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Abstract
Production of quantum states exhibiting a high degree of entanglement out of noisy conditions is
one of the main goals of quantum information science. Here, we provide a conditional yet efficient
entanglement distillation method which functions within the framework of spatially localized
operations and classical communication. This method exploits indistinguishability effects due to
the spatial overlap between two identical qubits in distinct sites and encompasses particle statistics
imprint. We derive the general conditions for the maximum entanglement distillation out of mixed
states. As applications, we give a thorough description of distilled entanglement and associated
success probability starting from typical noisy states, such as thermal Gibbs states and Werner
states. The influence of local temperatures and of a noise parameter is discussed, respectively, in
these two cases. The proposed scheme paves the way towards quantum repeaters in composite
networks made of controllable identical quantum particles.

1. Introduction

Indistinguishability plays an important role in understanding systems made of identical quantum entities.
Usually, this genuinely quantum trait arises from the unaddressability of individual particles of the same kind
when particles themselves become spatially overlapping [1–3]. This property profoundly affects how these
particles assemble to form composite quantum states of light and matter [4, 5]. Beyond these fundamental
aspects, it is known that tailoring spatial overlap of identical particles allows controllable entanglement
generation schemes [6–12] and quantum information tasks, including teleportation [7, 8], quantum
estimation [13, 14], and entanglement distribution between nodes of a quantum network [15, 16]. Also,
bosonic bunching, a symptom of indistinguishability, can enhance the conversion of information and work
[17–19]. Recently, it has been reported that bosonic indistinguishability leads to an efficiency at maximum
power larger than the classical Curzon–Ahlborn limit [20].

Entanglement and quantum coherence are essential resources at the heart of quantum-enhanced
technologies, including computation, secure communication [21], and sensing [22]. Nonetheless, noise and
environmental interaction are inevitable, leading to decoherence and entanglement degradation [23, 24].
Hence, quantum information and computation science faces the challenge of preserving quantum resources
within a given noise model. Many protection schemes have been proposed to preserve such quantum
resources [25–42]. However, instead of maintaining entangled pairs, a distillation protocol (also referred to
as purification) converts mixed states to entangled states using local operations and classical operations
(LOCC) performed by two local observers [43, 44]. As a result, many techniques have been introduced
aiming at increasing entanglement in quantum states utilizing LOCC, such as local filtering [45], distillation
protocols [43], noiseless linear amplification, and one-shot distillable entanglement [46]. Furthermore,
entanglement distillation is a crucial feature of many proposals for quantum repeaters [47–49].
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In this work we provide a probabilistic entanglement distillation procedure based on spatial overlap
between identical particles in the context of spatially localized operations and classical communication
(sLOCC). We identify the essential conditions for a nonzero success rate of entanglement distillation. Due to
the probabilistic nature of the distillation protocol, there is an interesting trade-off between the degree of
distilled entanglement and the probability of success. Hence, we optimize the success probability of
distillation at the expense of a lower entanglement degree. As relevant applications, we present a thorough
examination of the requirements for entanglement distillation starting from thermal andWerner input states.
Our procedure only uses inherent properties of identical particles as elementary building blocks of composite
quantum networks. Therefore, it is particularly suitable in quantum communication scenarios, allowing for
the conversion of seemingly useless noisy states into operational resource states for transferring information.

This paper is structured as follows. In section 2 we describe the distillation protocol, examine some
general properties of the final state, and present some quantities useful to study the trade-off between the
amount of distilled entanglement and the success probability of the protocol. In sections 3 and 4 we present
our analysis of the protocol in the case of, respectively, thermal and Werner input states. Finally, in section 5
we draw our conclusions and present some remarks, while some details of our analysis can be found in the
appendixes.

2. Distillation protocol

Before introducing the distillation protocol, let us briefly recall our primary framework for dealing with
identical particles. We assume each particle to be endowed with an external and an internal degree of
freedom, namely a spatial wave function and a pseudospin. In the no-label approach [3, 50], an elementary
form of the two-particle state |Ψ⟩= |Φ1,Φ2⟩ is defined by single-particle state vectors |Φi⟩= |ψi σi⟩
(i = 1,2), where |ψi⟩ is the spatial wave function and |σ⟩= {|↑⟩, |↓⟩} is the pseudospin.

As illustrated in figure 1, the indistinguishability-assisted distillation protocol involves two steps: (i) a
unitary transformation of the spatial wave functions, which we call spatial deformation [51]; (ii) a
postselection measurement typically involving classical communication between two observers (detectors)
situated in separated regions L and R, which we name activation.

We assume that each qubit is initially in a diagonal state ρ̂X =
∑

σ={↑,↓}λ
X
σ|Xσ⟩⟨Xσ| in the basis

{|Xσ⟩}, with X= {L,R} and σ = {↑,↓}, characterized by the probabilities of occurrence λXσ (λX↑ +λX↓ = 1).
Since the qubits are initially distinguishable in two distinct sites, they are individually addressable by their
spatial modes. Thus, the initial two-particle state is separable and factorizable in the two spatial regions, that
is ρ̂LRinit = ρ̂L ⊗ ρ̂R. This state can be written as

ρ̂LRinit =
∑

σ,τ={↑,↓}

λLRσ,τ |Lσ,R τ⟩⟨Lσ,R τ |, (1)

where the probability coefficients are λLRσ,τ = λLσλ
R
τ . One can interpret the state above as the outcome of

single-particle pure dephasing channels, given that all off-diagonal elements for each qubit are zero. We show
below how two observers located in two spatial distinct regions can accomplish entanglement distillation
(purification), by performing spatially local particle counting on the shared pair of identical qubits, and
coordinating their actions through classical messages if needed.
Step I: spatial deformation. The spatial deformation involves a transformation of the spatial wave

functions which distributes them onto the two operational spatial sites L and R. In this way, the identical
qubits can spatially overlap and are not localized anymore in their own respective regions.

