

This item was submitted to Loughborough's Research Repository by the author. Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Efficient production of acetate from inorganic carbon (HCO3–) in microbial electrosynthesis systems incorporating Ag3PO4/g-C3N4 anaerobic photoassisted biocathodes

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1016/j.apcatb.2020.119696

PUBLISHER

Elsevier

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This paper was accepted for publication in the journal Applied Catalysis B: Environmental and the definitive published version is available at https://doi.org/10.1016/j.apcatb.2020.119696.

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Kong, Weifeng, Liping Huang, Xie Quan, Zongbin Zhao, and Gianluca Li-Puma. 2020. "Efficient Production of Acetate from Inorganic Carbon (hco₃⁻) in Microbial Electrosynthesis Systems Incorporating Ag₃po₄/g-c₃n₄ Anaerobic Photo-assisted Biocathodes". Loughborough University. https://hdl.handle.net/2134/13514515.v1.

1	October	20, 2020	<i>R1</i>

2 Submitted to Appl Catal B-Environ

3	Efficient	production	of acetate	from ino	organic	carbon	(HCO3 ⁻) i	n
---	-----------	------------	------------	----------	---------	--------	------------------------	---

4 microbial electrosynthesis systems incorporating Ag₃PO₄/g-C₃N₄

5 anaerobic photo-assisted biocathodes

- 6 Weifeng Kong^a, Liping Huang^{a,*}, Xie Quan^a, Zongbin Zhao^b, Gianluca Li Puma^{c,*}
- 7 "Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of
- 8 Education (MOE), School of Environmental Science and Technology, Dalian University of
- 9 Technology, Dalian 116024, China
- 10 ^bState Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical
- 11 Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian
- 12 116024, China
- 13 ^cEnvironmental Nanocatalysis & Photoreaction Engineering, Department of Chemical
- 14 Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom

15

16

17

18 **Corresponding authors:**

- 19 lipinghuang@dlut.edu.cn (L. Huang)
- 20 g.lipuma@lboro.ac.uk (G. Li Puma)

21

22 The authors declare no competing financial interest.

23

24 Abstract

The efficient production of acetate from HCO₃⁻ by the nonphotosynthetic bacterium 25 26 Serratia marcescens Q1 is demonstrated in an anaerobic, photo-assisted, microbial electrosynthesis (MES) system incorporating a Ag₃PO₄/g-C₃N₄ biocathode. The 27 28 Ag₃PO₄/g-C₃N₄ formed a Z-scheme photocatalytic heterojunction structure with 29 enhanced redox capacity. The photocorrosion of Ag₃PO₄ was inhibited by the 30 production of H₂O₂ in-situ, through water oxidation driven by the photogenerated holes on the Ag₃PO₄ valence band. The photoinduced electrons on the conduction 31 32 band of g-C₃N₄ instead produced H₂, which was metabolized by the Q1 electrotroph with HCO_3^- to produce acetate at a rate of 5.4 mM/d with a CE_{acetate} of 93% at a 33 current density of 3.3 A/m². The MES accumulated up to 81.0 mM with a $CE_{acetate}$ of 34 35 89% over 16 days continuous operation. This study provides a sustainable and feasible strategy for inhibiting the photocorrosion of Ag₃PO₄ and thus achieve 36 efficient acetate production from HCO₃⁻ in photo-assisted MESs biocathodes. 37 38

Keywords: microbial electrosynthesis; photocatalytic; in-situ H₂O₂; silver phosphate;
graphitic carbon nitride

- 41
- 42
- 43

44

45

2

46 **1 Introduction**

(MES) systems incorporating photocatalytic 47 Microbial electrosynthesis 48 biocathodes have been demonstrated as a promising sustainable technology for the production of valuable products (e.g., acetate) from the reduction of inorganic carbon 49 50 (HCO₃⁻) [1-4] which in turn originates from CO₂ emissions. For example, cadmium 51 sulfide (CdS) immobilized on a photocathode and assembled with the 52 nonphotosynthetic CO₂-reducing bacterium Moorella thermoacetica [2,5], indium phosphide (InP) combined with *Methanosarcina barkeri* [6], or WO₃/MoO₃/g-C₃N₄ 53 54 matched with *Serratia marcescens* [7], have been shown to successfully catalyze the production of acetate or methane from inorganic carbon. However, more effort is 55 56 needed to develop more active photocatalysts, in order to broaden the field of 57 application of photo-assisted biocathodes in MESs.

Among a wide range of possible photocatalysts, silver phosphate (Ag₃PO₄) has 58 shown promising results due to its desirable band gap (2.36 eV), low-toxicity, and its 59 60 highly positive valence band position [8-11]. On the other hand, graphitic carbon nitride $(g-C_3N_4)$ is a low cost visible-light responsive semiconductor photocatalyst 61 62 (band gap about 2.7 eV), with a high chemical stability and excellent reduction properties due to its relatively negative conduction band (CB) edge position (-1.2 eV 63 64 vs. standard hydrogen electrode, SHE) [12-15]. Furthermore, hybridizing Ag₃PO₄ with g-C₃N₄ creates a Z-scheme photocatalytic mechanism, which has been shown to 65 66 enhance the photocatalytic evolution of oxygen from water [16] and the conversion of CO_2 into CO, methane, methanol and ethanol [17]. Although Ag₃PO₄/g-C₃N₄ has 67

68 shown significant light capture and charge separation properties, the photocatalytic reduction of CO₂ over this inorganic composite material still suffer from further 69 70 challenges, particularly in terms of product selectivity. In addition, the long-term stability of the Ag rare metal in the composite has not been entirely fulfilled [16-17]. 71 72 By comparison, biological organisms engage an army of enzymes and reductive 73 pathways to produce long-chain hydrocarbons from naturally available constituents 74 including CO₂, H₂O and N₂. Thus, the combination of inorganic light-harvesters photocatalyst and whole-cell biocatalysts can be strategically deployed to exploit the 75 76 most salient attributes of each component [18]. However, neither Ag₃PO₄ nor the 77 composite Ag_3PO_4/g -C₃N₄ have been explored as photocatalysts in MESs.

One important aspect that affects the photocatalytic activity of Ag_3PO_4 is its chemical stability, which is severely limited by the photocorrosion process that occurs through the reduction of Ag(I) to Ag(0) [19-20]. One study has shown improved stability of Ag_3PO_4/g - C_3N_4 heterojunctions by supplementing the reaction system with an external electron acceptor such as H_2O_2 . This way, H_2O_2 outcompeted Ag(I)for the scavenging of photoinduced electrons due to a higher redox potential (Reaction 1), thus suppressed the photoetching of Ag_3PO_4 (Reaction 2) [21].

85
$$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O = +1.78 V$$
 (1)

86
$$Ag^+ + e^- \to Ag \qquad E^0 = +0.80 V$$
 (2)

87
$$2H_2O \rightarrow H_2O_2 + 2H^+ + 2e^-$$
 (3)

$$2H^+ + O_2 + 2e^- \rightarrow H_2O_2 \tag{4}$$

89 photocatal yst
$$+h\nu \rightarrow h^+ + e^-$$
 (5)

90
$$2H_2O+2h^+ \rightarrow H_2O_2+2H^+$$
 (6)

In this study, rather than adding H₂O₂ from an external source, we are proposing 91 the idea that the stability of Ag_3PO_4 and $Ag_3PO_4/g-C_3N_4$ heterojunctions can be 92 93 maintained by designing an anaerobic photocatalytic system which can produce H_2O_2 94 in-situ at the photo-assisted biocathode surface. In a photoelectrocatalytic system 95 H_2O_2 can be produced either through an electrochemical route by water oxidation at 96 the anode or by oxygen reduction reaction near the cathode [22] (Reactions 3 - 4), or 97 through the photocatalytic route [23-24] (Reactions 5-6). The anaerobic atmosphere 98 maintained in the Ag₃PO₄/g-C₃N₄ anaerobic photo-assisted biocathode excludes the electrochemical reduction of oxygen on the cathode. Thus, it is reasonable to assume 99 that an anaerobic photo-assisted MES biocathode incorporating Ag₃PO₄/g-C₃N₄ 100 101 should be able to produce H_2O_2 in-situ via the photocatalytic route as extensively reported [23-25] which would successfully inhibit the photocorrosion of Ag₃PO₄, and 102 thus efficiently catalyze the conversion of inorganic carbon to acetate. 103

104 Under this background, in this study a Ag₃PO₄/g-C₃N₄ photocathode was anaerobically constructed and incorporated in a MES operated with Serratia 105 106 marcescens Q1 bacterium species to investigate the production of acetate from inorganic carbon. In this bio-electro-catalytic system, photo-induced electrons on the 107 conduction bands of Ag₃PO₄/g-C₃N₄ are expected to favor hydrogen evolution under 108 anaerobic conditions, which can then be metabolized by S. marcescens with HCO₃⁻ to 109 produce acetate. Simultaneously, the rate of photocorrosion of Ag₃PO₄ in the 110 biocathode and thus its long-term stability, was examined as a function of the 111

112 protecting role exerted by the H₂O₂ produced in-situ on the biocathode surface. Multiple including photoluminescence (PL), 113 methods photo-current, ultraviolet-visible diffuse reflection spectra (UV-vis DRS), scanning electron 114 microscopy equipped with an energy dispersive X-ray spectroscopy (SEM-EDS), 115 X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron spin 116 117 resonance (ESR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were extensively used to characterize the performance of the 118 bio-electro-catalytic system and the photoetching process of Ag₃PO₄, whereas 119 120 high-sensitivity flow cytometry was used to evaluate the electrotrophic viability in the presence of the photocatalyst and under light irradiation conditions. The predominant 121 photocatalytic mechanisms were further investigated through active species trapping 122 123 experiments to determine the main reactive radical species in the system.

