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Featured Application: The use of highly robust radiomic features is fundamental to reduce intrin-
sic dependencies and to provide reliable predictive models. This work presents a study on breast
tumor DCE-MRI considering the radiomic feature robustness against the quantization settings
and segmentation methods.

Abstract: Machine learning models based on radiomic features allow us to obtain biomarkers that are
capable of modeling the disease and that are able to support the clinical routine. Recent studies have
shown that it is fundamental that the computed features are robust and reproducible. Although several
initiatives to standardize the definition and extraction process of biomarkers are ongoing, there is a lack
of comprehensive guidelines. Therefore, no standardized procedures are available for ROI selection,
feature extraction, and processing, with the risk of undermining the effective use of radiomic models
in clinical routine. In this study, we aim to assess the impact that the different segmentation methods
and the quantization level (defined by means of the number of bins used in the feature-extraction
phase) may have on the robustness of the radiomic features. In particular, the robustness of texture
features extracted by PyRadiomics, and belonging to five categories—GLCM, GLRLM, GLSZM, GLDM,
and NGTDM—was evaluated using the intra-class correlation coefficient (ICC) and mean differences
between segmentation raters. In addition to the robustness of each single feature, an overall index
for each feature category was quantified. The analysis showed that the level of quantization (i.e., the
‘bincount’ parameter) plays a key role in defining robust features: in fact, in our study focused on
a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) dataset of 111 breast masses,
sets with cardinality varying between 34 and 43 robust features were obtained with ‘binCount’ values
equal to 256 and 32, respectively. Moreover, both manual segmentation methods demonstrated good
reliability and agreement, while automated segmentation achieved lower ICC values. Considering the
dependence on the quantization level, taking into account only the intersection subset among all the
values of ‘binCount’ could be the best selection strategy. Among radiomic feature categories, GLCM,
GLRLM, and GLDM showed the best overall robustness with varying segmentation methods.

Keywords: robustness analysis; radiomic features; quantization levels; segmentation method agreement;
DCE-MRI; breast tumors
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1. Introduction

Radiomics techniques, aimed at analyzing a large amount of minable features extracted
from medical images, have shown great potential in different clinical areas [1]. Such a large
amount of quantitative radiomic features conveys more information than the qualitative
patterns observed by the radiologists’ naked eye on the images. In particular, radiomic
image-based signatures can be associated with clinical outcomes (i.e., biomarkers) [2,3],
thereby improving clinical decision-making tasks [4]. Therefore, the development of
robust biomarkers is an essential requirement which could accelerate their usefulness and,
consequently, their incorporation into clinical practice [5], providing reliable diagnostic
and prognostic biomarkers for precision medicine [6].

It is well known that radiomic features might be affected by several mathematical defi-
nitions, and the proliferation of toolboxes does not help this aspect. Thus, standardization
initiatives have been carried out by the scientific community in order to deal with the lack
of reproducibility and validation of radiomics studies. In particular, the Image Biomarker
Standardization Initiative (IBSI) [7] attempts to provide guidelines about the biomarkers’
definition. Unfortunately, it is a very complicated pipeline, where every single step (e.g.,
image acquisition, reconstruction, segmentation, features extraction) must be tackled with
caution to ensure reproducibility.

Nevertheless, there are still no comprehensive and clear guidelines to obtain radiomic
features that are not only reproducible but also robust. For that reason, an accurate and
careful analysis of the robustness of the radiomic features is mandatory to define robust and
clinically relevant biomarkers. Due to the wider diffusion and use of radiomics, in recent
years, the study of methodologies aimed at improving the reproducibility and robustness
of these tools has become a research topic faced, by the scientific community, from different
points of view and in several clinical application domains.

There are many ‘sources of variability’ that should be considered: many literature works
have analyzed and assessed the impact on the robustness of radiomic features related to
intrinsic factors, such as (i) imaging protocol [8,9] and (ii) magnetic field strength [10], or
due to extrinsic factors, such as (iii) pre-processing and enhancement techniques [11,12], (iv)
perturbation on the region of interest (ROI) due to the inter-operator dependence [13,14],
and segmentation methods [15,16], but also to (v) post-processing techniques, which are
certainly modified in original data (e.g., harmonization procedures) [17].

