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Abstract: White light can be decomposed into different colors, and a complex sound wave can be
decomposed into its partials. While the physics behind transverse and longitudinal waves is quite
different and several theories have been developed to investigate the complexity of colors and timbres,
we can try to model their structural similarities through the language of categories. Then, we consider
color mixing and color transition in painting, comparing them with timbre superposition and timbre
morphing in orchestration and computer music in light of bicategories and bigroupoids. Colors and
timbres can be a probe to investigate some relevant aspects of visual and auditory perception jointly
with their connections. Thus, the use of categories proposed here aims to investigate color/timbre
perception, influencing the computer science developments in this area.

Keywords: cross-modal correspondences; equivalence classes; category theory; bicategories; complexity

MSC: 18D05; 20L05; 58H99; 76-XX; 78-XX

1. Introduction

The complexity of colors, the complexity of sound timbres, and the mystery of their
possible interaction have been fascinating physicists, mathematicians, artists, and poets
for centuries [1–7]. Visible light is a small portion of the electromagnetic spectrum; each
color corresponds to a different frequency. Light is a transverse wave, while sound waves
are longitudinal waves. A complex sound is constituted by the superposition of multiple
frequencies, the harmonics or partials. White light can be decomposed into its colored
components through a prism, as proved by Newton. A complex sound can be decomposed
into its components through the Helmholtz resonators or computationally through the
Fourier analysis [8]. Interestingly, a compact device with the function of an acoustic prism
has been built [9]. Despite evident physical differences, colors and timbres have something
in common: the concept of superposition of several components, the existence of decom-
position tools, but also the possibility to create shadings and mixing of colors/timbres.
In addition, we can think of some ‘perceptive’ analogies between timbres and colors: there
are bands of colors which stimulate the attention and the feeling of alert more than others
(e.g., red/violet more than light gray or blue), as well as some timbre bands with respect to
other ones (e.g., trumpets, trombones and percussion with a ff dynamic, rather than a flute
playing with a pp dynamic or a diapason). These analogies are not related with cultural
associations between colors/sound and semantic meaning [10].
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In this article, we try to sketch these analogies using the language of category theory,
because of its power of abstraction. Category theory is an abstract branch of mathematics [11–13],
that nowadays counts both theoretical and applied developments, including the arts [14–19].

1.1. Mix and Comparisons

We can use the language of category theory to describe model color mixing, timbre
mixing, and comparisons between them. In particular, color mixing and transitions used in
painting seem to have their correspondent operations in timbre superposition and timbre
morphing in orchestration and computer music. The operation of mixing two colors or
timbres can be described as a weighted algebraic sum of their coordinates; the morphing
through a suitable morphism from a point to another one. Intuitively, to map colors and
paths between colors (morphisms) from timbres and paths between timbres (morphisms),
we may need the structure of a functor. We also map classes of colors to equivalence classes
of timbres, and operations on colors to operations on timbres. We provide mathematical
details in Section 2.

The perceptive correspondence between classes of (visual) colors and classes of timbres
has been the object of a recent experiment, summarized here. The idea is based on the
chromo-gestural similarity, an extension of the conjecture of gestural similarity. We will
define the bicategory of colors, whose objects are colors and morphisms are mappings
between them (color gestures), and the bicategory of timbres, whose points are orchestral
timbres, and morphisms are the morphing between them, by using topological spaces
and the structure of bigroupoids (Section 2). These ideas can lead to new interfaces for
color-based computer-assisted orchestration, and for the definition of musical souvenirs.

Categories abstractly help investigate some fields, including applications in the domain
of computer science. Because there are more and more connections with computer science
which are related with music and the visual arts as probes to investigate perception, an
application of the language of categories to the arts can thus be fruitful for computer
science developments in the humanities [20–22]. We can envisage techniques to translate
(or, better, define a mapping between) a visual form and a(n equivalence class of) musical
structure(s) [23]. However, none of the colors were mentioned before, and concerning the
musical side, timbre had also been left apart. The origin of the present research started
from two questions. The first question was: “What about color?” The second question
was the following. At the end of a MCM 2019’s talk on the Synesthesizer, a tool to map
colors into timbres [24], the speaker was asked if it would have been possible to apply a
perceptive-relevant association criteria to make the sonification more “effective”. Following
the conference, a cognitive experiment was run [25]. It showed that, given an orchestral
timbre, there is no one-to-one correspondence with a color, and neither a random answer;
but instead, there is a correspondence with an equivalence class of colors, sharing some
perceptive similarity with the proposed timbre. For instance, “red” requires more attention
than “gray” or “light blue”, and thus, low–middle timbre brass and percussions were more
likely to be associated with red or dark yellow. However, high-pitched winds may appear
as being closer to light-blue or white. This appeared as being independent from cultures:
in fact, there were participants from Europe, America, Africa, and Asia.

Already, the psychologist Palmer suggested to compare sounds and colors according to
a similarity of perception [5]. Rosenblum and coauthors thought of a supramodal brain [26],
with different senses mapping information and contributing to the elaboration of a central
“mental image” of the external reality. When the vision fails, the hearing takes its role for
this mind mapping, and vice versa. Moreover, several studies in the field of crossmodal
correspondences investigate widely shared perceived analogies between different sensory
stimuli [27]. Timbre occupies a relevant position in recent studies [28,29].

The problem of sound–color mapping has been addressed in light of synesthesia, of sub-
jective associations, but also of experiments addressing cross-modal—and thus more widely
shared—associations. Artistic approaches include Kandinsky’s contribution ([1], p. 70; [30], p. 6).
Kandinsky was inspired by Skrjabin, who proposed a table of equivalent tones in color and
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music applied in Prometheus: A Poem of Fire (1908). The painter aimed to create in painting
what Skrjabin had done for music, exploiting visual colors to express feelings.

