
Citation: Gagliardo, A.; Grippo, A.;

Di Stefano, V.; Carrai, R.; Scarpino,

M.; Martini, M.; Falsini, C.;

Rimmaudo, G.; Brighina, F. Spatial

and Temporal Gait Characteristics in

Patients Admitted to a Neuro-

Rehabilitation Department with

Age-Related White Matter Changes:

A Gait Analysis and Clinical Study.

Neurol. Int. 2023, 15, 708–724.

https://doi.org/10.3390/

neurolint15020044

Academic Editor: Axel Steiger

Received: 14 March 2023

Revised: 1 May 2023

Accepted: 16 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Spatial and Temporal Gait Characteristics in Patients Admitted
to a Neuro-Rehabilitation Department with Age-Related White
Matter Changes: A Gait Analysis and Clinical Study
Andrea Gagliardo 1,2,3,*,†, Antonello Grippo 1,4,† , Vincenzo Di Stefano 3 , Riccardo Carrai 1,4,
Maenia Scarpino 1,4, Monica Martini 1, Catiuscia Falsini 1, Giulia Rimmaudo 2 and Filippo Brighina 3

1 IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; antonello.grippo@unifi.it (A.G.);
riccardo.carrai@unifi.it (R.C.); scarpinom@aou-careggi.toscana.it (M.S.); mmartini@dongnocchi.it (M.M.);
cfalsini@dongnocchi.it (C.F.)

2 Clinical Neurophysiology Unit, “Clinical Course”, 90143 Palermo, Italy; giulia.rimmaudo2000@gmail.com
3 Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo,

90127 Palermo, Italy; vincenzo19689@gmail.com (V.D.S.); filippo.brighina@gmail.com (F.B.)
4 SODc Neurofisiopatologia, Dipartimento Neuromuscoloscheletrico e degli Organi di Senso, AOU Careggi,

50134 Firenze, Italy
* Correspondence: andrigl@gmail.com; Tel.: +39-091-655-4780
† These authors have contributed equally.

Abstract: Background: Patients with age-related white matter changes (ARWMC) frequently present
a gait disorder, depression and cognitive impairment. Our aims are to define which alterations in
the gait parameters are associated with motor or neuro-psychological impairment and to assess
the role of motor, mood or cognitive dysfunction in explaining the variance of the gait parameters.
Methods: Patients with gait disorders admitted to a Neuro-rehabilitation Department, affected by
vascular leukoencephalopathy who had ARWMC confirmed by a brain MRI, were consecutively
enrolled, classified by a neuroradiological scale (Fazekas 1987) and compared to healthy controls.
We excluded subjects unable to walk independently, subjects with hydrocephalus or severe aphasia,
with orthopaedic and other neurological pathologies conditioning the walking pattern. Patients and
controls were assessed by clinical and functional scales (Mini Mental State Examination, Geriatric
Depression Scale, Nevitt Motor Performance Scale, Berg Balance Scale, Functional Independence
Measure), and computerised gait analysis was performed to assess the spatial and temporal gait pa-
rameters in a cross-sectional study. Results: We recruited 76 patients (48 males, aged 78.3 ± 6.2 years)
and 14 controls (6 males, aged 75.8 ± 5 years). In the multiple regression analysis, the gait parameter
with overall best model summary values, associated with the ARWMC severity, was the stride length
even after correction for age, sex, weight and height (R2 = 0.327). The motor performances justified at
least in part of the gait disorder (R2 change = 0.220), but the mood state accounted independently
for gait alterations (R2 change = 0.039). The increase in ARWMC severity, the reduction of motor
performance and a depressed mood state were associated with a reduction of stride length (R = 0.766,
R2 = 0.587), reduction of gait speed (R2 = 0.573) and an increase in double support time (R2 = 0.421).
Conclusion: The gait disorders in patients with ARWMC are related to motor impairment, but the
presence of depression is an independent factor for determining gait alterations and functional status.
These data pave the way for longitudinal studies, including gait parameters, to quantitatively assess
gait changes after treatment or to monitor the natural progression of the gait disorders.

Keywords: gait analysis; geriatric; age-related white matter changes; depression; gait disorders

1. Introduction

Gait disorders are commonly found in old people, and their prevalence builds up with
increasing age; at the age of 60, 85% of people have gait parameters that are comparable to
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the mean elderly population, but at the age of 85 or older, this proportion drops to 18% [1,2].
The prevalence of balance difficulties among older adults is estimated to be up to 20% [3–5].
The cumulative and extreme effects of normal ageing, superimposed by the negative effects
of inactivity and multiple chronic diseases, represent geriatric frailty.

In patients with chronic vascular leukoencephalopathy, the white matter abnormalities
have been associated with neurological, neuropsychological and behavioural disorders [6].
Since age represents the strongest factor associated with these alterations, the term age-
related white matter changes (ARWMC) have been proposed [7]. Neuroimaging has also
promoted the “vascular” theory to explain gait changes in relation to cognitive disorders
linked with ageing [8]; the subcortical vascular lesions are a significant predictor for the risk
of falls in elderly populations [6,7] and this could be related to the subcortical hypoperfusion
interrupting connections critical for gait and balance and mediated by deep white matter
sensory and motor tracts [9,10].

Studies on humans and animals actually support the hypothesis that cognitive decline
associated with ageing [11] actually depends on the disturbances in white matter (WM),
including myelin damage; thus, age-related changes in WM may contribute to the functional
decline observed in the elderly [12].