The main goal of this work is to analyze the dependence of robustness on the quan-
tization level used during feature extraction and the reliability of the segmentation of
breast masses on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) by
relying upon two segmentation methods (both automated and manual) obtained by two
raters. The proposed analysis exploits hand-crafted features and traditional machine learn-
ing approaches, which are still popular in radiomics studies today, aimed at establishing
predictive models that are reliable for clinical applications.

The main contributions of this study are:

• an evaluation of the robustness of radiomic features, in terms of ICC, as a function of
quantization level in PyRadiomics;

• an assessment of segmentation by comparing three different raters: a automated
approach and the manual segmentation of two human operators, to evaluate the
features reproducibility;

• a definition of a robustness scale for individual features as a function of ICC and mean
standard deviation of the feature differences;

• a definition and quantification of an overall robustness metric for each radiomic
category (i.e., GLCM, GLRLM, GLSZM, GLDM, and NGTDM).

The remainder of this work is organized as follows. Section 2 describes the conducted
study aimed at dealing with the robustness evaluation. Section 3 illustrates the experimental
results in terms of dependence on the quantization level, as well as the segmentation
assessment. Finally, the discussion and conclusions are provided in Section 4.
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2. Materials and Methods

This section describes the characteristics of the DCE-MRI dataset used and the analysis
carried out to assess the robustness of the features, relative to their dependence on the
quantization level, as well as on their reproducibility concerning the segmentation method.

The radiomic feature robustness analysis and quantification method were imple-
mented entirely in the MATLAB R2019b (64-bit version) environment MathWorks, Natick,
MA, USA). PyRadiomics was used for the extraction of radiomic features, an open-source
Python package developed for the standardization of radiomic feature extraction [18]. In
particular, we used PyRadiomics version 2.0 and Python 3.7.5.

2.1. Dataset Description

A total of 111 breast masses from DCE-MRI exams were considered in this study, for a
total of 1231 MR slices. Table 1 provides some relevant characteristics concerning the MR
imaging protocol.

Table 1. Some relevant characteristics concerning the DCE-MRI imaging protocol.

Protocol Characteristic Value

series Ax VIBRANT mphase
MR scanner GE Signa HDxt

magnetic field 1.5 Tesla
repetition time (37.72–56.92) ms

echo time (17.64–26.80) ms
flip angle 10°

matrix size 512× 512 pixels
slice thickness (2–3) mm

spacing between slices (1–1.5) mm
pixel spacing (0.6875–0.7422) mm

2.2. Breast Tumor Segmentation

ROIs containing breast masses were segmented using two different segmentation
methods:

• Automated delineation. This is a computer-assisted method based on the spatial fuzzy
c-means (sFCM) clustering algorithm [19,20]. The sFCM algorithm, compared to the
traditional FCM, takes into account the spatial relationship among neighboring pixels,
making it less sensitive to noise and other imaging artifacts. This approach has been
previously implemented and validated in [21,22];

• Manual free-hand delineation. In order to quantify the inter-operator dependence of
the robustness of the features, two delineations were performed by two radiologists
with more than 5 years of experience with breast MRI, in consensus with a consultant
breast radiologist (with more than 30 years of experience with breast imaging).

Segmentations—in terms of original MR slices containing the breast mass and the cor-
responding masks—were converted from DICOM to the Neuroimaging Informatics Tech-
nology Initiative (NIfTI) format [7], to be used successively as input to PyRadiomics [18] for
feature extraction. Both automated and manual free-hand delineations were performed by
using MATLAB-coded custom segmentation tools. The size of the tumor is included among
the exclusion criteria [21]: the masses with maximum diameters lower than 5 mm were
excluded. Considering that the images have a pixel spacing varying between 0.6875 and
0.7422 mm, this means that in the limiting case, the ROI has at least 7–8 voxels (along one
dimension), which is sufficient to calculate the features. Figure 1 shows two segmentation
results obtained through two different segmentation methods.
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Figure 1. Examples related to a benign (on the top) and a malignant (on the bottom) breast mass.
For each example, the DCE-MRI image area is shown without (on the left) and with (on the right)
delineation contours. Segmentation results yielded by the automated delineation (red contour)
and manual delineations—performed by the first (green contour) and the second (blue contour)
radiologist—are compared. All figures are shown with a 2.5×magnification factor.