Kandinsky developed the color theory [3] which influenced works such as his experi-
mental theater piece, A Yellow Sound. For instance, according to Kandinsky, yellow reminds
one of a feeling of disturbance, and blue of spiritual aspirations. Re-reading these ideas
in light of our research, we may be tempted to associate ‘yellow’ with higher tension, and
‘blue’ with lower tension. To support this conjecture, a recent experiment on crossmodal
perception [31] shows that the lyrical section of a Rachmaninoff Prelude is more likely to
be associated with the blue.

The term ‘color’ is often used in music to denote some emerging properties, as a resulting
effect including articulations and harmonic choices. This is, for instance, exemplified by
Erik Christensen, talking of timbral fluctuation and darkening harmonic color while referring
to a Schönberg’s orchestral piece, Summer Morning by a Lake [32], p. 87.

In this article, for the sake of simplicity, we will only consider the visual color and the
timbre related to instrument choice and orchestration.

The philosopher Michel Henry, who studied Kandinsky’s paintings and Briesen’s
musical drawings in detail, considered music and visual art as an expression of some
external forces, thus in this sense being abstract [33].

1.2. Some Empirical Evidence

A recent experiment proposed students to associate colors with specific Rachmani-
noff’s passages; their answers showed similarities [31]. Other experiments combined lines
and colors, asking students to improvise music according to elements from paintings by
Kandinsky and Mondrian, and then comparing the results [34].

Here, we will not use the term “color” in the musical meaning. Instead, we consider
color in the visual domain and timbre in the sound domain. We focus on what biologists
would call emerging properties, and a visual artist might consider as essential lines. In the
realm of color, this could be the overall effect, and for timbre, the whole effect of the
instrumental combinations.

Our approach regards classes of timbres of colors, and shifts/mappings between them.
We can think of color shifts as a “movement” in the space of colors, to be compared with a
“movement” in the space of timbres. Thus, we may want to extend the definition of musical
“gestures” to this new framework.

The first mathematical definition of gesture, published in the Reference [14], described
a gesture as the embodiment of a digraph (the skeleton) in a topological space. To simplify,
there are discrete points in the space of musical parameters connected by continuous curves,
which represent the configuration and/or the movement of the body. This theory is based
on the mathematical language of category theory [11,17,19,35].

With this in mind, we can compare gestures of different musical performers, envisaging
similarities of articulation, dynamics, and so on. For example, a violinist and a pianist,
to play their instruments, make different movements; but if they have to both play a
crescendo, they will perform similar variations of movement: the pianist will increase
hand pressure, and the violinist will increase bow pressure on the string. The idea of
gestural similarity [17] can be extended to the comparisons between music and the visual
arts. A sketched drawing and a short musical sequence can be considered as “similar” if
they appear as being generated by the same gesture (Diagram (1)). For example, a louder
sequence and a thicker pencil-made line on paper are produced by similar higher-pressure
movements. As another example, the same detached movement can produce a staccato
sequence of notes, or a collection on points on a piece of paper.
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The gestural similarity criterion between music and visuals considers lines, speed,
articulation, directions, but not visual color or sound timbre. An extension of gestural
similarity should involve these parameters. We can consider a color variation to be similar
to a timbre variation if they produce a similar perceptive effect; see Diagram (2), the scheme
of what we can call the chromo-gestural similarity.

(perceived) gesture

(visual) color variation
similarity -

rem
inds o f

-

timbre variation

�
reminds o f (2)

2. Categorical Depictions of Color and Timbre Gestures

In this Section, we define the bicategory of colors and the bicategory of gestures,
with color gestures and timbre gestures as morphisms (paths) within them.

Let us consider the three-dimensional real Euclidean space of RGB colors, hereinafter
called Colors space, and the three-dimensional Grey’s space for timbres [36,37], the Timbres
space. (If we add luminosity for colors, and intensity for timbres, we should consider R4).
More precisely, we can consider a variety contained in a subspace of R4. For example,
because RGB coordinates only contain positive numbers, we should focus on the octant
with only positive values for color coordinates. Examples of interest deal with visible
light (and thus visible colors) and audible sounds, and thus the choice of a subspace is a
mandatory step.

R3, R4 and their subspaces are topological spaces. Let us consider a point in the R3

Colors space as a term of coordinates; we can do the same for Timbres. The objects are the
points, the 0-cells; the morphisms are the paths (gestures), the 1-cells; the bands are the
2-paths (hypergestures), that is, the 2-cells. The composition of paths is not associative:
associativity is verified for equivalence classes of homotopies [38]. Thus, the bicategory
COLOR and the bicategory TIMBRE can be considered as bigroupoids [39,40], that is,
bicategories whose morphisms are weakly invertible (up to iso). A bigroupoid is a “bi-
category [...] such that the 2-cells are strictly invertible and the 1-cells are invertible up to
coherent isomorphism” [39], p. 313. According to [39], p. 312:

In dimension 0 points p, q of X will be identified if they can be joined by a path,
i.e., a continuous map f : I → X from the unit interval I = [0, 1] of real numbers
such that f (0) = p and f (1) = q. This gives rise to the set of path-components,
Π0(X), of X. In dimension 1 the points of X will be retained, but paths f , f ′

between fixed points p, q will be identified if there is a homotopy of rel end
points between them. This gives rise to the fundamental groupoid, Π1(X), of X.
The class of a path will be called a 1-track. Hence, the most natural approach
to 2-dimensional homotopical algebra of a space X is to retain points and paths
between them and identify homotopies’ rel end points under a suitable homotopy
relation. This gives rise to the notion of a 2-track. In this way we obtain a two-
dimensional structure with points in dimension 0 (0-cells), paths in dimension 1
(1-cells), and 2-tracks in dimension 2 (2-cells). [...] Horizontal pasting is neither
strictly associative, nor do we have strict identities. However, horizontal pasting
is still reasonably well-behaved in the sense that associativity does hold and strict
inverses do exist up to coherent isomorphisms. Thus, we obtain a bicategory,
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Π2(X), in the sense of Bénabou. The bicategory Π2(X) has the additional feature
that the 2-cells are strictly invertible with respect to vertical pasting and the 1-cells
are invertible up to coherent isomorphism, that is, Π2(X) is a bigroupoid which
will be called the homotopy bigroupoid of the topological space X.