In subjects with ARWMC, gait alteration has an onset with an ataxic-dyspraxic aspect
and is associated with the imbalance and risk of falls [13,14]. These disturbances have a
progressive course and are characterised by a short-stepped, widened base gait, with start
and turnaround hesitation, a tendency to retropulsion and trunk and limb rigidity. Gait
alterations are a predictor of falling in the elderly [15]; gait speed is an important measure
of functional ability and has been widely used in older adults as an indicator of frailty,
too [16].

Aims of the Study

Few studies have quantitatively analysed both gait alteration and clinical-radiological
findings in subjects with ARWMC [17–19] and the apparent relationship between the
progression of gait abnormalities and the amount of leukoencephalopathy; however, no
one has still examined if gait alterations related to ARWMC are associated with motor,
mood or cognitive disorders.

We conducted a cross-sectional study in a sample of patients with ARWMC from our
Neurorehabilitation department. We studied clinical and functional outcomes through
apposite measurable scales and computerised gait data with the aims to:

(a) Evaluate changes of gait parameters according to the severity of ARWMC;
(b) Define which gait parameters alteration is associated with the motor and neuro-

psychological impairment;
(c) To assess the role of motor, mood or cognitive dysfunctions in explaining the

variance of the gait parameters.

2. Materials and Methods
2.1. Patients and Controls

Patients with a gait disorder, admitted to the Neuro-rehabilitation Department of the
Don Carlo Gnocchi Foundation in Florence and affected by vascular leukoencephalopathy,
were consecutively enrolled over a period of 24 months, from January 2008 to December
2009. We excluded subjects unable to walk independently, subjects with hydrocephalus
or severe aphasia, with orthopaedic and other neurological pathologies conditioning the
walking pattern. Furthermore, we recruited a sex- and age-matched control group, chosen
among our patients’ relatives, who had no MRI-detectable alterations in the brain. The
study was approved by the Don Gnocchi Foundation’s internal ethical board, and informed
consent was obtained from all participants before involvement in the study.
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2.2. Neuroimaging Data

Patients had ARWMC confirmed by a previous neuroimaging; a second brain scan
with the same field strength (1.5 T) and comparable sequences [20] was performed in each
patient within three months from inclusion in the study. A trained Neurologist (A.G.)
classified the cerebral white matter changes into three categories (mild, moderate and
severe ARWMC), according to the modified Fazekas visual scale [20].

2.3. Clinical and Functional Assessments

Clinical Evaluation: an overall cognitive evaluation was performed using the Mini
Mental State Examination (MMSE) [21] corrected for age and years of education, in order
to obtain a short 30-item score; mood state was assessed by the Geriatric Depression
Scale questionnaire (GDS), a 30 item score with a yes/no format which best fitted for a
geriatric population [22]; functional level was obtained by the Functional Independence
Measure (FIM) scale [23] that can detect changes in dependence occurring in a rehabilitation
department; motor performance during walking and postural stability by the Nevitt Motor
Performance (NMPS) [24] as a clinical scale for gait and the Berg Balance Scales (BBS) [25,26]
to objectively determine a patient’s ability (or inability) to safely balance during a series of
predetermined tasks.

2.4. Gait Analysis

In order to analyse the spatial-temporal parameters of gait, we recorded each subject
during walking using a computerised Gait Analysis system (SMART System v1.10 BTS
S.p.a., Milan, Italy) consisting of six infrared camcorders placed around the edge of a lab of
9 × 7 m.

The positioning of the retro-reflective anatomically aligned markers on the lower limbs
was performed according to the Davis Protocol [27]. The patients were recorded during a
barefoot walk on a 7-m-long walkway at a self-selected speed. Two strides at the beginning
and at the end of each walk were excluded from the succeeding analysis; four walking trials
were analysed and the following gait parameters were averaged: stance, swing and double
support times (%), stride time (s), cadence (step/min), step length and width (m), swing
speed (m/s), walking speed (m/s) and stride length (m). To reduce the variability of gait
parameters due to anthropometric measures, the temporal parameters were normalised
in the percentage of the walking cycle and the spatial parameters in the percentage of
patients’ height.

2.5. Statistical Analysis

We calculated the averages and standard deviations of both gait parameters and
clinical scores of patients grouped according to ARWMC severity. The association of
ARWMC severity (mild, moderate and severe: categorical independent variables) with
both gait parameters and clinical-functional scores (dependent variables) was tested using
a univariate analysis of variance (ANOVA); for an inter-group comparison of patients
with different ARWMC severity and controls, we performed a post hoc Least Significant
Difference (LSD) analysis.

In order to analyse the association of clinical scores (cognition, mood, functional level,
motor performance and balance: ordinal independent variables) with gait parameters
(continuous independent variables) and their univariate linear relationship, we calculated
the Pearson Correlation Coefficients.

The association of ARWMC severity with gait data was first explored by a linear
regression model corrected for age, sex, weight and height.