In an operational context, we consider the case of an input state experiencing a spatial deformation
transformation, in which only the shapes of single-particle wave functions are altered, leaving the internal
pseudospin degrees of freedom unchanged. To do so, we perturb the system by means of a spatial
deformation Hamiltonian, defined as (hereafter we take h̄= 1)

ĤD =
ΩR

2

∑
σ={↑,↓}

(
eiϕL̂†σR̂σ + e−iϕL̂σR̂

†
σ

)
, (2)

whereΩR is the coupling strength and ϕ is an arbitrary phase. Here, X̂†
σ and X̂σ (X̂= {L̂, R̂}) are, respectively,

the creation and the annihilation operators in the site X= {L,R}, with the action of X̂†
σ on the vacuum state

|0⟩ given by X†
σ|0⟩= |Xσ⟩. These creation and annihilation operators obey standard anticommutation rules,

{X̂σ, X̂
†
σ ′}= δσ,σ ′ and {X̂σ, X̂σ ′}= {X̂†

σ, X̂
†
σ ′}= 0 for fermions, and commutation rules, [X̂σ, X̂

†
σ ′ ] = δσ,σ ′

and [X̂σ, X̂σ ′ ] = [X̂†
σ, X̂

†
σ ′ ] = 0 for bosons [52]. These rules make the two-particle state fulfill the standard

phase change associated to a particle exchange, |Lσ,R τ⟩= η|R τ,Lσ⟩ with η = 1(−1) for bosons

2
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Figure 1. Scheme of indistinguishability-assisted entanglement distillation. As an input, each (spatially distinguishable) qubit is
independently prepared, so that ρ̂LRinit = ρ̂L ⊗ ρ̂R. Step 1: spatial deformation. A unitary spatial deformation D̂(θ) is applied which
allows the identical qubits to spatially overlap in the two distinct measurement regions. Step 2: activation. The postselection

measurementΠ
(2)
LR is performed and entanglement is thus distilled.

(fermions), and, therefore, the Pauli exclusion principle for fermions [4]. The time-evolution operator
associated to the spatial deformation is D̂(θ) = exp(−itĤD), with θ =ΩRt, so that the initial state evolves as
ρ̂D = D̂(θ)ρ̂LRinitD̂

†(θ). As a consequence, the deformed state has the form

ρ̂D =
∑

σ,τ={↑,↓}

λLRσ,τ |ψ σ,ψ ′ τ⟩⟨ψ σ,ψ ′ τ |, (3)

where |ψ⟩ and |ψ ′⟩ are the deformed spatial wave functions defined as (see appendix A for the derivation of
equation (3))

|ψ⟩= cos

(
θ

2

)
|L⟩+ ieiϕ sin

(
θ

2

)
|R⟩,

|ψ ′⟩= ie−iϕ sin
(
θ

2

)
|L⟩+ cos

(
θ

2

)
|R⟩. (4)

After this deformation, one may find each of the two particles in both regions, allowing them to spatial
overlap. With spatial overlap we mean that the particles can be found in the same region of space with
nonzero probability. It is worth mentioning that fermions with the same pseudospin are always forced to be
in different sites due to the Pauli exclusion principle: the only accessible state in this case becomes, up to a
global phase, |Lσ,Rσ⟩. In addition, we diagonalize the spatial deformation Hamiltonian given in
equation (2) for both fermions and bosons to obtain a general expression of the deformed state that is
applicable to any arbitrary initial state of two identical qubits. The detailed procedure can be found in
appendix B.
Step II: activation. In the last step, the two observers in regions {L,R} distillate or purify exploitable

quantum states by selecting only one particle per spatial region, via particle projective measurements

Π̂
(2)
LR =

∑
σ,τ=↑,↓|Lσ,R τ⟩⟨Lσ,R τ | [7]. It is worth mentioning that we assume the measurement process

(single-qubit counting) to be error-free. The procedure is probabilistic since it discards the cases when both
particles are detected in the same site. The action of projective measurements on the deformed state of

equation (3), that is ρ̂LRfin = Π̂
(2)
LR ρ̂DΠ̂

(2)
LR /Tr(Π̂

(2)
LR ρ̂D), gives

ρ̂LRfin =
∑

σ1,σ2,τ1,τ2={↑,↓}

Λσ2,τ2
σ1,τ1 |Lσ1,R τ1⟩⟨Lσ2,R τ2|, (5)

which is written in the computational basis BLR = {|L ↑,R ↑⟩, |L ↑,R ↓⟩, |L ↓,R ↑⟩, |L ↓,R ↓⟩}. The
coefficients Λσ2,τ2

σ1,τ1 of equation (5) depend on initial probabilities, spatial deformation, and both fermionic
and bosonic statistics (see appendix C for a full description of the coefficients Λσ2,τ2

σ1,τ1). The success probability

PLR = Tr(Π̂(2)
LR ρ̂D) for fermions and bosons, respectively, is given by

PLR = 1− 1

2
sin2 (θ)

(
λLR↑,↓ +λLR↓,↑

)
, (6)

PLR = 1− 1

2
sin2 (θ)

(
2−λLR↑,↓ −λLR↓,↑

)
, (7)

and is associated to the case when only one particle is found in a given region. The entanglement distillation
protocol is thus conditional and encompasses the possibility of failure. We remark that classical
communication between the two observers is typically involved in the protocol to check if each of them

3
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actually finds one particle per region. We also point out that the post-selected state is independent of the
phase ϕ appearing in equation (4).