The structure of groupoid, a category where all arrows are invertible, had interestingly
been proposed already in 1927 (see [41] cited in the Reference [12]), page 17, well before
the birth of category theory in 1945 [13]. The notion of bigroupoid has been independently
proposed by Stevenson [42] and Hardie and coauthors [39] in 2000 and 2001, respectively;
the sketch of the idea was, however, already present in a manuscript by Grothendieck
of 1983 [43]. The idea of a bigroupoid has been extended to n-dimensions, with the n-
groupoids, by Metere and coauthors [44,45].

We can define “color bands” as equivalence classes of colors, the 2-paths described
above (Figure 1). We need the concept of homotopy categories, which generalize the notion
of equivalence class [19].color gesture (1-path)

color band gesture (2-path)

(a) (b)

Figure 1. An example of the color gesture as a 1-path (a) and color band gesture as a 2-path (b).

Formally, to prove that COLOR and TIMBRE are bigroupoids, we should first prove
that they are bicategories [39,42]. The references for these concepts are Definitions 1.1
and 1.2 from the Ref. [39] and Definitions 8.1 and 8.2 from the Reference [42]. Following
Definitions 1.1 from [39], we can easily check that COLOR (TIMBRE) is a bicategory:

• There is a set of objects of COLOR, the points, that is, the 0-paths, or 0-cells (and
similarly for TIMBRE);

• For each pair of objects in COLOR (TIMBRE), there is a 1-path between them, that is,
an arrow or 1-cell;

• A morphism between two 1-paths exists and it is a 2-cell, here called a color band
(timbre band);

• The composition of two 2-paths β : path1 ⇒ path2 and β′ : path2 ⇒ path3 is additive:
β + β′ : path1 ⇒ path3. In fact, we can add a color band to another adjacent one,
creating a larger color band (similarly for timbre bands);

• The identity element exists and it is a 1-cell: it corresponds to the lazy path for colors
(timbres);

• For each triple of color points (color1, color2, color3), there is a composition functor
path(color1, color2)× path(color2, color3)→ path(color1, color3) (same for timbres);

• The identity 2-cell (the identity 2-arrow) can be considered as a mapping from a 1-cell
to itself (as the identity 1-cell maps a 0-cell to the same 0-cell);

• For each quadruple (color1, color2, color3, color4), there are natural isomorphisms,
the associativity isomorphisms: α : path1 · (path2 · path3) ⇒ (path1 · path2) · path3,
where path1 : color1 → color2, path2 : color2 → color3, path3 : color3 → color4 (same
for timbre paths);

• For each pair (color1, color2) of objects of COLOR, there are two natural isomorphisms,
the left and right identities: λ : [identity arrow on color2] : path1 ⇒ path1 and ρ :
f · [identity arrow on color1]→ path1 (same for timbres);

• Isomorphisms α, λ, ρ satisfy pentagonal and triangular identities, similarly to the
conditions required for monoidal categories.
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Following Definition 1.2 from [39], we can therefore prove that COLOR (TIMBRE) is a
bigroupoid, that is, a bicategory such that:

• for each pair (color1, color2) of objects of COLOR, the bicategory COLOR(color1, color2)
is a groupoid, that is, any 2-cell is invertible (same for TIMBRE);

• for each pair (color1, color2) of COLOR, there is a (covariant) functor

F−1 : COLOR(color1, color2)→ COLOR(color2, color1)

(and similarly for TIMBRE);
• for each pair (color1, color2) of COLOR (same for TIMBRE) there are two natural

isomorphisms, the cancellation isomorphisms: ι : path−1
1 · path1 ⇒ identitycolor1 and

ι′ : path1 · path−1
1 ⇒ identitycolor2 , where path1 : color1 → color2 is a 1-cell, that is,

a 1-path, with the composition of path, path−1 verifying the pentagonal relationship
of Diagram (3), where p stands for path1, i is the identity arrow from and to color1, i′

is the identity arrow from and to color2, 0p is the identity 2-cell 0p : i→ i.

p · (p−1 · p) (p · p−1) · p

p · i i′ · p

p

0p ·ι

α

ι′ ·0p

ρ λ

(3)

In the bicategory of colors, each object is a set of coordinates that uniquely indicate a
point in the RGB space (let us think of visible light, considering thus additive synthesis),
and each morphism is an arrow that gradually blends a color into another one; that is,
a bridge between a point with (x,y,z) coordinates and a point with (x′,y′,z′) coordinates.
We have the same idea for timbres. In the case of timbre, we choose as the Euclidean
space the space of Grey’s study. Each point is a specific timbre, each morphism is an
arrow between two points in the topological space of timbres, gradually morphing a
timbre into another one. Morphisms in both spaces are (weakly) invertible because we
can produce (up to iso) the inverse transformations, going either way: for example, from
blue to red and from red to blue, or from a clarinet sound to a trombone sound, and from
trombone to clarinet. These effects for timbres are easily produced through electronics.
Regarding colors, we have two choices: either considering the painting space of colors,
with subtractive synthesis (the sum of all colors is black), or the colors of visible light,
with additive synthesis (the sum of all colors is white). The two spaces are dual between
them. In summary, the 0-paths are points in the chosen Euclidean spaces; the 1-morphisms
are paths, and the 2-morphisms are homotopy between two paths with common endpoints;
as mentioned above, we describe these 2-morphisms as bands. For example, we can just
move from blue to red (1-morphism), or we can create a color band as a “strip” that, going
from blue to red, expands in the middle reaching shadows of violet (Figure 1). The same
applies to Timbres: from clarinet to trumpet, we can enrich harmonics of the sound adding
a ‘color’ of trumpet in our path toward trombone sound. Homotopy classes are associative
up to homotopy equivalence. From a point of view of the mathematical theory of gestures,
1-paths are gestures, and 2-paths are hypergestures [14].

