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Maximal Figure-of-Merit Framework to Detect
Multi-Label Phonetic Features for Spoken
Language Recognition

Ivan Kukanov
Sabato Marco Siniscalchi
and Kong Aik Lee

Abstract—Bottleneck features (BNFs) generated with a deep
neural network (DNN) have proven to boost spoken language
recognition accuracy over basic spectral features significantly.
However, BNFs are commonly extracted using language-dependent
tied-context phone states as learning targets. Moreover, BNFs are
less phonetically expressive than the output layer in a DNN, which is
usually not used as a speech feature because of its very high dimen-
sionality hindering further post-processing. In this article, we put
forth a novel deep learning framework to overcome all of the above
issues and evaluate it on the 2017 NIST Language Recognition Eval-
uation (LRE) challenge. We use manner and place of articulation
as speech attributes, which lead to low-dimensional “universal”
phonetic features that can be defined across all spoken languages.
To model the asynchronous nature of the speech attributes while
capturing their intrinsic relationships in a given speech segment,
we introduce a new training scheme for deep architectures based
on a Maximal Figure of Merit (MFoM) objective. MFoM intro-
duces non-differentiable metrics into the backpropagation-based
approach, which is elegantly solved in the proposed framework.
The experimental evidence collected on the recent NIST LRE 2017
challenge demonstrates the effectiveness of our solution. In fact, the
performance of speech language recognition (SLR) systems based
on spectral features is improved for more than 5% absolute Cavg.
Finally, the F1 metric can be brought from 77.6% up to 78.1%
by combining the conventional baseline phonetic BNFs with the
proposed articulatory attribute features.
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I. INTRODUCTION

E CAN recognize a written language by analyzing its
n-gram distribution, where an n-gram is a sequence of n

words, and that has been known since the time of Shannon [1],
at least. It was, therefore, natural to extend that idea to the
automatic spoken language recognition (SLR) task [2], where
a language model of the automatic speech recognition (ASR)
output was fed to a classifier, such as a support vector machine
(SVM) [3], to perform language classification. This approach is
commonly referred to as token-based [4], and it is also known as
the phonotactic approach [5] if the ASR output is used to obtain
tokens.

Another approach to language recognition is the spectral
approach, in which short-term spectral magnitude vectors are
modeled directly. The spectral approach based on the i-vector
model [6] has proven to consistently outperform the token-based
one [7]. In recent years, the viability of deploying an end-to-end
neural network approach [8] to SLR has been investigated, but
this frame-based technique has not outperformed the i-vector-
based solution in terms of generalization performance. However,
the direct connection to language cues, available in the phono-
tactic systems, is lost when spectral feature streams are modeled
directly. In addition, short-term spectra are negatively affected
by other factors, such as additive noise or the transmission
channel.

Bottleneck features (BNFs) [9], [10] aim to bridge the gap
between phonotactic and spectral approaches while exploiting
their properties. BNFs are a feature stream generated from the
linear bottleneck layer in a deep neural architecture. The neural
architecture is commonly trained to recognize phonetic based
classes, namely senones (tied tri-phone states) [11], from a
stream of spectral features [9]. Furthermore, the neural archi-
tecture is usually fed using a long window of speech frames
often spanning ten or more frames, so that the extracted BNF
vector per time-step can capture acoustic relevant context, and
phonetic information at the same time. The latter is related to
the senone targets employed during the training phase. BNFs can
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then be fed into any language classifier that has already proven
useful for spectral approaches. In [12], the authors observed that
a bottleneck layer could preserve more phonetic information if
placed closer to the output layer. That in turn has a beneficial
effect on the overall SLR system. We argue the direct use of
the senone-based output layer as the BNF vector could lead
to top performance. Nevertheless, there are two key issues to
address before employing the output layer as the BNFs, namely:
(1) the BNF vectors associated with the output layer would
have a very high dimension (about 3 k to 9 k tri-phone target
labels), when a neural architecture is trained with the senone
classes as targets, and (ii) the BNF vector would be intrinsically
language-dependent. The latter issue could be overcome by
training BNF neural architectures for multiple languages by
employing stacked BNFs [10], for instance. It should be pointed
out, however, that experimental evidence was reported only for
two languages [10]; therefore, the viability of that approach with
multiple languages has not been investigated. Furthermore, the
first issue would, however, remain unsolved.

II. MOTIVATION

In [13], auniversal acoustic characterization approach to SLR
was proposed. The key idea was to describe any spoken language
with a common set of fundamental units that are defined “univer-
sally” across all spoken languages. Phonetic features, referred
to as speech attributes in that work, such as the manner and the
place of articulation, were chosen to form the unit inventory
and used to build a set of language-universal attribute models
with data-driven modeling techniques. The data-driven models
were used to transcribe a spoken utterance into a sequence of
attributes independently of its language. Experimental evidence
not only demonstrated the feasibility of the proposed techniques,
but it also proved that manner and place of articulation can
be used as language-independent units. It should be pointed
out that several speech scientists have advocated the beneficial
properties of speech attributes (phonetic features) in speech
applications. For example, [14] proposed an extended front-end
by appending some phonetic features to the cepstral vector,
and it was shown that inter-speaker variability was reduced.
In [15], a set of ANNs is used to score articulatorily-motivated
features for manner and place of articulation demonstrating
improved robustness against noise at low signal-to-noise ra-
tio. In [16], a stream architecture was described to augment
acoustic models based on context-dependent sub-words with
articulatorily-motivated acoustic models. This work showed that
articulatory features improve recognition of hyper-articulated
speech.

A critical yet fundamental element of the above mentioned
approaches is to build a set of data-driven models to reliably
detect a collection of speech attribute cues. In fact, there are two
practical configurations to deploy that set of models: (i) a set of
independent 2-class classifiers can be built to detect each speech
attribute of interest, and (ii) a single multi-output classifier can be
implemented, simultaneously detecting all speech events. In this
work, we focus on the latter configuration, because it has also
the advantage of enhancing detection performance for speech
attributes with insufficient training samples, as discussed in [17].

Specifically, the authors in [17] designed a single deep neural
network (DNN) with multiple independent logistic regression
classifiers, where those classifiers were trained independently
but shared acommon set of hidden layers. DNN parameters were
estimated by minimizing the negative log-likelihood. In [18], a
similar neural architecture was explored for phonetic feature
detection, and asynchronicity among speech attributes was ex-
ploited by allowing more than one feature to be on at the same
time. The mean squared error between the network output and
the target output was adopted as an objective function. Those
two architectural configurations actually meet the requirements
of the detection framework, since an m-from-N task is accom-
plished during run-time, and individual outputs can take contin-
uous values between 0 and 1. Both studies were not concerned
with the role of the objective function when attribute detection
scores are used in a post-processing stage, such as lattice rescor-
ing [19], or accent recognition [20], since the key goal was to
demonstrate reliable phonetic feature detection or classification.
However, a better solution, in terms of overall accuracy, could be
attained by leveraging upon an objective function that may better
capture the characteristics of the problem athand, e.g., [21], [22].

