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1. Introduction

Let B1 be the open unit ball of RN (N ≥ 2). In this paper, we study the following
perturbed viscoelastic equation:

utt − Lλu +
δ

Γ(α)

∫ t

0
(t− s)α−1Lλu(s, x) ds + ut = |u|p, t > 0, x ∈ RN\B1. (1)

In this problem, the elliptic operator Lλ = ∆− λ
|x|2 for λ ∈ R, is the Laplacian with

Hardy perturbation, u = u(t, x), Γ(·) is the gamma function, and we assume the following
hypotheses on the data

λ ≥ −
(

N − 2
2

)2
, δ 6= 0, α > 0, p > 1.

We are interested in the range of values of N, λ (see also the parameter λN in
Equation (8)) and p for which Equation (1) does not admit weak solutions, under the
Dirichlet boundary condition

u(t, x) = w(x), t > 0, x ∈ ∂B1, (2)

where w ∈ L1(∂B1), and imposing the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ RN\B1. (3)

We shall discuss separately the cases w = 0 and w 6= 0. We now briefly recall some
known results related to perturbed viscoelastic Equation (1). When δ = λ = 0, Equation (1)
reduces to the semilinear damped wave equation

utt − ∆u + ut = |u|p, t > 0, x ∈ RN\B1. (4)

Ogawa-Takeda [1] investigated Equation (4) under the boundary condition (2) with
w = 0. Hence, for compactly supported initial data, they showed that there is a non-
negative global solution whenever 1 < p < 1 + 2

N . The approach used in [1] is based on
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the Kaplan–Fujita method (see the works of Kaplan [2] and Fujita [3] for more information).
Later, Fino-Ibrahim-Wehbe [4] proved that the value p = 1 + 2

N belongs to the blow-
up case. In a recent paper, Jleli-Samet [5] considered Equation (4) under the boundary
condition (2) in the case when w is a non-negative nontrivial function. Hence, they obtained
the following results:

(i) If N = 2, then for all p > 1, Equation (4) under the boundary condition (2) admits no
global weak solution;

(ii) If N ≥ 3, then for all 1 < p < 1 + 2
N−2 , Equation (4) under the boundary condition (2)

admits no global weak solution;
(iii) If N ≥ 3 and p > 1 + 2

N−2 , then Equation (4) under the boundary condition (2) admits
suitable solutions for some w > 0.

When dealing with problem (4) posed in the whole space RN , we mention the works
of Kirane-Qafsaoui [6] (m-iterated Laplacian equation, m ≥ 1), Todorova-Yordanov [7] and
Zhang [8] (global existence, blow-up and asymptotic behavior of global solutions); see also
the references therein.

On the other hand, the issue of nonexistence and blow-up in finite time for viscoelastic
wave equations of the form

utt − ∆u +
∫ t

0
g(t− s)∆u(s, x) ds + h(ut) = f (u), t > 0, x ∈ Ω (5)

is present in many publications. We mention the works of Haraux-Zuazua [9] (hyper-
bolic problems), Kafini-Messaoudi [10,11] (nonlinear viscoelastic system and equation,
respectively), and Messaoudi [12] (blow-up of solutions with negative initial energy).
For instance, in [11], the authors investigated (5) in Ω = RN with h(ut) = ut and
f (u) = |u|p−1u. Namely, under a certain condition on the kernel function g, it was shown
that, if 1 ≤ p < N

N−2 , N ≥ 3; or p ≥ 1, N = 1, 2, and∫ t

0
g(s) ds <

2p− 2
2p− 1

,

then for any initial data (u0, u1) ∈ H1(RN)× L2(RN) with compact support, satisfying

E(0) =
1
2
‖u1‖2

2 +
1
2
‖∇u0‖2

2 −
1

p + 1
‖u0‖

p+1
p+1 ≤ 0,∫

RN
u0(x)u1(x) dx ≥ 0,

the corresponding solution blows up in finite time. We point out that the approach in [11]
is based on the energy method.