In general, indistinguishability depends on both the quantum state and the measurement performed on
the system [53]. Since we are interested in the condition of spatial overlap between two identical qubits in
two distinct regions, our goal is to determine whether the qubits are spatially distinguishable. To this aim, we

can use the joint sLOCC measurement Π̂(2)
LR , to evaluate the indistinguishability due to the spatial overlap of

the particles within the state by means of the success probability PLR = Tr(Π̂(2)
LR ρ̂D). If PLR = 1, indicating the

presence of a single particle in each region with certainty, then the particles are considered spatially
distinguishable with no spatial overlap. Conversely, if PLR < 1, the particles overlap in the two regions and
are considered to be spatially indistinguishable. Once fixed the sLOCC measurement, the success probability
depends in our setup on the initial state and on the parameter θ governing the spatial overlap.

Before considering specific input states from two different physical scenarios of interest, we examine
some general properties of the final state of equation (5). We first observe that for equally deformed spatial
wave functions in the case of bosons, i.e. for θ = π/2 in equation (4) and η= 1, the output state reduces to a
pure maximally entangled state in the singlet state form, |ΨLR

− ⟩= (|L ↑,R ↓⟩− |L ↓,R ↑⟩)/
√
2, with a

success probability given by

PLR =
λLR↑,↓ +λLR↓,↑

2
. (8)

The above expression implies that the occurrence of maximum entanglement distillation is conditional to the
presence in the initial state of at least one term with opposite pseudospins. In fact, the success probability of
equation (8) tells us that not every mixed state is distillable to a pure entangled singlet state, in line with
previous observations [54]. Furthermore, the upper bound for the success probability of maximum
entanglement distillation is PLR = 1/2 (when λLR↑,↓ +λLR↓,↑ = 1), independently of the purity of the input state.
Interestingly, the same result does not apply to fermions, for which the degree of distilled entanglement
depends on the input state. The general final state in the case of fermions is described by equation (C.1).
Independently from the value of θ, the output state depends on the values of λLR↑,↑ and λ

LR
↓,↓, which are

connected to the initial state. Consequently, for example, in the case of an input state with nonzero values for
at least one of these two coefficients, maximum entanglement distillation becomes unattainable.

More in general, there is a trade-off between the amount of distillable entanglement and the likelihood of
success of the procedure. This aspect could be exploited in a practical scenario where the source is
probabilistic and increasing the distillation success probability is demanding. In fact, one can optimize the
success probability by distilling non-maximal entanglement: sacrificing perfect entanglement in favor of
success probability can be strategical in many realistic scenarios.

We remark that the profound quantum property activating this entanglement distillation is the
indistinguishability of the identical qubits stemming from their established spatial overlap in two distinct
sites after spatial deformation of the wave functions.

Many ways can be employed to characterize the amount of distilled entanglement. For example, it can be
quantified by the sLOCC-based concurrence, C(ρ̂LR) =max{0,

√
λ4 −

√
λ3 −

√
λ2 −

√
λ1}, used for

identical particles [53], where λi are the eigenvalues in decreasing order of the operator R̂= ρ̂LR ˜̂ρLR, being
˜̂ρLR = σ̂Ly ⊗ σ̂Ry (ρ̂

LR)∗σ̂Ly ⊗ σ̂Ry , with localized y-Pauli matrices σ̂Xy = |X⟩⟨X| ⊗ σ̂y (X= L,R). Notice that this
sLOCC-based concurrence is directly connected to the usual concurrence defined for distinguishable qubits
[55].

Interestingly, one may want to ensure that the procedure will distillate enough entanglement to violate a
Bell inequality. According to the Horodecki criterion for the CHSH-Bell inequality violation of a two-qubit
density matrix [56], the expression of the maximum of the Bell function for the X-shape density matrix ρ̂LRfin
can be written as BLR = 2

√
P2 +Q2 with P = Λ↑,↑

↑,↑ +Λ↓,↓
↓,↓ −Λ↑,↓

↑,↓ −Λ↓,↑
↓,↑ andQ= 2Λ↓,↑

↑,↓, where we used the

fact that here Λ↓,↑
↑,↓ is real and Λ↓,↓

↑,↑ = Λ↑,↑
↓,↓ = 0. In particular, the condition BLR > 2 is sufficient to perform

quantum teleportation.
On the other hand, one may find a mixed bipartite state that does not violate any Bell inequality but is

still useful for quantum teleportation [57]. A possible way to also include these cases is to characterize the
amount of entanglement using the state’s distance to an ideal one, such as the singlet state |ΨLR

− ⟩, in terms of
the fidelity FLR(ρ̂LRfin) = ⟨ΨLR

− |ρ̂LRfin|ΨLR
− ⟩. For instance, for bosons when θ = π/2 the fidelity is maximum, i.e.

FLR = 1, and the success probability is given by equation (8). However, a fidelity FLR > 2/3 is enough for
achieving quantum teleportation [58]. In such a case, one may prefer a higher probability of success at the
expense of a lower fidelity. If we consider the mixed separable initial state of equation (1) for bosons, the
general form of the fidelity can be written as

4
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FLR
(
ρ̂LRfin

)
=

(
λLR↑,↑ +λLR↓,↓

)
2+

(
λLR↑,↑ +λLR↓,↓ − 2

)
sin2 (θ)

. (9)

As a result of the above considerations, the entanglement distillation analysis is a constrained
optimization problem in which we seek to maximize the success probability with respect to θ,

Pmax
LR =max

θ

[
Tr(Π̂(2)

LR ρ̂D)
]
, with the constraint BLR(ρ̂

LR
fin)> 2 (for the Bell inequality threshold) or

FLR(ρ̂LRfin)> 2/3 (for the fidelity threshold, where the fidelity is given in equation (9)). The
condition FLR(ρ̂LRfin)> 2/3 is satisfied for bosons when the value of θ is in the range θopt < θ ⩽ π/2
where θopt is obtained through the above maximization of PLR and is equal to θopt = sin−1[√

3/2+ 1/
(
λLR↑,↑ +λLR↓,↓ − 2

)]
. Thus, by substituting θopt in equation (7) for θ, we find that the upper

bound for the maximum success probability is given by

Pmax
LR <

3

4

(
λLR↑,↓ +λLR↓,↑

)
. (10)

This shows that the maximum success probability of entanglement distillation for bosons, based on the
fidelity threshold and the given general initial state of equation (1), is bounded by 3/4.