124

125 2 Materials and methods

126 2.1. Synthesis of $g-C_3N_4$ and $Ag_3PO_4/g-C_3N_4$ powders, and preparation of 127 $Ag_3PO_4/g-C_3N_4$ photocathodes

Preliminary experiments of transient photocurrent response of Ag₃PO₄/g-C₃N₄ composites prepared using different methods were performed to select the most suitable preparation method (Supporting Information (SI), Fig. S1). The preparation method reported by Zhang et al. [26] was selected due to its simplicity and highest photocurrent response. Therefore, the synthesis of g-C₃N₄ and Ag₃PO₄/g-C₃N₄ powders was as reported by Zhang et al. [26] and briefly described in SI. The

134	Ag ₃ PO ₄ /g-C ₃ N ₄ photocathode was prepared through an impregnation method:
135	Designed amounts of Ag ₃ PO ₄ /g-C ₃ N ₄ powders (0.5 g, 1.0 g, 1.5 g, 2.0 g) were firstly
136	dispersed in 1000 mL deionized water with 10 h ultrasonication at room temperature.
137	The suspensions were centrifuged for 10 min at 5000 r/min to obtain supernatants.
138	The 2.0 cm \times 2.0 cm \times 0.25 cm graphite felts (Sanye Co., Beijing, China) were
139	immersed in the supernatants for 12 h and dried at 60 °C in an oven overnight. The
140	amount of Ag_3PO_4/g - C_3N_4 loaded onto the cathode was estimated from the difference
141	between the initial and the residual amounts of Ag_3PO_4/g - C_3N_4 in solution. Finally,
142	the cathodes were calcined at 300 $^{\circ}$ C for 2 h with a heating rate of 2 $^{\circ}$ C/min in a
143	muffle furnace. The Ag_3PO_4 and $g-C_3N_4$ loaded cathodes were also prepared as above.

144

145 2.2. Reactor construction, electrotroph inoculation and operation

The dual-chamber reactor was constructed using cubic polymethyl methacrylate 146 blocks forming anodic and cathodic chambers with internal volumes equal to 28 ml 147 each. The effective working volume of each chamber was 26 mL, and the two 148 chambers were separated by a cation exchange membrane (CMI-7000 Membranes 149 International, Glen Rock, NJ). The above prepared Ag₃PO₄/g-C₃N₄ graphite felt was 150 151 used as cathode, whereas a carbon rod served as anode. A saturated calomel electrode (SCE, +241 mV versus standard hydrogen electrode (SHE)) was used as cathode 152 reference electrode. All electrode potentials were reported versus SHE. 153

154 The anode chamber was inoculated with an effluent collected from acetate-fed155 microbial fuel cells supplemented by an equivalent volume of nutrient solution as

156 previously reported [27]. The cathode chamber instead was inoculated with the 157 nonphotosynthetic electrotroph of *Serratia marcescens* Q1, which was isolated from 158 anaerobic biocathodes of separate bioelectrochemical systems fed by the sole carbon 159 source of inorganic carbon and capable of anaerobically metabolizing inorganic 160 carbon to acetate [7].

161 Catholyte containing NH₄Cl (2.1 mM), KH₂PO₄ (0.09 mM), NaHCO₃ (23.8 mM), vitamins 0.6 mL/L and mineral 0.6 mL/L, was sparged with N₂ gas for 15 min in an 162 163 anaerobic glovebox (YQX-II, Xinmiao, Shanghai) before being transferred into the 164 anaerobic cathodic chamber. The initial pH was adjusted to 5.8 with the addition of 10% HCl [7], and the conductivity was regulated to 103 mS/cm with 0.6 M KCl [1]. 165 166 After 24 h incubation in a sterile medium, the Q1 electrotroph was harvested and was 167 inoculated to the cathodic chamber at a final OD_{600} of 0.35, which was selected as a tradeoff between efficient biocatalysis and light absorption on the Ag₃PO₄/g-C₃N₄ 168 cathode surface. In fact, it is known that a higher amount of electrotrophs confers 169 superior bioelectrocatalytic activity and stability, whereas a thinner and more 170 transparent or patchy electrotrophs layer allows for greater cathode photon absorption 171 172 and PL efficiency [6].

The reactors were run in fed-batch operation. The cathode worked at a potential of -1.1 V versus SHE [7] and under a light intensity of 26.9 kLux through a 100 W iodine tungsten lamp [27]. The intensity of light was measured with an illuminometer (TES-1330A, Taiwan, China). The lamp was refrigerated by a cool-fan and the reactors were surrounded in a jacket with a continuous circulation of water to maintain the temperature of the reaction chambers isothermal at 25 ± 3 °C [27]. All the operation was repeated at least three times and data were collected after the first operational cycle [7].

The performance of the MES was assessed against five control experiments: a) 181 182 the abiotic control, which established the role played by the electrotroph on the 183 methabolism of HCO_3^- and H_2 ; b) the dark control, which assessed the impact of light irradiation on the photocathode performance; c) the open circuit conditions (OCCs) 184 185 control, which elucidated the impact of the electrochemical process (closed circuit 186 conditions, CCCs) on either acetate production or on the protective role on Ag₃PO₄ exerted by H₂O₂ produced in-situ; d) the fourth control confirmed the roles performed 187 by the bare graphite felt, the Ag_3PO_4 /graphite felt, and the g-C₃N₄/graphite felt on the 188 189 photocatalytic process; e) the fifth abiotic control performed in the absence of irradiation, demonstrated the impact of light irradiation in the production of H₂. 190

191

192 2.3. Characterizations and electrochemical measurements

193 The morphologies of the photocathodes with or without the electrotrophic 194 biofilms were examined by a SEM (Nova NanoSEM 450, FEI company, USA) 195 equipped with an EDS (X-MAX 20-50 mm², Oxford Instruments, UK) and a TEM 196 (Tecnai G2 F30 S-Twin, FEI, USA) at an accelerating voltage of 200 kV. The crystal 197 structure and phase composition of the obtained samples were determined by XRD 198 using a powder X-ray diffractometer (XRD-6000, Shimadzu, Japan) equipped with 199 Cu K_{α} radiation (40 kV, 50 mA). Fourier transform infrared (FTIR) spectra were 200 collected by using a Bruker VERTEX 70 FTIR (Germany) apparatus. The zeta potential of the samples was determined with a Zetasizer Nano ZS90 (Malvern, UK). 201 202 The PL spectra were recorded with a fluorescence spectrophotometer (F-4500, Hitachi, Japan) with a laser ($\lambda = 365$ nm) at room temperature. The UV-vis DRS spectra of the 203 204 semiconductor photocatalysts were recorded with an Agilent HP 8453 UV-vis 205 spectrophotometer. The photocurrent response measurements were conducted in a 206 solution of 0.1 M Na₂SO₄ with a light illuminance of 26.9 kLux to examine the 207 photocatalytic property of the cathode [27-28]. ESR (Bruker A200, 208 Karlsruhe, Germany) analysis was employed to detect oxygen-containing radicals formed in the MES. 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was used as the 209 210 spin-trapping agent [16,29].

211 Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 212 were carried out to evaluate the electrochemical performance of the photo-assisted 213 biocathode of MESs. CV was performed using a potentiostat at a low scan rate of 0.1 214 mV/s (BioLogic, VSP, France) in the range from -1.4 V to 0.1 V vs. SHE. EIS was recorded in the frequency range from 100 kHz to 0.01 Hz with an amplitude of 5 mV 215 at -1.1 V vs. SHE. Both CV and EIS were performed with a three-electrode system. 216 217 The cathode electrode was employed as working electrode, the SCE served as reference electrode and a Pt foil electrode was used as counter electrode [30]. A 218 Zsimpwin software was plotted to acquire the equivalent circuit and the values of 219 220 different resistances.

221

10

222 2.4. Analysis and calculations

The concentrations of acetate and the residual hydrogen in the headspace of the 223 224 cathodic chamber were measured with a gas chromatograph (GC7900, Tianmei, China), and the results of H₂ were normalized to the volume of the catholyte and 225 operational time $(m^3/m^3/d)$. The concentration of inorganic carbon in the catholyte 226 227 was determined according to the national standard method (DZ/T 0064.49-93) and the 228 consumption of inorganic carbon (%) was calculated according to the difference between the initial and the final inorganic carbon concentrations in the catholyte, 229 230 divided by the initial inorganic carbon concentration. The concentration of Ag₃PO₄ (%) leached in the catholyte was measured by atomic absorption spectroscopy 231 (AAnalyst 700, PerkinElmer), while the amount leached was calculated from the 232 233 amount of Ag₃PO₄ in the catholyte divided by the initial amount of Ag₃PO₄ on the cathode. The in-situ produced H₂O₂ was measured 234 by titanyl sulfate spectrophotometric method as previously described [22]. 235

The electrotrophic viability was assessed by a high-sensitivity flow cytometry 236 237 in the presence of the photocatalyst and light irradiation [7]. At the end of each 238 fed-batch operation, samples were collected from both the cathode electrode and from the catholyte. Firstly, the electrotroph was split off by sonicating with a low specific 239 power of 9 J/mL (Bran-sonic CPXH Ultrasonifier). The mixed solution was 240 centrifuged and the electrotrophic pellets were re-suspended in a physiological saline 241 242 solution, which contained 50 ug/mL propidium iodide. After culturing for 15 minutes at 37 °C in the dark, the cells were finally rinsed (twice), re-suspended in a normal 243

244 physiological saline solution and quantified by FD FACSCanto flow cytometer245 (Bioscience).

The holes, H_2O_2 and radical species generated at the cathode were examined using different trapping agents: 0.1 mM Fe(II)-EDTA for H_2O_2 , 0.5 mM sodium oxalate for h⁺, 0.5 mM isopropanol for 'OH, and 2 mM p-benzoquinone for $O_2^{\bullet-}$. These concentrations can sufficiently scavenge the photo-generated free radical while negligibly affecting the activities of microorganisms and solution conductivity [31-32].