Now we recall some references in the literature on evolution equations and inequalities

perturbed by the Hardy potential
λ

|x|2 . We refer to the works of Abdellaoui-Miri-Peral-

Touaoula [13] (p-Laplacian equation), Abdellaoui-Peral-Primo [14,15] (Laplacian equations),
Jleli-Samet-Vetro [16] (inhomogeneous wave inequalities) and again the work of Haraux-
Zuazua [9]. However, to the best of our knowledge, problems of type (1) have not been
previously studied in the literature. The motivation to consider Equation (1) originates from
the idea to combine the effects of viscoelastic behavior and singular Hardy potential into a
single wave equation. Referring to a physical context, viscoelastic materials (i.e., polymers)
exhibit both the behavior of a liquid (viscous case) and of a solid (elastic case). For instance,
first a suitable tension produces some elastic deformation, then (time-dependent) viscous
stress occurs, hence there are material properties leading to so-called memory effects. Now,
the degree of viscoelasticity can be controlled by a parameter varying in an appropriate
range (see also Chapter 7 of Mills-Jenkins-Kukureka [17]). From a mathematical perspective,
the effects of memory are linked to the kernel function in the integral term of the equation
(i.e., the function g in (5)), hence it is interesting to show the behavior of solutions to classes
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of viscoelastic wave equations, under minimal (or specific) assumptions on g. We mention,
for example, the works of Cavalcanti et al. [18] (using the multiplier method together with
a lemma about convergent and divergent series for establishing the uniform decay of the
energy of the solution) and Wu [19] (using the perturbed energy technique for establishing
the uniform decay of the energy of the solution to the system of viscoelastic wave equations).
On the other hand, the singular Hardy potential is recognized as a suitable prototype to
analyze the critical behavior of different nonlinear problems in physics, hence in dealing
with the existence and stability of solutions (for more details and information, we refer to
the comprehensive book of Alonso-de Diego [20]). It makes more sense to study how the
parametric Hardy potential λ

|x|2 for λ ∈ R, affects instantaneous and complete blow-up of
solutions to (1) (i.e., nonexistence phenomenon).

In order to define weak solutions to (1) under conditions (2) and (3), we recall below
some notions from fractional calculus (see the comprehensive book of Kilbas-Srivastava-
Trujillo [21] for more details), hence we fix notation.

Let T > 0 be fixed. Given f ∈ L1([0, T]) and β > 0, the left-sided and right-sided
Riemann–Liouville fractional integrals of order β of f , are defined, respectively, by

Iβ
0 f (t) =

1
Γ(β)

∫ t

0
(t− s)β−1 f (s) ds

and

Iβ
T f (t) =

1
Γ(β)

∫ T

t
(s− t)β−1 f (s) ds

for almost everywhere t ∈ [0, T]. The following property can be found in Kilbas-Srivastava-
Trujillo ([21], Lemma 2.7).

Lemma 1. Let β > 0, m, q ≥ 1, and 1
m + 1

q ≤ 1 + β (m 6= 1 and q 6= 1 if 1
m + 1

q = 1 + β).
If f ∈ Lm([0, T]) and g ∈ Lq([0, T]), then∫ T

0
g(t)Iβ

0 f (t) dt =
∫ T

0
f (t)Iβ

T g(t) dt.

Let F : [0, T] × RN\B1 → R be a given function. The left-sided and right-sided
Riemann–Liouville fractional integrals of order β > 0 of F with respect to the time-variable
t, are denoted, respectively, by Iβ

0 F and Iβ
T F, namely we have

Iβ
0 F(t, x) = Iβ

0 F(·, x)(t)

and
Iβ
T F(t, x) = Iβ

T F(·, x)(t).

Using the above notations, the nonlocal term in Equation (1) can be written in the form
1

Γ(α)

∫ t

0
(t− s)α−1Lλu(s, x) ds = Iα

0 Lλu(t, x). (6)

For some contributions related to the applications of fractional derivative opera-
tors in diffusion processes, we mention the works of Hurtado-Salvatierra [22], Jleli [23],
Nashine et al. [24], Villagran et al. [25], and the references therein. Precisely, [22] deals with
non-local diffusion problems driven by the fractional p-Laplacian differential operator in
the Heisenberg group. The approach is based on the theory of monotone operators and
pullback attractors. In [23], the author investigates the existence of solutions to a Dirichlet
problem for the Kohn Laplacian on the Heisenberg group too, using partial ordering meth-
ods. In [24], the authors study generalized fractional integral equations, using fixed-point
arguments in Banach spaces. In [25], the authors investigate stability for a system of wave
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equations. They establish well-posedness and polynomial stability using the semigroup
theory and certain sharp results. For all T > 0, we denote