For each pair of objects p, q of a bigroupoid S, Hardie et al. [39] define a covariant
functor F−1 : S(p, q) → S(q, p). For the bicategory COLOR, that would correspond to a
mapping from a path, let’s say, red→blue to blue→red, and similarly for TIMBRES.

Thus, COLOR is the (bi)category and the bigroupoid whose objects (points) are the
RGB coordinates, whose morphisms (arrows) are the paths between colors, and whose
2-morphisms are paths of paths (color bands). 1-morphisms are the 1-paths, that we call
gestures, and the 2-morphisms are the 2-paths, that we associate to hypergestures [14]. Re-
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garding the associativity of gestures and hypergestures (gestures of gestures), see Theorem
2 from the Reference [22].

A color path is the equivalent of “color morphing”, a shade from a tone to another one.
In the visual arts, mixing also has a relevant role. If we consider printing, we should talk of
color layers’ superposition; dealing with visible light, we have superpositions of waves
with different wavelengths.

Regarding color models, we chose the simplest one. It is, under ideal conditions, that of
the convex cone in the vector space, an extended RGB space [7]. According to Schrödinger:
“the space of perceived colors is a regular convex cone embedded in a real vector space
of dimension less or equal to 3; [...] we can endow [the space] with the operations of sum
and multiplication by a positive real scalar” [7]. The mixture of two lights (superposition of
light beams) corresponds to the sum of vectors, and the scalar multiplication corresponds
to intensity modulation by the scalar. For the RGB model, the computer programs use an
average to represent color mixtures. The intensity has a practical limitation in such devices
(a maximum 255), so an average intensity is used (allowing computer-reproducibility). We
remind that Pollard and Jansson proposed the tristimulus method, in analogy with the theory
of three primary colors [46]. We might wonder if primary colors could be categorically
described as (categorical) limits, and if there is a timbral equivalent of primary colors.
However, given the structure of (bi)groupoids, all points are equivalent, and thus it is not
possible to define limits or colimits.

In fact, if we had used the groupoid structure, coproducts would have existed, but they
would have been ontologically equivalent to any other object. In the case of bigroupoids,
we cannot even define limits and colimits in general. In this article, we are just interested in
rending the artistic concept of “summing up” things, as the sound wave superposition in
orchestral playing, or the superposition of different layers in printing (with a little abuse
we can consider color mixing in painting as a superposition, but it’s a bit more complex),
then the categorical sum may not be the apt tool. Instead, we consider the weighted
algebraic sum of components (Figure 2). The superposition of colors 1 and 2 leads to
another color, color 3, that is, another point in the space of colors. See, for an example,
https://meyerweb.com/eric/tools/color-blend/ (accessed on 16 January 2022). Selecting
two colors and midpoint = 1, the coordinates of the resulting color are obtained as the
halved component-wise sum of the two input colors. The sum is halved in order to obtain,
let’s say, red if we are summing up red with itself. With more midpoints, we obtain blended
colors with different weights (that is, with weights 6= 1

2 ). Thus, the general formula is
(coordinates of color 1 * weight 1 + coordinates of color 2 * weight2). The same applies to the
space of timbres. The process is similar to the structure of a monoid: there are a set and some
operations on it, such that the result of an operation having as input two elements of the set
gives as output another element of the set. We can think of a bicategory with only one object.
Therefore, to include in our analysis color “sums” and timbre “sums”, we should talk of a
monoidal structure on a bi-groupoid [47,48]. The definition of a monoidal groupoid is given
in the Reference [49]. According to [49] (p. 1), “monoidal groupoids G = (G,⊗, I, a, l, r),
[are] categories G in which all arrows are invertible, enriched with a monoidal structure
by a tensor product ⊗ : G× G → G, a unit object I, and coherent associativity and unit
constraints a : (X⊗Y)⊗ Z ∼= X⊗ (Y⊗ Z), l : I ⊗ X ∼= X, and r : X⊗ I ∼= X′′.

To prove the monoidal structure of bigroupoid, let us consider Definition C.1 in the
Reference [47], p. 272:

• Our structure is a bigroupoid, and thus it is a special case of bicategory;
• We can define a tensor functor as ⊗ : COLOR× COLOR → COLOR, which in our

case can be the following: adding two colors in COLOR gives as output another color
in COLOR obtained as the weighted algebraic sum of the first two colors;

• The tensor product of a color (with itself) is the color itself: mixing white with white
gives white;

• The tensor product of two objects color1, color2 is color1 ⊗ color2;
• We have the associator a : (color1 ⊗ color2)⊗ color3 → color1 ⊗ (color2 ⊗ color3);

https://meyerweb.com/eric/tools/color-blend/
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• The pentagonator of [47] (p. 272) is verified;
• Similarly, the associahedron [47] (p. 273) is verified as well, because there is no

dependency on the organization of brackets;
• There is a monoidal unit I, for example, in this case mixing white with a transparent

color, as a transparent acrylic;
• There are two unitor elements l : I ⊗ color1 → color1, r : color1 ⊗ I → color1;
• There are two unitor invertible modifications λ, µ, ρ verifying triangular correspon-

dences as shown in the Reference [47] (p. 275);
• There are four equations of modifications as shown in the Reference [47] (p. 276).

The same applies to TIMBRE. The transparent color is substituted by a superposition
with a silent instrument, or muted and playing too softly to be heard.

The concept of chromo-gestural similarity allows one to pick up functors: for example,
the idea of “enrichment” and “intensification” can help us map an enrichment path in
COLOR (e.g., from grey to blue) with an enrichment path in TIMBRE (e.g., from a diapason,
a pure sound, to clarinet, with added odd harmonics). If we consider the painting colors,
we can keep adding up colors until we reach the black; if we consider the light colors,
until we reach the white. From a first experimental study [25], a cluster with lower notes on
a piano keyboard (with a high level of dissonance and harmonic superposition) is almost
always associated with black (or dark brown, dark blue). This idea supports our intuition
of chromo-gestural similarity between painting colors and timbres.