2.3. Radiomic Feature Extraction

The DCE-MRI images analyzed represent a homogeneous dataset in terms of spatial
resolution along the (x, y) plane and slice thickness along the z axis. For this reason, the
extraction of the features was performed without any resampling to avoid interpolation
artifacts. Radiomic features were extracted from the 3D ROIs delineated in the previous
step. Five texture-feature categories were extracted and considered in this study:

• Gray-level co-occurrence matrix (GLCM) [23,24]: spatial relationship between pix-
els in a specific direction, highlighting the properties of uniformity, homogeneity,
randomness, and linear dependencies;

• Gray-level run length matrix (GLRLM) [25]: texture in specific direction, where fine
texture has shorter runs while coarse texture presents more long runs with different
intensity values;

• Gray-level size zone matrix (GLSZM) [26]: regional intensity variations or the distri-
bution of homogeneity regions;

• Gray-level dependence matrix (GLDM) [27]: quantifies gray-level dependencies;
• Neighboring gray tone difference matrix (NGTDM) [28]: spatial relationship among

three or more pixels, closely approaching the human perception of the image.

Conversely, shape-based and first-order features were not considered in the study
because they are independent of the quantization level.
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It is worth noting that texture features, such as the GLCM features (also known as
Haralick’s features [23,24]), are calculated from the co-occurrence matrix that is based only
on the gray-level values. Therefore, the ROI shape does not play any role, because co-
occurrence matrices consider only the pairs of gray-level values composed of two adjacent
or neighboring voxels [29].

2.4. Statistical Analysis

Radiomic features were extracted considering different quantization levels (i.e., num-
ber of bins equal to 8, 16, 32, 64, 128, 256). The ICC analysis takes into account the extracted
features and allows us to determine which are more robust as the number of bins varies.
ICC analysis was applied to establish the minimum number of ‘bins’ that maximizes the
set of robust features. In this study, we considered the two-way random-effects model (or
mixed-effects), consistency, and the single rater/measurement ICC, named ICC(3,1) [30].
Let k be the number of raters/measurements; the two-way random-effects model (or
mixed-effects), consistency, and the single rater/measurement, ICC(3,1)—defined in Equa-
tion (1)—was used.

ICC(3, 1) =
MSR −MSE

MSR + (k− 1)MSE
, (1)

where MSR and MSE are the mean squares for rows and for errors, respectively.

2.4.1. Quantization-Level Analysis

The quantization of images, in terms of the rebinning of the gray levels prior to feature
computation, has a two-fold goal: (i) noise reduction and (ii) avoidance of sparse matrices
(possibly resulting in unsuitable and poorly robust features for predictive modeling). The
Image Biomarker Standardization Initiative (IBSI) [7] explicitly suggests quantization to
optimize and improve the development of radiomics models.

The ‘binCount’ parameter is used by PyRadiomics to determine the image quantization
settings (i.e. the number of bins) in the radiomic feature-extraction phase. The optimal
value for ’binCount’ was chosen so as to maximize the number of robust features (in terms
of ICC). As a matter of fact, this choice allowed us to carefully assess the quantization
settings, thereby avoiding an arbitrary selection of the number of bins. With more details, to
evaluate the robustness as the quantization level changes, the ICCquantLevel was calculated
for each feature, considering the set composed of all the segmentations (i.e., Segmautomated,
Segmman1, Segmman2) and a specific number of bins, as indicated in Equation (2).

ICCquantLevel = ICC(Segmautomated, Segmman1, Segmman2), (2)

2.4.2. Agreement of Segmentation Methods

Each breast mass was segmented via two different delineation approaches: (i) manual
segmentation, performed by two distinct radiologists with 5 years of experience; (ii) an
automated method based on spatial FCM clustering that was already tested and validated
in [21]. The inter-observer agreement of the two segmentation methods (automated and
manual) was quantified by calculating the ICC using a two-way random-effects model
and the mean differences of the two observers. Regarding the manual segmentation, two
distinct series of delineations were analyzed and independently performed by two different
raters [31]. For this reason, three ICC series were computed, according to Equations (3)–(5):

ICCautomated−manual1 = ICC(Segmautomated, Segmman1), (3)

ICCautomated−manual2 = ICC(Segmautomated, Segmman1), (4)

ICCmanual1−manual2 = ICC(Segmman1, Segmman2), (5)
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After determining the features showing excellent robustness, we aimed to identify
the most relevant features for the analysis at hand by evaluating the dependence on the
segmentation method. To this aim, we considered binCount = 32, which guarantees the
greatest number of features (43) with excellent robustness.