Leveraging the latter intuition, we propose to cast the task
of extracting speech attributes from the speech signal into a
multi-label classification problem [22], [24]. According to the
multi-label learning theory [25], each observation can be associ-
ated with multiple labels at the same time. Figs. 1 and 2 explain
the asynchronous nature of manner and place of articulation
events, which are the speech attributes of interest in this work.
In order to validate the viability of our solution, and provide a
comprehensive set of comparing and contrasting experiments,
we have tested two multi-label learning solutions. In the first so-
lution, we model all speech attributes using a single DNN, where
each output node has a sigmoid activation function. Each output
node is associated with a single attribute class and produces
a confidence score independently of the other output neurons.
The binary cross-entropy (BCE) loss function is calculated for
every detector in a binary classification manner to learn DNN
parameters and the empirical expected loss is minimized. We
refer to this system as the baseline approach. The major limita-
tion of this solution is that the DNN emits independent streams
of sigmoid scores in the range of (0,1) for each speech at-
tribute. This problem was studied in the discriminative learning
approaches for single-label classifiers [26]. The discriminative
learning approach outputs the relative scores measuring the
distance between a target and a competing anti-target scores
(a.k.a. misclassification measure), similar to log-likelihood ratio
approach in the Bayes decision theory [27]. It was shown that dis-
criminative learning outperforms a binary classification manner
in automatic speech recognition and applied in minimum error
classification [28] and minimum verification error [29]. The
second approach explores the maximal figure-of-merit (MFoM)
[30], [31] learning solution, which allows us to approximate
the metrics of interest, namely the micro-F1 and equal error
rate (EER), with a differentiable function, so that gradient-based
optimization algorithms can be applied to learn DNN parame-
ters. Specifically, MFoM tries to improve the decision boundary
[30] using the output sigmoid scores without the need of any
intermediate calibration.
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Overlapping nature of the speech attributes. Human articulatory organs generate multiple events (speech attributes) in speech production. On the top, the

signal and spectrogram of the phrase “Ich mdchte etwas iiber meinen liebst(en)...” is shown. Under spectrogram, we depict separately several speech attributes
(e.g., fricative, glide, nasal, stop, voiced, vowel), where detector tracks are produced by DNN with sigmoid output unit per speech attribute.

Fig. 2. Chord diagram shows the interconnection of attribute classes. On the
radius, it is shown the number of particular attribute observations, those num-
bers were crafted from the OGI Multi-language Telephone Speech (OGI-TS)
corpus [23]. The thickness of the connecting branch between a pair of attribute
classes shows how many times the pair occurs in the OGI-TS speech corpus.

In this work, we combine, organize, and extend our previous
findings, scattered among several research papers, and extend
them in different ways putting forth a novel solution to address
the SLR problem. The contributions of the present work are
therefore as follows:

® We show that a low-dimensional feature vector can be
deployed by leveraging universal units, such as manner
and place of articulation as target classes within a DNN
framework, with beneficial effects to SLR.

e (Correlations among speech attributes and correspond-
ing detectors can be captured by avoiding independent
training of individual detectors. In particular, we adopt a
MFoM [30] optimization approach with a units-vs-zeros

misclassification measure to force a single neural network
to simultaneously produce detection scores for all manner
and place of articulation events. We had already noticed
in [32] that detectors trained in such a way turned out to
be more accurate than using a separate network for manner
and place. However, in [32], we trained DNN and 1D-CNN
with MSE and fine-tune with MFoM-micro-F1 embedded
metric. We now think of attribute detection as a single
multi-label task, and we proposed units-vs-zeros misclassi-
fication measure special case for multi-label classification
within the MFoM mathematical framework. In particular,
we improve the MFoM framework by training the deep
model from scratch without initial pre-training, what was
instead done in [32].

e In [33] and [34], it was proven that state-of-the-art re-
sults can be delivered through MFoM and recurrent neural
networks for a multi-label audio tagging task. This paper
explores a modified version of the convolutional recurrent
neural network (CRNN) [34] with time distributed output
layer and MFoM training [34] for detecting attributes in
SLR applications. Section V gives more details.

® We demonstrate that improvements at a speech attribute
level positively affect the SLR performance with a series
of experiments on the NIST LRE 2017 task.

III. SPEECH ATTRIBUTE MODELING
A. Speech Attributes

The problem of attribute detection is formally described in
the automatic speech attribute transcription (ASAT) frame-
work [35], [36]. ASAT is a bottom-up detection-based frame-
work, where speech attributes are extracted using data-driven
modeling techniques without physical real-time magnetic res-
onance imaging methods (rtMRI) [37]. The main goal of the
project was to promote the development of new approaches
based on the detection of speech attributes and phonological
knowledge integration. Several successful applications of the
framework have been proposed in different domains of speech
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Multi-label architecture using convolutional recurrent neural network (CRNN). Sequence of convolutions and max-pooling is followed by bi-directional

gated recurrent unit (Bi-GRU), which is unfolded on the figure. The output decision layer has dimension of 256 x M, where M is the number of speech attribute
classes (M = 6 for manner, M = 9 for place or M = 15 for fusion of articulatory attributes). We optimize either binary cross-entropy or MFoM-micro-F1,

MFoM-EER objective functions for the same network architecture.

processing, such as phoneme recognition [38], foreign accent
recognition [39], language recognition [2]. Speech attributes of
interest are mainly manner of articulation, namely fricative,
glide, nasal, stop, vowel, voiced, and place of articulation,
namely coronal, dental, glottal, high, labial, low, middle,
palatal and velar. In the present work, we decided to add
the voiced class to the manner of articulation. Whereas the
voiced class is separated from the manner and the place of
articulation according to the voice-place-manner (VPM) [40]
model.

Speech attributes can be obtained for a particular language and
shared across many different languages, and those attributes can
thereby be used to derive a universal set of speech units [41], (see
Fig. 1) with detected speech attributes and relation to phonemes.
We can observe that one phoneme can belong to several attribute
classes; therefore, a stream of attribute labels can be assigned
to a single phoneme observation according to phonetic knowl-
edge [42]. Phonemes possess several physiological articulation
features, since movements of several vocal organs are usually
required, and sound rises in different parts of a vocal tract. For
instance, phoneme /ih/ is detected as voiced, vowel (at 0.16 sec)
and phoneme /m/ as nasal, voiced (at 1.93 sec).

