

This item was submitted to [Loughborough's](https://lboro.figshare.com/) Research Repository by the author. Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Efficient production of acetate from inorganic carbon (HCO3–) in microbial electrosynthesis systems incorporating Ag3PO4/g-C3N4 anaerobic photo assisted biocathodes

PLEASE CITE THE PUBLISHED VERSION

<https://doi.org/10.1016/j.apcatb.2020.119696>

PUBLISHER

Elsevier

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This paper was accepted for publication in the journal Applied Catalysis B: Environmental and the definitive published version is available at https://doi.org/10.1016/j.apcatb.2020.119696.

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Kong, Weifeng, Liping Huang, Xie Quan, Zongbin Zhao, and Gianluca Li-Puma. 2020. "Efficient Production of Acetate from Inorganic Carbon (hco₃⁻) in Microbial Electrosynthesis Systems Incorporating Ag₃po₄/g-c₃n₄ Anaerobic Photo-assisted Biocathodes". Loughborough University. https://hdl.handle.net/2134/13514515.v1.

2 *Submitted to Appl Catal B-Environ*

1

23

25 The efficient production of acetate from $HCO₃$ by the nonphotosynthetic bacterium *Serratia marcescens* Q1 is demonstrated in an anaerobic, photo-assisted, microbial 27 electrosynthesis (MES) system incorporating a $Ag_3PO_4/g-C_3N_4$ biocathode. The Ag3PO4/g-C3N⁴ formed a Z-scheme photocatalytic heterojunction structure with 29 enhanced redox capacity. The photocorrosion of Ag_3PO_4 was inhibited by the 30 production of H_2O_2 in-situ, through water oxidation driven by the photogenerated holes on the Ag3PO4 valence band. The photoinduced electrons on the conduction 32 band of g-C₃N₄ instead produced H₂, which was metabolized by the Q1 electrotroph 33 with HCO₃ to produce acetate at a rate of 5.4 mM/d with a *CE*_{acetate} of 93% at a 34 current density of 3.3 A/m². The MES accumulated up to 81.0 mM with a CE_{acetate} of 89% over 16 days continuous operation. This study provides a sustainable and feasible strategy for inhibiting the photocorrosion of Ag3PO⁴ and thus achieve 37 efficient acetate production from HCO₃⁻ in photo-assisted MESs biocathodes. 39 **Keywords:** microbial electrosynthesis; photocatalytic; in-situ H₂O₂; silver phosphate;

graphitic carbon nitride

-
-
-

1 Introduction

 Microbial electrosynthesis (MES) systems incorporating photocatalytic biocathodes have been demonstrated as a promising sustainable technology for the production of valuable products (e.g., acetate) from the reduction of inorganic carbon 50 (HCO₃⁻) [1-4] which in turn originates from $CO₂$ emissions. For example, cadmium sulfide (CdS) immobilized on a photocathode and assembled with the nonphotosynthetic CO2-reducing bacterium *Moorella thermoacetica* [2,5], indium phosphide (InP) combined with *Methanosarcina barkeri* [6], or WO3/MoO3/g-C3N⁴ matched with *Serratia marcescens* [7], have been shown to successfully catalyze the production of acetate or methane from inorganic carbon. However, more effort is needed to develop more active photocatalysts, in order to broaden the field of application of photo-assisted biocathodes in MESs.

 Among a wide range of possible photocatalysts, silver phosphate (Ag3PO4) has shown promising results due to its desirable band gap (2.36 eV), low-toxicity, and its highly positive valence band position [8-11]. On the other hand, graphitic carbon 61 nitride (g-C₃N₄) is a low cost visible-light responsive semiconductor photocatalyst (band gap about 2.7 eV), with a high chemical stability and excellent reduction 63 properties due to its relatively negative conduction band (CB) edge position (-1.2 eV) 64 vs. standard hydrogen electrode, SHE) $[12-15]$. Furthermore, hybridizing Ag₃PO₄ with 65 g-C₃N₄ creates a Z-scheme photocatalytic mechanism, which has been shown to 66 enhance the photocatalytic evolution of oxygen from water $[16]$ and the conversion of 67 CO₂ into CO, methane, methanol and ethanol [17]. Although Ag₃PO₄/g-C₃N₄ has shown significant light capture and charge separation properties, the photocatalytic 69 reduction of $CO₂$ over this inorganic composite material still suffer from further challenges, particularly in terms of product selectivity. In addition, the long-term stability of the Ag rare metal in the composite has not been entirely fulfilled [16-17]. By comparison, biological organisms engage an army of enzymes and reductive pathways to produce long-chain hydrocarbons from naturally available constituents 74 including CO_2 , H_2O and N_2 . Thus, the combination of inorganic light-harvesters photocatalyst and whole-cell biocatalysts can be strategically deployed to exploit the most salient attributes of each component [18]. However, neither Ag3PO⁴ nor the 77 composite $Ag_3PO_4/g-C_3N_4$ have been explored as photocatalysts in MESs.