In addition, the adjusted ARWMC severity, cognition, mood, functional level, motor
performance and balance scores were entered as independent variables into a multiple
linear regression model. Their effect on each gait parameter (dependent variables) was
examined with a “forward stepwise” selection method. The reason for which we performed
a forward stepwise method was to select the best-predicting variable for entry in the
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model at each step and remove the insignificant variables at once until no more significant
variables were present. The first variable considered for entry into the equation was the
one with the largest positive or negative correlation with the dependent variable. This
variable was entered into the equation only if it satisfied the criterion for entry (p < 0.05). If
the first variable was entered, the independent variable not in the equation that had the
largest partial correlation with the dependent variable was considered next. The procedure
stopped when there were no variables that met the entry criterion. To understand how
well the regression variables in the model truly represented our set of data, we analysed
the multiple correlation coefficient value (R), which is the linear correlation between the
observed and the model-predicted values of the dependent variable and the coefficient of
determination values (R2), which represent the proportion of variation explained by each
regression model, and their changes at each step. Best Coefficient Values (R and R2) are
ideally considered proximal to 1.0. A correlation (R) greater than 0.8 is generally described
as strong, whereas a correlation less than 0.5 is generally described as weak. For statistics,
values of p < 0.05 were considered significant. Statistical computations were performed by
SPSS 16.0.2 (SPSS Inc., Chicago, IL, USA) program.

3. Results
3.1. Sociodemographic Data

We recruited 76 patients (48 males, mean age 78.3 ± 6.2 years) with ARWMC and
14 controls (6 males, 75.8 ± 5 years); 47.3% of the patients had severe, 32.9% moderate
and 19.7% mild ARWMC, according to the Fazekas classification (1987). The patients’ and
controls’ demographic and anthropometric data are reported in Table 1. The control group
did not show significant differences in age, sex and height compared with the three groups
of patients (post hoc LSD p > 0.05). We did not find a significant difference between left and
right gait parameters (t-Test p > 0.05) in either patients or controls, so for further analysis
we used the mean value for each subject.

3.2. Clinical and Functional Data

The MMSE score was lower in the moderate subjects if compared to the control subjects
and was as well lower in the severe than in both mild and moderate ARWMC. The patients’
group had a mean depression score higher than the controls; the mean GDS values in
the three ARWMC groups did not differ significantly. The functional level (FIM) was
significantly lower in the moderate group vs controls and the severe vs moderate ARWMC.
Motor performance (NMPS) and balance (BBS) were lower in the mild vs. controls, and in
the moderate vs. mild ARWMC. We found no difference in motor performance and balance
between severe and moderate ARWMC. The functional decline (FIM) shown in the severe
versus moderate group was significantly different only in the cognitive scores (p< 0.05 post
hoc LSD, Table 1).

3.3. Gait Analysis Data

The mean ± standard deviation (SD), ANOVA and post hoc LSD significance are
reported in Table 1. In subjects with mild ARWMC, swing phase, step and stride length
and mean speed were shown to be significantly lower and the double support phase higher
than controls; in addition, in subjects with moderate and severe ARWMC, cadence was
lower than controls and in subjects with moderate ARWMC, step width was larger than
mild ARWMC and controls. Step and stride length, and mean speed were significantly
lower in moderate or severe than in mild ARWMC subjects, and stance and double support
phases were longer. No gait parameter was significantly different in the severe compared
to moderate ARWMC patients (Figure 1).
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Table 1. Baseline demographic and anthropometric data, gait parameters and clinical scores in the subjects grouped by ARWMC severity.

Demographic and
Anthropometric

Data

Controls
(n = 14)

Mild ARWMC
(n = 15)

Moderate ARWMC
(n = 25)

Severe ARWMC
(n = 36)

Tot Pat
(n = 76) F p

(ANOVA)

Age (years) 75.8 ±5 76.6 ± 5.5 79 ± 6.1 78 ± 6.6 78.3 ± 6.2 1.1 0.324
Sex (males. females) 6M, 8F 9M, 6F 14M, 11F 25M, 11 F 48M, 28F 1.0 0.369

Weight (kg) 63.8 ± 5.8 74.9 ± 15.5
* 68.1 ± 14.4 69.3 ± 15.5 70 ± 15.1 1.5 0.208

Height (cm) 162.3 ± 7 164.8 ± 10.2 165 ± 11.2 163 ± 10.5 164.4 ± 10.6 0.2 0.876

Gait parameters

Stance (%) 61.7 ± 3.1 65.1 ± 4.9
*

70.1 ± 5.7
# ◦

72.6 ± 6.2
§ 70.3 ± 6.3 16.1 <0.0001

Double Support (%) 23.1 ± 6.2 32.6 ± 8.5
*

40.7 ± 11.1
# ◦

45.0 ± 12.4
§ 42.2 ± 12 15.8 <0.0001

Cadence (step/min) 106.2 ± 12.7 92.3 ± 18.3 79.3 ± 23.6
◦ 82 ± 20.1 83.1 ± 21.2 6.6 <0.0001

Swing speed (m/s) 2.27 ± 0.41 1.55 ± 0.38
*

0.95 ± 0.36
# ◦

0.93 ± 0.34
§ 1.0 ± 0.4 54.0 <0.0001

Swing speed (%h/s) 140.2 ± 24.0 94.3 ± 22.3
*

57.8 ± 21.1
# ◦

57.1 ± 20.2
§ 64.7 ± 25.4 60.7 <0.0001

Stride (m) 1.11 ± 0.11 0.8 ± 0.23
*

0.51 ± 0.21
# ◦

0.43 ± 0.18
§ 0.53 ± 0.24 48.5 <0.0001

Stride (%h) 68.6 ± 6.5 48.8 ± 13.4
*

30.7 ± 12.1
# ◦

26.7 ± 10.7
§ 32.4 ± 14.3 55.5 <0.0001

Step width (m) 0.16 ± 0.02 0.18 ± 0.03 0.21 ± 0.04
# ◦ 0.20 ± 0.04 0.20 ± 0.04 6 0.001

Step width (%h) 10.1 ± 1.6 11.3 ± 2.1 12.9 ± 2.6
# ◦ 12.6 ± 2.4 12.5 ± 2.5 5.4 0.002

Speed (m/s) 0.95 ± 0.18 0.58 ± 0.19
*

0.30 ± 0.16
# ◦

0.28 ± 0.13
§ 0.35 ± 0.19 66.1 <0.0001

Speed (%h/s) 58.6 ± 10.6 35.6 ± 11.7
*

18.4 ± 9.7
# ◦

17.6 ± 8
§ 21.4 ± 11.7 72.1 <0.0001
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Table 1. Cont.

