with a density plot in
the plane ξ, η. In Fig. 13.1 left we indicate in dark gray the region in which aξ,η = 0,
in light gray the region in which bξ,η = 0, and in white the region in which both aξ,η

and bξ,η are not zero.
In absence of spanwise component in the base flow (η = 0) the energy-critical so-
lution is independent of x. In the literature, see Reddy et al., 1998, Falsaperla et
al. 2019b, this event is defined as streamwise, but this name is misleading, since it
does not mean that the energy-critical solution has only streamwise component (i.e.
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FIGURE 13.1: In the left pane, a density plot of energy-critical wave
numbers: the energy-critical perturbation is only streamwise, that is
a = 0, when (ξ, η) belongs to the dark gray region, it is only span-
wise, that is b = 0, when (ξ, η) belongs to the light gray region, it is
mixed, that is a, b 6= 0, when (ξ, η) belongs to the white region. In
the rectangular frames an investigation on a finer grid has been per-
formed to give a better understanding around the meeting point of
the three regions. The main plot is computed on a grid with steps
of approximately 0.15 in η, 0.05 in ξ. In the two rectangles the steps
have been reduced to 0.05 in η, 0.02 in ξ and 0.005 in η, 0.01 in ξ re-
spectively. In the right pane, three slices of Rξ,η , as ξ ranges from 0 to
3, for fixed values of η = 0 (continuous black) η = 10 (dashed) and

η = 100 (dotted).

v = 0), but it only means that the solution is independent on x and hence its flow
can be translated along the x-component, which typically produces rolls whose axis
is along the stream direction.
When the streamwise component is Couette (ξ = 0) and in presence of increasingly
strong Poiseuille spanwise component of the base flow, the energy-critical solution
turns suddenly from streamwise to spanwise, this is not unreasonable, and it has a
possible realisation with an appropriate deformation of Figure 1 right in Giacobbe,
Mulone, and Perrone, 2022. For every ξ 6= 0 and η large enough, the most energy-
critical perturbation will have both wave numbers non-zero (we call such perturba-
tion “mixed"). If the Couette component is dominating (that is ξ is close enough to
zero) then an increase of η changes the energy-critical perturbation from streamwise
to spanwise and finally to mixed.
The peculiar meeting point of the three regions required a finer investigation to
check the presence of a chaotic interface, which does not seem to appear. The step-
size of the coarse and finer grids are specified in the caption of Fig. 13.1.
The representation of the energy-critical Reynolds numbers is given in Fig. 13.2 as a
function of ξ, η and in Fig. 13.1 right for three slices with η = 0, 10, 100. Observe that
in the case of zero spanwise component in the base flow, the energy-critical Reynolds
numbers have a maximum on a base flow that is not Poiseuille only, but it has a small
Couette component, and hence it corresponds to slowly moving plates. The conse-
quence of this fact is visible in the crossing of the surfaces computed by Giacobbe,
Mulone, and Perrone, 2022 and plotted in their Figure 1 and 2. The energy-critical
Reynolds number decreases when η increases, and it can be numerically proven to
converge to zero (see Fig. 13.1 right). This indicates a destabilising effect of the trans-
verse flow.
The energy-critical values Rξ,η plotted in Fig. 13.2 are a continuous function of ξ, η,
but at the boundaries of the regions shaded in Fig. 13.1 left such function appears to
have crests that indicate discontinuous derivative.
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FIGURE 13.2: Two views of the graph of Rξ,η , the function that to
every ξ, η associates the smallest value of R at which the energy stops
being a Lyapunov function. The two rectangular patches correspond
to the two rectangles where a finer grid has been used to produce

Fig. 13.1 left.

13.5 Spectral (modal) investigation of the system

Eqs. (13.3.2) can be used to compute the spectrum of this system for any given base
flow, that is for every choice of ξ, η, and for any choice of wave numbers a, b and
Reynolds numbers R.
The computation of the spectrum leads to the determination of the critical wave
numbers and the critical Reynolds number that are, for every ξ, η, the triplet
(ãξ,η , b̃ξ,η , R̃ξ,η) at which one eigenvalue of the spectrum has zero real part and for
which R̃ξ,η is the smallest possible Reynolds number at which this happens.