The inverse operation of superposition, the decomposition of a mixed color into its
components, may remind us of the prism, with white light decomposition into rainbow
colors. A similar effect can be achieved in the domain of sound with the Helmholtz
resonators, as it will be mentioned later.

Blue GreenTurquoise

Light Turquoise

co
lo
r 
ge
st
ur
e color gesture

color mixing as an algebraic sum

co
lo

r 
ge

st
ur

e

equivalent as 
color gestures:

Action of the prism: as a product; dual of mixing
i_1, i_2 tell us the proportions.

+ +

Figure 2. Color mixing as an algebraic sum, color transition as a morphism.

We can envisage a space whose axes are harmonic structure, frequency level, and in-
tensity level, to be associated with the described bigroupoid COLOR. This could be the
starting idea for the definition of a Euclidean space of timbres, considering the Grey’s model.
We can measure timbre as a function of these parameters [10]. Timbre is a complex set of
properties, fundamental in music orchestration and computer music [50]. It has also been
proposed to measure timbre in terms of masked absolute threshold (minimal intensity to
discern a frequency among others) versus masked differential threshold (m inimal intensity
to discern a change of that frequency), to measure the sensitivity of the ear to different
frequencies [10]. Or, we can consider a space where directions are given by color tones of
orchestral instruments, and this is at the base of orchestration [50].

We can define “timbre bands” and equivalence classes of timbres. Also in this case,
we can define homotopy categories [19].

We can thus compare color gestures with timbre gestures, that is, instances of sound
morphing.

The role of mixing is relevant for timbres as well, and it is fundamental in the domain
of orchestration. Regarding visual/mathematical representations of spaces of timbres, we
can mention the pioneering works by Xenakis [51]. The idea of timbre spaces was also used
in [52].
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Timbre is a difficult concept to formalize since it assumes different meanings when it
is used in psycho-acoustics, in music, in audio processing, and in other disciplines [53].

Historically, timbre has been thought of as the perceptual quality of sounds that
allows listeners to tell the difference between different musical instruments and, ultimately,
recognize the instrument.

In the 19th century, however, Fourier analysis was used to study musical instrument
sounds and to describe both the acoustics of sound production and the physiological
underpinnings of sound perception [54]. This interpretation mainly applies to the steady-
state portion of sounds and does not work well with the attack and decay portions, or with
other temporal variations. More recently, studies showed the importance of temporal
variations in the recognition of musical instruments [55,56]. These variations, together
with the spectral description of sound provided by Fourier analysis, are often grouped
into the expression sound color [57]. This expression, however, does not always successfully
coexist with quantitative descriptions of sound, that are important in specific creative tasks.
An attempt to provide such types of descriptions was done via the concept of timbre spaces.

2.1. Timbre Spaces

Describing timbre from a quantitative point of view is intrinsically complex. A first
attempt, in this sense, was done by Grey by measuring the dissimilarity between pairs of
musical instrument sounds [36,37]. Using this approach, it has been possible to generate
a spatial configuration, called a timbre space (see Figure 3), where similar timbres are
close together and dissimilar timbres are farther apart. Many more other strategies to
build timbre spaces are in use today, involving multidimensional feature representations
and scaling.

Timbre spaces are often interpreted as descriptors of sensory qualities of timbre. In this
interpretation, two sounds can be qualitatively dissimilar independently from any sources.
However, another interpretation of timbre spaces involves the absolute categorization of a
sound into musical instruments. This interpretation is essential for the tracking over time
of the identity of a sound source [58].

Figure 3. Grey’s timbre space. Each point represents a musical instrument sound, such that similar
timbres are close together and dissimilar timbres are farther apart. Reproduced from [36], with the
permission of the Acoustical Society of America.
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The complexity of timbre perception plays a major role in the difficulty to formalize
musical orchestration, as we shall see.

3. Mapping of Color Classes onto Timbre Classes

In this Section, we provide a definition and a couple of examples of mapping Color→
Timbres and vice versa. In this framework, the COLOR-TIMBRE functor maps 1-paths
in COLOR to 1-paths in TIMBRE, and the TIMBRE-COLOR maps 1-paths in TIMBRE
to 1-paths in COLOR. The same goes for 2-paths, that is, bands, that is, hypergestures.
The definition of functors between bigroupoids is not trivial. This is discussed in detail
in the Reference [39]. If we think of ∞-groupoids consisting of their simplicial complexes
(also with associativity defined up to homotopy), then the comparison between timbres
and colors is realized through an ∞-functor between their ∞-groupoids. Properties of
∞-groupoids are described in detail in the Reference [40].

Let us give the definition of a 2-functor between groupoids provided in the Ref. [39]
(p. 316): Given two bigroupoids S, S̄, a 2-functor F : S→ S̄ is given by the following data:

• A map F : Ob(S)→ Ob(S̄) for the objects;
• For each pair (p, q) of objects of S, a functor F : S(p, q) → S̄(Fp, Fq) for the mor-

phisms.

In our research, we can thus define the 2-functor FC,T : COLOR→ TIMBRE and the
2-functor FT,C : TIMBRE → COLOR. FC,T maps’ colors (as 0-paths, that is, points in the
RGB space) to timbres (as points in the timbre space), and color gestures (as 1-paths in the
color space) to timbre gestures (1-paths in the timbre space), and vice versa, respectively.
See Figure 4 for an intuitive representation of this idea.sequence of colors corresponding to the proposed timbre variation (related with pitch as well)

fr
eq
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nc

y 
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z)

time (seconds)
30 4.81.4 4.2 6

flute

low piano 
cluster

trumpet

trombone

Figure 4. Top, left: a sequence and partial superposition of colors; bottom, left: a similar sequence
and partial superposition of timbres; bottom, right: the corresponding timbre gesture; up, right: the
corresponding color gesture.