Demographic and
Anthropometric

Data

Controls
(n = 14)

Mild ARWMC
(n = 15)

Moderate ARWMC
(n = 25)

Severe ARWMC
(n = 36)

Tot Pat
(n = 76) F p

(ANOVA)

Clinical Scores

MMSE (max = 30) 28.4 ± 1.3 26 ± 3.7 24.7 ± 4.2
◦

21.4 ± 6.1
+ § 23.4 ± 5.4 8.6 <0.0001

GDS (max = 30) 4.8 ± 2.1 14.4 ± 7
*

13.4 ± 7.7
◦

14.6 ± 7.1 14.2 ± 7.2 7.6 <0.0001

FIM (max = 126) 125.6 ± 0.8 113.2 ± 17.9 102.5 ± 19
◦

91.3 ± 27.4
+ § 99.3 ± 24.5 9.8 <0.0001

FIM (motor scores) 90.8 ± 0.5 81.9 ± 13.6 73.7 ± 15.6
◦

65.8 ± 20.7
§ 74.5 ± 18.6 8.8 <0.0001

FIM (cognitive scores) 34.8 ± 0.3 30.6 ± 5.2 28.8 ± 5.0
◦

25.5 ± 8.1
+ § 28.7 ± 6.9 8.0 <0.0001

NMPS (max = 14) 13.8 ± 0.5 9.6 ± 3.2
*

6.2 ± 3
# ◦

5.4 ± 3
§ 6.5 ± 3.4 33.3 <0.0001

BBS (max = 56) 55.8 ± 0.5 45.4 ± 11.2
*

33.1 ± 14
# ◦

29.6 ± 16.2
§ 33.9 ± 15.6 15.2 <0.0001

Abbreviations: ARWMC = Age Related White Matter Changes; MMSE = Mini Mental State Examination; GDS = Geriatric Depression Scale; FIM = Functional Independence Measure;
NMPS = Nevitt Motor Performance Scale; BBS = Berg Balance Scale. Controls = Absent ARWMC; Mild, Moderate and Severe ARWMC= patients classified by means of Fazekas scale;
results expressed as Mean ± SD (standard deviation); post hoc LSD analysis has been used for groups comparison: * p < 0.05 between absent and mild ARWMC group; # p < 0.05
between mild and moderate group; + p < 0.05 between moderate and severe group; ◦ p < 0.05 between controls and moderate group; § p < 0.05 between mild and severe group.
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3.4. Correlation and Regression Model of the Gait with the Clinical-Radiological Data

The correlation coefficients of the normalised gait data and of the clinical-radiological
parameters are reported in Table 2. The univariate analysis showed a high correlation
coefficient (Table 2, r > 0.90) among stance, swing and double support, between stride time
and cadence and between speed and swing speed; for this reason, we excluded further
analyses of stance, swing, stride time and swing speed.

We observed that lower scores in mean walking speed and stride length and higher
single and double support phases were associated with a low MMSE score; we further
noticed lower scores of motor balance performance and functional level but no correlation
with the mood status.

Finally, the decreases in motor performance and balance were correlated with the
reduction of the functional and cognitive level but not with depression (Tables 2 and 3).

The multiple linear regression models are reported in Tables 4 and 5.
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Table 2. Correlation coefficients of the normalised gait parameters.

Gait Parameters and
Clinical Scores vs. Gait

Parameters

Stance
(%)

Swing
(%)

Double
Support (%) Stride Time (s) Cadence

(Step/min)
Swing Speed

(% h/s) Stride (% h) Step Width (% h) Speed (% h/s)

Stance (%) 1 −0.957 ** 0.954 ** 0.530 ** −0.421 ** −0.652 ** −0.767 ** 0.204 −0.767 **
Swing (%) −0.957 ** 1 −0.980 ** −0.593 ** 0.492 ** 0.643 ** 0.684 ** −0.164 0.783 **

Double Support (%) 0.954 ** −0.980 ** 1 0.580 ** −0.487 ** −0.694 ** −0.727 ** 0.212 −0.761 **
Stride time (s) 0.530 ** −0.593 ** 0.580 ** 1 −0.907 ** −0.540 ** −0.245 * 0.07 −0.541 **

Cadence (step/min) −0.421 ** 0.492 ** −0.487 ** −0.907 ** 1 0.554 ** 0.189 0.023 0.539 **
Swing speed (% h/s) −0.652 ** 0.643 ** −0.694 ** −0.540 ** 0.554 ** 1 0.853 ** −0.256 * 0.956 **

Stride (% h) −0.767 ** 0.684 ** −0.727 ** −0.245 * 0.189 0.853 ** 1 −0.298 ** 0.886 **
Step width (% h) 0.204 −0.164 0.212 0.07 0.023 −0.256 * −0.298 ** 1 −0.288 *