QT = [0, T]×RN\B1, ΓT = [0, T]× ∂B1,

hence, ΓT ⊂ QT . Let ΦT be the set of functions ϕ = ϕ(t, x) satisfying the following properties:

(P1) ϕ ∈ C2(QT), suppx(ϕ) ⊂⊂ RN\B1, ϕ ≥ 0;
(P2) ϕ(T, ·) = ϕt(T, ·) = 0;
(P3) ϕ|ΓT

= 0.

Using standard integrations by parts, together with Lemma 1 and (6), we define weak
solutions to problem (1)–(3) as follows.

Definition 1. Let u0, u1 ∈ L1
loc

(
RN\B1

)
and w ∈ L1(∂B1). We say that

u ∈ Lp
loc([0, ∞)×RN\B1)

is a weak solution to (1)–(3) if∫
QT

|u|p ϕ dx dt +
∫
RN\B1

u0(x)(ϕ(0, x)− ϕt(0, x)) dx

+
∫
RN\B1

u1(x)ϕ(0, x) dx−
∫

ΓT

(
∂ϕ

∂ν
− δ

∂(Iα
T ϕ)

∂ν

)
w(x) dSx dt

=
∫

QT

u(ϕtt − Lλ ϕ + δLλ(Iα
T ϕ)− ϕt) dx dt

(7)

for every T > 0 and ϕ ∈ ΦT , where ν denotes the outward unit normal vector on ∂B1, relative to
RN\B1.

For λ ≥ −
(

N−2
2

)2
, we introduce the parameter

λN = −N − 2
2

+

√(
N − 2

2

)2
+ λ (8)

and the truncation function

Hλ(x) =

 |x|
λN
(
1− |x|2−N−2λN

)
if λ > −

(
N−2

2

)2
,

|x|λN ln |x| if λ = −
(

N−2
2

)2
.

(9)

Our aim in this work is to establish sufficient conditions for the nonexistence of weak
solutions to problem (1)–(3). Therefore, we need to find ways to deal with the nonlocal
nature of the problem, the elliptic operator Lλ and the boundary condition (2). We come up
with an approach based on nonlinear capacity estimates specifically adapted to our needs.

The rest of the paper is organized as follows. In Section 2, we obtain some prelimi-
nary estimates. Namely, we first prove an a priori estimate for problem (1)–(3), then we
construct a family of test functions belonging to the functional space ΦT , and provide
some useful estimates involving such functions. In Section 3, we provide the proofs of
Theorems 1 and 2.

2. Preliminaries

In this section, we give the mathematical background necessary to establish our results.
Here, the symbols C, Ci denote always generic positive constants, which are independent of
the scaling parameters T, R and the solution u. Their values could be changed from one line
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to another. First, we impose the following hypotheses on the data: N ≥ 2, λ ≥ −
(

N−2
2

)2
,

α > 0, δ 6= 0, p > 1, u0, u1 ∈ L1
loc

(
RN\B1

)
and w ∈ L1(∂B1).

2.1. A Priori Estimate

For T > 0 and ϕ ∈ φT , we introduce the integral terms

J1(ϕ) =
∫

supp(ϕ)
ϕ
−1
p−1 |ϕt|

p
p−1 dx dt, (10)

J2(ϕ) =
∫

supp(ϕ)
ϕ
−1
p−1 |ϕtt|

p
p−1 dx dt, (11)

J3(ϕ) =
∫

supp(ϕ)
ϕ
−1
p−1 |Lλ ϕ|

p
p−1 dx dt, (12)

J4(ϕ) =
∫

supp(ϕ)
ϕ
−1
p−1 |Lλ(Iα

T ϕ)|
p

p−1 dx dt. (13)

Hence, we establish the following a priori estimate.