0.75 0.8 0.85 0.9 0.95 1
ξ0

5772
10000

20000

30000

40000

50000

R
˜
ξ,0

0.75 0.8 0.85 0.9 0.95 1
ξ0

0.25

0.5

0.75

1

a˜ξ,0

FIGURE 13.3: In the left pane the plot of R̃ξ,0 with ξ from 0.76 to 1.06.
In the right pane the plot of ãξ,0 in the same range for ξ.

For η = 0 these critical values have been computed implicitly in Potter, 1966 and
explicitly in Hains, 1967, where a plot similar to our Fig. 13.3 left can be found. For
Couette base flow, which corresponds to our case ξ = 0 and η = 0, it is known that
R̃0,0 = +∞ and hence there are no critical wave numbers. For Poiseuille base flow,
which corresponds to our case ξ = 1 and η = 0, it is known that R̃1,0 = 5772 and the
critical wave numbers are ã1,0 = 1.02 and b̃1,0 = 0.
We make our computations using a Chebyshev collocation method. For every
chosen ξ, η, we numerically define the function EVmax(a, b, R) that, given two
wave numbers a, b and a Reynolds number R computes the maximum of the
real part of the eigenvalues. The determination of ãξ,η , b̃ξ,η , R̃ξ,η requires to find
the Reynolds number that makes this maximum equal to zero, one has then to
minimise with respect to a, b. For this reason a simple bisection method on R
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cannot be used, we hence defined a function EVmaxab(a0, b0, δ)(R) that seeks,
for a given R, the values (aw, bw) ∈ [a0 − δ, a0 + δ] × [b0 − δ, b0 + δ] on which
EVmax(aw, bw, R) is maximal. A modified bisection method on R can hence be set
up: for every couple ((a−, b−, R−), (a+, b+, R+)) such that EVmax(a−, b−, R−) < 0
and EVmax(a+, b+, R+) > 0, we compute the minimising wave numbers

(aw, bw) ∈ [(a− + a+)/2− δ, (a− + a+)/2 + δ]× [(b− + b+)/2− δ, (b− + b+)/2− δ]

for Rm = (R−+ R+)/2. If EVmax(aw, bw, Rm) < 0 then the first element of the initial
couple can be replaced by (aw, bw, Rm), otherwise EVmax(aw, bw, Rm) > 0 and hence
the second element of the initial couple can be replaced with (aw, bw, Rm). Iterating
this process, the convergence of R is granted, but some care has to be used to make
sure that also the wave numbers do converge to the real critical wave numbers.
In our computations we made various choices for δ, but mainly we chose δ = 0.1.
For every choice of ξ, η we used the critical values computed for neighbouring ξ, η,
with small variations in the wave numbers and variation of the order 102 for R.
In Fig. 13.3 we fix η = 0 and plot the critical Reynolds number R̃ξ,0 and the critical
wave number ãξ,0 for varying values of ξ ∈ [0.76, 1.06]. A plot equivalent to this
can be found in Hains, 1967, Figure 2. In this case, the critical wave number b̃ξ,0 is
always zero. A few peculiar facts are that:

- In this case the critical perturbations, where instability must occur, are pertur-
bations independent from y. This is in opposition with what happens for the
energy-critical perturbations, where “instability" first occurs on perturbations
independent from x;

- Poiseuille flow realises the minimal critical Reynolds number;

- when ξ decreases from 1, the increase of R̃ξ,0 flattens and slightly changes
monotonicity in the region [0.8, 0.9];

- the critical Reynolds number does eventually tend to infinity as ξ diminishes.
In our computation we have not been able to compute a critical Reynolds num-
ber for ξ = 0.75, the last value of ξ for which we found a critical Reynolds
number is ξ = 0.76.

The first point is reasonable, the second is a known result due to Joseph, the third
is unexpected, and a monotonic behaviour would appear more natural. As for the
last point, an asymptote is expected, because it is well known that Couette is always
spectrally stable, but it would be interesting to compute the position of the vertical
asymptote (possibly ξ = 3/4) and understand if there is a reason for this.
In Fig. 13.4 we fix ξ = 1, and we plot the critical Reynolds number and the critical
wave numbers as η moves in [0, 1.05]. These plots are precisely as expected, since
when ξ = 1, for every η, the base flow is a Poiseuille flow along the direction i +  j
with the nondimensionalisation done so that the maximal velocity of the fluid is√

1 + η2. This implies that the Reynolds number must be R̃1,η = 5772/
√

1 + η2 and
the two wave numbers must be ã1,η = 1.02/

√
1 + η2, b̃1,η = 1.02 η/

√
1 + η2.