252 The long-term stability of the Ag₃PO₄/g-C₃N₄ photocathodes was evaluated over 16 days operation of the reactors, with periodical supply of bicarbonate. In these 253 experiments, 3.0 ml of catholyte was sampled daily and an equal volume of 113.9 -254 255 118.6 mM NaHCO₃ was replenished to maintain the initial concentration of inorganic 256 carbon at 23.8 mM each day. The controls were carried out by the above method, except that the concentration of NaHCO₃ supplemented each day was different 257 (Ag₃PO₄: 80.0 - 87.0 mM; g-C₃N₄: 82.3 - 87.6 mM; bare graphite felt: 76.2 - 80.5 258 mM), to maintain the initial concentration at 23.8 mM. 259

260 The $CE_{acetate}$ and the residual hydrogen (CE_{H2}) were calculated according to Eqs.

261 1 − **2**:

262
$$CE_{acetate} = \frac{8 \times n_a \times F}{\int_0^t I \, dt} \times 100\%$$
(1)

263 $CE_{H2} = \frac{2 \times n_b \times F}{\int_0^t I \, dt} \times 100\%$ (2)

where n_a (mol) is the mole amount of acetate, n_b (mol) is the mole amount of H₂, I (A)

is the current, F (96485 C/mole electron) is the Faraday constant and *t* is the operation
time (s).

267

268 **3 Results and discussion**

269 *3.1 Characterization of prepared photo-assisted cathode*

270 The characteristic peaks in the XRD patterns of Ag₃PO₄ were consistent with the crystal planes of body-centered cubic Ag₃PO₄ (JCPDS 06-0505), exhibiting 20.96° 271 (110), 29.76° (200), 33.36° (210), 36.64° (211), 47.84° (220), 52.76° (310), 55.12° 272 (222), 57.34° (320), 61.72° (400) and 73.92° (322) (Fig. 1A) [20,33]. Those at 12.6° 273 (100) and 27.4° (002) corresponded to $g-C_3N_4$ [34]. The Ag₃PO₄/g-C₃N₄ exhibited 274 diffraction peaks corresponding to both Ag₃PO₄ and g-C₃N₄, confirming the 275 276 successful combination of Ag₃PO₄ and g-C₃N₄. The absence of characteristic diffraction peak assigned to Ag nanoparticles excluded the photocorrosion 277 phenomenon for the pristine $Ag_3PO_4/g-C_3N_4$, which was instead observed in other 278 279 studies on photocatalytic reduction of CO₂ to CO and CH₄ [17].

280

Here Fig. 1

PL spectra characterized the separation efficiency of the photoinduced carriers. The maximum emission intensity of Ag_3PO_4/g - C_3N_4 was significantly weaker than that of g- C_3N_4 at the same wavelength of 455 nm (Fig. 1B), indicating strong interactions between Ag_3PO_4 and g- C_3N_4 and thus a much lower recombination rate of the photo-generated carriers.

286 The Ag_3PO_4/g - C_3N_4 cathode exhibited an order of magnitude higher

287 photocurrent than either Ag_3PO_4 or $g-C_3N_4$ (Fig. 1C), confirming a highly efficient charge carrier separation and transport in the Ag₃PO₄/g-C₃N₄ heterojunction. In the 288 absence of electrotroph the photocurrent of the Ag₃PO₄/g-C₃N₄ cathode slightly 289 increased (Fig. S2) due to the reduction of the electrotrophic photon absorption 290 291 efficiency, however, the catalytic effect exerted by the electrotroph reduced the charge 292 transfer resistance (R_{ct}) and was essential for the production of acetate from inorganic 293 carbon. Similar behaviors have been observed with Methanosarcina barkeri on indium phosphide photocathode used for the production of methane [6], and with 294 295 Moorella thermoacetica on cadmium sulfide (CdS) [2,5] or with Serratia marcescens on $WO_3/MoO_3/g-C_3N_4$ [7] used for the production of acetate from inorganic carbon. 296

UV-vis DRS spectra confirmed the optical absorption and band gaps of the 297 298 photocatalysts (Fig. 1D). The considerable red-shift in the absorption edges of Ag₃PO₄/g-C₃N₄ (541 nm) and Ag₃PO₄ (526 nm) in comparison to g-C₃N₄ (454 nm) 299 suggested that the $Ag_3PO_4/g-C_3N_4$ heterojunction utilizes a higher portion of the 300 301 visible light spectrum to improve photocatalytic performance [20]. The band gaps (E_g) of g-C₃N₄ (2.73 eV) and Ag₃PO₄ (2.36 eV) were estimated by the Tauc plots (Fig. 1D) 302 303 [35]. The positive slopes of the linear plots in the Mott-Schottky curves (Fig. S3) indicated that both g-C₃N₄ and Ag₃PO₄ were n-type semiconductors, while the 304 conduction band edge potential (E_{CB}) of n-type semiconductor was usually 0.1 to 0.3 305 eV more negative than its flat-band potential (E_{FB}) [36]. Thus, the E_{CB} of g-C₃N₄ 306 (-1.15 eV) and Ag₃PO₄ (0.25 eV) were calculated based on the E_{FB} for g-C₃N₄ and 307 Ag_3PO_4 using the Mott-Schottky plots (Fig. S3). The valence band edge potentials 308

309 (E_{VB}) of g-C₃N₄ (1.58 eV) and Ag₃PO₄ (2.61 eV) were obtained according to the 310 following formula $E_{VB} = E_{CB} + E_g$ [35]. The bands of the two semiconductors align to 311 a potential Z-scheme mechanism.

The value of carrier density N_D for Ag₃PO₄/g-C₃N₄ (9.77 × 10¹⁷ cm⁻³), calculated from the Mott-Schotty plots (Fig. S3), was significantly higher than the N_D of either Ag₃PO₄ (2.63 × 10¹⁷ cm⁻³) or g-C₃N₄ (2.80 × 10¹⁷ cm⁻³), indicating smaller charge transfer resistance and faster charge transfer in the heterojunction, thereby enhancing the photocatalytic process [37].

317 FTIR spectra were used to probe the chemical structure of the obtained samples (Fig. 1E). Pure Ag₃PO₄ represented two strong peaks at 542 and 943 cm⁻¹, which were 318 assigned to the P-O stretching vibrations of PO_4^{3-} , while the strong characteristic 319 peaks of g-C₃N₄ in the range 1200 - 1700 cm⁻¹ corresponded to the typical stretching 320 vibrations of the CN heterocycles [26]. The FTIR spectrum of Ag₃PO₄/g-C₃N₄ 321 exhibited an overlap of the Ag_3PO_4 and $g-C_3N_4$ spectra, where the frequency of the 322 two characteristic peaks of the Ag₃PO₄ phase, at 549 and 951 cm⁻¹ in the 323 Ag₃PO₄/g-C₃N₄ heterojunction, increased [26]. These results suggest structural 324 interaction between the Ag₃PO₄ and g-C₃N₄ phases in the Ag₃PO₄/g-C₃N₄ 325 326 heterojunction.

The absolute zeta potential values of $Ag_3PO_4/g-C_3N_4$ were invariably higher than those of g-C₃N₄ in the pH range from 4 to 12 (Fig. 1F), indicating improved dispersion of g-C₃N₄ through the introduction of Ag_3PO_4 [35]. In addition, the zeta potentials of $Ag_3PO_4/g-C_3N_4$ were always more negative than those of g-C₃N₄. The 331 more negative zeta potential of Ag₃PO₄/g-C₃N₄ and its improved dispersion, compared with the g-C₃N₄ consistently contributed to enhance the adsorption of the 332 333 positively charged H⁺ which favors a higher rate of H₂ production and in turn a high rate of acetate production through the Wood – Ljungdahl pathway in this system. 334 335 The visible C, N, O, Ag and P signals in the XPS spectra of Ag₃PO₄/g-C₃N₄ (Fig. 336 2A) confirmed its hybrid structure, consistent with the XRD results (Fig. 1A). The C 337 1s peak at 284.70 eV was attributed to C-C bonding of graphitic or amorphous carbons in Ag₃PO₄/g-C₃N₄ (Fig. 2B), whereas the other peak of C 1s at 287.28 eV was 338 339 assigned to the C-(N)₃ in g-C₃N₄ [38]. The N 1s peak at 398.50 eV was assigned to sp^2 -hybridization of N element (C=N-C) in Ag₃PO₄/g-C₃N₄ (Fig. 2C) whereas the 340 341 peak at 399.52 eV belonged to amino functional groups having a hydrogen atom 342 (C-N-H) and 401.04 eV ascribed to tertiary nitrogen (N-(C)₃) [26,38]. Regarding the Ag 3d spectrum in Ag₃PO₄/g-C₃N₄ (Fig. 2E), the two peaks at 367.82 (Ag $3d_{5/2}$) and 343 373.80 eV (Ag $3d_{3/2}$) were assigned to the Ag⁺ of Ag₃PO₄ [20,33]. The binding 344 345 energies at 530.55 and 531.68 eV were attributed to O 1s (Fig. 2D), whereas the peak at 530.55 eV was associated with the O₂ in Ag₃PO₄ and the peak at 531.68 eV 346 347 ascribed to -OH groups on the surface of Ag₃PO₄/g-C₃N₄ [20]. The bond energy of P 2p of 132.91 eV was associated with the P^{5+} of Ag₃PO₄ (Fig. 2F) [20]. It is worth 348 349 mentioning that the binding energies of C 1s and N 1s had slight negative shifts compared to g-C₃N₄, while the binding energies of Ag 3d, P 2p and O 1s exhibited 350 slight red shifts compared to Ag₃PO₄. These results collectively indicated the strong 351 interaction between $g-C_3N_4$ and Ag_3PO_4 due to π -backing bonding, similar to reports 352

353 with other photocatalysts [20,39].