Lemma 2. If u ∈ Lp
loc([0, ∞)×RN\B1) is a weak solution to problem (1)–(3), then we have the

estimate ∫
RN\B1

u0(x)(ϕ(0, x)− ϕt(0, x)) dx +
∫
RN\B1

u1(x)ϕ(0, x) dx

−
∫

ΓT

(
∂ϕ

∂ν
− δ

∂(Iα
T ϕ)

∂ν

)
w(x) dSx dt ≤ C

4

∑
i=1

Ji(ϕ)

(14)

for every T > 0 and ϕ ∈ ΦT , provided that Ji(ϕ) < ∞, j = 1, 2, 3, 4.

Proof. Let u ∈ Lp
loc([0, ∞)×RN\B1) be a weak solution to problem (1)–(3). For T > 0 and

ϕ ∈ ΦT satisfying the conditions Ji(ϕ) < ∞, j = 1, 2, 3, 4, using (7) (i.e., Definition 1), we
obtain ∫

QT

|u|p ϕ dx dt +
∫
RN\B1

u0(x)(ϕ(0, x)− ϕt(0, x)) dx

+
∫
RN\B1

u1(x)ϕ(0, x) dx−
∫

ΓT

(
∂ϕ

∂ν
− δ

∂(Iα
T ϕ)

∂ν

)
w(x) dSx dt

≤
∫

QT

|u||ϕt| dx dt +
∫

QT

|u||ϕtt| dx dt

+
∫

QT

|u||Lλ ϕ| dx dt + |δ|
∫

QT

|u||Lλ(Iα
T ϕ)| dx dt.

(15)

Considering each one of the integrals on the right hand side of (15) separately,
by means of Young’s inequality, we first obtain∫

QT

|u||ϕt| dx dt =
∫

QT

(
|u|ϕ

1
p

)(
ϕ
−1
p |ϕt|

)
dx dt

≤ 1
4

∫
QT

|u|p ϕ dx dt + CJ1(ϕ),
(16)

and similarly we obtain the other bounds∫
QT

|u||ϕtt| dx dt ≤ 1
4

∫
QT

|u|p ϕ dx dt + CJ2(ϕ), (17)∫
QT

|u||Lλ ϕ| dx dt ≤ 1
4

∫
QT

|u|p ϕ dx dt + CJ3(ϕ), (18)

|δ|
∫

QT

|u||Lλ(Iα
T ϕ)| dx dt ≤ 1

4

∫
QT

|u|p ϕ dx dt + CJ4(ϕ). (19)

After combining together inequalities (16)–(19) with the principal inequality (15), we
obtain the desired estimate in (14).
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2.2. Construction of a Family of Functions Belonging to ΦT

Let T > 0. For sufficiently large `, we introduce the function

ιT(t) = T−`(T − t)`, 0 ≤ t ≤ T. (20)

Next, for sufficiently large R, we consider a family of cut-off functions {ξR}R fulfilling
the following properties:

0 ≤ ξR ≤ 1, ξR ∈ C∞(RN\B1),

ξR = 1 if 1 ≤ |x| ≤ R, ξR = 0 if |x| ≥ 2R,
(21)

but also
|∇ξR| ≤ CR−1, |∆ξR| ≤ CR−2. (22)

We now introduce a test function of the form

ϕ(t, x) = ιT(t)ψR(x), (t, x) ∈ QT , (23)

where
ψR(x) = Hλ(x)ξ`R(x), x ∈ RN\B1 (24)

and Hλ(·) is the truncation in (9).
We immediately find that the test function in (23) possesses the properties (P1)–(P3),

hence ϕ ∈ ΦT .

Lemma 3. For sufficiently large T, R and `, the function ϕ defined by (23) belongs to ΦT .

Proof. Property (P1) follows immediately from (9) and (20)–(24). Moreover, by (9) and (20),
one has

ιT(T) = ι′T(T) = 0, Hλ |∂B1
= 0,

which shows by (23) that properties (P2) and (P3) are satisfied too.

2.3. Estimates of Ji(ϕ)

Now we consider again the integral terms (10)–(13) to establish their bounds from
above. For sufficiently large T, R and `, let ϕ be the test function defined by (23). The first
result holds for Ji(ϕ), with j = 1, 2, and is given in the following lemma.