In Fig. 13.5 some less expected features can be seen. The black continuous
plot is that of the function R̃0,η , which is the critical Reynolds number of a base
flow that is Couette along the streamwise i direction and has an increasingly strong
(with η) Poiseuille flow along the spanwise j direction. The other two gray plots in
the figure are those of R̃1,η and of R̃η , that corresponds to the Reynolds number of a
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FIGURE 13.4: In the two panes the plots of R̃1,η , ã1,η (continuous black
line) and of b̃1,η (dashed black line) for η in the interval [0, 1.1]. The
dotted grey graphs are their theoretical values, R̃1,η = 5772/

√
1 + η2,

ã1,η = 1.02/
√

1 + η2, b̃1,η = 1.02η/
√

1 + η2. When η = 1 the
Poiseuille flow is precisely along the diagonal, and the two wave

numbers become equal.

Poiseuille base flow nondimensionalised so that the maximal velocity of the fluid is
η.
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FIGURE 13.5: In black, the log-log-plot of R̃0,η as η moves from 0
to 100. The grey dotdashed graph is the log-log-plot of the func-
tion 5772/

√
1 + η2, that is the theoretical critical value of R̃1,η already

plotted in Fig. 13.4 left pane. The gray dotted graph superimposed to
the black plot is that of the function R̃η = 5772/η, the Reynolds num-
ber of a Poiseuille flow nondimensionalised to have maximal velocity

η.

As expected, the asymptotic behaviour of all three graphs is the same as η grows,
since the Poiseuille component is increasingly strong and hence becomes dominat-
ing. As η tends to zero the graph of R̃1,η tends, as expected, to 5774. What is strik-
ing is that the asymptotic of R̃0,η and that of R̃η is the same. Observe that the first
one is the critical Reynolds number of Couette flow plus an infinitesimal transversal
Poiseuille flow, while the second one is simply an infinitesimal Poiseuille flow.
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13.6 Discussion of the results

In this article we made a modal and a non-modal analysis of a base flow that is
Couette-Poiseuille in the streamwise direction and Poiseuille in the (crossed) span-
wise direction. We did analyse in detail the effects of the Poiseuille crossflow on the
monotonicity of the energy and on the spectrum of the linearisation at the base flow.
In particular we did investigate the dependence of critical Reynolds number and
critical wave numbers depending on the combination of Couette-Poiseuille stream-
wise flow and on the intensity of the Poiseuille crossflow.
The most interesting result can be obtained investigating the energy-critical wave
number, where smooth changes from stream (a = 0) to mixed (both a, b 6= 0) to span
(b = 0) can be observed, together with more surprising discontinuous changes from
streamwise to spanwise changes, that take place if the Poiseuille-type contribution
to the base flow in the streamwise direction is weak enough. This abrupt changes
also reflects into a discontinuity of the first derivative of the energy-critical Reynolds
numbers.
The modal analysis requires a heavier computational load, and we mostly obtained
either confirmations of known results by Potter and Hains, or results that could be
computed theoretically by considering known spectrum-critical Reynolds and wave
numbers for Poiseuille flow applied to a non-normalised Poiseuille flow along a
transverse direction. A new result is the observation that, if the base flow is Couette
(obviously along the streamwise direction) plus a weak contribution of spanwise
Poiseuille, event that is most probable in nature and is typical if one considers a
small perturbation of a dominating base flow, then the spectrum-critical Reynolds
number tends to infinity as it would do simply with a weak Poiseuille flow (meaning
computing the Reynolds number for a Poiseuille flow nondimensionalised so that its
maximal velocity equals η and not 1).
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A possible proof of the validity of
the conjecture and final comments

The conjecture (see Sec. 9) would seem to lean towards the validity of Orr’s results
but the study of the transient does not (see Sec. 12)
However in a recent article Mulone, 2024 proposes a proof of the conjecture. In this
section we report the principal results of Mulone, 2024 and we provide a possible
reason why the Joseph’s computations and the ones related to the transient growth’s
lead to underestimate the critical Reynolds number.