Fig. 2 shows the connection between different speech attribute
classes. It should be noticed that pair voiced-vowel is the most
frequent in the OGI-TS [23] database (more than 100 k pairs of
observations). Moreover, the voiced class is paired with almost
all attributes. On the other side, the glottal attribute has the lowest
number of combinations with other classes. The fact that some
articulatory classes appear with other classes led us to consider
the multi-label classification as the problem formulation in our
case.

B. Multi-Label Classification Settings

As mentioned above, one phoneme can be mapped into several
articulatory attributes [42], and we can treat the attribute detec-
tion problem as a multi-label classification task. Articulatory
attributes have diverse acoustic nature: some attributes are im-
pulsive and have a low frequency (e.g., stop attribute); whereas,
others have broadband frequency characteristics (e.g., voiced).
Therefore, an automatic system should extract features that
benefit both of these properties. Conventional parameterization
of raw audio input signals is in the form of matrices comprising

of consecutive frames (log-Mel filter banks) [43]. We denote
the matrix of observations as X € R® of size D = [Dgg x Dy,
where Dgg is the number of filter banks and Dt is the number
of consecutive frames taken from a speech utterance. Each
observation matrix X of speech frames is associated with a
corresponding binary vector y € {0,1}*, which has several
unit marks corresponding to attribute class labels, e.g., y =
(1,0,...,1,0)". In this work, two types of speech attributes
are modeled, namely manner (6 classes, M = 6) and place
(9 classes, M =9) [42]. The training set of labeled speech
utterances is defined as T = {(X;,y;)|i =1, N}.

In the training phase, the temporal context of filter bank
features X; are fed to the artificial neural network, (see Fig. 3).
The number of output units is equal to the number of attribute
classes (6 or 9).

IV. MULTI-LABEL CLASSIFICATION

The binary cross-entropy (BCE) loss function is commonly
used for optimizing neural network parameters in multi-label
acoustic events detection [44]. BCE is defined as follows,

N
1
Jece (W|T) = ~ Z{—YZT log (g;)
i=1

~(1-y;) log(l—g)}, (D

where the network parameters are W = {W,|n = 0, L}, with
L + 1layers; g; € RM is the vector of output scores correspond-
ing to input features X;. The k-th element of the vector g; is the
output of k-th unit of network

where gy, is known as discriminant function [45] for the class Cl.
In multi-label classification, thresholding is applied to the neural
network output as a decision rule for binarization to choose
several class candidates for the current input observation. In
the baseline DNN system, we use the sigmoid output scores as
discriminant functions foraclass Cy, k=1,..., M.

A. Limitations of the BCE

In multi-label classification, the outputs of the classifiers are
typically modeled independently, i.e., the detection problem for
each class is considered as an independent binary cross-entropy
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task. The global error is then obtained as the sum of the binary
predicted probability for each label and averaged across the
number of available samples NV, and the number of labels M. By
optimizing the BCE error criteria, “the distance between what
the network believes the distribution should be, and what the
teacher gives as target” is minimized, i.e., the Jensen-Shannon
divergence is minimized [46]. Considering auxiliary informa-
tion, such as the interconnection among labels, helps to im-
prove the classification accuracy of the multi-label classification
model, e.g. [47]. In addition, the key limitation of the BCE loss is
that it does not allow the inclusion of task specific performance
metrics during to be optimized directly.

B. Objective Functions Based on Performance-Metrics

In [48], optimization of the infomax criterion [49] and its
relation to balanced error rate (BER) [50], F1 and cost sensitive
objectives is studied. Universal lower and upper bounds, namely
Fanos and Hellmans bounds [48], are obtained for BER, F-score
and cost-sensitive risk. The main outcome of the study was that
conditional entropy minimization does not guarantee neither the
minimization of the cost sensitive risk, nor the maximization of
the F-score. The cost of the errors on different samples is differ-
ent when dealing with skewed datasets, i.e., imbalanced datasets,
and thereby cost-sensitive risk, or F-score are more suitable in
those scenarios [S1]. In [48], numerical examples confirming
that the minimization of the conditional entropy is inconsistent
with the cost-sensitive risk, and the F-score were given. More-
over, conditional entropy minimization may even lead to con-
tradictory results: Reducing the entropy degrades the F-score.
The latter implies that conditional entropy optimization may
even lead to a poor data-driven modeling process when F-score,
or cost-sensitive performance measures are used. The question
concerned with finding a consistent information measure for
F-score is still open [48] and is related to the non-decomposable
objective functions problem. The interested reader is referred to
Appendix A for more details on non-decomposable objective
functions.

The beneficial effects of adopting performance-metrics ob-
jective function is also demonstrated by recent studies. Fore
example, the optimization of the area under the ROC curve,
I3, precision at fixed recall, or mean average precision were
investigated for deploying a ranking-based system in [52]. The
approach was applied to large-scale image classification tasks,
such as ImageNet [53], and it was demonstrated that models
trained leveraging non-decomposable objective functions can
outperform corresponding models built with conventional de-
composable objective functions, such as cross-entropy. In [54],
better speaker verification systems could be deployed by adopt-
ing a performance-based objective function, such as DCF, AUC,
EER. More in detail, the authors proposed an end to end objective
function based on DCF performance in combination with FPR
and FNR, which allowed to train a score decision threshold
directly during backpropagation. The latter is indeed a promising
direction for self-calibrated approaches. [33] demonstrated that
a units-vs-zeros misclassification measure can improve discrim-
ination in multi-label acoustic events detection task.

B (W) = {x] ¥ (x, W) = 0}

Fig. 4. Graphical interpretation of the misclassification measure. If misclas-
sification measure v, = O for a sample x, then this sample is on the decision
boundary By,. Otherwise, the absolute value of the misclassification measure
defines a distance to the decision boundary and the sign tells the decision: ¢, < 0
means a sample belongs to the class Cl, else it is misclassified.

On the one hand, objective functions based on performance
metrics are difficult to optimise, as discussed in [54], [55]. On
the other hand, those objective functions allow to incorporate
task specific performance metrics in the backpropagation opti-
mization process. Therefore, we no longer rely on indirect error
rate optimization in the hope that cost-sensitive performance
is improved as well. Finally, auto-calibration training methods
could be derived in the future based on non-decomposable
objective functions. In the next section, we describe in detail
the MFoM framework that allow us to take into account the
performance metric used for assessing the task at hand. The
experimental evidence reported in Section VII demonstrate the
effectiveness of our idea.

V. MULTI-LABEL RECOGNITION WITH MFOM

In this section, we present the key ingredients to deploy a
differentiable objective function based on micro-F1 and EER
within the MFoM framework, namely: discriminant functions,
misclassification distance measure and smooth error count.