Let us make a little note regarding similarity. The idea of similarity comes in while
comparing the idea of superposition in the space of Colors to a superposition in the space of
Timbres: for example, comparing a diagram of color sum with a sum of timbres of Clarinet
and Horns. In our framework, we start from the (qualitative) definition of “gestural
similarity” between images and sound [22]: a visual sketch in the domain of visuals and
a short musical sequence can be judged as “similar” if they appear as being produced
by the same creative gesture. Regarding colors and timbres: we can associate a path in
the space of colors with a path in the space of timbres if they appear as instances of the
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same (perceived) process, for example, “intensification”, “rarefaction”, “progress toward
arousal”, “suspension”, and so on.

In Figure 4, we have a sequence of colors, as different points touched in a gesture,
from light blue/green to black, and the spectrogram of a sequence of timbres, with a
progressive enrichment of harmonics, in the upper register (from flute to trumpet) and in
the lower register (with trombone and low piano clusters). This example can also be coded
by using subtractive synthesis, simultaneously generating a sound enriched toward the
“dark” low cluster on a piano and a color superposition reaching black. The perceptive
correspondence between a “darkening” sound and a visual progression toward the black
(or dark brown, or dark blue) has been observed in the aforementioned experiment [25].
The dual example, using additive synthesis instead of subtractive synthesis, is less intuitive
in terms of similarity, but still feasible and coherent. It would consist in the progressive
partials addition reaching white noise (timbres), and a color superposition reaching white
light (colors). Such a structured application has recently been coded in the Reference [20].

We argue that TIMBRE/COLOR mapping can be validated by some underlying
universal property, that is, a reference to a common perception, see Figure 5. The idea of
universal property is fundamental in category theory; here, it is used more metaphorically.

Diagram (2) is based on the idea of perceived similarities between color bands and
timbre bands. Variations can thus be seen as paths within these bands, or between a band
and another one. To test perceived similarities, an experiment was run [25]. Let us now
describe this experiment in more detail. It uses the bicategory of timbres on one side,
and the bicategory of colors on the other one. The perception of a synesthetic person can
be depicted as an arrow picking up some points from the timbre bicategory, and mapping
them onto (always the same points given the same outputs, as in a function) points of the
color bicategory. For a non-synesthetic person, the target is not the same: there is a range
of targets. The experiment focuses on the identification of these clusters. Other studies
focused on pitch-range and timbre association with color shades, and aimed to evaluate the
difference between shared and individual associations [21], but also for non-synesthetes,
there are identifiable trends and color-gradients. The experiment design is constituted by
two parts. We notice that Figure 1 from the Reference [21] contains a triangular diagram,
with unimodal auditory, unimodal vision, and multi-modal regions (spatially organized),
to investigate synesthesia, which could also be adapted to our case.

In the first part, some general information about participants were gathered: age, artis-
tic education (if any), synesthetic experiences (if any), and visual or auditory impairment (if
any). In the second section, participants were asked to match sounds to colors. They were
assigned eight different orchestral realizations of a C-major chord (simulated in a DAW
with a professional sample library). Participants had to match sounds with a freely chosen
color (using a color picker) or with a color gradient among four gradients provided. Results
were plotted in a 3D graph where the RGB (Red, Green, Blue) values of selected colors
were used as coordinates. The results showed that color associations tended to occupy
some portions of space (i.e., they were not randomly distributed) and tended to condense
in the neighborhood of some specific colors (i.e., RGB values-coordinates). A quite high
correlation (0.5) was also found between synesthetic experiences and some associations.
A non-negligible correlation (0.32) was found between age and some color associations.

Figure 5 shows the mapping from a point and a loop in the space of timbres, to a
point and a (non-loop) arrow in the space of colors. These paths produces similar percep-
tion, which justifies the mapping itself. The timbre with a loop indicate a single sound
sample, as the ones used in the experiment [25]; the box with the color space is one of the
experimental outcomes—answers belong to a specific region of space.

Of course, the different registers of instruments, which can produce different percep-
tions, have been taken into account.

A possible next experiment could involve the idea of natural transformations and
several repetitions of the test for each participant. If we ask a participant to repeat his or her
associations of timbres and colors, and we have several participants, we can compare their
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different answers by using natural transformations. Let be G1, G2 the functors representing
answers of participants 1 and 2, respectively. We can define a natural transformation
ν1,2 : G1 → G2 comparing the two functors. According to the chromo-gestural similarity,
for non-synesthetic participants we expect a significant overlap between the color bands,
and a small amount of functors’ difference, quantified by ν1,2. In the case of synesthetic
participants, however, the overlap might be missing: given the same timbre, each synesthete
is expected to choose the same color, and the color chosen by the first person could be
different from the color chosen by the second person. We would also expect that both
colors lie within the same color band which can be find out comparing answers of multiple
participants, as it happened in the first experiment (Figure 5).

Figure 5. The functor which maps points in the space of colors to points in the space of timbres,
and color gestures to timbre gestures, implies the existence of a similar perception which justifies
the association. The experiment described in Section 3 aimed to show the association between color
points (with loop arrows) and equivalence classes of timbre points (with arrows between them).
The color cluster is one of clusters actually found in the experiment.

4. Morphing versus Mixing

We can create a chromatic (visual, non musical) progression from a color to another
one. However, we can also mix colors. Similarly, we can create a progression from a
timbre to another one, as a timbre morphing; but we can also superpose timbre to obtain
new ones. The equivalent of color gesture in the space of timbres is the timbre morphing
(e.g., gradually transitioning from an orchestral timbre to another one). The equivalent
of color mixing in the space of timbres is timbre mixing (e.g., adding different orchestral
instruments together in orchestration). Diagrams (4) and (5) show two examples.

higher wind sound

winds/horns
superposing-

sound morphing
-

pitched wind sound

sound morphing

6

�superposing
piccolo

�
sound morphing (4)

higher trumpet’s sound
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sound morphing
-

trumpets’ timbre

sound morphing
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a trumpet’s sound

�
sound morphing (5)
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Orchestration is a substantial part of musical composition, and automatic orchestration
exploits machine learning techniques. The developments of these techniques may profit
from a multisensory approach, such as the chromo-gestural similarity; see more details in
the Discussion section.