We recall the energy equation (see eq. (9.4.1) in SubSec. 9.4)

Ė = −( f ′w, u)− Re−1[‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2]

and the divergence free condition

ux + vy + wz = 0.

First of all Mulone, 2024 underlines the observations made by Lorentz, 1907, also
reported in Lamb, 1924, p. 640: “One or two consequences of the energy equation
may be noted. In the first place, the relative magnitude of the two terms on the
right-hand side is unaffected if we reverse the signs of u, v, w, or if we multiply
them by any constant factor. The stability of a given state of mean motion should
not therefore depend on the scale of the disturbance. On the other hand, certain
combinations of u, v, w, appear to be more favourable to stability than others".
Therefore, Mulone says “In the study of the following maximum problems we will
always assume that this scale invariance property holds."

Secondly he distinguishes two cases. For perturbations with −( f ′w, u) ≤ 0
and ‖∇u‖ > 0, then Ė < 0.
Otherwise, if −( f ′w, u) > 0, from the energy equation we have

Ė =

(
−( f ′w, u)

‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2 −
1

Re

)
‖∇u‖2 ≤

≤
(

m− 1
Re

)
‖∇u‖2,

(14.0.1)

(see eq. (9.4.2) in SubSec. 9.4) where
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1
Re E

= m = max
S

−( f ′w, u)
‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2 , (14.0.2)

(see eq. (9.4.3) in SubSec. 9.4) and S is the space of the kinematically admissible fields
(see eq. (9.4.4) in SubSec. 9.4)

S = {u, v, w ∈ H1(Ω), u = v = w = wz = 0 on the boundaries,

periodic in x, and y, ux + vy + wz = 0, ‖∇u‖ > 0}.
(14.0.3)

H1(Ω) is the Sobolev space of the functions which are in L2(Ω) together with their
first generalized derivatives.

Now, consider the functional ratio

F (u, v, w) =
−( f ′w, u)

‖ux‖2 + ‖uy‖2 + ‖uz‖2 + ‖vx‖2 + ‖vy‖2 + ‖vz‖2 + ‖wx‖2 + ‖wy‖2 + ‖wz‖2

(14.0.4)
in S .
We have

Proposition 14.0.1. There exists the maximum of F (u, v, w) in S ( Rionero, 1968a) and
the maximum is a non-negative value.

Proposition 14.0.2. The maximum of F (u, v, w) in S is equal to the maximum of the ratio
F (u, v, w) where now vy = 0.

The idea is to prove that the maximum of F is less than or equal to the maximum of
the ratio with (u, v, w) ∈ S such that vy = −(ux + wz) = 0. To do this, define

Fx(u, v, w) =
−( f ′w, u)

‖ux‖2 + ‖uy‖2 + ‖uz‖2 + ‖vx‖2 + ‖vz‖2 + ‖wx‖2 + ‖wy‖2 + ‖wz‖2

(14.0.5)
and observe that for any fixed (u1, v1, w1) ∈ S we have

F (u1, v1, w1) ≤ Fx(u1, v1, w1).

Moreover,

Fx(u1, v1, w1) ≤ maxFx(u, v, w),

where the maximum is sought among all fields (u, v, w) ∈ S with vy = 0. Suppose
that this maximum is obtained in (û, v̂, ŵ) ∈ S with v̂y = 0. We therefore have

F (u1, v1, w1) ≤ Fx(û, v̂, ŵ), for any (u1, v1, w1) ∈ S .

From this it follows that Fx(û, v̂, ŵ) is an upper bound for the numerical set de-
scribed by F (u1, v1, w1) as (u1, v1, w1) varies in S . Consequently, for the maximum
of F (u1, v1, w1) in S , which is the least upper bound (and maximum), we have
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max
S
F (u1, v1, w1) ≤ maxFx(u, v, w) = Fx(û, v̂, ŵ).

Obviously, in the previous inequality the equal sign holds because the set of ele-
ments (u, v, w) of S with vy = 0 is a subset of S .