A. Discriminant Function

The choice of a proper discriminant function (2) depends
on the nature of the classifier, and the task at hand. Discrim-
inant functions are defined on the classifier parameters set
W. The goal is to find the optimal set of parameters that
minimizes the objective function (e.g., binary cross-entropy in
(1)), and the discriminant functions must satisfy the decision
rule for any sample X; of class Cj, as follows

gk (Xis W) > g; (X5 W), 3)

where k € y(1) is the set of indices corresponding to 1 in
the label vector, y; accordingly j € yyo; is the set of indices
corresponding to 0 in y. The condition in (3) has a unique k
for any sample X; in case of single-label classification, because
X; belongs to a single class C; whereas, k is a set of several
indices for any particular X; for multi-label classification.

B. Misclassification Measure

The idea behind a misclassification measure is to represent
a decision rule (3) in a functional form, which is suitable for a
gradient based optimization, (see Fig. 4). Those decision rules
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provides the classifier with an additional information about
the relationships among classes. Different families of misclas-
sification measures for the single-label classification case are
described in [26], [28]. Our contribution to the misclassification
measures for multi-label classification was presented in [32],
[34], and we here focus on the units-vs-zeros misclassification
measure, 1, from [32] that measures the misclassification for
the current class, C}, as follows:

1 1
Ve =—gi+ n mZe"% , “)

Jel

{if Cp is 1= 1=y,

. . &)
if Cp is 0= 1=y,

where 1)y, is defined for current sample X and its label y, I is
an index set, y1) is the set of unit indexes, and y g, is the set
of zero indexes in the label vector y; the discriminant functions
are indicated by gy, and g;. Finally, 7 is a positive real-valued
smoothing constant.

On the right-hand-side of (4), the first term is referred to as the
target model, and the second term is the geometrical mean (a.k.a.
Kolmogorov mean [56]) of the competing models. Varying the
parameter 1 enables the emulation of various decision rules.
In the extreme case, when 77 — 400, the geometrical average
becomes a maximum metric [56], i.e., it converges to the high-
est score among all competing classes. The conditions in (5)
describe an explicit incorporation of the label information into
the units-vs-zeros measure (4). For the current class, C},, labeled
as 1, the competing models, C}, are only those indicated with
the label 0, and vice versa, if C}, is labeled as 0. Therefore, (5)
properly formulates the decision inequalities (3) when a sample
X belongs to several classes at the same time.

The sign of the misclassification measure indicates the cor-
rectness of classification: ¢ (-) < 0 means that the predicted
class is correct; whereas, 15 (-) > 0 implies an incorrect deci-
sion. The absolute value of the 3, quantifies the margin between
current sample X and the decision boundary (see Fig. 4). The
() = 0 defines the decision boundary between the class Cy,
and the rest. In the training phase, ¥ (-) is adjusted to make a
right decision for the samples which are on the boundary By
(i.e., ¥ (X) = 0) or misclassified samples (i.e., ¢, (X) > 0).

C. Smooth Error Count

The third component of the MFoM framework is the smooth
error count, which is needed for the approximation of discrete
performance measures based on discrete error counts (i.e., false
positive and false negative statistics). We therefore introduce a
smooth (differentiable), and monotonic approximation function
that squeezes the output of the misclassification measure to the
[0, 1] range. That squeezing function can be a sigmoid, a hinge,
an exponential, or any other smooth function. In this paper, the
sigmoid function is selected to approximate the discrete error
count of the misclassified samples; it is a smoothed version of
the error step function [57], applied to the measure (4):

1
C 1+exp[—aptr — Bi]’

(6)

Ik

where k = 1, M is the class index, and o, and 3, are real valued
parameters of the scale and shift transformation, respectively.
For the analysis of the «j and [ parameters, an empirical
method presented in [30] is used to find them. From a deep
learning point of view, we can interpret the linear transformation
(o, and By) of the misclassification measure as an additional
layer of a network. Hence we propose the optimization of
those parameters in a way similar to the batch normalization
technique in [58], when the error of the objective function, E is
backpropagated through o and j, as well:

OF OF
Don ——aTk'i/Jlm (7
OF OF
T ®

It is worth to remark that in the binary cross-entropy (1), the
objective of learning is to minimize the number of errors by
reducing the entropy, and neural network scores g do not posses
the class interconnection information. Whereas, the smooth error
count (6) encapsulates the misclassification measure (4) with
the implicit class relationships, and that forces a neural network
to learn task specific information. Moreover, the smooth error
count will be optimized by the proposed performance objective
in the next Section.

D. Approximation of Micro-F1 Objective

One of the most common performance metric for multi-label
classification is the micro-F'; (or micro-averaged F1) [59], [60],
which is the harmonic mean of precision, P, and recall, R,
and can be expressed as a function of the discrete count of
true positives, TPy, false positives, FPy, and false negatives,
FNy, [59] as follows:

2.P.R S TPy
P+R M (TP, +2-FPy + FNy)

1=

&)

As discussed above, the key ingredients of the proposed
MFoM framework are: a) the discriminant functions, g in
(2), which are the sigmoid activations in the last layer of the
neural architecture, b) a misclassification measure (4), and c)
smoothed error count (6). With those three elements, we can
now express the micro-F1 function in terms of those three entities
within the deep neural network paradigm. We introduce a smooth
approximation of the error counts of true positive, false positive,
and false negative outcomes in (9) following [30]:

TP~ Y (1-1)-1(x€Cy), (10)
xeT

FPe~ > (1—1)-1(x ¢ Cr), (11)
xeT

N~ Y Ik 1(x € Cy), (12)
xeT

where 1(-) is the indicator function of the logical expression,
x is a training sample from a dataset T. Thus, a differentiable
micro-F1 is eventually obtained

Ee(W) = 1— Fy(W), (13)
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where W is a network parameters. Furthermore, we minimize
this objective function during a neural network training phase.
For Jacobian inference and analysis of the objective function
(13), see Appendix A-A.