Speed (% h/s) −0.767 ** 0.743 ** −0.783 ** −0.541 ** 0.539 ** 0.956 ** 0.886 ** −0.288 * 1
ARWMC 0.428 ** −0.368 ** 0.378 ** 0.124 −0.144 −0.484 ** −0.540 ** 0.158 −0.516 **

MMSE −0.269 * 0.280 * −0.299 * −0.191 0.117 0.349 ** 0.353 ** −0.189 0.323 **
GDS 0.384 ** −0.392 ** 0.404 ** 0.303 ** −0.273 * −0.334 ** −0.317 ** 0.091 −0.351 **
FIM −0.350 ** 0.345 ** −0.388 ** −0.201 0.124 0.452 ** 0.481 ** −0.21 0.431 **

NMPS −0.457 ** 0.436 ** −0.495 ** −0.241 * 0.196 0.637 ** 0.658 ** −0.321 ** 0.631 **
BBS −0.392 ** 0.391 ** −0.445 ** −0.320 ** 0.272 * 0.618 ** 0.565 ** −0.291 * 0.592 **

Abbreviations: ARWMC = Age Related White Matter Changes; MMSE = Mini Mental State Examination; GDS = Geriatric Depression Scale; FIM = Functional Independence Measure;
NMPS = Nevitt Motor Performance Scale; BBS = Berg Balance Scale. Pearson correlation coefficients (r) and two-tailored significance are reported (** p < 0.01; * p < 0.05).

Table 3. Correlation coefficients of the clinical-radiological scores.

Gait Parameters and Clinical Scores vs. Clinical Scores ARWMC MMSE GDS FIM NMPS BBS

Stance (%) 0.428 ** −0.269 * 0.384 ** −0.350 ** −0.457 ** −0.392 **
Swing (%) −0.368 ** 0.280 * −0.392 ** 0.345 ** 0.436 ** 0.391 **

Double Support (%) 0.378 ** −0.299 * 0.404 ** −0.388 ** −0.495 ** −0.445 **
Stride time (s) 0.124 −0.191 0.303 ** −0.201 −0.241 * −0.320 **

Cadence (step/min) −0.144 0.117 −0.273 * 0.124 0.196 0.272 *
Swing speed (% h/s) −0.484 ** 0.349 ** −0.334 ** 0.452 ** 0.637 ** 0.618 **

Stride (% h) −0.540 ** 0.353 ** −0.317 ** 0.481 ** 0.658 ** 0.565 **
Step width (% h) 0.158 −0.189 0.091 −0.21 −0.321 ** −0.291 *

Speed (% h/s) −0.516 ** 0.323 ** −0.351 ** 0.431 ** 0.631 ** 0.592 **
ARWMC 1 −0.351 ** 0.027 −0.348 ** −0.433 ** −0.358 **

MMSE −0.351 ** 1 −0.176 0.602 ** 0.528 ** 0.496 **
GDS 0.027 −0.176 1 −0.256 * −0.177 −0.209
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Table 3. Cont.

Gait Parameters and Clinical Scores vs. Clinical Scores ARWMC MMSE GDS FIM NMPS BBS

FIM −0.348 ** 0.602 ** −0.256 * 1 0.730 ** 0.757 **
NMPS −0.433 ** 0.528 ** −0.177 0.730 ** 1 0.881 **

BBS −0.358 ** 0.496 ** −0.209 0.757 ** 0.881 ** 1

Abbreviations: ARWMC = Age Related White Matter Changes; MMSE = Mini Mental State Examination; GDS = Geriatric Depression Scale; FIM = Functional Independence Measure;
NMPS = Nevitt Motor Performance Scale; BBS = Berg Balance Scale. Pearson correlation coefficients (r) and two-tailored significance are reported (** p < 0.01; * p < 0.05).

Table 4. A multiple linear regression model was calculated for the gait parameters significantly associated with the ARWMC severity in the 76 patients.

Dependent Variables Model Summary Values R2 Change Coefficients of the Independent Variables Zero-Order
Correlations Partial Correlations

Stride
(% h)
Entry

R = 0.572
R2 = 0.327 dR2 = 0.327

p = 0.000
ARWMC = −9.28

(Age, Sex, Weight, Height p > 0.05)
−0.54 −0.51

Forward stepwise R = 0.740
R2 = 0.547

dR2 = 0.220
p = 0.000

ARWMC = −5.31
NMPS = 2.21

−0.54
0.65

−0.35
0.57

R = 0.766
R2 = 0.587

dR2 = 0.039
p = 0.013

ARWMC = −5.54
NMPS = 1.97
GDS = −0.42

−0.54
0.65
−0.31

−0.38
0.53
−0.29

Speed (%h/s)
Entry

R = 0.549
R2 = 0.301

dR2 = 0.301
p = 0.000

Intercept = 66.9
ARWMC = −7.72

(Age, Sex, Weight, Height p > 0.05) −0.51 −0.51

Forward stepwise R = 0.729
R2 = 0.532

dR2 = 0.230
p = 0.000

Intercept = 52.6
ARWMC = −4.40

NMPS = 1.84
−0.51
0.63

−0.35
0.57

R = 0.757
R2 = 0.573

dR2 = 0.041
p = 0.013

Intercept = 62.8
ARWMC = −4.59

NMPS = 1.64
GDS = −0.356

−0.51
0.63
−0.35

−0.38
0.53
−0.29
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Table 4. Cont.