Lemma 4. For i = 1, 2 and λN given in (8), we have

Ji(ϕ) ≤ CT1− ip
p−1 RλN+N ln R. (25)

Proof. Starting from the formulas (10) and (11), and involving the cut-off function (21) and
the test function (23) (recall (24) too), for i = 1, 2, we obtain

Ji(ϕ) =

(∫ T

0
ι
−1
p−1
T (t)|ι(i)T (t)|

p
p−1 dt

)(∫
1<|x|<2R

Hλ(x)ξ`R(x) dx
)

, (26)

where ι
(i)
T =

diιT

dti . On the other hand, by (20), for all 0 < t < T one has

|ι(i)T (t)| = CT−`(T − t)`−i,

which yields

ι
−1
p−1
T (t)|ι(i)T (t)|

p
p−1 = CT−`(T − t)`−

ip
p−1 .
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Integrating over (0, T) this equation, we obtain

∫ T

0
ι
−1
p−1
T (t)|ι(i)T (t)|

p
p−1 dt = CT1− ip

p−1 . (27)

Moreover, we use the truncation (9) together with the appropriate property in (21)
(namely 0 ≤ ξR ≤ 1) to deduce that

Hλ(x)ξ`R(x) ≤ Hλ(x) ≤ |x|λN ln |x|, 1 < |x| < 2R.

Integrating over (1, 2R), we obtain (notice that λN + N − 1 > 0)∫
1<|x|<2R

Hλ(x)ξ`R(x) dx ≤
∫

1<|x|<2R
|x|λN ln |x|

≤ ln R
∫ 2R

r=1
rλN+N−1 dr

≤ C ln R RλN+N−1R

= CRλN+N ln R.

(28)

Combining (26)–(28), we conclude the estimate (25).

The next result follows by elementary calculations, hence we avoid the proof of this lemma.

Lemma 5. The function Hλ defined by (9) satisfies the following property:

LλHλ(x) = 0, x ∈ RN\B1.

Now, we consider the integral term J3(ϕ) and establish the following estimate.

Lemma 6. The following estimate holds:

J3(ϕ) ≤ CTRλN+N− 2p
p−1 (ln R)

p
p−1 . (29)

Proof. Starting from the formula (12), and involving the cut-off function (21) and the test
function (23), we obtain

J3(ϕ) =

(∫ T

0
ιT(t) dt

)(∫
1<|x|<2R

ψ
−1
p−1
R |LλψR|

p
p−1 dx

)
. (30)

On the other hand, by (20), one has∫ T

0
ιT(t) dt = T−`

∫ T

0
(T − t)` dt = CT. (31)

Next, by (24), for 1 < |x| < 2R, we obtain

LλψR(x) = Lλ(Hλξ`R)(x)

= ∆(Hλ(x)ξ`R(x))− λ

|x|2 Hλ(x)ξ`R(x)

= ξ`R(x)∆Hλ(x) + Hλ(x)∆(ξ`R(x)) + 2∇Hλ(x) · ∇(ξ`R(x))

− λ

|x|2 Hλ(x)ξ`R(x)

= ξ`R(x)LλHλ(x) + Hλ(x)∆(ξ`R(x)) + 2∇Hλ(x) · ∇(ξ`R(x)),

where · denotes the inner product in RN . Then, by Lemma 5, we deduce that

LλψR(x) = Hλ(x)∆(ξ`R(x)) + 2∇Hλ(x) · ∇(ξ`R(x)), (32)
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which implies, by (21), that

∫
1<|x|<2R

ψ
−1
p−1
R |LλψR|

p
p−1 dx =

∫
R<|x|<2R

ψ
−1
p−1
R |LλψR|

p
p−1 dx. (33)

On the other hand, by using the truncation (9), we obtain

C1RλN ≤ Hλ(x) ≤ C2RλN ln R,

|∇Hλ(x)| ≤ CRλN−1 ln R, R < |x| < 2R.
(34)

Moreover, using the properties (22) together with

∆ξ`R = `(`− 1)ξ`−2
R |∇ξR|2 + `ξ`−1

R ∆ξR,

we deduce that (recall 0 ≤ ξR ≤ 1)

|∆(ξ`R(x))| ≤ CR−2ξ`−2
R (x),

|∇(ξ`R(x))| ≤ CR−1ξ`−2
R (x), R < |x| < 2R.