78 One important aspect that affects the photocatalytic activity of Ag_3PO_4 is its 79 chemical stability, which is severely limited by the photocorrosion process that occurs 80 through the reduction of Ag(I) to Ag(0) $[19-20]$. One study has shown improved 81 stability of Ag₃PO₄/g-C₃N₄ heterojunctions by supplementing the reaction system 82 with an external electron acceptor such as H_2O_2 . This way, H_2O_2 outcompeted Ag(I) 83 for the scavenging of photoinduced electrons due to a higher redox potential 84 (Reaction 1), thus suppressed the photoetching of Ag₃PO₄ (Reaction 2) [21].

85
$$
H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O
$$
 $E^0 = +1.78$ V (1)

86
$$
Ag^+ + e^- \to Ag \t E^0 = +0.80 V \t(2)
$$

87
$$
2H_2O \to H_2O_2 + 2H^+ + 2e^-
$$
 (3)

88
$$
2H^+ + O_2 + 2e^- \rightarrow H_2O_2
$$
 (4)

89 photocatal yst + hv
$$
\rightarrow
$$
 h⁺ + e⁻ (5)

90
$$
2H_2O + 2h^+ \to H_2O_2 + 2H^+ \tag{6}
$$

91 In this study, rather than adding H_2O_2 from an external source, we are proposing 92 the idea that the stability of Ag_3PO_4 and $Ag_3PO_4/g-C_3N_4$ heterojunctions can be 93 maintained by designing an anaerobic photocatalytic system which can produce H_2O_2 94 in-situ at the photo-assisted biocathode surface. In a photoelectrocatalytic system 95 H_2O_2 can be produced either through an electrochemical route by water oxidation at 96 the anode or by oxygen reduction reaction near the cathode $[22]$ (Reactions 3 – 4), or 97 through the photocatalytic route $[23-24]$ (Reactions $5-6$). The anaerobic atmosphere 98 maintained in the $Ag_3PO_4/g-C_3N_4$ anaerobic photo-assisted biocathode excludes the 99 electrochemical reduction of oxygen on the cathode. Thus, it is reasonable to assume 100 that an anaerobic photo-assisted MES biocathode incorporating $Ag_3PO_4/g-C_3N_4$ 101 should be able to produce H_2O_2 in-situ via the photocatalytic route as extensively 102 reported [23-25] which would successfully inhibit the photocorrosion of Ag3PO4, and 103 thus efficiently catalyze the conversion of inorganic carbon to acetate.

104 Under this background, in this study a $\text{Ag}_3\text{PO}_4/\text{g}-\text{C}_3\text{N}_4$ photocathode was anaerobically constructed and incorporated in a MES operated with *Serratia marcescens* Q1 bacterium species to investigate the production of acetate from inorganic carbon. In this bio-electro-catalytic system, photo-induced electrons on the 108 conduction bands of $\text{Ag}_3\text{PO}_4/\text{g}-\text{C}_3\text{N}_4$ are expected to favor hydrogen evolution under 109 anaerobic conditions, which can then be metabolized by *S. marcescens* with HCO₃⁻ to produce acetate. Simultaneously, the rate of photocorrosion of Ag3PO4 in the biocathode and thus its long-term stability, was examined as a function of the 112 protecting role exerted by the H_2O_2 produced in-situ on the biocathode surface. Multiple methods including photoluminescence (PL), photo-current, ultraviolet-visible diffuse reflection spectra (UV–vis DRS), scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were extensively used to characterize the performance of the bio-electro-catalytic system and the photoetching process of Ag3PO4, whereas high-sensitivity flow cytometry was used to evaluate the electrotrophic viability in the presence of the photocatalyst and under light irradiation conditions. The predominant photocatalytic mechanisms were further investigated through active species trapping experiments to determine the main reactive radical species in the system.

2 Materials and methods

 2.1. Synthesis of g-C3N⁴ and Ag3PO4/g-C3N⁴ powders, and preparation of Ag3PO4/g-C3N⁴ photocathodes

128 Preliminary experiments of transient photocurrent response of $A\alpha_3PO_4/\alpha$ -C₃N₄ composites prepared using different methods were performed to select the most suitable preparation method (Supporting Information (SI), Fig. S1). The preparation method reported by Zhang et al. [26] was selected due to its simplicity and highest 132 photocurrent response. Therefore, the synthesis of $g - C_3N_4$ and $Ag_3PO_4/g - C_3N_4$ powders was as reported by Zhang et al. [26] and briefly described in SI. The

2.2. Reactor construction, electrotroph inoculation and operation

 The dual-chamber reactor was constructed using cubic polymethyl methacrylate blocks forming anodic and cathodic chambers with internal volumes equal to 28 ml each. The effective working volume of each chamber was 26 mL, and the two chambers were separated by a cation exchange membrane (CMI-7000 Membranes 150 International, Glen Rock, NJ). The above prepared $Ag_3PO_4/g-C_3N_4$ graphite felt was used as cathode, whereas a carbon rod served as anode. A saturated calomel electrode (SCE, +241 mV versus standard hydrogen electrode (SHE)) was used as cathode reference electrode. All electrode potentials were reported versus SHE.