E. Approximation of EER Objective

In this section we infer a smooth approximation of the dis-
crete EER within the MFoM framework. The EER is expressed
through two types of errors, namely a false negative rate (FNR)
and a false positive rate (FPR). FNR(t) and FPR(t) are in-
creasing and decreasing functions of a threshold ¢ € [0, 1], and
the value of EER is defined on those intersection. The lower the
value of the EER is, the better the performance of a system is.
The EER is defined, £, as follows:

EER(t*) £ FNR(t*) = FPR(t"), (14)
with the optimal threshold ¢*, where
FNR(t) = %(t), FPR = %(t), (15)

and P, and N are the total numbers of positive and negative
samples, respectively. The optimal threshold for the EER is t* €
[0, 1]. The criterion for the optimal threshold is defined through
the following intersection condition

t* = argmin [FNR(t) — FPR(t)|. (16)
t

The goal is to develop an objective function that directly op-

timizes the EER. The EER can be parametrized with a neural

weights, W, and represented as an optimization problem. Wit the

equality (14) as the intersection condition, we have two natural

alternatives for EER optimization, namely

FPR(W) — min, or FNR(W) — min,
w w

subjectto  |[FNR(W) — FPR(W)| = 0. (17)

The problem (17) is a conditional optimization, and we can
reformulate it as a Lagrangian dual problem. Therefore, we
obtain the EER as the objective function with model parameters
W as follows

Eggr (W) = FPR(W)

+ A|FNR (W) — FPR(W)|,  (18)

where FPR, and FNR are smoothed false positive, and false
negative rates, respectively, and A > 0 is Lagrange multiplier,
a.k.a.dualvariable. As the concept testing, we set A = 1, and the
cost of the minimization of FPR and the intersection condition
(FNR and FPR) are equivalent in (18). In this formulation,
the intersection condition is a regularization condition for FPR
minimization. Discrete FPR, and FNR are approximated using
smooth false positive (11), and false negative (12) counts, as
follows
FPy

FPRx = —

N (19)

and

FNy
FNRyx = —
k Pk )
in order to simplify the notation, we omit parameter W . Finally,
the MFoM-EER objective function for each class k = 1, M

(20)

Ej = FPRy + A |[FNRg — FPRy], (21)
and the averaged class-based MFoM-EER is minimized
| M
Em;ﬁgﬂ- (22)

F. Proposed MFoM-Based Neural Architecture

MFoM-based objective functions are MFoM-micro-F1 and
MFoM-EER, i.e., objective functions with embedded perfor-
mance measures (F1 and EER, respectively) that are optimized
leveraging the back-propagation algorithm. In order to isolate
the effect of the MFoM-based learning, we train the same neural
architecture shown in Fig. 3 using either BCE, or MFoM. Differ-
ences between the two neural models can therefore be directly
associated with changes in the objective functions, learning rate,
gradient optimization techniques, and network output activation
functions. The CRNN model to be optimized with MFoM-based
objective function can have randomly (glorot-uniform [61])
initialized weights. In this case, MFoM is applied from scratch.
We could also start MFoM training using a seed CRNN learned
using BCE algorithm, and we could think of such an approach
as a parameter fine-tuning. As shown in [32], fine-tuning with
MFoM improves the baseline model performance. In this work,
we managed to attain the same performance using MFoM from
scratch, which obviously reduces the training effort.

The MFoM pipeline calculation (see Appendix A, Fig. 8),
for the forward pass of the backpropagation is based on the
network output scores g from (2), then the misclassification
measure (4) and smooth error count function (6) are obtained.
The MFoM, micro-F1 from (13) or EER from (22), depends on
the intermediate statistics, i.e., approximated smoothed counts
TP, FP and FN from (10)—(12). Those statistics are accumulated
over every mini-bath T for each time frame (40 ms). Next,
either micro-averaging (instance-based) or macro-averaging
(class-based) averaging strategy [62] is applied.

VI. EXPERIMENTAL SETUP
A. Speech Attribute Classifier Training

1) Groundtruth for Multi-Label Speech Attributes: Speech
attribute models (see Fig. 5) are trained on the stories subset
of the OGI Multi-language Telephone Speech (OGI-TS) cor-
pus [23]. This dataset has audio recordings for six languages:
English, German, Hindi, Japanese, Mandarin, and Spanish.
Time-aligned phonetic labels are provided for those recordings.
In order to train universal and robust articulatory attributes across
languages, we pool all recordings for six languages to get 5.57
hours of training and 0.52 hours of test data. OGI-TS dataset
has the time-aligned phoneme labels, but a ground-truth infor-
mation is needed in order to train attribute detectors. We convert
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Fig. 5. Four types of speech attribute features. We train three separate neural
networks: manner and place DNNs, and fusion for joint training. In the fusion
DNN model, some of the output units are in charge of detecting manner attributes
(Fuse-Manner) while the others are responsible for detecting place attributes
(Fuse-Place). !

phoneme labels into corresponding attribute classes according
to the phonological tables in [42]. In this work, we consider
attribute detection as a multi-label classification problem, that
is, our task requires to find both onset and offset time for multiple
overlapping attribute classes in the input recording.

Following [33], convolutional recurrent neural networks
(CRNNSs) are used as building blocks of our multi-label clas-
sification system, (see Fig. 3). However, we preserve here the
time dimension of the input Mel-filter bank feature through all
network layers in order to align input features with target labels at
each time frame. We compare two different schemes to train our
multi-label attribute classifiers (see Fig. 5): (i) Two independent
neural architectures, one for manner, and one for place versus
(ii) a single fusion neural architecture to model simultaneously
manner and place attributes. The last layer of the fusion network
emits joint scores for manner, and place attributes. Therefore,
four types of features can be evaluated: (i) manner, (ii) place,
(iii) fuse-manner, and (iv) fuse-place.

2) BCE-Based Neural Architecture - Baseline: The input to
the CRNN in Fig. 3 is a feature matrix of X € RP”*T where
D = 96 is the dimension of log-Mel filter banks spanning from
0 to 4 kHz Nyquist frequency (sampling rate is at 8§ kHz), and
the context window spans T = 256 time frames. In [63], it is
reported that a wider context window is beneficial for polyphonic
sound event detection in real-life environments. Indeed, a wider
context allows effective modeling of longer sound events, and
events correlations, which in turn leads to a better modeling of
the temporal information.

In the CRNN, a 2-dimensional convolutional layer is trained
directly on raw log-Mel filter bank features X, and every
convolutional output is passed through an exponential lin-
ear unit (ELU) [64] activation function. Three convolution
transformations with (3 x 3) filters followed by a max-pooling
operation with (5 x 1) — (2 x 1) — (2 x 1) kernels are used
in our CRNN. Nevertheless, max-pooling is carried out on the

'The project source code for training attributes can be found here
www.github.com/Vanova/mfom_attribute_detection

frequency axis only in order to preserve the time information for
final attribute detection. In fact, the time dimension 7" remains
unaltered through the whole network, and that preserves the
alignment between input frames X, and target labels y. Next,
the processed input features are sent to bi-directional gated
recurrent units (Bi-GRUs) based block. In our architecture, the
convolution layers extract relevant local features and smooth
audio distortions out; whereas, the Bi-GRUSs block models the
temporal context information. In other words, the convolutional
layers reduce the effect of time-frequency distortions and extract
stable and denoised features, but those features lack of a longer
temporal context summarization effect. The recurrent part is
therefore used to model temporal information (theoretically
unlimited) not handled by the convolutional block. It is worth
pointing out that the authors in [63] have shown that RNNs
suffer from frequency domain noise and pitch-shifting. The
combination of both CNN and RNN architectures improves thus
acoustic events detection.