(35)

Hence, by Cauchy–Schwarz inequality, it follows from (32), (34) and (35) that

|LλψR(x)| ≤ CRλN−2 ln R ξ`−2
R (x), R < |x| < 2R. (36)

Furthermore, using (24), (34) and (36), we obtain

ψ
−1
p−1
R (x)|LλψR(x)|

p
p−1 ≤ CRλN−

2p
p−1 (ln R)

p
p−1 ξ

`− 2p
p−1

R (x), R < |x| < 2R.

Integrating appropriately this inequality and using (33), we obtain∫
1<|x|<2R

ψ
−1
p−1
R |LλψR|

p
p−1 dx ≤ CRλN−

2p
p−1 (ln R)

p
p−1

∫
R<|x|<2R

ξ
`− 2p

p−1
R (x) dx

≤ CRN+λN−
2p

p−1 (ln R)
p

p−1 .

(37)

Finally, (29) follows from (30), (31) and (37). Hence, the estimate of J3(ϕ) is reached.

Now, we consider the integral term J4(ϕ) and prove the following result.

Lemma 7. The following estimate holds:

J4(ϕ) ≤ CT1+ αp
p−1 RλN+N− 2p

p−1 (ln R)
p

p−1 . (38)

Proof. Starting from the formula (13), and using the test function (23), we obtain

J4(ϕ) =

(∫ T

0
ι
−1
p−1
T (t)|Iα

T ιT(t)|
p

p−1 dt
)(∫

1<|x|<2R
ψ
−1
p−1
R |LλψR|

p
p−1 dx

)
. (39)

On the other hand, by (20), for all 0 < t < T, one has

Iα
T ιT(t) =

1
Γ(α)

∫ T

t
(s− t)α−1ιT(s) ds

=
T−`

Γ(α)

∫ T

t
(s− t)α−1(T − s)` ds

=
T−`

Γ(α)

∫ T

t
((T − t)− (T − s))α−1(T − s)` ds

=
T−`(T − t)α−1

Γ(α)

∫ T

t

(
1− T − s

T − t

)α−1
(T − s)` ds.
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Then, by the change of variable ϑ = T−s
T−t , we obtain

Iα
T ιT(t) =

T−`(T − t)σ+`

Γ(α)

∫ 1

0
(1− ϑ)α−1ϑ(`+1)−1 dϑ

=
T−`(T − t)α+`

Γ(α)
B(α, `+ 1),

(40)

where B(·, ·) is the Beta function. Hence, there holds

ι
−1
p−1
T (t)|Iα

T ιT(t)|
p

p−1 = CT−`(T − t)`+
αp

p−1 .

Integrating this equation over (0, T), we obtain

∫ T

0
ι
−1
p−1
T (t)|Iα

T ιT(t)|
p

p−1 dt = CT1+ αp
p−1 . (41)

Combining (37), (39) and (41), we conclude the estimate (38).

3. Main Results

Our main results are stated in the following theorems. As already mentioned, we first
consider the case w = 0.

Theorem 1. Let N ≥ 2, λ ≥ −
(

N−2
2

)2
, α > 0, δ 6= 0, w = 0 and u0, u1 ∈ L1

loc

(
RN\B1

)
. If

(u0 + u1)Hλ ∈ L1
(
RN\B1

)
,

∫
RN\B1

(u0(x) + u1(x))Hλ(x) dx > 0, (42)

and
1 < p < p∗(α, λ, N) := 1 +

2
(α + 1)(λN + N)

, (43)

then problem (1)–(3) admits no weak solution.

Proof. We use the contradiction argument. Namely, let us suppose that u ∈ Lp
loc([0, ∞)×

RN\B1) is a weak solution to problem (1)–(3). Then, by Lemma 2 (with w = 0) and
Lemma 3, for sufficiently large T, R and `, we have∫

RN\B1

[u0(x)(ϕ(0, x)− ϕt(0, x)) + u1(x)ϕ(0, x)] dx ≤ C
4

∑
i=1

Ji(ϕ), (44)

where ϕ is the function defined by (23). On the other hand, by (23), for all x ∈ RN\B1,
one has

ϕ(0, x) = ιT(0)ψR(x)

= ψR(x)

= Hλ(x)ξ`R(x),

as well as

ϕt(0, x) = ι′T(0)ψR(x)

= −`T−1Hλ(x)ξ`R(x).
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Hence, we deduce that∫
RN\B1

[u0(x)(ϕ(0, x)− ϕt(0, x)) + u1(x)ϕ(0, x)] dx

=
∫
RN\B1

[
u0(x)

(
1 + `T−1

)
+ u1(x)

]
Hλ(x)ξ`R(x) dx.