Proposition 14.0.3. The maximum of Fx(u, v, w) in S is obtained at a vector field
(u(x, z), 0, w(x, z)). It coincides with the maximum of F(u, v, w) assumed at two-
dimensional spanwise perturbations, as Orr has supposed.

First we prove that the maximum of Fx(u, v, w) is obtained at a vector
(u(x, y, z), 0, w(x, y, z)) of S such that ux + wz = 0. To see this, we write the Euler-
Lagrange equations of this maximum (let us call this maximum with the same sym-
bol m as before, in fact we will prove that it coincides with the maximum (14.0.2))

1
Re E

= m = max
S

−( f ′w, u)
‖∇u‖2 + ‖vx‖2 + ‖vz‖2 + ‖∇w‖2 . (14.0.6)

They are

(− f ′w + 2m∆u)i + 2m(vxx + vzz)j + (− f ′u + 2m∆w)k = ∇λ, (14.0.7)

where λ(x, y, z) is a Lagrange multiplier.

Secondly we again consider the Euler-Lagrange equations, in particular we
consider the system given by the first and the third component of the Euler-
Lagrange equations. We adopt plane-form perturbations as usual with a and b wave
numbers in the x and y directions respectively. From the first equation of the system
we distinguish two cases: b = 0 and b 6= 0. The first case gives the Orr’s equation.
Otherwise, the second case leads to ‖∇u‖ = 0 that has been excluded.
Therefore the only possibility is that the derivatives of u and w with respect to y are
zero.

Proposition 14.0.4. The critical Reynolds number ReE is given by the Orr’s equation

ReE( f ′′wx + 2 f ′wxz) + 2∆∆w = 0, (14.0.8)

with b.c. w = w′ = 0.

Finally, we have the proposition:

Proposition 14.0.5. On the streamwise perturbations (those which satisfy the condition
∂

∂x
≡ 0) the scalar product (− f ′u, w) ≤ 0.

This proposition is in agreement with Theorem 9.4.1 (See Sec. 9).
This fact can be proved here in a different way. Indeed the energy identity holds for
both linear and nonlinear systems, see for instance what Schmid and Henningson,
2001a, p. 189, observe: “the terms stemming from the nonlinear terms of the
Navier-Stokes equations are not present in the final evolution equation for the en-
ergy. We therefore conclude that the nonlinear terms of the Navier-Stokes equation
preserve energy". Now, if we consider the spectral problem in the linear system,
in the case of streamwise perturbations, it is well known that the eigenvalues are
all real, negative, and distinct numbers (see for instance Schmid and Henningson,
2001a, Chap. 3). Therefore, for streamwise perturbations, as Mulone suggest in
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2024, it can be proved that any finite linear combination of eigenvectors has the
time derivative of the energy which is a negative-definite quadratic form for every
Reynolds number.

Indeed, consider the system 9.3.1 without the non linear therms and suppose

that
∂

∂x
≡ 0. If (u, v, w) is an eigenvector of the resulting system associated to the

eigenvalue σ, the system becomes:
ut = Re−1∆u− f ′w
vt = Re−1∆v− py

wt = Re−1∆w− pz.

(14.0.9)

Now if we multiply the first equation of the system by u, the second one by v and
the third one by w we obtain:

σ‖u‖2 = −Re‖∇u‖2 − ( f ′w, u)
σ‖v‖2 = −Re‖∇v‖2 − (py, v)
σ‖w‖2 = −Re‖∇w‖2 − (pz, w).

(14.0.10)

By adding the second and the third equation of the previous system and remember-
ing that vy + wz = 0 we have

σ(‖u‖2 + ‖v‖2) = −Re(‖∇u‖2 + ‖∇v‖2),

and this implies that σ is real and negative. This fact, that here is deduced analyti-
cally, is confirmed by the numerical results.

By adding the three equations we have

σ(‖u‖2 + ‖v‖2 + ‖w‖2) = −Re(‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2)− ( f ′w, u).

As σ < 0, from the last equation it follows that −( f ′w, u) < 0.