In the following sections, we shall analyze the performance of the indistinguishability-assisted
entanglement distillation in the case of two well-known input states: a thermal state and a Werner state.

3. Application I: thermal state

As a first example, we consider the distillation of thermal Gibbs states of two spatially separated identical
qubits. From a resource theory point of view, a thermal state is a free state that one can generate and use at no
cost. Therefore, one can interpret the distillation process as a quantum thermal machine that produces
entanglement out of a thermal state.

To define the initial thermal state, we consider the bare system Hamiltonian ĤX
0 = ω

2 σ̂
X
z (X= L,R), where

σ̂Xz = σ̂z ⊗ |X⟩⟨X| is the localized z-Pauli matrix, and ω = ω↑ −ω↓ is the frequency spacing between the
energy levels associated to the values of the pseudospin. Each qubit is initially coupled with its own local
bosonic bath BX at inverse temperature βX = 1/TX (hereafter we take the Boltzmann’s constant kB = 1).

Thus, each particle thermal state is in the Gibbs form ρ̂X = e−βXĤ
X
0 /Z(βX), where Z(βX) = Tr

(
e−βXĤ

X
0

)
is

the partition function. Therefore, the initial two-particle state is factorizable in terms of single-particle states,
ρ̂LRinit = ρ̂L ⊗ ρ̂R.

For the sake of simplicity, in the next analytical considerations we limit ourselves to the case of equal
temperature baths, that is β = βL = βR (the case of different temperatures will be explicitly considered via a
computational analysis shown in figure 3). After spatial deformation and projection, the activated output
state of equation (5) becomes

ĜLR
fin =

∑
i={0,1,±}

Z−1
LR ΛLR

i |ΨLR
i ⟩⟨ΨLR

i |, (11)

which is written in the singlet-triplet basis BLR
st = {|ΨLR

0 ⟩, |ΨLR
1 ⟩, |ΨLR

± ⟩}, where |ΨLR
0 ⟩ := |L ↓,R ↓⟩,

|ΨLR
1 ⟩ := |L ↑,R ↑⟩, |ΨLR

± ⟩ := (|L ↓,R ↑⟩± |L ↑,R ↓⟩)/
√
2, and ZLR =

∑
i={0,1,±}Λ

LR
i (see appendix C for

some details concerning the derivation of equation (11)). The thermal coefficients for fermions are
ΛLR
0 = eβω , ΛLR

1 = e−βω , ΛLR
+ = 1, and ΛLR

− = cos2 (θ). The thermal coefficients for bosons are
ΛLR
0 = eβω cos2 (θ), ΛLR

+ = cos2 (θ), and ΛLR
− = 1.

We now provide some analytical results for both bosons and fermions. To quantify the amount of
distilled entanglement out of the thermal state we use the concurrence C. For bosons (η= 1), one gets
C(ĜLR

fin) =max{0,C} with

C =
2− 6cos2 (θ)

4cos2 (θ)cosh(βω)+ cos(2θ)+ 3
, (12)

while the success probability is equal to

PLR = 1−
[
1+ 2cosh(βω)

2+ 2cosh(βω)

]
sin2 (θ). (13)

5
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Figure 2. Distilled entanglement and success probability for thermal input states with baths at the same temperature.
(a) Concurrence CLR = C(ĜLR

fin) and (b) success probability PLR as functions of the baths’ temperature T/ω for different values of
θ, in the case of bosons.

Figure 3. Distilled entanglement and success probability for thermal input states with baths at different temperatures. (a) Counter
plot of the concurrence CLR and (b) success probability PLR as functions of the temperatures TL/ω and TR/ω for θ = 2π/5, in the
case of bosons.

Both C and PLR range in [0,1] and depend on the bath temperature and the spatial deformation parameter θ.
Differently, it is possible to show that for fermions (η =−1), the entanglement amount is always zero,
although the state is non-diagonal in the computational basis BLR.

For spatially distinguishable qubits (i.e. for θ= 0), the output is the separable state expressed in
equation (1) for both bosons and fermions. For an equally weighted spatial deformation of the wave
functions (θ = π/2) in the case of bosons, the state of equation (11) reduces to the maximally entangled
singlet state |ΨLR

− ⟩, as previously observed, with a success probability PLR = 1/[2+ 2cosh(βω)], that ranges
between 0 and 1/4. For θ = π/2 in the case of fermions, the singlet state is ruled out and the state of
equation (11) becomes ĜLR

f =
∑

i={0,1,+}Z
−1
LR ΛLR

i |ΨLR
i ⟩⟨ΨLR

i |, with ΛLR
0 = eβω , ΛLR

1 = e−βω , and ΛLR
+ = 1.

Using equations (12) and (13), valid for bosons, we display in figure 2 CLR = C(ĜLR
fin) (panel (a)) and PLR

(panel (b)) as functions of the bath temperature for some values of θ, i.e. for different settings of the spatial
deformation of the wave functions. As commented above, for θ = π/2 entanglement is always maximum
irrespective of the bath temperature. For the other cases, contrarily to common expectations, the amount of
entanglement increases with the temperature until it reaches a stationary value. This behavior can be
explained with the fact that increasing the bath temperature leads to populating two-qubit states which
exhibit quantum correlations arising from indistinguishability effects due to the spatial overlap. Instead,
decreasing the temperature increases the likelihood of finding qubits in their ground state |L ↓,R ↓⟩, which
is a pure separable state from which entanglement cannot be distilled. The plot of the corresponding success
probabilities shows that the process is ineffective for very low temperatures and that curves with smaller
degrees of distilled entanglement are linked to curves with larger values of PLR.