Dependent Variables Model Summary Values R2 Change Coefficients of the Independent Variables Zero-Order
Correlations Partial Correlations

Double supp
(%)

Entry

R = 0.427
R2 = 0.182

dR2 = 0.182
p = 0.013

ARWMC = 6.4
(Age, Sex, Weight, Height p > 0.05) 0.39 0.39

Forward stepwise R = 0.576
R2 = 0.332

dR2 = 0.149
p = 0.000

ARWMC = 3.5
NMPS = −1.5

0.39
−0.49

0.23
−0.42

R = 0.649
R2 = 0.421

dR2 = 0.090
p = 0.002

ARWMC = 3.8
NMPS = −1.2

GDS = 0.55

0.39
−0.49
0.40

0.27
−0.36
0.36

Abbreviations: ARWMC = Age Related White Matter Changes; MMSE = Mini Mental State Examination; GDS = Geriatric Depression Scale; FIM = Functional Independence Measure;
NMPS = Nevitt Motor Performance Scale; BBS = Berg Balance Scale. We reported the summary values of each regression model, the R-squared changes, the coefficients of the significant
predictive variables, the zero-order correlations and partial correlations. First, we entered Age, Sex, Weight and Height with ARWMC; then we proceeded with a forward stepwise
selection of the independent clinical variables., i.e., Stride (%h) = −5.54 ARWMC + 1.97 NMPS − 0.42 GDS.

Table 5. A multiple linear regression model was calculated for the gait parameters not associated with the ARWMC severity in the 76 patients.

Dependent Variables Model Summary Values R2 Change
Coefficients of the

Independent Variables
Zero-Order

Correlations Partial Correlations

Cadence
(Step/min)

Entry

R = 0.339
R2 = 0.115 dR2 = 0.115

p = 0.120

Intercept = 134.7
ARWMC = −5.7

(Age, Sex, Weight,
Height p > 0.05)

−0.14 −0.21

Forward stepwise R = 0.421
R2 = 0.177

dR2 = 0.062
p = 0.026

Intercept = 124.7
ARWMC = −3.2

BBS = 0.3
−0.14
0.27

−0.11
0.26

Step width
(%h)
Entry

R = 0.332
R2 = 0.110

dR2 = 0.110
p = 0.137

Intercept = 25.6
ARWMC = 0.5

(Age, Sex, Weight,
Height p > 0.05)

0.15 0.16

Forward stepwise
R = 0.430
R2 = 0.185 dR2 = 0.114

p = 0.014

Intercept = 27.4
ARWMC = 0.1
NMPS = −0.2

0.15
−0.32

0.03
−0.29

Abbreviations: ARWMC = Age Related White Matter Changes; MMSE = Mini Mental State Examination; GDS = Geriatric Depression Scale; FIM = Functional Independence Measure;
NMPS = Nevitt Motor Performance Scale; BBS = Berg Balance Scale. We reported the summary values of each regression model, the R-squared changes, the coefficients of the predictive
variables, the zero-order correlations and partial correlations. First, we entered Age, Sex, Weight and Height with ARWMC; then we proceeded with a forward stepwise selection of the
independent clinical variables., i.e., Stride (%h) = −5.54 ARWMC + 1.97 NMPS − 0.42 GDS.
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In the linear regression model ARWMC, corrected for age, sex, weight and height, was
significantly associated with stride length (R2 = 0.327), gait speed (R2 = 0.301) and double
support time (R2 = 0.182). For these gait parameters, the models obtained with a forward
stepwise selection of the clinical variables showed a significant increase in R2 values after
the inclusion of NMPS and GDS (Table 3). Cadence and step width were not dependent on
the ARWMC in our sample (Table 4).

The balance (BBS), functional (FIM) and cognitive (MMSE) scores were excluded
from the model estimation because their partial correlations with the dependent variable
were negligible (<−0.087) after the inclusion of the NMPS. The univariate association
between these independent variables and the gait parameters was entirely explained by
their association with the motor alterations expressed by the NMPS.

4. Discussion

We showed that the stride length, gait speed and double support time were signifi-
cantly associated with the ARWMC severity; the motor performances (NMPS) explained a
part of the relation between ARWMC and gait parameters and were associated with the
gait parameters alteration stronger than the other independent variables.

In recent studies on healthy older adults with no history of strokes and not affected by
dementia or Parkinson’s disease, the vascular lesions in the white matter and subclinical
strokes were associated with slower gait speed, shorter stride length and longer double
support time as we obtained [28,29]. A set of age-related vascular alterations probably
contributes to the increased vulnerability of aged WM to hypoperfusion: WM receive blood
mainly from the deep arterioles in the border zone between the middle and the anterior
cerebral arteries; the arterioles in the aged WM can assume a tortuous course too, reducing
the kinetic energy of the blood flow. There is also an excessive deposit of collagen in the
venules, decreasing the lumen and the blood flow and impairing perivascular drainage [12].
Age-related WM changes may also occur as a result of free radical damage, degenerative
changes in cells in the oligodendrocyte lineage and changes in microenvironments within
WM [11,30].

The mood scores (GDS) have an effect on gait alteration, whereas the cognitive scores
(MMSE) were not significantly related to gait data in our population of patients. More
in detail, the models we created well represented this patient population, showing an
almost strong multiple correlation coefficient summary values (R = 0.766), explaining up
to 58,7% of the gait parameter variance. These findings have not been showed till now in
the literature.