The equivalent of the prism’s action is the use of multiple Helmholtz resonators.
The main difference is the following: with a single resonator, we separate a sound frequency
from the rest; with a set of resonators, we can separate all frequencies—and that has been
done through the recent acoustic prism [9]. A prism acts as a separator of color components,
that is, it acts as the dual of the algebraic sum for color superposition. In fact, the prism
separates white light into colors. We can wonder if a “local prism” may isolate just some
color components. More details on morphing and hybridization are provided in the
following section.

4.1. On Orchestration, Morphing and Hybridization

Generally speaking, orchestration can be seen as the blending of instrument timbres
together [59]. Originally being the simple assignment of instruments to pre-composed parts
of the score, orchestration has become an integral part of the compositional process [60,61].
Around the beginning of the 20th century, composers started imagining new timbres
made of extended instrumental tec hniques and unusual instrument combinations and
this motivated the need for a more systematic approach to orchestration, able to take into
account the evolving timbre of musical instruments (sound color) and the logical principles
of music composition.

An example of music composition that involves such advanced orchestration princi-
ples is the piece Metastaseis (1953–1954) for 61 instruments, by the Greek composer and
architect Iannis Xenakis. The piece is influenced by the Einsteinian view of time and by
Xenakis’ memory of the sounds of warfare. New orchestration and compositional practices
are created by the composer by using specific mathematical ideas derived from architecture.
The left side of Figure 6 shows a sketch of string glissandi in measures 309–314 of the piece.
The right side of the same figure shows the Philips Pavilion designed by Le Corbusier. It is
evident how the musical gestures are derived by the hyperbolic paraboloids of the building.

Figure 6. Left side: a sketch of strings glissandi (mm. 309–314) from Xenakis’ Metastaseis. Right side:
a photo of the Philips Pavilion by Le Corbusier.

The string glissandi in Xenakis’ piece are used to transition from a sound to another in
a continuous manner. In this respect, it is interesting to note how the new orchestrational
practices defined by composers also deal with spectromorphological concepts such as
morphing and hybdridization. Sound morphing aims at creating a new sound that is a
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perceptual intermediate between two (or more) sounds. Usually, morphing is based on
interpolation and assumes a gradual transition between the involved sounds. Sound
hybridization, on the other hand, refers to a process that combines two (or more) distinct
objects in a discrete fashion by taking elements of each one [62]. Being able to formalize
perceptual processes in the context of orchestration would be an important step toward
a generalized theory of music composition. Examples of timbre spaces are proposed
by [63,64].

4.2. Assisted Orchestration and Sound Colors

The main interface used in Orchidea is similar to a score [65]. The user is asked to
specify the orchestra to be used in the process, together with the target sound and other
symbolic constraints. This is, usually, a convenient way for composers to model their
creative thinking. However, this strategy enforces an orchestration approach that focuses
on the categorical interpretation of timbre described in Section 2.1, through the selection of
instruments. An alternative approach could also be possible, that is closer to the sensorial
interpretation of timbre. Instead of specifying musical instruments, the composer could be
asked to select orchestral registers and leave the selection of the instruments to the search
algorithm. In this way, the focus would shift on all the similar timbres that each orchestral
register contains and would underline the relationships between timbres. This approach is
currently under development and will be included in a future release of Orchidea.

5. The Souvenir Theorem

We can simplify a visual form through a superposition of simple form with suitable
coefficients, telling where, how big, and how many the simple forms are. These simple forms
and their coefficients can be mapped to simple musical sequences and musical coefficients
(telling when, how loud, how often a sequence is played), constituting a rough musical piece,
which can be later refined [23]. There is a minimum number of simple forms that allows the
original object recognition. Of course, to each visual form, there is an equivalence class of
short musical sequence which can work well. The idea of form simplification often inspired
souvenir production. According to the Souvenir Theorem, a souvenir is more likely to be sold
if: (1) it shows a minimum number of simple forms; (2) it has enough material quality; (3) it
is cheap enough to fit the traveler’s budget. Applying the mapping from visual to musical
forms, one can create musical souvenirs. Their support can be musical cards, and their budget
can be small enough. The mapping visual form/musical form is based on gestural similarity.
The mapping from colors to timbres is based on chromo-gestural similarity.

On Computer-Assisted Orchestration

The manipulation of highly complex timbral mixtures has become more and more
difficult to predict while composing. In such a context, having a tool able to simulate the
result of such mixtures during the compositional phase appeared to be a necessity. This
need, fostered by the advancements in machine learning techniques, converged into a field
of research that today is known as computer-assisted orchestration (CAO).

Broadly speaking, CAO is the process of helping the composer orchestrate by means of
computer programs and machine learning. Among the different possible types of assisted
orchestration, there is one called target-based. In the target-based approach, a sound is used as
reference to derive the orchestration parameters. By means of sophisticated search algorithms,
a combination of orchestral sound samples is chosen from a large database of instrument
notes to perceptually match the target sound. Each sample from the database comes with
symbolic information such as the instrument name, the pitch, the dynamics and the playing
style. As such, the combination can be then symbolically represented in a score [66].

CAO is a long-standing problem for composers and has its roots in spectral music,
a specific music composition practice where musical parameters are derived by the analysis
of sound spectra [67]. It has been of paramount importance at the Institut de Recherche et
Coordination Acoustique/Musique (IRCAM) in Paris, http://www.ircam.fr (accessed on 16

http://www.ircam.fr
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January 2022), where a number of software packages, papers and PhD thesis have been
produced on the subject in the last twenty years. The most recent and most complete system
for target-based computer-assisted is Orchidea, http://www.orch-idea.org (accessed on 16
January 2022), developed jointly between IRCAM, the Haute École de Musique de Genève
and the University of California, Berkeley. Orchidea implements a number of advanced
features such as joint spectro-temporal orchestration, that allows to orchestrate dynamically
evolving timbres [65].