We have seen that the amount of the distilled entanglement depends on the baths’ temperature
T= TL = TR. However, it may be useful to understand how the indistinguishability-assisted entanglement
distillation procedure works in the case when the two baths have different temperatures. Figure 3 shows a
contour plot of the distilled entanglement, quantified by the concurrence CLR, and its corresponding success

6
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Figure 4.Maximum success probability of entanglement distillation with thermal input states in baths at the same temperature.
(a) Maximum success probability Pmax

LR as a function of T/ω for bosons subject to the constraints FLR(ĜLR)> 2/3 (black dashed

line) and BLR(ĜLR)> 2 (red dotted line). The blue solid line shows the success probability in the case of perfect entanglement
distillation. (b) The corresponding optimized spatial deformation parameter θopt as a function of T/ω.

probability PLR in terms of two temperatures TL and TR in the case of a partial spatial deformation
corresponding to θ = 2π/5. As an interesting aspect, one can notice that by increasing the difference between
the two temperatures it is possible to augment the degree of the distilled entanglement. We also remark that
concurrence becomes 0 only in the limit case TL = TR = 0. Notice that the zero-temperature limit is
equivalent to the complete action of a spatially localized amplitude damping channel on each qubit during
the preparation of the initial state.

To conclude our study for the case of input thermal states, taking baths at the same temperature, we
report in figure 4 the maximum success probability Pmax

LR , obtained by maximizing equation (13) with respect
to θ under the constraints FLR(ĜLR

fin)> 2/3 and BLR(ĜLR
fin)> 2, also considering the ideal case of maximum

entanglement distillation when FLR(ĜLR
fin) = 1 (panel (a)). We also plot the corresponding optimized spatial

deformation parameter θopt which maximizes the success probability for all the cases (panel (b)). The fidelity
between the output state of equation (11) and the singlet state is in particular given by

FLR
(
ĜLR
fin

)
=

2

3+ cos(2θ)+ 4cos2 (θ)cosh(βω)
. (14)

When compared to the ideal case, the curve for the maximum success probability ensuring that the output
state violates the Bell inequality shows that the success probability is increased. This result can be further
improved considering that, as shown in [57], Bell inequality violation is a sufficient condition for
nonclassical teleportation but is not necessary: in fact, some states fulfilling the necessary condition of
FLR(ĜLR

fin)> 2/3 do not violate any Bell inequality but are still valuable for teleportation. The curve of Pmax
LR

under the condition FLR(ĜLR
fin)> 2/3 shows that even larger values of the success probability can be now

achieved. The curves for the optimized spatial deformation parameters θopt provide useful information to
reproduce experimentally the above results.

4. Application II: Werner state

We now consider a Werner state [59] as input state, that is the experimentally relevant example of a pure state
subject to the action of white noise. In the usual formulation, the Werner state is a mixture of a pure state and
the maximally mixed state (white noise). It has been shown that simply bringing identical particles with
opposite pseudospins, initially in the elementary state |ΨLR⟩= |L ↑,R ↓⟩, to spatially overlap allows to access
and generate entanglement by sLOCC measurements [7, 8]. However, in a realistic scenario this process
might be subject to a certain extent of white noise, modeled by the maximally mixed state
1
4 ILR =

1
4

∑
σ,τ={↑,↓}|Lσ,R τ⟩⟨Lσ,R τ | with weight p. Under this condition, the input state has the form of

the separable (unentangled) Werner state

ŴLR
init = (1− p) |ΨLR⟩⟨ΨLR|+

p

4
ILR. (15)

Following the proposed procedure, we apply to this state the spatial deformation followed by the
postselection measurement to distillate the entanglement. The output state is given by

7
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Figure 5. Entanglement distillation and success probability for Werner input states. (a) Concurrence CLR = C(ŴLR
fin) and (b)

success probability PLR as functions of the noise degree p for different values of θ, in the case of bosons.

ŴLR
fin = Π̂

(2)
LR ŴDΠ̂

(2)
LR /Tr(Π̂

(2)
LR ŴD), with the spatially deformed state ŴD = D̂(t)ŴLR

initD̂
†(t). The

corresponding success probability is given by PLR =
1
8 [6− p+(p+ 2)cos(2θ)]. The explicit expression of the

output state ŴLR
fin can be straightforwardly obtained by using the general equations (1) and (5), and the

structure of the coefficients reported in appendix C, where some indications to derive the output state are
given.

For bosons, when θ = π/2, the maximum entanglement distillation to the singlet state is possible for any
noise degree with a success probability PLR =

2−p
4 ranging from 1/4 (maximum noise, p= 1) to 1/2 (no

noise, p= 0). Differently, for fermions, maximum entanglement distillation is only possible when there is no
noise (p= 0), while generally the amount of distilled entanglement is noise dependent.

For the bosonic case, in figure 5 we plot the degree of distilled entanglement, quantified by the
concurrence CLR (panel (a)), and its corresponding success probability PLR (panel (b)) as functions of the
noise parameter p for different values of θ. We find that to distill a given degree of entanglement from a
Werner state with a high amount of noise (e.g. p> 0.5), a spatial deformation more equally distributed onto
the two sites (θ closer to π/2) may be required, leading to a larger spatial overlap. This property comes at the
cost of a smaller success probability.