The gait parameters of patients with ARWMC differ from those of our healthy controls
(Table 1) and adult subjects’ normative data [31,32] and are similar to those obtained in
larger samples of patients in the literature [17–19]; but most of these studies missed the
association of gait and MRI with other relevant clinical and functional alterations (motor
performance, balance, mood, cognitive and functional level). Additionally, in longitudinal
studies with a comprehensive analysis of confounding factors and covariates, instrumental
analysis of gait parameters has not been used [33–36].

We confirmed that the subjects with mild ARWMC showed a small-stepped symmet-
rical gait with reduced walking speed and increased double-support times. In addition,
in patients with moderate and severe ARWMC, we found a reduction in cadence and an
increase in step width. Concerning gait alteration in relation to ARWMC, no gait parameter
was identified that distinguishes and characterises subjects with moderate rather than
severe ARWMC; so, gait alterations are detectable in mild subjects with ARWMC but tend
to be similar in moderate respect to severe patients.

Studying all the gait parameters quantitatively at once, we had the chance to discover
which gait data were associated with the motor or neuro-psychological dysfunctions: the
alteration of stride length, gait speed and double support time were explained by the
ARWMC severity, motor impairment and depressed mood state, whereas cadence and step
width were not associated with the ARWMC severity.
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The gait and equilibrium have been assessed in the literature using advanced di-
agnostic software systems [37], using information obtained from wearable sensors [38],
by smartphones and tablets, in order to detect the symptoms of central nervous system
impairment, such as cognitive impairment and neurodegenerative diseases [39–42].

With advanced software analysis, the process of gait pattern alteration is short com-
pared to the comprehensive clinical assessment. With specific regard to the computerised
systems for basic spatial and temporal gait parameter analysis, many devices have been
recently compared, including inertial sensors, pressure sensors and optical systems, with
an overall high agreement and consistency between systems. An optical system similar to
the one used in this study showed a higher agreement with pressure systems than inertial
sensor systems [43]. The marker-based gait analysis, including the optical systems, such
as the one used in this study, can simultaneously record joint kinematics and kinetics too.
It can be used before and after treatment, including orthosis, rehabilitation or surgical
approaches. A limitation of our system was the possible misplacement of surface markers
and being a time-consuming method, requiring expensive technical equipment and trained
staff. On the other side the markerless motion capture systems, such as floor sensors,
with ease of handling, portability, low acquisition costs and cannot collect information on
joint movement; active markerless systems require camera triangulation or Time-of-flight
methods and depend on light conditions in a controlled environment lab [44]. Finally,
markerless silhouette extraction-passive systems represent a novel system used mainly
in tracking, estimation and recognition of human motion [45–47] and could be used in a
natural external environment, with limitations of wearing different clothes, carrying bags or
back-pack [48]. The identification of human gait pattern takes advantage of real-time video
capture, which is also great for advanced video surveillance applications with very high
accuracy [45,46]; many state-of-the-art semi-subjective and objective techniques for gait
analysis have limitations that could be mitigated using advanced machine learning-based
approaches [47], but not all movement analysis labs have access to this technology.

Latest generation wearable systems with miniaturised sensor systems have a growing
application and a decreasing cost that makes it an enormous potential consumer product
to be used outside of a laboratory setting in everyday life and more complex activities.
Accelerometery-based devices called inertial sensors combined with gyroscopes and mag-
netometers are the most promising [49,50]; to date, these data have lower accuracy and
cannot still be used in clinical and scientific settings; they have limited battery power
and complex algorithms are needed to obtain parameters. The challenge will be to have
wearable devices with high computing power, reliable algorithms and limited energy
consumption. Systems that require less time and resources while still providing sufficient
accuracy will be the future of gait analysis.

In order to improve the analysis of the gait pattern, studies on joint kinetics and
kinematics can be integrated into spatial and temporal gait parameters taking advantage
of the same technical equipment that we used. However, the more complex the analysis
algorithm, the more a staff of biomedical engineers is needed for signal analysis. A step for-
ward is therefore still needed in software development to be more easily used, universally
accepted and clinically oriented.

In the multiple regression analysis, the patient’s stride length was further the gait
parameter with overall best model summary values; it was associated with the ARWMC,
corrected for age, sex, weight and height (R = 0.576, R2 = 0.327); the inclusion of the
NMPS in the model, in addition to the corrected ARWMC, accounted for a 22% increase
in the variance explained for the stride (dR2 p = 0.000), but also caused a sharp drop of
the ARWMC partial correlations from the zero-order correlation and a decrease in the
regression coefficient (Table 3). This means that part of the existing relation between
ARWMC and stride length is dependent on the white matter changes within the motor
system pathways. So, the motor alterations are certainly associated with MRI lesions and
explain a part of the correlation with the gait changes, but the partial correlation of ARWMC
severity with gait changes remains significant even after excluding the direct effect on the
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motor system; this means that the influence of MRI abnormalities on gait does not just
depend on purely motor abnormalities.

According to the multiple regression models, gait alterations were also influenced by
the presence of depression (disclosed in 67.5% of the patients); indeed, the GDS score is a
significant predictor of gait parameter alterations but independent from ARWMC severity
and motor performance. In fact, with the increasing severity of depression, double support
times significantly increase, stride length and average speed decrease. The depression
scores added a further 3.9% to the variance explained by the model, but slightly modified
the partial correlations and the regression coefficients of ARWMC and NMPS, indicating its
independent role in generating a gait alteration. Similar results were obtained by analysing
the models for gait speed and double support time (Table 3).