The Bi-GRU block returns a sequence of hidden state vectors
of 32 dimension per time frame, which is further processed by a
time distributed fully-connected layer having a sigmoid output
unit per each articulatory attribute class (or g € R vector of
discriminant functions in (2) per time frame). The output layer
has a dimension equal to 7" x M, where M is the number of
speech attributes (6 for the manner and 9 for the place, or 15
for the fusion). The model generates confidence scores for 7'
consecutive frames at once for every input X. The binary cross-
entropy (BCE) objective function (1) is employed to train the
neural architecture, which is referred to as the baseline system.
During training, we slide the features context window with 70%
overlapping across the audio file. When the end of file is reached,
the next file is randomly selected up till a batch size of 32 frames
is reached. At each epoch, our neural model is exposed to all
available audio files. For validation and testing, overlapping is
not used.

In this work, we calculate segment-based evaluation met-
ric [62] on the test set, namely equal error rate (EER). The
segment length is a single time frame (40 ms). For every con-
secutive time frame of an input feature matrix X, the CRNN
model produces g vectors of confidence scores for each class
k =1, M asin (2). The performance EER is calculated for each
articulatory attribute class and class-wise averaged to obtain the
AvgEER. The AvgEER for the baseline is reported in the first
column in Tables I, and II.

3) MFoM-Based Neural Architecture - Proposed: The pro-
posed neural architecture has the same architecture as the base-
line model. The research interest is in the optimization capability
of the MFoM objective functions. Therefore, in the baseline
architecture, we make a minimal changes: instead of BCE,
the MFoM-based objective functions are optimized while the
sigmoid output activation function is replaced with hyperbolic
tangent.

B. Spoken Language Recognition System

1) NIST LREI7 Corpus: The availability of large corpora
in speech processing has been one of the major driving forces
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TABLE I
PERFORMANCE OF SPEECH ATTRIBUTE CRNN MODELS (MANNER, PLACE AND
FUSION). ATTRIBUTE DETECTORS’ MODELS ARE TRAINED WITH THE BINARY
CROSS-ENTROPY OBJECTIVE (BCE BASELINE) AND MFOM-F1 OR
MFOM-EER OBJECTIVES. WE TRAIN MFOM-BASE OBJECTIVES EITHER FROM
“SCRATCH” WITHOUT WEIGHTS PRE-TRAINING OR “TUNING” THE BASELINE
WEIGHTS. WE COMPARE RESULTS WITH OUR PREVIOUS WORK [32]

Performance measure is AvgEER (%)
Detectors BCE MFoM-F1 MFoM-EER MFoM-
tuning [ scratch | tuning [ scratch | F1 [32]
manner 11.65 10.67 11.17 10.61 10.73 13.40
place 16.94 14.30 17.59 14.23 14.56 15.67
fmanner 11.46 10.53 10.53 10.42 10.39 10.86
fplace 15.91 14.37 15.05 14.10 14.48 14.84
TABLE II

PERFORMANCE OF PLACE AND MANNER ATTRIBUTE DETECTORS PER EACH
CLASS, COMPARISON OF THE BASELINE MODELS TRAINED WITH BINARY
CROSS-ENTROPY AND MODELS TRAINED WITH MFOM-EER (TUNING). TOTAL
LENGTH OF EVERY ATTRIBUTE CLASS IS MEASURED IN MINUTES IN THE
OGI-TS DATASET [23]. PERFORMANCE MEASURE IS EER (%), 1.E., THE
LOWER THE BETTER

Detectors é{mbute Total (min.) | Baseline MFoM-EER

asses tuning

Fricative 54.51 12.20 11.12

Glides 20.27 21.75 17.59

Manner Nasal 36.48 9.35 8.23
Stop 56.81 12.66 12.15

Voiced 246.64 8.88 8.62

Vowel 165.05 9.21 9.01

Coronal 117.33 24.35 22.41

Dental 31.35 20.88 18.20

Glottal 4.04 15.85 10.76

High 52.12 16.08 15.25

Place Labial 35.59 16.63 14.52
Low 51.21 12.92 12.53

Middle 70.35 17.57 17.24

Palatal 10.90 12.98 11.11

Velar 21.50 15.34 12.54

advancing speech technologies [66]. The NIST 2017 language
recognition evaluation (LRE17) dataset is the most recent effort
to advance research in LRE. The challenge, as described in the
evaluation plan [65], builds on the history of the LRE campaigns,
and it shares many features with the previous challenges. How-
ever, there are two major differences that pose challenges to the
speech community, namely:

® The inclusion of VAST utterances in development set and
evaluation set. Those audio recordings were extracted from
video data in a much different encoding and channel vari-
ations compared to traditional telephone speech available
in MLS14 corpus.

e The use of normalized cross-entropy (Chorm) as perfor-
mance metrics. The evaluation process calculates C', o,
for each language under two assumed prior probabilities
P, ye = 0.5and Py = 0.1. The final score is the average
of all those values.

We want to assess the ability of each technique in domain
adaptation, i.e. match the performance on both MLS14 and VAST
utterances; therefore, our strategy is to limit the amount of VAST
material during training by randomly picking only 30% of the
development to form the training set. The held-out material, re-
ferred to as validation set, is then used for early-stopping, tuning

hyper-parameters, validation, and as an alternative evaluation for
the system performance. We would also like to emphasize that
the evaluation set has not been touched, and it is used during
scoring phase only. To sum up, there are 17425 files for training,
2440 files for validation and 25449 files for evaluation.

2) SDC & Mel-Spectrogram Speech Features: We use
i-vector extractor [66] to build a basic spoken language recogni-
tion system. Starting with a 512-dimensional Fourier transform
on 25 (ms) frames and 10 (ms) step length, we extracted two
sets of acoustic features:

® 40-dimensional Mel-filter banks spectrogram (MSpec) to-
gether with its delta and delta-delta coefficients.

e shifted delta coefficients (SDC) [67] were calculated on 7
consecutive frames of 7-dimensional cepstral coefficients
(MFCCs). The delta coefficients are calculated for every 3
frames, and all 49-dim delta features are concatenated with
original MFCCs to form 56-dim SDC features.