- Here Fig. 2 354 355 TEM images with different magnifications (Fig. 3) shows successful immobilization of Ag₃PO₄ nanoparticles on the surface of g-C₃N₄ in Ag₃PO₄/g-C₃N₄ 356 357 (Fig. 3A and B). The lattice fringe spacing of 0.265 nm in the Ag₃PO₄/g-C₃N₄ (Fig. 358 3B) was ascribed to the (210) crystal plane of Ag_3PO_4 , exactly the same as that observed in the pure Ag_3PO_4 sample (Fig. 3D) [40]. The presence and uniform 359 distribution of Ag, P, O, C and N elements in Ag₃PO₄/g-C₃N₄ was confirmed by the 360 element mapping results (Fig. S2B-F), further indicating successful integration of 361 Ag₃PO₄ and g-C₃N₄ into Ag₃PO₄/g-C₃N₄ heterostructures [40]. 362
- 363

Fig. 3

364 The microstructures of the bare surface of the photocatalyst deposited on the cathodes and in the presence of S. marcescens were observed by SEM. g-C₃N₄ 365 showed a sheet structure (Fig. 4E and G) and uniform distribution on the graphite felt 366 367 (the inset of Fig. 4E), while Ag_3PO_4 nanoparticles formed more evident aggregates (Fig. 4I and K). The Ag₃PO₄ particles uniformly dispersed on the surface of g-C₃N₄ in 368 369 the Ag₃PO₄/g-C₃N₄ (Fig. 4A and C). The density of electrotroph deposited on the $Ag_3PO_4/g-C_3N_4$ and $g-C_3N_4$ electrodes was higher than on Ag_3PO_4 (Fig. 4C, G and K), 370 and this was ascribed to the excellent biocompatibility of g-C₃N₄ [13-14]. 371 Here Fig. 4 372

373 Compared with the abiotic controls (Fig. 4B, F and J), the attached electrotroph
374 exhibited Na and K signals in EDS spectra, and the content of P increased accordingly

375 (Fig. 4D, H and L). The simultaneous presence of C, N, P, O and Ag signals in the 376 abiotic Ag_3PO_4/g -C₃N₄ cathode (Fig. 4B) indicated the successful assembling of the 377 g-C₃N₄ and Ag_3PO_4 in the composite.

378

379 *3.2 Optimization of operating parameters*

The ratio of Ag_3PO_4 and $g_2C_3N_4$ of 1 : 2 achieved the highest rate of acetate 380 production (Fig. S4A), the optimal $CE_{acetate}$ (Fig. S4B), the most efficient separation 381 of electron-hole pairs (Fig. S4C), and the highest light response current (Fig. S4D). 382 383 Different Ag₃PO₄ and g-C₃N₄ ratios can form different electronic and structural interactions in the Ag₃PO₄/g-C₃N₄ composite and thus influence the photocatalytic 384 performance as also observed in Z-scheme Ag₃PO₄/g-C₃N₄ composites used for 385 386 converting CO₂ to fuels [17]. The intensity of photoluminescence shown in Fig. S4C is not only related to the separation efficiency of the charge carriers, but is also 387 affected by surface defects, oxygen vacancies and other properties of the measured 388 389 samples [41]. Thus, the photoluminescence results were expected to deviate from the transient photocurrent response (Fig. S4D), which instead reflected more closely the 390 391 separation efficiency of the charge carriers [41].

The loading amount of Ag_3PO_4/g - C_3N_4 was optimized between the range 0.18 – 0.73 mg/cm² and reached an optimum at 0.41 mg/cm² in terms of acetate production, *CE*_{acetate} and photocurrent response (Fig. S5). Overloading of photocatalysts can deactivate the activated molecules by collision with ground state molecules whereas an appropriate loading of photocatalysts may avoid the unnecessary excess catalyst and also ensure efficient absorption of light photons for efficient system performance, similar to other studies using TiO₂ [32]. Thus, a ratio of Ag₃PO₄ to g-C₃N₄ of 1 : 2 and a cathode photocatalyst loading of 0.41 mg/cm² were used in subsequent experiments.

401 *3.3 MES performance*

402 The $Ag_3PO_4/g-C_3N_4$ photocathode incorporating S. marcescens achieved an 403 acetate production rate of 5.4 \pm 0.1 mM/d (Fig. 5A) with a CE_{acetate} of 93 \pm 2% (Fig. 404 5D) and a residual hydrogen peroxide concentration of $35.5 \pm 1.3 \mu M$ (Fig. 5C) with 405 inorganic carbon consumption of $26 \pm 1\%$ (Fig. S6A) at a current density of 3.3 ± 0.1 A/m^2 (Fig. S6B). These were appreciably higher than the results obtained using a 406 WO₃/MoO₃/g-C₃N₄ photocathode and *S. marcescens* under same experimental 407 conditions (acetate: 3.1 ± 0.2 mM/d, *CE*_{acetate}: $73 \pm 4\%$, inorganic carbon consumption: 408 409 $20 \pm 1\%$, current: 2.5 ± 0.3 A/m²) [7]. These values were also higher than the 410 production rates observed using CdS/gold nanoclusters and Moorella thermoacetica (0.1 - 0.5 mM/d), Si nanowire array/TiO₂/Ni and Sporomusa ovata (4.0 - 5.0 mM/d), 411 412 or the abiotic AgCl/g-C₃N₄ (0.6 mM/d) under similar operational conditions (Table S1) [18,42-44]. The exceptionally high rate of acetate production reported using the 413 414 abiotic TiO₂ nanotube/g-C₃N₄ system (Table S1) can be ascribed to the much higher 415 photon flux emitted by the xenon lamp used (approximate 3.0-fold more than in this study) and to the short operational period of 1.0 h, although the long-term stability of 416 the employed photocatalyst and product selectivity remained unexplored (Table S1) 417 418 [45].

419 The performance was also significantly higher than the controls, under darkness

420	conditions (acetate: $2.7 \pm 0.1 \text{ mM/d}$; <i>CE</i> _{acetate} : $67 \pm 2\%$; inorganic carbon consumption:
421	21 \pm 1%; current: 2.4 \pm 0.1 A/m ²), or with either Ag ₃ PO ₄ or g-C ₃ N ₄ photocatalysts, in
422	the presence or in the absence of light (Fig. 5A, D and Fig. S6). The poor performance
423	recorded using the bare graphite felt cathode regardless of light irradiation (acetate:
424	1.6 ± 0.2 mM/d; <i>CE</i> _{acetate} : $61 \pm 4\%$; inorganic carbon consumption: $14 \pm 1\%$; current:
425	$1.5 \pm 0.1 \text{ A/m}^2$) highlighted the positive impact of combining the two semiconductors
426	forming Ag_3PO_4/g - C_3N_4 , which delivers in this system in a Z-scheme photocatalytic
427	reaction mechanism as discussed in further sections. Moreover, the disappearance of
428	acetate (Fig. 5A) and the lowest current (Fig. S6B) in the abiotic controls
429	demonstrated the critical roles played by both S. marcescens species and
430	Ag_3PO_4/g - C_3N_4 in this system. The impact of light irradiation was further evidenced
431	by the significantly higher rates of H ₂ production recorded with either the biotic or the
432	abiotic Ag_3PO_4/g - C_3N_4 cathode in comparison to the values recorded under darkness
433	(Fig. 5B). Thus, it may be inferred that the photo-generated electrons were used for
434	H_2 production, in concert to the mechanism of H_2 evolution on g-C ₃ N ₄ [12-15]. The
435	trend of higher acetate production (Fig. 5A) corresponding to higher evolution of
436	equivalent total H_2 (Fig. 5B), and lower concentration of residual H_2 (Fig. 5B),
437	confirmed the function of H_2 as a mediator in the reduction of inorganic carbon
438	through the Wood–Ljungdahl pathway [1].

439

Here Fig. 5

The photocorrosion of Ag₃PO₄/g-C₃N₄ was investigated by XRD (Fig. 5E) and
XPS (Fig. 5F; Fig. S6C and D) analyses. Metallic silver in the catholyte was clearly

442	observed under OCCs, shown as four peaks (38.12°, 44.48°, 64.44°, 77.56°) (JCPDS
443	No. 04-0783) [17,19,26], indicating that photocorrosion of Ag_3PO_4 was taking place.
444	In contrast, under CCCs metallic Ag was not observed regardless of the presence or
445	absence of S. marcescens or light. Similarly, in the high resolution Ag 3d spectrum of
446	Ag ₃ PO ₄ /g-C ₃ N ₄ (Fig. 5F), two pair peaks at 367.53/373.49 eV corresponding to
447	metallic Ag and at 368.10/374.01 eV attributed to Ag^+ in Ag_3PO_4 [17,19-20,26] were
448	observed under OCCs, while under CCCs these peaks were not observed regardless of
449	the presence or absence of S. marcescens or light (Fig. 5F; Fig. S6C and D). These
450	results collectively reflected the efficient inhibition of the photocorrosion process of
451	Ag_3PO_4/g - C_3N_4 under CCCs. The photocorrosion was clearly prevented by the
452	utilization of the H_2O_2 produced in-situ over the Ag_3PO_4/g - C_3N_4 cathode, since under
453	CCCs the residual H_2O_2 (35.5 – 36.3 μ M) was significantly lower than under OCCs
454	(144 μ M) regardless of the presence of S. marcescens (Fig. 5C). The absence of
455	cathodic electrons under OCCs reasonably led to the none consumption and
456	accumulation of H_2O_2 , and the subsequent occurrence of photocorrosion of Ag_3PO_4
457	(Fig. 5F). Moreover, the absence of H_2O_2 in the controls in the absence of either light
458	or photocatalyst under OCCs or CCCs, excluded the electrocatalytic production of
459	H_2O_2 . Considering the anaerobic conditions in the catholyte, the H_2O_2 was
460	conclusively generated in-situ through the photocatalytic oxidation of water
461	(Reactions $5 - 6$) [46].