A mutually reinforcing relationship has been shown between disability and depressive
symptoms in late life [51]; transition to disability in subjects with ARWMC could lead
to depressive symptoms [52], which in turn worsen functional ability. From the analysis
of our data, it is reasonable to hypothesise that the patients were not depressed because
of their reduced motor performances but that, as a consequence of depression, they may
appear as patients with more severe gait abnormalities than they actually have. The factors
influencing the presence of depression in older individuals with high disability are still
poorly understood. Many vascular mechanisms affect the fronto-limbic and other pathways
predisposing to depression; generalised cortical atrophy or focal medial temporal atrophy
are also related to late-life depression and associated with cognitive impairment [53];
although we have not analysed the regional distribution of white matter changes in our old
patients, we obtained similar data in our patients, such as late-life-depression in association
to white matter changes and gait disturbances.

We observed a correlation between the deterioration of gait parameters and a reduction
in the cognitive level. This result is in accordance with the findings of other authors [54–56],
as motor and gait alterations precede and predict cognitive disorder itself, but in multiple
regression analysis, this association was not statistically significant. This means that the
cognitive status, explored by means of MMSE, did not add a significant explanation to the
variance of gait parameters in the models.

Limitations and Strengths

Our study has the following limitations. Similar to other teams who are studying gait,
there are some general difficulties in geriatric populations: studying patients in lab and
finding a balance between the need to highlight some results with a strong statistical power
and the relevance of underlying this result in a “real-life” population [10].

First, our sample, recruited in a rehabilitation department, represents a symptomatic
population with functional deficits and cannot be generalised to other populations. Given
ageing-related sarcopenia, rehabilitation interventions were performed in our patients
for basic strengthening, functional mobility, gait and balance training and self-care skills
training [3,4,57]. Training protocols have a positive effect on both gait and balance, walking
speed and strength and may allow greater autonomy and independence to carry out
activities of daily living in an elderly population [58]. We did not explore the training effect
on our patients being a cross-sectional study, but a longitudinal study will be mandatory in
order to show this improvement. Gait alterations in these symptomatic patients were similar
to those already shown in high-functioning older adults with quantitative gait analysis [18]
or in neurological outpatients but with a non-quantitative analysis [33]. Further the study
does not address why some people has a gait disorder and other has not it in the general
population. Our results represent indeed a specific gait disturbance of patients who need
a neurorehabilitation.

Moreover, the use of MMSE to evaluate cognitive function lacks sensitivity for specific
cognitive domains. This can explain our lack of a significant correlation between gait pa-
rameters and cognitive function. Future studies should address if a more specific cognitive
assessment can identify such a correlation with gait patterns.
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Some studies explore the role of white matter degeneration in age-related sleep dis-
ruption [59]; white matter degeneration is intimately connected to frontal-subcortical tracts,
particularly on the right side [60]. Poor sleep quality is associated with white matter degen-
eration in widespread frontal-subcortical tracts with right hemisphere preponderance [61].
Given that the frontal-subcortical tracts connect several sections that dictate sleep and wake-
fulness [62], disruption in such circuits presumably accelerates the development of sleep
disturbances disrupting sleep spindles and slow waves. The deterioration of white matter
fibre tracts can compromise the synchronous recruitment of the neurons in older sleepers
to produce slow wave sleep [63]. This may be the underlying mechanism of how white
matter degeneration causes sleep impairment: driving decreases in sleep oscillations [64]
and impairing their cortico-thalamic propagation loops [65]. Chronic sleep deterioration
may contribute to memory, attention and cognitive impairment. Unfortunately, we did
not explore the sleep disturbances in our patients. Bells et al. 2019 showed a fundamental
connection between white matter microstructure and neural synchronisation that may be
critical for cognitive processing [66]; so, it would be desirable to analyse the consequences
of white matter on sleep and cognition in future studies with more specific scale for sleep
and cognitive domains.

Finally, we have not analysed the brain spatial localisation of the ARWMC: its impact
on gait is likely to be a consequence of disruption of motor pathways; hence, it may
be reasonable to hypothesise that the severity of ARWMC correlate with gait alteration
impairment. On the other hand, the semi-quantitative radiological scoring method we
adopted for ARWMC has been previously demonstrated to have good reliability and
sensitivity in cross-sectional studies [67] and has been extensively applied [33,35,52,68] and,
as such, we used it as a relative point of strength.

In any case, we are aware that the cross-sectional design also precludes us from making
causal inferences regarding the association of ARWMC and gait that we found, so a longi-
tudinal approach will be desirable in subsequent studies in order to show improvement
after treatment and categories of the patient that best benefit of training protocols.

5. Conclusions

Gait analysis is non-invasive, quantifiable, and permanent (results can be stored on a
hard drive or printed out). We have described the gait alterations that characterise patients
with different ARWMC severities and associated deterioration of motor performance. The
gait disorders in patients with ARWMC are related to motor impairment, but the presence
of depression is an independent factor for determining gait alterations and functional status.
The reduction of independence level in these patients caused by the gait disorder needs
a combined neuro-rehabilitative and pharmacological treatment, tailored to each patient
according to gait alteration and mood disorder, in order to prevent a deterioration of gait
performance and a decline of the functional status. Future studies could highlight the
role of gait analysis as an evidence-based tool to quantitatively assess gait changes after
treatment or to monitor the natural progression of the gait disorder.
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