The Shapiro–Wilk test [32] was used to assess the normality of the 129 distributions
of the differences (obtained considering 43 features and three segmentations) among the
segmentation raters, considering a 0.05 confidence interval. All distributions passed the
normality test, obtaining p-values� 0.0001.

To evaluate the robustness of the MRI radiomic features, a six-level scale (ranging
from 0 to 5) was defined, based on a combination of the ICCs coefficient and the standard
deviation (SD) of the mean percentage differences between the three raters (i.e., auto,
man1, man2), according the conditions in Table 2. Percentage differences were evaluated
according to Equation (6).

PercentageDifference(Segmi, Segmj) =
abs(Segmi − Segmj)

mean(Segmi, Segmj)
× 100 (6)

∀i, j ∈ {auto, man1, man2}.

Table 2. Conditions to evaluate the robustness of each radiomic feature category.

Score (Robustness) ICC Condition SD Condition

5 (very high) ≥90% ≤10%
4 (high) ≥85% ≤20%

3 (medium) ≥80% ≤30%
2 (limited) ≥75% ≤40%

1 (low) ≥70% ≤100%
0 (very low) <70% >100%

3. Results
3.1. Quantization Setting Dependence Results

Quantization setting dependence was evaluated by means of ICC, as indicated in
Section 2.4.1. In order to consider only radiomic features with excellent robustness, the cut-
off value was set to 0.9. Figures 2–6 show all the features—divided by category (i.e., GLCM,
GLRLM, GLSZM, GLDM, NGTDM)—that obtained ICC ≥ 0.9 in at least one quantiza-
tion level.

feature Name (GLCM) 8 16 32 64 128 256
Autocorrelation X
Contrast X X X X X X
DifferenceAverage X X X X X X
DifferenceEntropy X X X X X
DifferenceVariance X X
Id X X X X X X
Idm X X X X X X
Idmn X X X X X X
Idn X X X X X X
Imc1 X X X X X
Imc2 X X X X
InverseVariance X X X X X X
JointEnergy X X
JointEntropy X X X
MCC X
MaximumProbability X X X
SumEntropy X

Quantization Level 'binCount ' (ICC>0.9)

Figure 2. Dependence of the quantization level of GLCM radiomic features, considering different
values (i.e., 8, 16, 32, 64, 128, and 256) of the ‘bincount’ PyRadiomics parameter. The features
ClusterProminence, ClusterShade, ClusterTendency, Correlation, JointAverage, and SumAverage were
discarded, as the ICC did not overcome the cutoff for any ‘binCount’ setting.
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feature Name (GLRLM) 8 16 32 64 128 256
GrayLevelNonUniformity X X X X X X
LongRunEmphasis X X X X X X
LongRunHighGrayLevelEmphasis X X X X
RunEntropy X
RunLengthNonUniformity X X X X X X
RunLengthNonUniformityNormalized X X X X X X
RunPercentage X X X X X X
RunVariance X X X X X
ShortRunEmphasis X X X X X X

Quantization Level 'binCount ' (ICC>0.9)

Figure 3. Dependence of the quantization level of GLRLM radiomic features, considering differ-
ent values (i.e., 8, 16, 32, 64, 128, and 256) of the ‘binCount’ PyRadiomics parameter. The fea-
tures SumSquares, GrayLevelNonUniformityNormalized, GrayLevelVariance, HighGrayLevelRunEmphasis,
LongRunLowGrayLevelEmphasis, LowGrayLevelRunEmphasis, ShortRunHighGrayLevelEmphasis, and
ShortRunLowGrayLevelEmphasis were discarded, as the ICC did not overcome the cutoff for any
‘binCount’ setting.