462 Flow cytometry is a high-sensitive approach to quantify the live/dead bacteria 463 ratio in response to the changes in external environments [7]. The radical species 464 produced during the photocatalytic process had negligible detrimental impact on the total amount of S. marcescens supported on the Ag₃PO₄/g-C₃N₄ photocathodes, since 465 466 the amount of inactive electrotroph varied negligibly: 4.7% under CCCs and light, compared to 4.4% in the absence of illumination, 3.8% using the bare graphite felt 467 468 under illumination and 0.6% without propidium iodide staining (Fig. S7), consistent 469 with the results obtained using the same electrotroph and WO₃/MoO₃/g-C₃N₄ 470 photocathodes [7]. Similarly, negligible impact of the photocatalytic process has been observed in other photo-electrochemical processes, such as on the methane producer 471 472 by Methanosarcina barkeri [6] or on the acetate producer by Moorella thermoacetica [2,5]. Quantification of the hydroxyl radicals by HPLC (0.8 µM) (Fig. S8) confirmed 473 a significantly lower concentration than the harmful onset value reported for 474 475 *Pseudomonas aeruginosa* of 3.0 µM [47], implying negligible impact of the hydroxyl radicals on the viability of S. marcescens. Moreover, the highest concentration of 476 H_2O_2 produced in-situ (OCCs, $144 \pm 3 \mu M$, Fig. 5C) was appreciably lower than the 477 478 detrimental concentrations reported for other bacteria such as Xanthobacterflavus sp. (4.5 mM) [48] or *Escherichia coli* (10 mM) [49]. Thus, potential detrimental effects 479 480 of hydroxyl radicals and H₂O₂ on the viability of S. marcescens were excluded.

481

482 *3.4 CV and EIS analysis*

483 The reduction onset potential (E_{onset}) in the biotic Ag₃PO₄/g-C₃N₄ positively 484 shifted to -0.30 V, compared to -0.33 V for the biotic Ag₃PO₄ and -0.35 V for the 485 biotic g-C₃N₄ (Fig. 6A; Table S2). Meanwhile, the maximum reduction peak current 486 for Ag₃PO₄/g-C₃N₄ (Fig. 6A; Table S2) as well as its broadest peak in the first derivative CV (DCV) plots (Fig. 6B) collectively proved the efficient catalytic role of 487 488 the Ag₃PO₄/g-C₃N₄ in the photo-assisted biocathodes. The more negative E_{onset} (-0.45 V) recorded with the bare graphite felt controls in the presence of S. marcescens, 489 490 reflected the importance of combining both the photocatalyst and the electrotroph to 491 achieve effective MES performance. Other studies using indium phosphide assembled with the Methanosarcina barkeri methane producer or CdS with the CO₂-reducing 492 bacterium *Moorella thermoacetica* have reported similar conclusions [2,5-6]. 493

494

Here Fig. 6

The EIS spectra (Fig. 6C and D) were analyzed by fitting spectra to an 495 equivalent circuit (Fig. S9; Table S2). The presence of light irradiation invariably 496 decreased the diffusion resistance (R_{dif}) and the charge transfer resistance (R_{ct}) in both 497 the biotic (Fig. 6C; Table S2) and the abiotic (Fig. 6D; Table S2) cathodes, compared 498 to the values observed in the absence of light irradiation. The value of R_{ct} was 499 500 dominant over the electrolyte resistance (R_s) and the R_{dif} , and was significantly lower (30 Ω) than the controls without light irradiation (45 Ω), under abiotic conditions (59 501 502 Ω), with Ag₃PO₄ only (58 Ω), with g-C₃N₄ only (71 Ω) or with the bare graphite felt (79 Ω) (Fig. 6C and D; Table S2). The presence of the biofilm can change the 503 conditions surrounding the electrode material, and thus the electron transfer 504 mechanisms on the biotic and the abiotic electrodes may not the same [50]. The lower 505 506 R_{ct} recorded under biotic photo-assisted conditions was attributed to the S. marcescens biofilm creating a higher proportion of potential active sites on the cathode surface 507

favoring charge transfer reactions. Such effect has also been observed in anodic pure or mixed exoelectrogens in the absence of light irradiation [50]. These results clearly highlighted the impact of light irradiation on the activation of Ag_3PO_4/g -C₃N₄ hybrid photocatalyst, which in turn reduced the internal resistance to electron transfer favoring the bio-transformation of inorganic carbon to acetate (Fig. 5A) with enhanced circuital current (Fig. S6B).

514

515 3.5 Photocatalytic mechanism over Ag₃PO₄/g-C₃N₄

516 ESR analysis was performed to detect oxygen-containing radicals formed in the MES (Fig. 7A-B). DMPO-'OH signals (four characteristic peaks, 1:2:2:1) were 517 clearly observed for the biotic Ag₃PO₄/g-C₃N₄ cathode under light irradiation, while 518 519 no signals were detected in the absence of light irradiation. The signals strength in both biotic and abiotic Ag₃PO₄/g-C₃N₄ cases were of equivalent amplitude and both 520 were appreciably lower than the signal recorded with the biotic Ag₃PO₄/g-C₃N₄ under 521 OCC (Fig. 7A) as expected. Moreover, no DMPO-O₂⁻⁻ signals were observed under 522 the same conditions, excluding the presence of O_2^{-1} in the MES (Fig. 7B). Thus, it 523 524 was clearly demonstrated the photocatalytic generation of 'OH formed from water oxidation over the irradiated $Ag_3PO_4/g-C_3N_4$ heterojunction, with the amount of 'OH 525 consistent with the residual amount of H₂O₂ formed after fast recombination of 'OH 526 (Fig. 5C). A similar pattern has been observed in other studies using $Ag_3PO_4/g-C_3N_4$ 527 528 or g-C₃N₄ photocatalysts [16,26,29].

529

The predominant photocatalytic mechanisms over Ag₃PO₄/g-C₃N₄ were further

530 investigated through active species trapping experiments to determine the main reactive radical species in the system. In the presence of trapping agents such as 531 Fe(II)-EDTA, isopropanol or sodium oxalate, the acetate production $(-28 \pm 2\%)$ (Fig. 532 7C), the current density $(-17 \pm 1\%)$ and the CE_{acetate} $(-13 \pm 2\%)$ (Fig. 7D) decreased 533 534 by equal amounts, reflecting the positive impact of H_2O_2 on this system performance. 535 Since H_2O_2 was not detected in these anaerobic trapping reactions (Fig. 7C), the in-situ production of H₂O₂ can be attributed to the fast recombination of hydroxyl 536 radicals formed by water oxidation by the photogenerated holes (Reactions 5 - 6), 537 which was further supported by the decreased current in the presence of the 538 scavengers. The addition of the 'OH scavenger, isopropanol, resulted in complete 539 disappearance of H₂O₂ (formed by fast 'OH recombination) (Fig. 7C), confirming the 540 541 existence of 'OH in this MES, in agreement with the ESR results (Fig. 7A). The O_2^{-1} scavenger *p*-benzoquinone negligibly affected system performance (Fig. 7C), 542 indicating that O_2^{-} was not a radical species present in the system, as also shown by 543 544 the ESR results (Fig. 7B). The anaerobic conditions in the catholyte also excluded the possibility of forming O_2^{-} . These results and the position of the band levels of the 545 546 semiconductors suggest a Z-scheme photocatalytic mechanism for the anaerobic Ag₃PO₄/g-C₃N₄ photocathode MES system (Fig. 8). Under visible light irradiation, 547 g-C₃N₄ and Ag₃PO₄ were induced to generate electron-hole charge pairs. The 548 photo-induced electrons were excited from the VB to the corresponding CB, whereas 549 the photo-generated electrons were injected from the CB of Ag₃PO₄ into the VB of 550 g-C₃N₄, thereby suppressing the recombination of charge carriers in the same material. 551

552	The accumulated reductive electrons in the CB of the g-C ₃ N ₄ were utilized for the
553	evolution of H_2 , whereas the more oxidative holes in the VB of the Ag_3PO_4 strongly
554	oxidized water to produce H_2O_2 in-situ. The proximity between the electron-donor
555	cathode and the electron-acceptor H_2O_2 formed a driving force, in which the H_2O_2
556	produced in-situ around the Ag_3PO_4/g - C_3N_4 photocathode was preferentially reduced
557	to water, protecting the photocorrosion of Ag ₃ PO ₄ , based on the appreciable higher
558	redox potential (Reactions $1 - 2$). In parallel, the hydrogen evolving on g-C ₃ N ₄ was
559	favorably metabolized by S. marcescens with HCO_3^- to produce acetate through the
560	Wood-Ljungdahl pathway [1]. Such mechanism successfully prevented the
561	photo-etching of Ag(I) and thus the superior photocatalytic performance of the
562	Ag_3PO_4/g - C_3N_4 photocathode.
563	Here Fig. 7

5	63	

564 565

Here Fig.	8
-----------	---

3.6 MES performance as a function of operational time 566

Acetate production (Fig. 9A) and $CE_{acetate}$ (Fig. 9B) were negligibly affected at a 567 prolonged operational time of 1.0 d and decreased thereafter, due to the progressive 568 reduction of the concentration of HCO_3^- in the system (Fig. 9C), while the amount of 569 residual H_2O_2 produced in-situ (34.6-35.5 μ M) (Fig. 9D) and the circuital current (Fig. 570 571 S10) did not vary. These values were always higher than those in the controls using g-C₃N₄ only, Ag₃PO₄ only, or bare graphite felt only cathodes (Fig. 9; Fig. S10), 572 confirming the photocatalytic Z-scheme mechanism over the Ag₃PO₄/g-C₃N₄ 573 574 electrode.