A piece composed with the support of Orchidea is Stades d’ombre, stades de lumière (2018)
for 14 instruments, by [one of the authors], performed for the first time at Milano musica in
2018 by the Ensemble orchestral de Lyon under the direction of Daniel Kawka, http://www.mi
lanomusica.org/it/sezione-media/news/560-lunedi-29-ottobre-doppio-concerto-al-teatro
-elfo-puccini.html (accessed on 16 January 2022). The work is made of different sections,
each one based on a dynamically evolving sound used as a target, including field record-
ings of different natural environments, such as bells, docking boats, water drops and
musical instruments.

6. An Audio Example

As an additional example regarding timbre gestures, we show morphing from a note
played with the theremin to the same note played with the flute. Figure 7 shows the
sonograms of the initial and final sounds, recorded by one of the authors, and a sequence of
an intermediate timbre morphing between them, made with the spectral model synthesis
(SMS Tools) https://github.com/MTG/sms-tools (accessed on 16 January 2022). Figure 8
shows a superposition of the two audio sequences and Figure 9 presents two different
timbre gestures to make the sound morphing, using different parameters of the SMS
tools. The presented sonograms are made with SMS tools and with an online software:
https://convert.ing-now.com/audio-spectrogram-creator/(accessed on 16 January 2022).

timbre 2: flute

timbre 1: theremin

timbre morphing

Sound morphing

Figure 7. Timbre morphing of an A played with theremin to an A played with flute, with sonograms.

timbre 2: flutetimbre 1: theremin

superposition

theremin + flute  
playing together

Figure 8. Simple juxtaposition of the A played with theremin and with flute.

http://www.orch-idea.org
http://www.milanomusica.org/it/sezione-media/news/560-lunedi-29-ottobre-doppio-concerto-al-teatro-elfo-puccini.html
http://www.milanomusica.org/it/sezione-media/news/560-lunedi-29-ottobre-doppio-concerto-al-teatro-elfo-puccini.html
http://www.milanomusica.org/it/sezione-media/news/560-lunedi-29-ottobre-doppio-concerto-al-teatro-elfo-puccini.html
https://github.com/MTG/sms-tools
https://convert.ing-now.com/audio-spectrogram-creator/
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Figure 9. A change of parameters of sound morphing gives different “timbre gestures”, that is,
transitions from a timbre to another one.

7. Cultural Influences

Before presenting discussions and conclusions, let us mention some cultural influences
on color perception. In the aforementioned experiment, participants were from different
continents; they were given a slider to select colors, because the use of words could have
been misleading. In fact, because we wanted to analyze shared aspects, is important
to avoid bias linked to different cultures. It is interesting to note that culture can affect
color perception. In particular, different languages and cultural groups measure out the
color spectrum differently. In 1969, Berlin [68] published the book Basic Color Terms: their
Universality and Evolution. Berlin and Kay concluded: “The perception of color mainly
occurs inside our heads, so its existence in the mind is influenced by personal feelings, tastes
or opinions.” In later studies, cross-cultural studies comparing the speakers of different
languages challenged the Berlin and Kay’s theory and revealed that language may affect
color perception. A rich culture widens color perception. Unlike some cultures, in Nigeria,
color choices or perceptions are often influenced by Religion. Other influencing factors are
2-languages influences in bilingual people. As an example of non-Western languages and
cultures, the following table shows the visual associations to color and their corresponding
words in languages used in Nigeria.

English Blue English Yellow
Yoruba Olomi Aro (blue) Yoruba Elezuru (yam special)
Igbo Oji (something dark) Igbo Onashara (light white)
Tiv Kwar Kwaodo (like sky) Tiv Oyha (like banana fruit)
Owan Iblue (sky) Owan (paint of banana)
Urhobo Oda dibo (paint of banana) Ijaw Pinapina (just like white)

English Green English Red
Yoruba Alawo ewe (color of leaves) Yoruba Pupa
Igbo Akwukwo Ndu Igbo Uhie (color of blood)
Tiv Ngu-er-ka Ikya uwer nahan Tiv Nyian
Owan Ebesugbo (leaf) Heusa Ja
Ijaw Deibide (like a particular cloth) Urhobo Oda Obara (blood-like)
Hausa Igreen Ijaw Kwekwe

8. Discussion and Conclusions

In this article, we compared mixing and transformations for colors and timbres,
as paths in the spaces of colors and of timbres, respectively, and we formalized them
in the theoretical framework of category theory. Timbre mixing and variations are funda-
mental in the domain of orchestration, while color mixing and shadings in the domain of
painting. Theoretical formalization can lead to further technological developments.
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While analyzing similarities in color and timbre transformations, we proposed the
idea of chromo-gestural similarity. Possible applications of the proposed chromo-gestural
similarity involve further cognitive studies, hospital patients’ self-reports based on color
variations and sounds, visually-aided interfaces for automatic orchestration, and new
approaches to disability studies and multisensory interfaces.

Such interfaces may be applied to the Synesthesizer [24], a tool that uses machine
learning to generate sounds from color RGB values. The three-dimensional input (RGB
coordinates) produces, as an output, 35 parameters that control five different physical
models of different instruments and their cross-synthesis. The training of the machine
learning model is performed on few values and the remaining combinations are generated
through a linear regression. The resulting sounds are not predictable, although they
tend to share similarities with the training set. The training step could profit from the
database acquired for the experiment [25], and a new interface can be conceived after
chromo-gestural similarity. The precise timbre choices can exploit tools of computer-
assisted orchestration, creating a new instrument made of different modules: a probe
to scan a complex visual image (as the one used in the Synesthesizer) as input, visual to
musical-sequence mapping, color evaluations, color-to-timbre mapping, timbral refinement,
and final sound result as the output.

The existence of automatic techniques to orchestrate and to produce sounds and
specific timbre combinations starting from a visual source, may in fact open new frontiers
to rethinking music composition and music analysis.

In our vision, the interdisciplinary dialogue between different fields of human creativ-
ity, in the arts and in the sciences, might profit from these new perspectives. Additionally,
the exchanges between different musical cultures can be enhanced via new tools for multi-
sensory expression empowered by the unifying perspective of mathematics.
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