Now we consider a combination of two eigenvectors u1 and u2, that is
a1(u1, v1, w1) + a2(u2, v2, w2), associated respectively to the eigenvalues σ1 and
σ2 and we evaluate the system on this combination of eigenvectors:

(a1u1 + a2u2)t = Re−1∆(a1u1 + a2u2)− f ′(a1w1 + a2w2)

(a1v1 + a2v2)t = Re−1∆(a1v1 + a2v2)− py

(a1w1 + a2w2)t = Re−1∆(a1w1 + a2w2)− pz.

(14.0.11)

Now we multiply the first equation by a1u1 + a2u2, the second one by a1v1 + a2v2
and the third one by a1w1 + a2w2, and we obtain:

a1
2σ1‖u1‖2 + 2a1a2(u1, u2)(σ1 + σ2) + σ2a2

2‖u2‖2 = −Re−1‖∇(a1u1 + a2u2)‖2+

− ( f ′(a1w1 + a2w2), a1u1 + a2u2)

a1
2σ1‖v1‖2 + 2a1a2(v1, v2)(σ1 + σ2) + σ2a2

2‖v2‖2 = −Re−1‖∇(a1v1 + a2v2)‖2 − (py, a1v1 + a2v2)

a1
2σ1‖w1‖2 + 2a1a2(w1, w2) + a2

2‖w2‖2 = −Re−1‖∇(a1w1 + a2w2)‖2 − (pz, a1w1 + a2w2).
(14.0.12)

As we did before we take into account the fact that both σ1 and σ2 are real negative.
Furthermore from the numerical calculations we know that they are all distinct.
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These three facts imply that the eigenvectors are orthogonal, i.e. (u1, u2) = 0.
Therefore, also in this case, by adding the three equations we can deduce that
−( f ′(a1w1 + a2w2), a1u1 + a2u2) < 0.
It can be proved by induction that −( f ′w, u) is negative on the streamwise pertur-
bations for a combination of n eigenvectors.
After proving that that the maximum of F (u, v, w) is assumed at two dimensional
perturbations, according to the results of Orr, we highlight the problems that arises
from the equation studied by Joseph and give a possible explanation of the reason
why he underestimates the critical Reynolds number.

We first observe that the Euler-Lagrange equations of the maximum (14.0.2)
are {

f ′(ζy + 2wxz) + f ′′wx + 2m∆∆w = 0
f ′wy + 2m∆ζ = 0,

(14.0.13)

where ζ = vx− uy is the third component of vorticity. Such equations, in the stream-
wise case, that is ∂

∂x ≡ 0 reduce to the system{
f ′ζy + 2m∆∆w = 0
f ′wy + 2m∆ζ = 0,

(14.0.14)

where now ∆h = hyy + hzz, h = w or h = ζ. This system, eliminating ζ, reduces (for
simplicity consider the case of Couette, i.e. f ′ = 1) to the equation (used by Joseph)

4m2∆∆∆w− wyy = 0 (14.0.15)

and this equation is a quadratic equation in m.

We do the following remarks:

1. Observe the often disregarded fact that if there exists an m such that the Euler-
Lagrange equations admit a non-zero solution (ūm, v̄m, w̄m), then m is a critical
value for F and (ūm, v̄m, w̄m) is a critical point only if also F (ūm, v̄m, w̄m) = m
holds.
Indeed we must compute the maximum of F (u, v, w) in S and, if we denote
the numerator and the denominator of F (u, v, w) respectively with NF and
DF , this implies to find (ūm, v̄m, w̄m) such that the derivatives of the function
with respect to u, v and w are zero:

∂NF
∂u

DF − NF
∂DF
∂u

D2
F

= 0

∂NF
∂v

DF − NF
∂DF
∂v

D2
F

= 0

∂NF
∂w

DF − NF
∂DF
∂w

D2
F

= 0

⇔



NF
∂u
DF
− NF

GF

DF
∂u
DF

= 0

NF
∂v
DF
− NF

GF

DF
∂v
DF

= 0

NF
∂w
DF
− NF

GF

DF
∂w
DF

= 0

⇔


NF
∂u
−m

DF
∂u

= 0
NF
∂v
−m

DF
∂v

= 0
NF
∂w
−m

DF
∂w

= 0

(14.0.16)

where the last implication is true only if
NF
DF

= m.

When we compute the Euler-Lagrange equations actually we are solving
the last system of (14.0.16) and not the first one as we should. Therefore,
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after finding (ūm, v̄m, w̄m) from (12.5.1), we should check ifF (ūm, v̄m, w̄m) = m.