We train a wuniversal background model (UBM) for every
type of features with 2048 Gaussians with diagonal covariances.
The diagonal UBM was deployed to build the total variability
matrix and extract the 400-dimensional i-vectors. Within-class
covariance normalization (WCCN) [68] and linear discrimi-
nant analysis (LDA) are applied to project the i-vectors onto
a sub-space where inter-dialect variability is maximized and
intra-dialect variability is minimized.

As a language classifier, we employed the support vector
machine (SVM) [67]. We train a multi-class SVM according
to a one-vs-one scheme, which handles a multi-classification
task while dealing with the non-linearity of speech and language
representation [67]. We empirically select radial basis function
(RBF) kernel after it outperformed other options including:
linear, polynomial, and sigmoid kernel. This post-processing
pipeline for the features (MSpec and SDC) and classification
SVM method are repeated for all experiments same backend to
ensure the comparable results.

3) Deep Bottleneck Features Based i-Vector: i-Vectors can
be built also around bottleneck features, as discussed in the
introductory section. Deep bottleneck features [9] are trained
over 13-dimensional MFCC features concatenated with delta,
and delta-delta coefficients. Those features are generated from
the Switchboard-1, and Fisher corpora (/2000 hours). Those
features are then processed using a per utterance mean and
variance normalization and stacked with 10 past and 10 future
frames to form a 21-contextual feature vector. The DNN used to
extract bottleneck features has seven hidden layers with 2048
units, and a bottleneck layer with 80 units. The bottleneck
layer is placed two layers before the output one. We have used
ReLU activation followed by a re-normalization that scales the
activations RMSE to 1.0. For the bottleneck layer, however, we
have only applied re-normalization. The output layer has 8700
targets, and each target corresponds to a senone obtained with an
off-the-shelf speaker-independent automatic speech recognition
system. The 80-dimensional bottleneck features are employed to
generate i-vectors for each spoken utterance. An energy-based
voice activity detection (VAD) routine is applied to the raw bot-
tleneck features in order to remove silence frames. Finally, those
i-vectors employed in the language classifier for accomplishing
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the language recognition task. The architecture of the language
recognition backend is the same of that used for the SDC, and
MSpec solutions.

VII. EXPERIMENTAL RESULTS
A. Attribute Detectors Analysis

Table I presents the performance of attribute detection. The
first column (BCE) shows the EER values when the BCE ob-
jective function is employed. The next four columns refer to
MFoM-F1 and MFoM-EER performances when the attribute
detectors are trained within the MFoM framework. The last
column (MFoM-F1 [32]) displays results from our previous
work for comparison purposes. We refer to the performance
attained by applying MFoM over a seed model built using the
BCE objective function as tfuning. When the parameters of the
neural networks are randomly initialized, we refer to such a
configuration as a scratch. For both objective functions (MFoM-
EER and MFoM-F1) the training with pre-initialized weights
(tuning) outperforms models randomly initialized (scratch),
even though the scratch configuration is the most interesting
since speeds up the deployment phase. We can also notice by
inspecting Table I values that the fusion architecture, shown in
Fig. 5, seems to give a consistent performance improvement
across attributes (manner and place) and training schemes (BCE
and MFoM). In particular, fuse-manner and fuse-place detectors
have superior accuracy compared to the attribute detectors in-
dependently trained with stand-alone neural architectures (i.e.,
place and manner in Fig. 5). The current solution also out-
performs the result obtained in our previous work [32], where
the 1D-CNN network was trained with the mean squared error
(MSE) objective and fine-tuned with the MFoM-F1. A more
general performance picture can be shown by the detection error
tradeoff (DET) [69], [70], i.e., curves of the false rejection rate
(FRR) versus false acceptance rate (FAR), (see Fig. 7). It is
important for practical applications to compare a discrimination
capability of the systems for different score thresholds. Fig. 7
shows the performance of the current attribute system trained
with MFoM-EER (Manner and Place) and with MFoM-F1
objective (Manner* and Place*) from the previous work [32].
A confident improvement of the proposed system across all
operating points can be seen.

Interestingly, the MFoM-EER objective function with class-
wise (macro) averaging seems to improve significantly the
recognition of rare classes, as shown in Table II. In fact, the
recognition of the /glottal/ class, which has the smallest amount
of training samples (4.04 minutes in the OGI-TS corpus), gains
5% absolute improvement in performance as compared with
result obtained using a baseline neural architecture trained with
binary cross-entropy. Conversely, it seems that the manner class
despite having more training samples, namely /voiced/, gained
only a slight improvement, specifically from 8.88% to 8.62%.

We conclude this section highlighting some important con-
figuration details:

® MFoM-based objectives (F1 and EER) are optimized with

Adam [71], which is an adaptive learning rate algorithm,
and a starting learning rate of 0.001.

e The averaging strategy is crucial. Class-wise MFoM av-
eraging strategy over mini-batch allows to boost baseline
performance, whereas, micro averaging does not improve
significantly the baseline performance in any of the condi-
tions (scratch or tuning).

e Experimenting with tanh, sigmoid, ReLU, and ELU as the
output activation functions of the CRNN model showed us
that tanh leads to the best performance.

The above-discussed configurations have been achieved using
Bayesian optimization techniques [72], which allowed us to
deploy MFoM-based training strategies from scratch, without
pre-training the network parameters.

B. Attribute-Based Features for Spoken Language Recognition

Using universal speech articulatory attributes, we assume
that every language has its different quantitative content of
speech attributes, i.e. distribution of attributes among languages.
In Fig. 6 (on the left, manner attributes; on the right, place
attributes), every color patch represents the mean value of the
detection scores for the attribute classes. The mean values are
calculated on the NIST LRE 2017 [65] dataset using attribute
detection models trained on the OGI-TS dataset. It can be
noticed that the most frequent manner attributes, detected in
the NIST dataset, are voiced and vowels. The most diverse
manner class across all languages is fricative. British English
(eng-gbr) has the most amount of fricative sounds comparing
other languages. Coronal and middle (mid) place attributes are
classes with the most amount of detected observations in the
NIST corpus. The amount of coronal sounds has the most variety
from language to language. As such, we believe that both manner
and placed properties might benefit spoken language recognition
tasks. Since the goal of the present work is to demonstrate the
complementarity of speech attributes to the acoustic features,
we stack those attributes with the basic speech features (e.g.,
80 BNF + 9 fuse-place = 89-dim), namely MSpec, SDC, or
BNFs, and form six different feature combination solutions, as
shown in Table III. Next, we apply singular value decomposition
(SVD) and reduce dimension to 80-dimensional feature vectors
in order to keep the system complexity comparable across
different configurations. We have thus obtained attribute-based
features, which are employed to generate i-vectors as discussed
in Section VI-B3.