We now study the maximization of the success probability with respect to θ under the desired constraints
FLR(ŴLR

fin)> 2/3 and BLR(ŴLR
fin)> 2. In particular, the expression for the fidelity between the output state

ŴLR
fin and the singlet state is

FLR
(
ŴLR

fin

)
=

2(2− p)

6− p+(p+ 2)cos(2θ)
. (16)

In figure 6, we plot the maximum success probability Pmax
LR under the two desired conditions for fidelity and

Bell inequality violation as a function of the noise parameter p, also considering the ideal case of maximum
entanglement distillation when FLR(ĜLR

fin) = 1 (panel (a)). We also display the optimized spatial deformation
parameter θopt which maximizes the success probability for all the cases (panel (b)). We see how the
distillation performance depends on the amount of noise in the initial state, pointing out that relatively high
probabilities of success can be obtained even for large values of the noise parameter. Looking at the curve
associated to the violation of the CHSH-Bell inequality, we point out that the maximum success probability
Pmax
LR becomes very high for very low values of the noise degree (p→ 0), with the output state resulting close

to a pure entangled state for p ̸= 0, and being a pure non-maximally entangled Bell-like state for p= 0. This
fact has a relevant operational consequence within the proposed indistinguishability-assisted entanglement
distillation: under weak white noise, small spatial deformations (θ ≳ 0), and thus small amounts of spatial
overlap between the qubits, are sufficient to efficiently prepare an entangled state violating the Bell inequality
(as one can see from the corresponding curve for the optimized spatial deformation parameter θopt). Such an
observation is in line with the theorem that any pure Bell-like state violates a Bell inequality [60]. From
figure 6 we also see that Pmax

LR reaches the minimum value of approximately 0.32 when the input state is a
maximal mixture (p= 1). After comparing with the ideal case [FLR(ŴLR

fin) = 1], one can clearly see how much
we can increase the success probability, yet guaranteeing that the distilled entangled state is a resource for
quantum information processing such as teleportation. The curve of Pmax

LR under the condition

8
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Figure 6.Maximum success probability of entanglement distillation with Werner input states. Maximum success probability Pmax
LR

as a function of the noise degree p for bosons subject to the constraints FLR(ŴLR
fin)> 2/3 (dashed black line) and BLR(ŴLR

fin)> 2
(red dotted line). The blue solid line shows the success probability in the case of perfect entanglement distillation,
PLR = (2− p)/4. (b) The corresponding optimized spatial deformation parameter θopt as a function of p.

FLR(ĜLR
fin)> 2/3 shows in particular that a minimum value of approximately 0.37 can be obtained for p= 1.

Once again, the curves for the optimized spatial deformation parameters θopt can be useful from an
experimental point of view.

5. Conclusions

In this work, we have introduced an entanglement distillation protocol enabled by indistinguishability effects
originating from particle statistics and spatial overlap of two identical qubits. The spatial overlap is created by
means of a spatial deformation of the wave functions which are distributed towards two distinct
measurement sites. The protocol is characterized by a success probability, linked to postselecting the cases
where only one particle is found at each site.

We have shown that maximum entanglement distillation is always possible for bosons provided that the
initial input mixed state contains at least one term where the two qubits have opposite pseudospins, and
determined the corresponding success probability. We have then studied the trade-off between the amount of
distilled entanglement and the success probability of the procedure using for the initial configuration
thermal Gibbs states and Werner states. Different values of the spatial deformation parameter θ can be
considered as an imperfection (or noise) with respect to ideal experimental settings. Nevertheless, as
demonstrated in our study, the protocol remains efficient for a certain degree of imperfection. We have
maximized the success probability with respect to θ at the expense of a lower degree of entanglement which
yet guarantees Bell inequality violation and teleportation usefulness. The latter is identified using a threshold
based on the fidelity of the output state to the maximally entangled singlet state. This analysis is particularly
relevant in practical scenarios where efficiency optimization is required.

For the case of initial thermal states we have found that increasing the common temperature of the two
local baths is beneficial to the distillation protocol. In the case of different local temperatures, increasing their
difference can be also exploited to augment the final entanglement. For the case of initial Werner states, we
have found that entanglement distillation can be obtained also for any values of the noise parameter p by
increasing the degree of indistinguishability at the expense of a lower success probability.

It is worth mentioning that our protocol is similar to a local filtering protocol [45] which allows
entanglement distillation. However, we remark that the filtering process is here played by the controllable
spatial overlap of identical particles and their statistical nature, that is by indistinguishability effects.

The proposed procedure is amenable to be implemented in the lab, especially in quantum optics
platforms. In fact, several experimental tests have been recently realized which exploit the required
indistinguishability effects via photons and optical devices [8–10, 14, 16, 61]. Based on the theoretical
scheme of figure 1, the spatial deformation is a two-mode unitary gate produced by a conventional
beamsplitter. Hence, the beamsplitter is why photon bunching, or Hong–Ou–Mandel effect [62], occurs
when both photons are indistinguishable in all their degrees of freedom (polarization, temporal, and so on).
Since photons are temporally indistinguishable, they simultaneously arrive at the detectors in the two
separated regions, where we only postselect one photon in each region (by means of sLOCC) to generate the
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entanglement. As a prospect, one may explore the definition of new deformation operators, such as Kerr-like
nonlinear Hamiltonians [63], and study their impact on the efficiency of entanglement distillation.

However, as demonstrated experimentally in [8], photons do not always need to cross paths at the same
beamsplitter. Depending on the input state, a setup can be assembled where the optical paths of the photons
remain detached along their travel until they reach the detection regions where the photons eventually
spatially overlap. In such a scenario, two beamsplitters independently distribute each particle wave packet
towards two remote operational sites [8, 61] in such a way that the particles are then indistinguishable for the
final local detectors. The sLOCC measurement is then performed and the entanglement gets distilled. These
optical experimental settings can also simulate different particle statistics [61, 64, 65], such as fermions and
anyons. The above apparatuses are then well suited to design experiments which realize the
indistinguishability-assisted entanglement distillation not only for bosonic qubits via photons but also for
simulated fermionic particles. Such achievements may open the way to developing quantum repeaters in
quantum networks based on indistinguishability effects.
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Appendix A. Details on the spatial deformation step

Let us consider a generic state with a qubit with pseudospin σ and another one with pseudospin τ
respectively in regions L and R: |Lσ,R τ⟩= L̂†σR̂