2. Eq. (14.0.14) depends only on m2, but a solution w̄ corresponds only to one
possible choice, the positive m or the negative m whose square is m2. It is
not difficult to observe that every time there exists a non-zero w̄m yielding a
perturbation velocity field on which F evaluates to a positive m, then there
exists another non-zero w̄−m yielding a perturbation velocity field on which F
evaluates to −m. Indeed if F evaluates to m on (ūm, v̄m, w̄m), then F evaluates
to −m on (−ūm, v̄m, w̄m) (note that (−ūm, v̄m, w̄m) satisfies the zero-divergence
condition that is vy + wz = 0 on the streamwise.)

3. As Mulone observes in 2024 “due to the scale invariance of the energy identity,
the term in the numerator of the ratio (14.0.2) does not need to change sign if
we exchange u in −u and w in −w. Instead, it changes sign if the sign of only
one of the two fields u or w is swapped and the sign of the other is not changed.
As the velocity vector u is solenoidal (ux + vy + wz = 0), in the streamwise
case, since ux = 0, by exchanging the sign of u the zero-divergence condition
is maintained. So both (u, v, w) and (−u, v, w) are solenoidal. However, in
correspondence to these fields the numerator changes sign. If we consider lin-
ear streamwise perturbations (see the linear equation obtained by (9.3.1)1, with
∂

∂x
≡ 0), it is easy to check that the change of sign of u implies the change of

sign of w. Therefore, the (linear) streamwise perturbations cannot change the
sign of the numerator of ratio (14.0.2). However, this happens if we consider
the maximum problem whose Euler-Lagrange equations are those obtained by
Joseph (14.0.14) (in this case ζ = −uy). In conclusion, the scale invariance lim-
its the arbitrariness of the solenoid fields that can be considered in the search
for the maximum of the functional ratio (14.0.2)."

Once we have highlighted all the critical issues related to the Joseph’s equation we
provide a possible explanation of his results. The error in the articles by Joseph,
Busse and in many numerical works where the critical Reynolds values are found
with streamwise perturbations is the following: from equation (14.0.15) they find
two values ±m.
The negative value obtained (in Couette’s case m = −1/20.6) is the minimum value
of the functional ratio. Joseph considers the absolute value of this minimum and
confuses this value with the maximum of the functional ratio. This could be the
reason why he underestimates the critical value of the Reynolds number.
This explanation is consistent with the proof of the conjecture and with the proof
that the streamwise perturbations are always stabilizing (see SubSec. 9.4.1 and
Prop. 14.0.5).

How do we justify the transient results obtained in correspondence to Joseph’s critical
wave numbers (see Fig. 12.3) that contradict the proof of the conjecture?
Actually, these results are not related to the Joseph’s equation (14.0.15), but they are
based on system (12.3.2) and, as we have highlighted in the point 3 of the latter list,
in correspondance to the streamwise perturbations the eq. (12.3.2)1 changes if we
change only the sign of u by leaving the sign of w the same and this is in contrast
with the invariance property we require. This could be a possible explanation of the
results reported in Fig. 12.3.
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Finally, we list some open problems:

• to complete the proof suggested by Mulone in 2024 (see also Mulone, 2024, to
appear(b) and 2024, to appear(a)), whose principal results have been reported
in this section, it would be necessary to prove that the maximum exists when
we restrict to the space in which −( f ′u, w) > 0;

• a deeper explanation about the results of Fig. 12.3 related to the transient
growth should be provided;

• all the results reported in this thesis could be generalised to non-Newtonian
fluids.

To conclude, in this thesis we have studied the stability/instability of laminar flows
(Couette and Poiseuille), giving more attention to the non linear analysis. In particu-
lar, by doing this type of analysis we have found results that contradict the Joseph’s
ones. We realised that the equation he used for the computations has some criticali-
ties and we explained the reason why he probably made a mistake. This explanation
is in agreement with our results.
Furthermore, we think that an analysis with different Lyapunov functions should
be done since the non linear terms of the Navier-Stokes equations disappear in the
energy equation and probably the non linear terms are the ones responsible for the
instability of the flow.
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