feature Name (GLSZM) 8 16 32 64 128 256
GrayLevelNonUniformity X X X X X X
LargeAreaEmphasis X X X X
LargeAreaHighGrayLevelEmphasis X X X X X X
SizeZoneNonUniformity X X X X X X
SizeZoneNonUniformityNormalized X X X X
SmallAreaEmphasis X X X X
ZoneEntropy X X X X X X
ZonePercentage X X X X X X
ZoneVariance X X X X

Quantization Level 'binCount ' (ICC>0.9)

Figure 4. Dependence of the quantization level of GLSZM radiomic features, considering different val-
ues (i.e., 8, 16, 32, 64, 128, and 256) of the ‘binCount’ PyRadiomics parameter. The features GrayLevel-
NonUniformityNormalized, GrayLevelVariance, HighGrayLevelZoneEmphasis, LargeAreaLowGrayLevelEm-
phasis, LowGrayLevelZoneEmphasis, SmallAreaHighGrayLevelEmphasis, and SmallAreaLowGrayLevelEm-
phasis were discarded, as the ICC did not overcome the cutoff for any ‘binCount’ setting.

feature Name (GLDM) 8 16 32 64 128 256
DependenceEntropy X X X X X X
DependenceNonUniformity X X X X X X
DependenceNonUniformityNormalized X X X X X X
DependenceVariance X X X X
GrayLevelNonUniformity X X X X X X
LargeDependenceEmphasis X X X X X
LargeDependenceHighGrayLevelEmphasis X X X X X X
SmallDependenceEmphasis X X X X X X
SmallDependenceHighGrayLevelEmphasis X X X

Quantization Level 'binCount ' (ICC>0.9)

Figure 5. Dependence of the quantization level of GLDM radiomic features, considering different
values (i.e., 8, 16, 32, 64, 128, and 256) of the ‘binCount’ PyRadiomics parameter. The features
GrayLevelVariance, HighGrayLevelEmphasis, LargeDependenceLowGrayLevelEmphasis, LowGrayLevelEm-
phasis, and SmallDependenceLowGrayLevelEmphasis were discarded, as the ICC did not overcome the
cutoff for any ‘binCount’ setting.

feature Name (NGTDM) 8 16 32 64 128 256
Busyness X X X X X X
Coarseness X X X X X X
Complexity X X X X
Contrast X X
Strength X X X X X X

Quantization Level 'binCount ' (ICC>0.9)

Figure 6. Dependence of the quantization level of NGTDM radiomic features, considering different
values (i.e., 8, 16, 32, 64, 128, and 256) of the ‘binCount’ PyRadiomics parameter.
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Table 3 summarizes the total of the robust features obtained for each quantization
level.

Table 3. Summary of robust features (ICC > 0.9) considering different quantization levels. Bold
values represent the setting guaranteeing the maximum number of robust features.

Quantization Level
(‘binCount’) Robust Features Number Robust Features Percentage

(%)

8 42 85.7
16 38 77.6
32 43 87.8
64 39 79.6

128 37 75.5
256 34 69.4

3.2. Segmentation Method Dependence Results

The robustness of the MRI radiomic features was evaluated using a six-level scale
(going from 0 to 5) and based on a combination of ICCs and the SD of the mean percentage
differences between the three raters (i.e., auto, man1, man2). Percentage differences were
evaluated according to Equation (6). Each feature was evaluated considering the ICC and
SD. The score—from 0 (very high robustness) to 5 (very low robustness)—was assigned
according to the conditions reported in Table 2.

The values obtained are illustrated, for each of the five feature categories, in the
following figures (Figures 7–11).

GLCM Auto vs Man1 Auto vs Man2 Man1 vs Man2

Contrast 2 1 3
DifferenceAverage 2 2 4
DifferenceEntropy 3 3 5
DifferenceVariance 1 1 3
Id 3 3 4
Idm 3 3 4
Idmn 4 4 5
Idn 4 4 5
Imc1 2 1 3
Imc2 2 2 5
InverseVariance 3 3 4
MaximumProbability 0 0 3
Overall category robustness 0,48 0,45 0,8

robusteness Index

Figure 7. Robustness of the GLCM radiomic features obtained on DCE-MRI images using automated
segmentation against two manual segmentations from two independent readers.