†
τ |0⟩, where L̂†σ (R̂†

τ ) is the qubit creation operator with
pseudospin σ (τ ) in region L (R). In the step I of the procedure, each operator is spatially deformed as
L̂†σ(θ) = D̂(θ)L̂†σD̂

†(θ) and R̂†
τ (θ) = D̂(θ)R̂†

τ D̂
†(θ), resulting in

L̂†σ (θ) = cos

(
θ

2

)
L†σ + ie

iϕ sin

(
θ

2

)
R†
σ,

R̂†
τ (θ) = ie

−iϕ sin

(
θ

2

)
L†τ + cos

(
θ

2

)
R†
τ . (A.1)

Therefore, the single-particle states are |ψ σ⟩= L̂†σ(θ)|0⟩ and |ψ ′ τ⟩= R̂†
τ (θ)|0⟩. Also, the elementary

two-qubit states for different pseudospins (σ ̸= τ ) are, for both fermions and bosons,

|ψ σ,ψ ′ τ⟩= i

2
sin(θ)

(
e−iϕ|Lσ,L τ⟩+ eiϕ|Rσ,R τ⟩

)
+ cos2

(
θ

2

)
|Lσ,R τ⟩− η sin2

(
θ

2

)
|L τ,Rσ⟩, (A.2)

which satisfy particle exchange symmetry: |Lσ,R τ⟩= η|R τ,Lσ⟩. However, when qubits’ pseudospins are
identical (σ = τ ), the situation drastically changes depending on particle statistics. For example, when we
have fermions the qubits anti-bunch in the state L̂†σ(θ)R̂

†
σ(θ)|0⟩= |Lσ,Rσ⟩, where each qubit resides in a

different site. Differently, the elementary two-particle state for bosons becomes

|ψ σ,ψ ′ σ⟩= i√
2
sin(θ)

(
e−iϕ|Lσ,Lσ⟩+ eiϕ|Rσ,Rσ⟩

)
+ cos(θ)|Lσ,Rσ⟩, (A.3)

where bosonic bunching happens for θ = π/2 since both particles are in the same regions. Taking into
account these considerations allows for deriving every element of the deformed state in equation (3).
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Appendix B. Diagonal form of the spatial deformation Hamiltonian

Here, we provide the diagonal form of the spatial deformation Hamiltonian in equation (2), given as

Ĥ(diag)
D =

∑
n ϵn|Φn⟩⟨Φn|, where ϵn are the eigenenergies and |Φn⟩ are the eigenstates of the Hamiltonian.

For fermions, the eigenstates corresponding to the eigenenergies ϵ1,...,4 = 0 are

|Φ1⟩= |L ↑,L ↓⟩, |Φ2⟩= |R ↑,R ↓⟩,

|Φ3⟩=
1√
2

(
e−iϕ|L ↑,L ↓⟩− eiϕ|R ↑,R ↓⟩

)
,

|Φ4⟩=
1√
2
(|L ↑,R ↓⟩+ |L ↓,R ↑⟩) , (B.1)

while the eigenstates corresponding to the eigenenergies ϵ5,6 =±ΩR are, respectively,

|Φ5,6⟩=
1

2

(
e−iϕ|L ↑,L ↓⟩+ eiϕ|R ↑,R ↓⟩± |L ↑,R ↓⟩∓ |L ↓,R ↑⟩

)
, (B.2)

where the first subscript corresponds to the upper sign in the right side expression. Notice that the allowed
states for fermions are six due to the Pauli exclusion principle.

For bosons, the eigenstates corresponding to the eigenenergies ϵ1,...,4 = 0 are

|Φ1⟩=
1√
2
(|L ↑,R ↓⟩− |L ↓,R ↑⟩) ,

|Φ2⟩=
1√
2

(
e−iϕ|L ↓,L ↓⟩− eiϕ|R ↓,R ↓⟩

)
,

|Φ3⟩=
1√
2

(
e−iϕ|L ↑,L ↓⟩− eiϕ|R ↑,R ↓⟩

)
,

|Φ4⟩=
1√
2

(
e−iϕ|L ↑,L ↑⟩− eiϕ|R ↑,R ↑⟩

)
, (B.3)

while the eigenstates corresponding to the eigenenergies ϵ5,6 = ϵ7,8 = ϵ9,10 =±ΩR are given by

|Φ5,6⟩=
1

2

(
e−iϕ|L ↑,L ↓⟩+ eiϕ|R ↑,R ↓⟩± |L ↑,R ↓⟩± |L ↓,R ↑⟩

)
,

|Φ7,8⟩=
1

2

(
e−iϕ|L ↑,L ↑⟩+ eiϕ|R ↑,R ↑⟩

)
± 1√

2
|L ↑,R ↑⟩,

|Φ9,10⟩=
1

2

(
e−iϕ|L ↓,L ↓⟩+ eiϕ|R ↓,R ↓⟩

)
± 1√

2
|L ↓,R ↓⟩, (B.4)

where, again, the first subscript corresponds to the upper sign in the right side expression.
Via this diagonalization of the deformation Hamiltonian, it is straightforward to obtain the general

deformed state for any arbitrary initial state.