Here Fig. 9

EIS analysis (Fig. 9E and F) show the dominant role and sharp increase of the 576 diffusional resistance $R_{\rm dif}$ from 34 Ω at 0.5th day to 90 Ω at 1st day and the further 577 sharp climb to 1830 Ω at 2nd day, compared to a very slight increase of R_s and R_{ct} 578 579 (Table S3). This phenomenon resulted from the progressive depletion of HCO_3^- in the 580 semi-batch system, until insufficient supply of HCO₃⁻ decreased the diffusion rate of reactant and thus R_{dif} reached extremely high values. A similar behavior has been 581 reported in other studies on the production of acetate performed with the hybrid of 582 CdS and Moorella thermoacetica [5] under an inadequate supply of CO₂. Thus, 583 bicarbonate was subsequently added after 1.0 day operation to sustain high rates of 584 acetate production over prolonged continuous operation of the MES up to 16 days. 585

586

587 *3.7 MES performance with periodical addition of bicarbonate*

Prolonged operation of the MES cell up to 16 days with periodical addition of 588 589 bicarbonate increased the acetate production linearly, accumulating up to 81.0 ± 0.2 mM of acetate (Fig. 10A) with a reasonably flat $CE_{acetate}$ of $89 \pm 1\%$ (Fig. 10B) and a 590 regular change of bicarbonate (Fig. 10C) at 16th days operation, appreciably higher 591 than the results with the bare graphite felt cathode. The average acetate production 592 rate of 5.03 ± 0.01 mM/d was 3.06, 2.84 and 3.26 times higher than the rates observed 593 594 with the Ag_3PO_4 only, the g-C₃N₄ only or the bare graphite felt only cathodes, respectively (Fig. 10A). The acetate production rate was higher than the reported 2.83 595 \pm 0.01 mM/d by mixed culture on a 3D reduced graphene oxide modified carbon felt 596

597 cathode with continuous CO_2 sparging in the absence of light irradiation [51] at 598 similar operational periods. Residual H₂ was reasonably lower than the values in the 599 controls using Ag₃PO₄ only, g-C₃N₄ only or bare graphite felt only cathodes (Fig. 500 S11A), consistent with the higher rate of acetate production in Fig. 10A.

601

Here Fig. 10

602 Ag leaching was sharply accumulated from $1.1 \pm 0.1\%$ at the 1st day to $3.0 \pm$ 0.1% at the 4th day and stabilized at $3.9 \pm 0.2\%$ after the 7th day (Fig. S11B). EIS 603 analysis demonstrated the stable (99 – 102 Ω) and dominant role of R_{dif} over a slight 604 605 increase observed in the $R_{\rm ct}$ (from 35 Ω to 41 Ω) and the steady value of $R_{\rm s}$ (4.0 – 4.2 Ω) during the entire 16 days operation (Fig. S11C and D; Table S4). This $R_{\rm dif}$ was 606 appreciably lower than the $1019 - 1830 \Omega$ at 1.5 - 2.0 days without periodical supply 607 608 of bicarbonate (Table S3), confirming the necessity of periodical supply of bicarbonate to achieve lower R_{dif} and thus high levels of acetate production. 609

Metallic Ag was none detected in the XRD (Fig. 10E) or XPS (Fig. 10F) spectra 610 611 in addition to the absence of peak splitting in the Ag 3d spectrum, clearly demonstrating the appreciable inhibition of the photocorrosion of Ag₃PO₄ over an 612 613 uninterrupted operational cycle. The residual concentration of H₂O₂ was stable in the range of $33.7 - 35.7 \mu M$ (Fig. 10D), similar to the values observed under fed-batch 614 operation (Fig. 5C) implying negligible detrimental effects on the viability of the S. 615 marcescens, also shown by flow cytometry (Fig. S7). The concentration of H₂O₂ was 616 617 significantly lower than the threshold values (4.5 - 10 mM) reported for conventional bacteria such as Xanthobacterflavus sp. or Escherichia coli [48-49]. 618

619 SEM-EDS analysis of the Ag₃PO₄/g-C₃N₄ biocathode after 16 days operation 620 (Fig. S12) demonstrated similar particle size and morphology as those observed after 621 a short operational period of 0.5 d (Fig. 4). Considering the slight increase in internal 622 resistance (Fig. S11C and D), these results clearly confirmed the stability of the 623 Ag₃PO₄/g-C₃N₄ photo-assisted biocathode and the in-situ utilization of H₂O₂ for the 624 inhibition of Ag₃PO₄ photocorrosion.

625 The emerging field of bio-electro-photocatalysis for the reduction of inorganic carbon via hydrogen mediation, represents a largely unexplored line of investigation 626 627 [18]. While effective cathodic materials with appropriate hydrogen catalytic activity at near-neutral pH need to be selected, the assessment of the intracellular complex 628 reactions driven by the cathodic photocatalytic materials remain unexplored. 629 630 Electrotrophs physiologically respond to changes of the external environment (e.g., circuital current, heavy metals, pH) by releasing extracellular polymeric substances 631 (EPS) and by regulating the activity of intracellular enzymes [8,52-55]. Thus, under 632 633 light irradiation and as a response to the H₂O₂ produced in-situ, the locally anaerobic micro-environment created by the EPS released by the S. marcescens and the changes 634 635 of its typical intracellular enzymatic activities, might have allowed for the efficient system performance and long-term stability. The identification of the associated 636 genetic regulating networks in S. marcescens is also necessary to achieve further 637 increase in the acetate yield. 638

639

640 **4.** Conclusions

29

641	In summary, a Ag_3PO_4/g - C_3N_4 cathode with excellent photocatalytic activity was
642	successfully applied in a MESs incorporating S. marcescens Q1 for efficient acetate
643	production from inorganic carbon. The in-situ produced H ₂ O ₂ through the anaerobic
644	photocatalytic oxidation of water, was simultaneously utilized for effective
645	suppression of the photocorrosion of Ag ₃ PO ₄ and this was crucial for improving the
646	stability of the Ag_3PO_4/g - C_3N_4 photocathode. The photoinduced electrons on the
647	conduction band of Ag_3PO_4/g - C_3N_4 were used for the evolution of H_2 and subsequent
648	metabolism by S. marcescens Q1 with supplemented HCO3 ⁻ for acetate production.
649	Acetate accumulated up to 81.0 ± 0.2 mM with a $CE_{acetate}$ of $89 \pm 1\%$ over a 16 days
650	with daily feed of bicarbonate. This study provides a sustainable and feasible strategy
651	for inhibiting the photocorrosion of Ag ₃ PO ₄ in Ag ₃ PO ₄ /g-C ₃ N ₄ hybrid photocatalysts,
652	thus achieving efficient acetate production from inorganic carbon in the
653	photo-assisted MESs biocathodes.

654

655 **Conflicts of interest**

656 There are no conflicts to declare.

657 Acknowledgements

- 658 The authors gratefully acknowledge financial support from the National Natural
- 659 Science Foundation of China (Nos. 21777017 and 52070032).

660 **References**

- [1] E. Blanchet, F. Duquenne, Y. Rafrafi, L. Etcheverry, B. Erable, A. Bergel,
 Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO₂
 reduction, Energy Environ. Sci. 8 (2015) 3731–3744. DOI: 10.1039/C5TA05503B
- [2] K.K. Sakimoto, A.B. Wong, P. Yang, Self-photosensitization of nonphotosynthetic
 bacteria for solar-to-chemical production, Science. 351 (2016) 74–77. DOI:

666 <u>10.1126/science.aad3317</u>

- [3] Y. Jiang, R.J. Zeng, Expanding the product spectrum of value added chemicals in
 microbial electrosynthesis through integrated process design a review, Bioresour.
 Technol. 269 (2018) 503–512. DOI: 10.1016/j.biortech.2018.08.101
- [4] Y. Jiang, H.D. May, L. Lu, P. Liang, X. Huang, J.Z. Ren, Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation,
 Water Res. 149 (2019) 42–55. DOI: 10.1016/j.watres.2018.10.092
- [5] K.K. Sakimoto, S.J. Zhang, P.D. Yang, Cysteine-cystine photoregeneration for
 oxygenic photosynthesis of acetic acid from CO₂ by a tandem inorganic-biological
 hybrid system, Nano Lett. 16 (2016b) 5883–5887. DOI:
 10.1021/acs.nanolett.6b02740
- [6] E.M. Nichols, J.J. Gallagher, C. Liu, Y. Su, J. Resasco, Y. Yu, Y. Sun, P. Yang,
 M.C.Y. Chang, C.J. Chang, Hybrid bioinorganic approach to solar-to-chemical
 conversion, Proc, Natl. Acad. Sci. USA. 112 (2015) 11461–11466. DOI:
 10.1073/pnas.1508075112
- [7] Z. Cai, L. Huang, X. Quan, Z. Zhao, Y. Shi, G. Li Puma, Acetate production from inorganic carbon (HCO₃⁻) in photo-assisted biocathode microbial electrosynthesis systems using WO₃/MoO₃/g-C₃N₄ heterojunctions and *Serratia marcescens* species, Appl. Catal. B-Environ. 267 (2020) 118611. DOI: 10.1016/j.apcatb.2020.118611
- [8] Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang, H. Stuart-Williams, H.
 Yang, J.Y. Cao, W.J. Luo, Z.S. Li, An orthophosphate semiconductor with
 photooxidation properties under visible-light irradiation, Nat. Mater. 9 (2010)
 559–564. DOI: 10.1038/nmat2780
- [9] Y.P. Bi, S.X. Ouyang, N. Umezawa, J.Y. Cao, J.H. Ye, Facet effect of single-crystalline Ag₃PO₄ sub-microcrystals on photocatalytic properties, J. Am.
 Chem. Soc. 133 (2011) 6490–6492. DOI: 10.1021/ja2002132
- [10] N. Umezawa, O.Y. Shuxin, J.H. Ye, Theoretical study of high photocatalytic
 performance of Ag₃PO₄, Phys. Rev. B. 83 (2011) 035202. <u>DOI:</u>
 10.1103/PhysRevB.83.035202
- [11] D.J. Martin, G.G. Liu, S.J.A. Moniz, Y.P. Bi, A.M. Beale, J.H. Ye, J.W. Tang, 695 Efficient visible driven photocatalyst, silver phosphate: performance, understanding 696 perspective, Chem. Soc. Rev. 44 (2015)7808-7828. 697 and DOI: 10.1039/C5CS00380F 698
- [12] J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO₃/g-C₃N₄ step-scheme
 H₂-production photocatalyst, Appl. Catal. B-Environ. 243 (2019) 556–565. DOI:
- 701 10.1016/j.apcatb.2018.11.011
- [13] Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui, J. Tian, Boosting the photocatalytic
 ability of g-C₃N₄ for hydrogen production by Ti₃C₂ MXene quantum dots, ACS
 Appl. Mater. Interfaces 11 (2019) 41440-41447. DOI: 10.1021/acsami.9b14985
- [14] J. Jiang, X. Wang, Y. Liu, Y. Ma, T. Li, Y. Lin, T. Xie, S. Dong, Photo-fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin
 g-C₃N₄ nanosheet with rich nitrogen defect: Degradation mechenism, pathways, and products toxicity assessment, Appl. Catal. B-Environ. 278 (2020) 119349. DOI:
- 709 <u>10.1016/j.apcatb.2020.119349</u>