GLRLM Auto vs Man1 Auto vs Man2 Man1 vs Man2

GrayLevelNonUniformity 2 2 3
LongRunEmphasis 4 4 5
LongRunHighGrayLevelEmphasis 0 0 3
RunLengthNonUniformity 2 2 3
RunLengthNonUniformityNormalized 5 5 5
RunPercentage 5 5 5
RunVariance 2 2 3
ShortRunEmphasis 4 5 5
Overall category robustness 0,6 0,63 0,8

robusteness Index

Figure 8. Robustness of the GLRLM radiomic features obtained on DCE-MRI images using automated
segmentation against two manual segmentations from two independent readers.
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GLSZM Auto vs Man1 Auto vs Man2 Man1 vs Man2

GrayLevelNonUniformity 3 2 2
LargeAreaEmphasis 2 2 3
LargeAreaHighGrayLevelEmphasis 2 2 2
SizeZoneNonUniformity 2 2 2
SizeZoneNonUniformityNormalized 1 1 2
SmallAreaEmphasis 1 1 3
ZoneEntropy 3 2 5
ZonePercentage 3 2 3
ZoneVariance 2 2 2
Overall category robustness 0,42 0,36 0,53

robusteness Index

Figure 9. Robustness of the GLSZM radiomic features obtained on DCE-MRI images using automated
segmentation against two manual segmentations from two independent readers.

GLDM Auto vs Man1 Auto vs Man2 Man1 vs Man2

DependenceEntropy 3 3 5
DependenceNonUniformity 2 2 3
DependenceNonUniformityNormalized 2 2 4
DependenceVariance 2 2 3
GrayLevelNonUniformity 2 2 3
LargeDependenceEmphasis 3 3 3
LargeDependenceHighGrayLevelEmphasis 1 2 3
SmallDependenceEmphasis 3 3 3
SmallDependenceHighGrayLevelEmphasis 1 0 3
Overall category robustness 0,42 0,42 0,67

robusteness Index

Figure 10. Robustness of the GLDM radiomic features obtained on DCE-MRI images using automated
segmentation against two manual segmentations from two independent readers.

NGTDM Auto vs Man1 Auto vs Man2 Man1 vs Man2

Busyness 2 2 2
Coarseness 2 0 2
Complexity 2 1 2
Contrast 1 0 2
Strength 2 1 2
Overall category robustness 0,36 0,16 0,4

robusteness Index

Figure 11. Robustness of the NGTDM radiomic features obtained on DCE-MRI images using auto-
mated segmentation against two manual segmentation.

Starting from the previously defined scale (see Table 2), an overall robustness value—
defined according to Equation (7)—was computed for each radiomic category Φ to sum-
marize the robustness by feature category across the segmentation methods. This formula
gives values between 0 (lower robustness) and 1 (higher robustness). Results are shown
in Table 4. Instead, for each category of features, Table 5 displays the percentage of robust
features (which have obtained a roughness index ≥ 3) as the segmentation methodol-
ogy varies.

Robustness(Φ) =
∑i∈Φ Sφi

maxValue× |Φ| (7)

where:

• Φ is the radiomic category (Φ ∈ {GLCM, GLRLM, GLSZM, GLDM, NGTDM});
• Sφi represents the score on the scale described above (see Table 2) for the robustness of

each feature i;
• maxValue represents the maximum possible value (i.e., 5);
• | · | represents the cardinality of a given radiomic category Φ.
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Table 4. Overall feature category robustness across the three segmentation raters.

Category Auto vs. Man1 Auto vs. Man2 Man1 vs. Man2

GLCM 0.48 0.45 0.8
GLRLM 0.6 0.63 0.8
GLSZM 0.42 0.36 0.53
GLDM 0.42 0.42 0.67

NGTDM 0.36 0.16 0.4

Table 5. Percentage of features with robustness index ≥ 3.