(45)

Using Lemmas 4, 6 and 7, together with (44) and (45), we obtain∫
RN\B1

[
u0(x)

(
1 + `T−1

)
+ u1(x)

]
Hλ(x)ξ`R(x) dx

≤ C
(

T1− p
p−1 RλN+N ln R + T1+ αp

p−1 RλN+N− 2p
p−1 (ln R)

p
p−1

)
.

(46)

Taking T = Rθ , where

θ =
2

α + 1
, (47)

one obtains
T1− p

p−1 RλN+N = T1+ αp
p−1 RλN+N− 2p

p−1 = Rκ ,

with
κ = λN + N − 2

(α + 1)(p− 1)
.

Consequently, the inequality (46) reduces to the following one∫
RN\B1

[
u0(x)

(
1 + `R−θ

)
+ u1(x)

]
Hλ(x)ξ`R(x) dx ≤ CRκ

(
ln R + (ln R)

p
p−1
)

. (48)

The hypotheses (42) and properties (21) of cut-off functions, together with the domi-
nated convergence theorem, lead to

lim
R→∞

∫
RN\B1

[
u0(x)

(
1 + `R−θ

)
+ u1(x)

]
Hλ(x)ξ`R(x) dx

=
∫
RN\B1

(u0(x) + u1(x))Hλ(x) dx > 0.
(49)

Moreover, the hypothesis (43) gives us

κ < 0. (50)

Next, passing to the limit as R → ∞ in (48), by the limit in (49) and the sign condi-
tion (50), we obtain the following contradiction:

0 <
∫
RN\B1

(u0(x) + u1(x))Hλ(x) dx ≤ 0.

It follows that problems (1)–(3) admit no weak solutions. This completes the proof of
Theorem 1.

Following similar arguments of proof, in the inhomogeneous case w 6= 0, we conclude
the following theorem.

Theorem 2. Let N ≥ 2, λ ≥ −
(

N−2
2

)2
, α > 0, δ 6= 0, w ∈ L1(∂B1) and u0, u1 ∈

L1
loc

(
RN\B1

)
, u0, u1 ≥ 0. Assuming

δ
∫

∂B1

w(x) dSx < 0, (51)
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we have the following:

(I) If λN + N − 2 = 0, then for all p > 1, problems (1)–(3) admit no weak solutions.
(II) If λN + N − 2 6= 0, then for all

1 < p < p∗∗(α, λ, N) := 1 +
2

(α + 1)(λN + N − 2)
(52)

problems (1)–(3) admit no weak solutions.

Proof. We use the contradiction argument. Let us suppose that u ∈ Lp
loc([0, ∞)×RN\B1)

is a weak solution to the problem (1)–(3). Then, by Lemmas 2 and 3, for sufficiently large
T, R and `, we have∫

RN\B1

u0(x)(ϕ(0, x)− ϕt(0, x)) dx +
∫
RN\B1

u1(x)ϕ(0, x) dx

−
∫

ΓT

(
∂ϕ

∂ν
− δ

∂(Iα
T ϕ)

∂ν

)
w(x) dSx dt ≤ C

4

∑
i=1

Ji(ϕ),

where ϕ is the function defined by (23). On the other hand, since u0, u1 ≥ 0, it follows
from (45) that∫

RN\B1

u0(x)(ϕ(0, x)− ϕt(0, x)) dx +
∫
RN\B1

u1(x)ϕ(0, x) dx ≥ 0.

Then, we have

−
∫

ΓT

(
∂ϕ

∂ν
− δ

∂(Iα
T ϕ)

∂ν

)
w(x) dSx dt ≤ C

4

∑
i=1

Ji(ϕ). (53)

Further, by using (21) and (23), we obtain

−
∫

ΓT

(
∂ϕ

∂ν
− δ

∂(Iα
T ϕ)

∂ν

)
w(x) dSx dt

=

(∫ T

0

(
Iα
T ιT(t)−

1
δ

ιT(t)
)

dt
)(∫

∂B1

∂Hλ

∂ν
(x)δw(x) dSx

)
.