- [15] J. Jiang, X. Wang, C. Zhang, T. Li, Y. Lin, T. Xie, S. Dong, Porous 0D/3D
 NiCo₂O₄/g-C₃N₄ accelerate emerging pollutant degradation in PMS/vis system:
 Degradation mechanism, pathway and toxicity assessment, Chem. Eng. J. 397
 (2020) 125356. DOI: 10.1016/j.cej.2020.125356
- [16] X. Yang, L. Tian, X. Zhao, H. Tang, Q. Liu, G. Li, Interfacial optimization of
 g-C₃N₄-based Z-scheme heterojunction toward synergistic enhancement of
 solar-driven photocatalytic oxygen evolution, Appl. Catal. B-Environ. 244 (2019)
 240–249. DOI: 10.1016/j.apcatb.2018.11.056
- [17] Y. He, L. Zhang, B. Teng, M. Fan, New application of Z-Scheme Ag₃PO₄/g-C₃N₄
 composite in converting CO₂ to fuel, Environ. Sci. Technol. 49 (2015) 649–656.
 DOI: 10.1021/es5046309
- [18] S. Cestellos-Blanco, H. Zhang, J.M. Kim, Y. Shen, P. Yang, Photosynthetic
 semiconductor biohybrids for solar-driven biocatalysis, Nat. Catal. 3 (2020)
 245–255. DOI: 10.1038/s41929-020-0428-y
- [19] T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong, H. Chen, X. Yi, J. Yuan, X. Xia, C.
 Liu, S. Luo, Ag₃PO₄/Ti₃C₂ MXene in terface materials as a Schottky catalyst with
 enhanced photocatalytic activities and anti-photocorrosion performance, Appl.
 Catal. B-Environ. 263 (2018) 545–554. DOI: 10.1016/j.apcatb.2018.08.053
- [20] C. Liang, L. Zhang, H. Guo, C. Niu, X. Wen, N. Tang, H. Liu, Y. Yang, B. Shao,
 G. Zeng, Photo-removal of 2,2'4,4'-tetrabromodiphenyl ether in liquid medium by
 reduced graphene oxide bridged artificial Z-scheme system of Ag@Ag₃PO₄/g-C₃N₄,
 Chem. Eng. J. 361 (2019) 373–386. DOI: 10.1016/j.cej.2018.12.092
- [21] J. Jia, W. Huang, C. Feng, Z. Zhang, K. Zuojiao, J. Liu, C. Jiang, Y. Wang,
 Fabrication of g-C₃N₄/Ag₃PO₄-H₂O₂ heterojunction system with enhanced
 visible-light photocatalytic activity and mechanism insight, J. Alloys Compd. 790
 (2019) 616–625. DOI: 10.1016/j.jallcom.2019.03.238
- [22] Q. Wang, L. Huang, X. Quan, Q. Zhao, Preferable utilization of in-situ produced
 H₂O₂ rather than externally added for efficient deposition of tungsten and
 molybdenum in microbial fuel cells, Electrochim. Acta. 247 (2017) 880–890. DOI:
 10.1016/j.electacta.2017.07.079
- [23] R. Cai, Y. Kubota, A. Fujishima, Effect of copper ions on the formation of
 hydrogen peroxide from photocatalytic titanium dioxide particles, J. Catal. 219
 (2003) 214–218. DOI: 10.1016/S0021-9517(03)00197-0
- [24] K. Fuku, K. Sayama, Efficient oxidative hydrogen peroxide production and
 accumulation in photoelectrochemical water splitting using a tungsten
 trioxide/bismuth vanadate photoanode, Chem. Commun. 52 (2016) 5406–5409.
 DOI: 10.1039/C6CC01605G
- 747 [25] Y. Zhao, Y. Liu, J. Cao, H. Wang, M. Shao, H. Huang, Y. Liu, Z. Kang, Efficient
 748 production of H₂O₂ via two-channel pathway over ZIF-8/C₃N₄ composite
 749 photocatalyst without any sacrificial agent, Appl. Catal. B-Environ. 278 (2020)
 750 119289. DOI: 10.1016/j.apcatb.2020.119248
- [26] J. Zhang, J. Lv, K. Dai, C. Liang, J. Zhu, Facile and green synthesis of novel porous g-C₃N₄/Ag₃PO₄ composite with enhanced visible light photocatalysis, Ceram. Int. 43 (2017) 1522–1529. DOI: 10.1016/j.ceramint.2016.10.125

- [27] Q. Wang, L. Huang, X. Quan, G. Li-Puma, Sequential anaerobic and 754 processes mediated bv and Mo oxides 755 electro-Fenton W for degradation/mineralization of azo dye methyl orange in photo assisted microbial 756 B-Environ. Catal. 245 (2019)757 fuel cells. Appl. 672–680. DOI: 758 10.1016/j.apcatb.2019.01.026
- [28] Q. Wang, Z. Cai, L. Huang, Y. Pan, X. Quan, G. Li-Puma, Intensified degradation 759 and mineralization of antibiotic metronidazole in photo-assisted microbial fuel cells 760 with Mo-W catalytic cathodes under anaerobic or aerobic conditions in the 761 762 presence of Fe(III). Chem. Eng. J. 376 (2019)119566. DOI: 763 10.1016/j.cej.2018.07.168
- 764 [29] C. Zhao, Z. Chen, J. Xu, Q. Liu, H. Xu, H. Tang, G. Li, Y. Jiang, F. Qu, Z. Lin, X. 765 Yang, Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride 766 nanosheets. Catal. **B**-Environ. 767 Appl. 256 (2019)117867. DOI: 10.1016/j.apcatb.2019.117867 768
- [30] L. Huang, B. Yao, D. Wu, X. Quan, Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell e Microbial electrolysis cell systems,
 J. Power Sources 259 (2014) 54–64. DOI: 10.1016/j.jpowsour.2014.02.061
- [31] Y. Chen, T.W. Ng, A. Lu, Y. Li, H.Y. Yip, T. An, G. Li, H. Zhao, M. Gao, P. Wong,
 Comparative study of visible-light-driven photocatalytic inactivation of two
 different wastewater bacteria by natural sphalerite, Chem. Eng. J. 234 (2013) 43–48.
 DOI: 10.1016/j.cej.2013.08.106
- [32] Z. Zhao, W. Zhang, X. Lv, Y. Sun, F. Dong, Y. Zhang, Noble metal-free Bi 776 777 nanoparticles supported on TiO₂ with plasmon-enhanced visible light photocatalytic 778 air purification, Environ. Sci.: Nano. 3 (2016)1306-1317. DOI: 10.1039/C6EN00341A 779
- 780 [33] **Q**. Xiang, D. Lang, T. Shen, F. Liu. Graphene-modified 781 nanosized Ag₃PO₄ photocatalysts for enhanced visible-light photocatalytic activity and stability, Appl. Catal. B-Environ. 162 (2015) 196-203. 782 DOI: 10.1016/j.apcatb.2014.06.051 783
- [34] H. Gao, R. Cao, X. Xu, S. Zhang, Y. Huang, H. Yang, X. Deng, J. Li,
 Construction of dual defect mediated Z-scheme photocatalysts for enhanced
 photocatalytic hydrogen evolution, Appl. Catal. B-Environ. 245 (2019) 399–409.
 DOI: 10.1016/j.apcatb.2019.01.004
- [35] X. Yang, L. Tian, X. Zhao, H. Tang, Q. Liu, G. Li, Interfacial optimization of
 g-C₃N₄-based Z-scheme heterojunction toward synergistic enhancement of
 solar-driven photocatalytic oxygen evolution, Appl. Catal. B-Environ. 244 (2019)
 240–249. DOI: 10.1016/j.apcatb.2018.11.056
- [36] F. Meng, J. Li, S.K. Cushing, M. Zhi, N. Wu, Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide, J. Am. Chem. Soc. 135 (2013) 10286–10289. DOI: 10.1021/ja404851s
- [37] H.S. Park, K.E. Kweon, H. Ye, E. Paek, G.S.Hwang, A.J. Bard, Factors in the
 metal doping of BiVO₄ for improved photoelectrocatalytic activity as studied by