Category Auto vs. Man1 Auto vs. Man2 Man1 vs. Man2

GLCM 50% 50% 100%
GLRLM 50% 50% 100%
GLSZM 33.3% 0% 44.4%
GLDM 33.3% 33.3% 100%

NGTDM 0% 0% 0%

4. Discussion and Conclusions

The aim of this work was to acquire further insights into the dependence of radiomic
features’ robustness on the quantization level used during feature extraction, and the repro-
ducibility of features in relation to segmented ROIs of breast masses. In particular, first of
all, in order to quantify the robustness and to provide a score—for each radiomic feature
and for each category (i.e., GLCM, GLRLM, GLSZM, GLDM, NGTDM)—a correlation anal-
ysis based on the ICC was carried out to identify the features that are the least dependent
on the level of quantization (i.e., the ‘binCount’ parameter). After determining the best
value for ‘binCount’ and considering the subset containing only the robust features, an
additional analysis was carried out in order to assess the reproducibility by comparing,
relying upon the ICC, three different segmentations: two that were independently obtained
through manual delineation by two radiologists, and one that was obtained using a val-
idated automated segmentation approach [21,33] based on spatial FCM clustering. This
second analysis led to the quantification of not only a robustness index for each feature, but
also to the definition and quantification of an overall robustness index for each category
of features.

Among the GLCM features, Contrast, DifferenceAverage, DifferenceVariance, lmc1, lmc2,
and MaximumProbability seem to have a poor robustness, related to the segmentation
method. Even if, in the comparison of manual1 vs. manual2, their robustness index is
good (surely due to a higher accordance between the two manual segmentations), in the
comparison with the automated method, the lmc1 is lower. This denotes a high dependence
on the ROI. The category has a medium-to-high overall robustness index (0.48–0.8). Among
the GLRLM features, LongRunHighGrayLevelEmphasis obtains the worst score in the compar-
ison between automated and manual segmentations, followed by GrayLevelNonUniformity,
RunLengthNonUniformity, and RunVariance. On the other hand, the other features present a
very good score in all comparisons, and the overall category score is high (0.6–0.8). Nearly
all GLSZM features have a medium/low index that brings the category a very low overall
index, varying in the range 0.36–0.53, depending on the segmentation. GLDM almost all
have a medium other score, except for LargeDependenceHighGrayLevelEmphasis and SmallDe-
pendenceHighGrayLevelEmphasis, showing an overall score in the range 0.42–0.67. Finally,
all features belonging to the NGTDM category show very low robustness indexes and,
consequently, the category obtains an overall score in the range 0.16–0.4.

Considering the dependence on the quantization level, taking into account only the
intersection subset among all the values of ‘binCount’ could be the best selection strat-
egy. Among radiomic categories, GLCM, GLRLM, and GLDM showed the best overall
robustness against variations due to the segmentation method.

A fair comparison against analogous literature works is not possible, because each
one does not necessarily refer to the same disease and, consequently, does not use the same



Appl. Sci. 2022, 12, 5512 11 of 15

data. As a matter of fact, rather than comparing results, we believe it is more appropriate
to summarize the results obtained (see Table 6), in order to provide an overview of the
literature and the parameters for analyzing the robustness of the characteristics.

The main focus of our work was on the development of a reliable system in terms of ro-
bust radiomic features according to the quantization settings and segmentation approaches.
The adopted methods are not computationally expensive since traditional statistical anal-
yses (mostly based on the ICC) are applied after the radiomic feature extraction. This
assessment allowed us to propose a lightweight system based on classic machine learning
techniques. Moreover, the type of analysis performed disregards variations in the data
that could affect the stability of the system. In fact, the analysis performed on the features
is computed from the segmented ROI and by quantifying the correlation (via ICC) as the
quantization level and segmentation approach change.

Presently, clinical decision support systems (CDSSs) are becoming increasingly preva-
lent in clinical routines, and are able to assist the work of clinicians [34,35]. In the near
future, radiomics will certainly represent a tool that clinicians will rely on. An analysis
and quantification approach, such as the one proposed here, inserted upstream in the
analysis and modeling pipeline will enable even more reliable radiomics tools. Our study
can represent an improvement over a traditional radiomic analysis pipeline that might
be affected by parameter choices. In fact, the used techniques, inserted upstream of the
modeling pipeline, allows for the definition of predictive models based only on features (or
feature categories) that are robust against levels of quantization and segmentation methods.
Certainly, considering that clinical scenarios are among the most critical, any tool that takes
advantage of ICT must be carefully validated before being integrated into clinical practice.