Appendix C. Details on the activation step

In the activation step (step II of the procedure), we select only one particle per region using the projective

measurement Π̂(2)
LR . The nonzero probability coefficients in equation (5) for fermions are

Λ↑,↑
↑,↑ =

1

PLR
λLR↑,↑, Λ↓,↓

↓,↓ =
1

PLR
λLR↓,↓,

Λ↑,↓
↑,↓ =

1

PLR

[
λLR↑,↓ cos

4

(
θ

2

)
+λLR↓,↑ sin

4

(
θ

2

)]
,

Λ↓,↑
↓,↑ =

1

PLR

[
ΛLR
↓,↑ cos

4

(
θ

2

)
+λLR↑,↓ sin

4

(
θ

2

)]
,

Λ↓,↑
↑,↓ =

1

4PLR

[
sin2 (θ)

(
λLR↑,↓ +λLR↓,↑

)]
, (C.1)
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with Λ↓,↑
↑,↓ = Λ↑,↓

↓,↑ and the success probability is PLR = 1− 1
2 sin

2 (θ)(λLR↑,↓ +λLR↓,↑). Also, the nonzero bosonic
probability coefficients of equation (5) are

Λ↑,↑
↑,↑ =

1

PLR
λLR↑,↑ cos

2 (θ), Λ↓,↓
↓,↓ =

1

PLR
λLR↓,↓ cos

2 (θ),

Λ↑,↓
↑,↓ =

1

PLR

[
λLR↑,↓ cos

4

(
θ

2

)
+λLR↓,↑ sin

4

(
θ

2

)]
,

Λ↓,↑
↓,↑ =

1

PLR

[
λLR↓,↑ cos

4

(
θ

2

)
+λLR↑,↓ sin

4

(
θ

2

)]
,

Λ↓,↑
↑,↓ =

−1

4PLR

[
sin2 (θ)

(
λLR↑,↓ +λLR↓,↑

)]
, (C.2)

with Λ↓,↑
↑,↓ = Λ↑,↓

↓,↑ and the success probability is PLR = 1− 1
2 sin

2 (θ)
(
1+λLR↑,↑ +λLR↓,↓

)
.

It is worth mentioning that the derivation of equation (11) involves substituting the following thermal
coefficients in equations (C.1) and (C.2): λLR↑,↑ = eβω , λLR↑,↓ = 1, and λLR↓,↑ = 1, λLR↓,↓ = e−βω . After
diagonalization, equation (11) can be obtained. This approach is also applicable to the Werner state, where
the substitutions λLR↑,↑ = p/4, λLR↑,↓ = 1− 3p/4, and λLR↓,↑ = p/4, λLR↓,↓ = p/4 lead to the final state for
entanglement distillation.

One can also consider localized depolarizing channels acting on two initially separated identical qubits in
the pure state |ΨLR⟩= |L ↑,R ↓⟩. The actions of the depolarizing channel on each qubit are given by
|L ↑⟩⟨L ↑| → (1− pL

2 )|L ↑⟩⟨L ↑|+ pL
2 |L ↓⟩⟨L ↓| and |R ↓⟩⟨R ↓| → (1− pR

2 )|R ↓⟩⟨R ↓|+ pR
2 |R ↑⟩⟨R ↑|

where pL(R) are the depolarizing parameters. Substituting the coefficients λLR↑,↑ =
pL
2 (1−

pR
2 ),

λLR↑,↓ = (1− pL
2 )(1−

pR
2 ), λ

LR
↓,↑ =

pLpR
4 , and λLR↓,↓ = (1− pR

2 )
pL
2 in equations (C.1) and (C.2), leads to the

activated state for entanglement distillation. Moreover, the depolarizing parameters pL and pR determine,
respectively, the temperatures TL and TR characterizing the initial thermal Gibbs state of each qubit in
section 3, whose effects on the amount of distilled entanglement are reported in figure 3.
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[30] Bylicka B, Chrúsciński D and Maniscalco S 2014 Sci. Rep. 4 1
[31] Man Z X, Xia Y J and Lo Franco R 2015 Sci. Rep. 5 1
[32] Tan J, Kyaw T H and Yeo Y 2010 Phys. Rev. A 81 062119
[33] Tong Q-J, An J-H, Luo H-G and Oh C 2010 Phys. Rev. A 81 052330
[34] Piccolini M, Nosrati F, Morandotti R and Lo Franco R 2021 Open Syst. Inf. Dyn. 28 2150020
[35] Piccolini M, Nosrati F, Compagno G, Livreri P, Morandotti R and Lo Franco R 2021 Entropy 23 708
[36] Cuevas A, Mari A, De Pasquale A, Orieux A, Massaro M, Sciarrino F, Mataloni P and Giovannetti V 2017 Phys. Rev. A 96 012314
[37] Damodarakurup S, Lucamarini M, Di Giuseppe G, Vitali D and Tombesi P 2009 Phys. Rev. Lett. 103 040502
[38] Xu J S, Sun K, Li C F, Xu X Y, Guo G C, Andersson E, Lo Franco R and Compagno G 2013 Nat. Commun. 4 1
[39] Lo Franco R, Bellomo B, Andersson E and Compagno G 2012 Phys. Rev. A 85 032318
[40] Facchi P, Lidar D and Pascazio S 2004 Phys. Rev. A 69 032314
[41] Orieux A, d’Arrigo A, Ferranti G, Lo Franco R, Benenti G, Paladino E, Falci G, Sciarrino F and Mataloni P 2015 Sci. Rep. 5 1
[42] D’Arrigo A, Lo Franco R, Benenti G, Paladino E and Falci G 2014 Ann. Phys. (NY) 350 211
[43] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[44] Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075
[45] Gisin N 1996 Phys. Lett. A 210 151
[46] Ecker S, Sohr P, Bulla L, Huber M, Bohmann M and Ursin R 2021 Phys. Rev. Lett. 127 040506
[47] Briegel H-J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[48] Bratzik S, Abruzzo S, Kampermann H and Bruß D 2013 Phys. Rev. A 87 062335
[49] Guha S, Krovi H, Fuchs C A, Dutton Z, Slater J A, Simon C and Tittel W 2015 Phys. Rev. A 92 022357
[50] Compagno G, Castellini A and Lo Franco R 2018 Phil. Trans. R. Soc. A 376 20170317
[51] Piccolini M, Nosrati F, Adesso G, Morandotti R and Lo Franco R 2023 Phil. Trans. R. Soc. A 381 20220104
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