(54)

Involving (20) and (40), for all 0 < t < T, we deduce that

Iα
T ιT(t)−

1
δ

ιT(t) =
B(α, `+ 1)

Γ(α)
T−`(T − t)α+` − T−`

δ
(T − t)`.

Integrating this equation over (0, T), we obtain∫ T

0

(
Iα
T ιT(t)−

1
δ

ιT(t)
)

dt = Tα+1
(

B(α, `+ 1)
Γ(α)(α + `+ 1)

− 1
δ(`+ 1)

T−α

)
.

Since

lim
T→∞

B(α, `+ 1)
Γ(α)(α + `+ 1)

− 1
δ(`+ 1)

T−α =
B(α, `+ 1)

Γ(α)(α + `+ 1)
> 0,

then, for sufficiently large T, one has∫ T

0

(
Iα
T ιT(t)−

1
δ

ιT(t)
)

dt ≥ CTα+1. (55)
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On the other hand, with respect to the truncation function (9), for all x ∈ ∂B1, we
obtain

∂Hλ

∂ν
(x) =

 2− N − 2λN < 0 if λ > −
(

N−2
2

)2
,

−1 if λ = −
(

N−2
2

)2
.

This shows that ∫
∂B1

∂Hλ

∂ν
(x)δw(x) dSx = −Cδ

∫
∂B1

w(x) dSx. (56)

By Lemmas 4, 6 and 7, together with formulas (53)–(56) and hypothesis (51), we obtain
the following inequality:

Tα+1
(
−δ

∫
∂B1

w(x) dSx

)
≤ C

(
T1− p

p−1 RλN+N ln R + T1+ αp
p−1 RλN+N− 2p

p−1 (ln R)
p

p−1

)
,

that is,

−δ
∫

∂B1

w(x) dSx ≤ C
(

T−α− p
p−1 RλN+N ln R + T

α
p−1 RλN+N− 2p

p−1 (ln R)
p

p−1

)
. (57)

Taking T = Rθ , where θ is given by (47), then (57) reduces to

−δ
∫

∂B1

w(x) dSx ≤ CRµ
(

ln R + (ln R)
p

p−1
)

, (58)

where

µ =
(α + 1)(λN + N − 2)p− ((α + 1)(λN + N − 2) + 2)

(α + 1)(p− 1)
.

Observe that in the case (I), that is λN + N − 2 = 0, one has µ < 0. Similarly, in the
case (II), that is λN + N − 2 6= 0 and p satisfies (52), we have µ < 0. Hence, passing to the
limit as R→ ∞ in (58), we obtain

−δ
∫

∂B1

w(x) dSx ≤ 0,

which contradicts hypothesis (51). We conclude that problem (1)–(3) admits no weak
solution. This completes the proof of Theorem 2.

4. Conclusions

In this paper, we have obtained the nonexistence of weak solutions for the viscoelastic
equation (1) in the presence of both homogeneous and inhomogeneous Dirichlet boundary
conditions. Then, we have constructed the proofs over corresponding estimates of integral
terms in the definition of weak solutions to (1). These estimates help in the analysis of the
behavior of solutions to viscoelastic equation (1) in comparison with classical (damped)
wave equations of physical interest. For instance, we point out the following two facts:

(i) Referring to Theorem 1, in the limit case α→ 0+ we note that

p∗(α, λ = 0, N)→ 1 +
2
N

,

which is the critical exponent for Equation (4) under the boundary condition (2) with
w = 0.

(ii) Referring to Theorem 2, in the limit case α→ 0+ we note that

p∗∗(α, λ = 0, N)→ 1 +
2

N − 2
(N ≥ 3),
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which is the critical exponent for Equation (4) under the boundary condition (2) with
w 6= 0.

Regularization and general decay of energy of solutions for different viscoelastic equa-
tions are interesting topics that can be further studied under different data and boundary
conditions. We mention the work of Han-Wang [26] (positive decaying kernel function in
the memory term) and Thanh Binh et al. [27] (strongly damped wave equation involving
statistical discrete data).
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