- scanning electrochemical microscopy and first-principles density-functional
 calculation, J. Phys. Chem. C. 115 (2011) 17870–17879. DOI: 10.1021/jp204492r
- [38] Z. Lan, G. Zhang, X. Wang, A facile synthesis of Br-modified g-C₃N₄
 semiconductors for photoredox water splitting, Appl. Catal. B-Environ. 192 (2016)
 116–125. DOI: 10.1016/j.apcatb.2016.03.062
- [39] W. Yu, D. Xu, T. Peng, Enhanced photocatalytic activity of g-C₃N₄ for selective
 CO₂ reduction to CH₃OH via facile coupling of ZnO: a direct Z-scheme mechanism,
 J. Mater. Chem. A. 3 (2015) 19936–19947. DOI: 10.1039/C5TA05503B
- [40] P. Zhu, Y. Chen, M. Duan, M. Liu, P. Zou, Structure and properties of Ag₃PO₄/diatomite photocatalysts for the degradation of organic dyes under visible
 light irradiation, Powder Technol. 336 (2018) 3193–3202. DOI: 10.1016/j.powtec.2018.05.060
- [41] A. Galdamez-Martinez, G. Santana, F. Guell, PR. Martinez-Alanis, A. Dutt,
 Photoluminescence of ZnO nanowires: A review, Nanomaterials. 10 (2020) 857.
 <u>DOI: 10.3390/nano10050857</u>
- 813 [42] C. Liu, J.J. Gallagher, K.K. Sakimoto, E.M. Nichols, C. J. Chang, M.C.Y. Chang,
- P. Yang, Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to
 value-added chemicals, Nano Lett. 15 (2015) 3634–3639. DOI:
 10.1021/acs.nanolett.5b01254
- [43] Z. Ji, H. Zhang, H. Liu, O.M. Yaghi, P. Yang, Cytoprotective metal-organic
 frameworks for anaerobic bacteria, Proc, Natl. Acad. Sci. USA. 115 (2018)
 10582–10587. DOI: 10.1073/pnas.1808829115
- [44] Y. Su, S. Cestellos-Blanco, J. M. Kim, Y. Shen, Q. Kong, D. Lu, C. Liu, H.
 Zhang, Y. Cao, P. Yang, Close-packed nanowire-bacteria hybrids for efficient
 solar-driven CO₂ fixation, Joule. 4 (2020) 800–811. DOI:
 10.1016/j.joule.2020.03.001
- [45] J. Wu, Y. Feng, D. Li, X. Han, J. Liu, Efficient photocatalytic CO₂ reduction by
 P-O linked g-C₃N₄/TiO₂ nanotubes Z-scheme composites, Energy 178 (2019)
 168–175. DOI: 10.1016/j.energy.2019.04.168
- [46] X.J. Shi, S. Siahrostami, G.L. Li, Y.R. Zhang, P. Chakthranont, F. Studt, T.F.
 Jaramillo, X.L. Zheng, J.K. Norskov, Understanding activity trends in
 electrochemical water oxidation to form hydrogen peroxide, Nat. Commun. 8 (2017)
 701. DOI: 10.1038/s41467-017-00585-6
- [47] B. Stenuit, L. Eyers, R. Rozenberg, J.L. Habib-Jiwan, S. Matthijs, P. Cornelis,
 S.N. Agathos, Denitration of 2,4,6-trinitrotoluene in aqueous solutions using
 small-molecular-weight catalyst(s) secreted by *Pseudomonas aeruginosa* ESA-5,
 Environ. Sci. Technol. 43 (2009) 2011–2017. DOI: 10.1021/es8024319
- [48] J. Howsawkeng, R.J. Watts, D.L.Washington, A.L. Teel, T.F. Hess, R.L.
 Crawford, Evidence for simultaneous abiotic-biotic oxidations in a
 microbial-Fenton's system, Environ. Sci. Technol. 35 (2001) 2961–2966. DOI:
 10.1021/es001802x
- 839 [49] B. Demple, J. Halbrook, Inducible repair of oxidative DNA damage in
 840 *Escherichia coli*, Nature. 304 (1983) 466–468. DOI: 10.1038/304466a0
- 841 [50] Z. He, F. Mansfeld, Exploring the use of electrochemical impedance

- spectroscopy (EIS) in microbial fuel cell studies, Energy Environ. Sci. 2 (2019)
 215–219. DOI: 10.1039/B814914C
- 844 [51] G. Mohanakrishna, K. Vanbroekhoven, D. Pant, Impact of dissolved carbon
 845 dioxide concentration on the process parameters during its conversion to acetate
 846 through microbial electrosynthesis, React. Chem. Eng. 3 (2018) 371–378. DOI:
 847 10.1039/C7RE00220C
- [52] X. Hou, L. Huang, P. Zhou, F. Tian, Y. Tao, G. Li Puma, Electrosynthesis of acetate from inorganic carbon (HCO₃⁻) with simultaneous hydrogen production and Cd(II) removal in multifunctional microbial electrosynthesis systems (MES), J. Hazard. Mater. 371 (2019) 463–473. DOI: 10.1016/j.jhazmat.2019.03.028
- 852 [53] X. Hou and L. Huang, Synergetic magnetic field and loaded Fe3O4 for
 853 simultaneous efficient acetate production and Cr(VI) removal in microbial
 854 electrosynthesis systems, Chem. Eng. J. Adv. 2 (2020) 100019. DOI:
 855 10.1016/j.ceja.2020.100019
- [54] J. Hou, L. Huang, P. Zhou, Y. Qian, N. Li, Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems, Chemosphere 243 (2020) 125317. DOI: 10.1016/j.chemosphere.2019.125317
- 861 [55] H. Yu, Molecular insights into extracellular polymeric substances in activated
 862 sludge, Environ. Sci. Technol. 54 (2020) 7742–7750. DOI:
 863 <u>10.1021/acs.est.0c00850</u>

886

887 Figure captions

Fig. 1 XRD patterns (A), photoluminescence spectra (B), biotic transient photocurrent
responses (C), UV – vis DRS spectra (D), FTIR spectra (E) and Zeta potential (F) of
the cathodes with or without (control) g-C₃N₄ or/and Ag₃PO₄ deposits.

Fig. 2 XPS spectra of survey spectra of (A) $g-C_3N_4$, Ag₃PO₄ and Ag₃PO₄/ $g-C_3N_4$, and high resolution spectra of C 1s (B), N 1s (C), O 1s (D), Ag 3d (E) and P 2p (F) for $g-C_3N_4$, Ag₃PO₄ or Ag₃PO₄/ $g-C_3N_4$.

Fig. 3 TEM images of $Ag_3PO_4/g-C_3N_4$ (A and B), Ag_3PO_4 only (C and D), and $g-C_3N_4$ only (E and F) with different magnifications.

Fig. 4 SEM images on electrodes of $Ag_3PO_4/g-C_3N_4$ (A and C), $g-C_3N_4$ only (E and G), and Ag_3PO_4 only (I and K) without (A, E and I) or with (C, G and K) *S. marcescens*. EDS spectra on the sites of either no coverage (B, F and J) or coverage (D, H, and L) of *S. marcescens* on electrodes of $Ag_3PO_4/g-C_3N_4$ (B and D), $g-C_3N_4$ only (F and H) and Ag_3PO_4 only (J and L) (Operational time: 0.5 d).

901 **Fig. 5** Comparison of acetate (A) and hydrogen (B) production, residual hydrogen 902 peroxide (C) and coulombic efficiency for acetate production ($CE_{acetate}$) (D), XRD 903 patterns (E) and high-resolution spectra of Ag 3d (F) of Ag₃PO₄/g-C₃N₄ under various 904 conditions (operation time: 0.5 d).

Fig. 6 CVs (A) and DCVs (B) of the *S. marcescens* attached cathodes with or without (control) $g-C_3N_4$ or/and Ag_3PO_4 loads in the presence or absence (control) of illumination. Nyquist plots of EIS analysis of biotic (C) or abiotic (D) cathodes (operational time: 0.5 d).

909 Fig. 7 ESR spectra of the DMPO-OH (A) and DMPO-O₂⁻⁻ (B) adducts recorded with

- 910 different conditions for Ag₃PO₄/g-C₃N₄. Comparison of acetate and H₂O₂ production
- 911 (C), and current density and $CE_{acetate}$ (D) in the presence or absence of different
- 912 trapping agents (operational time: 0.5 d).
- 913 **Fig. 8** Schematic diagram of the $Ag_3PO_4/g-C_3N_4$ photocathode in the photo-assisted 914 biocathode MES.
- 915 **Fig. 9** Time course of acetate production (A), $CE_{acetate}$ (B), inorganic carbon 916 consumption (C), residual H₂O₂ (D), and Nyquist plots of EIS spectra (E and F) of the 917 cathodes with Ag₃PO₄/g-C₃N₄ or bare graphite felt (E), or g-C₃N₄ or Ag₃PO₄ (F) 918 (operational time: 2.0 d).

919Fig. 10 Acetate production (A), $CE_{acetate}$ (B), residual inorganic carbon consumption920(C), residual H2O2 (D) with periodical addition of bicarbonate (Black arrows in A – D921indicated the points of bicarbonate addition). XRD (E) and XPS (F) of922Ag3PO4/g-C3N4 at the end of a 16 d operation with periodical addition of bicarbonate.

Highlights

- Ag₃PO₄/g-C₃N₄ and *S. marcescens* catalyze acetate production in photo-assisted MES;
- H₂O₂ produced in-situ under anaerobic conditions prevents photoetching of Ag₃PO₄;
- Ag₃PO₄/g-C₃N₄ Z-scheme heterojunction enhances electron-holes separation;
- Photo-induced electrons on conduction band of semiconductor enhances H₂ production;
- Photo-generated holes favors higher current and higher rates of acetate production.

Supplementary Material

Click here to access/download Supplementary Material Supporting Information.doc