Furthermore, as future developments, it would be very interesting to validate the
insights gained from this study on a more extensive dataset in order to assess the re-
peatability of the analysis made and its ability to generalize. A pre-analysis and feature
calibration phase—such as the one proposed in this study—is absolutely essential to have
an initial set of non-redundant and robust features. In fact, every radiomic study consists
of several phases [3]: reducing the uncertainty on the input features allows to improve the
repeatability and robustness of the study.
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Table 6. Overview of the state-of-the-art results, along with the considered settings, to assess the robustness of radiomic features.

Related Work Imaging, Disease (# Samples) Dependence Extraction Tool (# Features) Main Findings

Shafiq-Ul-Hassan et al. [8] CT, phantom (8 by 8 CT scanners) voxel size; gray levels in-house tool (213) In total, 150 features are reproducible
across voxel sizes

Escudero Sanchez et al. [9] CT, liver cancer (43) slice thickness PyRadiomics (107) In total, 75–90% of features are highly
robust

Whitney et al. [10] MRI (DCE-MRI), breast cancer (612) magnetic field strength PyRadiomics (38) In total, 5 features are robust across
field strength

Scalco et al. [11] MR (T2w)/prostate cancer/14 image signal normalization PyRadiomics (91) In total, 60% of features have a poor
reproducibility

De Farias et al. [12] CT, various lesion types (10,000 slices)
+ validation on NSCLC (17,938 slices) super-resolution PyRadiomics (75) In total, 10 texture features have

excellent robustness

Zwanenburg et al. [13] CT, NSCLC (31) + HNSCC (19) image perturbation N.A. (4032)

In total, 2310 (57.3%) NSCLC features
are robust; 582 (14.4%) HNSCC
features are robust; 454 (11.3%)

features are robust in both cohorts

Mottola et al. [14] CT, RCC (98) + CK (93) image resampling and perturbation in-house tool (32)
In total, 94.6% and 87.7% of features
achieve the best reproducibility in

RCC and CK

Tixier et al. [15] MRI (FLAIR, T1w), glioblastoma (98) segmentation method PyRadiomics (108)
IH and GLCM features are the most

robust; GLSZM features have a mixed
robustness

Granzier et al. [16] MR (T1w), breast cancer (102) inter-observer segmentation
variability RadiomiX (1328) + PyRadiomics (833)

In total, 41.6% (552/1328) and 32.8%
(273/833) of all RadiomiX and

Pyradiomics features, respectively, are
robust

Le et al. [17] CTA, culprit lesions in carotid arteries
(41)

inter-observer segmentation
variability; image configurations PyRadiomics (93)

In total, 55.9% (52/93) of features have
excellent robustness; 33.3% (31/93) of

features have moderate robustness;
10.8% (10/93) of features have poor

robustness

Proposed Work MRI (DCE-MRI), breast cancer (111) quantization level; inter-observer
segmentation variability PyRadiomics (49)

In total, 87.8% (43/49) of features were
robust (ICC ≥ 0.9) with binCount = 32;

GLCM and GLRLM features have
high robustness; GLDM features have

moderate robustness
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CK Contralateral normal kidney
CT Computed tomography
CTA Computed tomography angiography
DCE-MRI Dynamic contrast-enhanced magnetic resonance imaging
EVK Enhancement variance kinetics
FCM Fuzzy c-means
FO First-order
GLCM Gray-level co-occurrence matrix
GLDM Gray-level dependence matrix
GLRLM Gray-level run length matrix
GLSZM Gray-level size zone matrix
HNSCC Head and neck squamous cell carcinoma
IBSI Image Biomarker Standardization Initiative
ICC Intra-class correlation coefficient
IH Intensity histogram
IVH Intensity–volume histogram
KCA Kinetic curve assessment
MR Magnetic resonance
NGTDM Neighboring gray tone difference matrix
NIfTI Neuroimaging Informatics Technology Initiative
NSCLC Non-small cell lung cancer
RCC Renal cell carcinoma
ROI Region of interest
sFCM Spatial fuzzy c-means
T1w T1 weighed
T2w T2 weighed
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