C. Spoken Language Recognition Analysis

In this section, we confirm the positive effect of the pho-
netic BNF features on the baseline i-vector systems. Later, we
compare the contribution of the proposed multi-lingual attribute
features incorporated in the baseline systems.

1) Baseline: We conduct SLR experiments on the NIST
LRE 2017 task. As previously mentioned (in Section VI-B),
we built three different baseline SLR systems based on three
different features: MSpec, SDC, and the deep bottleneck features
(BNF). The BNF baseline system was trained on English data
only (Switchboard-1 and Fisher corpora, approx. 2000 hours).
Phonetic domain information trained with BNF significantly
contributes to SLR systems, comparing to non-phonetic MSpec
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The statistical mean values (i.e., every patch on the bars) of speech attribute detectors per each language are calculated on the NIST LRE17 corpus [65].

Those mean values show the difference between target languages (14 target languages) in terms of manner attributes (left figure) and place attributes (right figure).
The place attributes better capture the differences across the languages and benefit the recognition.
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Fig. 7. Performance comparison of the proposed attribute detectors trained
with MFoM-EER (tuning) versus detectors trained with MFoM-F1 (tuning) ob-
jective from the previous work [32], i.e., Manner/Place versus Manner*/Place*
respectively.

and SDC systems. In Table III we see that BNF achieves lower
Cyvg than both MSpec and SDC. Overall, BNF strikingly out-
performs MSpec by about 73% and SDC by about 65% relative
on evaluation dataset.

2) Effect of Attribute Features on SLR: The proposed tech-
nique expands the SLR baseline configurations by injecting
speech attribute information extracted with a bank of detectors
implemented as discussed in Section VII-A. We obtained six
additional LRE systems for each of the three baseline SLR
systems, namely: manner, place, fuse-manner (fmanner), fuse-
place (fplace) and combinations. Independently of whether mel-
spectrogram (MSpec) or shifted delta cepstral (SDC) features
are selected, we have witnessed a consistent performance gain
in the SLR when leveraging articulatory attributes, i.e., a ben-
eficial overall effect on the automatic language discrimination
is achieved by combining standard features and attributes. The
performance of the BNF-based system was also slightly im-
proved by exploiting additional information at attribute level:
the F1 score was raised from 77.6% up to 78.1% along with a
3% relative improvement in terms of Cavg. Moreover, place of
articulation features appear to be more diverse across languages

TABLE III
THE RESULTS OF THE SPOKEN LANGUAGE RECOGNITION (SLR) SYSTEM
USING BOTTLENECK FEATURES (BNF), MEL-SPECTROGRAM (MSPEC),
SHIFTED DELTA CEPSTRAL (SDC) FEATURES AND SPEECH ATTRIBUTE
FEATURES (MANNER, PLACE, FUSION MANNER AND FUSION PLACE, SEE
FIG. 5). PERFORMANCE MEASURES ARE F1 AND CAVG

Features F1, % Cavg., %
dev-set | eval-set | dev-set [ eval-set

BNF 79.2 77.6 23.8 25.1
BNEF, place] 79.8 77.9 22.6 24.6
BNF, manner] 80.8 7.9 223 24.6
BNF, place, manner] 80.3 78.1 22.5 24.6
BNF, fplace] 79.9 78.1 22.9 24.1
BNF, fmanner] 80.0 T 22.7 24.9
BNF, fplace, fmanner] 80.0 78.0 22.4 24.6
MSpec 58.8 56.6 47.1 48.4
MSpec, place] 63.3 59.7 41.2 44.6
MSpec, manner] 60.5 58.2 45.1 46.2
MSpec, place, manner] 63.1 60.1 42.3 43.6
MSpec, fplace] 62.4 60.5 42.4 44.0
MSpec, fmanner] 61.5 59.5 43.7 45.2
MSpec, fplace, fmanner] 61.9 60.2 42.9 44.5
SDC 61.1 58.8 44.2 46.0
SDC, place] 63.2 61.7 42.5 42.5
SDC, manner] 59.9 60.2 45.0 44.2
SDC, place, manner] 62.8 61.6 42.7 42.8
SDC, fplace] 65.5 63.2 39.9 41.4
SDC, fmanner] 61.9 61.3 43.1 43.2
SDC, fplace, fmanner] 60.9 61.0 44.5 44.2

(see Fig. 6 (right)), since the mean values of place scores are
significantly varying from language to language, which is not
observable for the manner of articulation scores. As a conse-
quence, place attributes improve overall language recognition
and boost the performance of both systems: for the SDC system
the F1 measure is increased from 58.8% up to 63.2%, while for
the MSpec system F1 score increases from 56.6% to 60.5%.
Moreover, from Tables I and III, we noticed improvements on
place of articulation detector cascade as well as improvements
in spoken language recognition. It seems that spoken language
recognition performance is boosted when moving from the
stand-alone place to the fusion-place (fplace) configuration. The
SDC-based micro-F1 goes from 61.7% to 63.2%, the MSpec-
based micro-F1 increases from 59.7% to 60.5%, and the BNF
micro-F1 goes from 77.9% up to 78.1%. On the other hand,
moving from manner attributes to fusion-manner, it improves
systems based only on spectral (MSpec) and SDC features.
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VIII. CONCLUSION

This paper contributes to the front-end study of the spoken lan-
guage recognition (LRE) pipeline. It combines the knowledge
gained from our previous work with the maximal figure-of-merit
mathematical framework (MFoM), multi-label acoustic event
detection, and speech articulatory features into a single frame-
work. We show that manner and place of articulation features
(speech attributes) jointly modeled and extracted at the output
of a deep model provide a parsimonious representation of any
spoken language; furthermore, we can train attribute detectors
on a relatively small dataset (7 hours) compared with the large
amount of training material, namely Switchboard dataset (2000
hours) for the BNF features. In addition, attribute feature scores
correspond to universal phonetic cues that can be used to de-
scribe any spoken language.

Finally, we show that the proposed maximal figure-of-merit
(MFoM) learning approach directly embeds micro-F1 and EER
performance measures into backpropagation optimization. This
allows us to encode multi-label information of multiple speech
attribute classes into a “units-vs-zeros” misclassification mea-
sure to be used directly in the MFoM framework. MFoM allows
us to approximate the metric of interest with a differentiable
function, so that gradient-based optimization algorithms can be
applied to learn the DNN parameters. Experimental evidence
demonstrates that the proposed optimization strategy outper-
forms that based on more conventional binary cross-entropy
objective function. Furthermore, by applying Bayesian opti-
mization techniques we managed to find hyperparameters of
neural network appropriate to train MFoM objectives from
scratch, without any initial weights pre-training.
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