 The anode chamber was inoculated with an effluent collected from acetate-fed microbial fuel cells supplemented by an equivalent volume of nutrient solution as previously reported [27]. The cathode chamber instead was inoculated with the nonphotosynthetic electrotroph of *Serratia marcescens* Q1, which was isolated from anaerobic biocathodes of separate bioelectrochemical systems fed by the sole carbon source of inorganic carbon and capable of anaerobically metabolizing inorganic carbon to acetate [7].

161 Catholyte containing NH₄Cl (2.1 mM), KH_2PO_4 (0.09 mM), NaHCO₃ (23.8 mM), 162 vitamins 0.6 mL/L and mineral 0.6 mL/L, was sparged with N_2 gas for 15 min in an anaerobic glovebox (YQX-II, Xinmiao, Shanghai) before being transferred into the anaerobic cathodic chamber. The initial pH was adjusted to 5.8 with the addition of 10% HCl [7], and the conductivity was regulated to 103 mS/cm with 0.6 M KCl [1]. After 24 h incubation in a sterile medium, the Q1 electrotroph was harvested and was 167 inoculated to the cathodic chamber at a final OD_{600} of 0.35, which was selected as a tradeoff between efficient biocatalysis and light absorption on the Ag3PO4/g-C3N⁴ cathode surface. In fact, it is known that a higher amount of electrotrophs confers superior bioelectrocatalytic activity and stability, whereas a thinner and more transparent or patchy electrotrophs layer allows for greater cathode photon absorption 172 and PL efficiency [6].

 The reactors were run in fed-batch operation. The cathode worked at a potential 174 of -1.1 V versus SHE [7] and under a light intensity of 26.9 kLux through a 100 W iodine tungsten lamp [27]. The intensity of light was measured with an illuminometer (TES-1330A, Taiwan, China). The lamp was refrigerated by a cool-fan and the reactors were surrounded in a jacket with a continuous circulation of water to 178 maintain the temperature of the reaction chambers isothermal at 25 ± 3 °C [27]. All the operation was repeated at least three times and data were collected after the first operational cycle [7].

 The performance of the MES was assessed against five control experiments: a) the abiotic control, which established the role played by the electrotroph on the 183 methabolism of HCO_3^- and H_2 ; b) the dark control, which assessed the impact of light irradiation on the photocathode performance; c) the open circuit conditions (OCCs) control, which elucidated the impact of the electrochemical process (closed circuit conditions, CCCs) on either acetate production or on the protective role on Ag3PO⁴ 187 exerted by H_2O_2 produced in-situ; d) the fourth control confirmed the roles performed 188 by the bare graphite felt, the Ag₃PO₄/graphite felt, and the g-C₃N₄/graphite felt on the photocatalytic process; e) the fifth abiotic control performed in the absence of irradiation, demonstrated the impact of light irradiation in the production of H2.

2.3. Characterizations and electrochemical measurements

 The morphologies of the photocathodes with or without the electrotrophic biofilms were examined by a SEM (Nova NanoSEM 450, FEI company, USA) 195 equipped with an EDS (X-MAX 20-50 mm², Oxford Instruments, UK) and a TEM (Tecnai G2 F30 S-Twin, FEI, USA) at an accelerating voltage of 200 kV. The crystal structure and phase composition of the obtained samples were determined by XRD using a powder X-ray diffractometer (XRD-6000, Shimadzu, Japan) equipped with 199 Cu K_a radiation (40 kV, 50 mA). Fourier transform infrared (FTIR) spectra were collected by using a Bruker VERTEX 70 FTIR (Germany) apparatus. The zeta potential of the samples was determined with a Zetasizer Nano ZS90 (Malvern, UK). The PL spectra were recorded with a fluorescence spectrophotometer (F-4500, Hitachi, 203 Japan) with a laser (λ = 365 nm) at room temperature. The UV-vis DRS spectra of the semiconductor photocatalysts were recorded with an Agilent HP 8453 UV-vis spectrophotometer. The photocurrent response measurements were conducted in a 206 solution of 0.1 M Na_2SO_4 with a light illuminance of 26.9 kLux to examine the photocatalytic property of the cathode [27-28]. ESR (Bruker A200, Karlsruhe, Germany) analysis was employed to detect oxygen-containing radicals formed in the MES. 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was used as the 210 spin-trapping agent $[16,29]$.

 Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out to evaluate the electrochemical performance of the photo-assisted biocathode of MESs. CV was performed using a potentiostat at a low scan rate of 0.1 mV/s (BioLogic, VSP, France) in the range from −1.4 V to 0.1 V vs. SHE. EIS was recorded in the frequency range from100 kHz to 0.01 Hz with an amplitude of 5 mV at −1.1 V vs. SHE. Both CV and EIS were performed with a three-electrode system. The cathode electrode was employed as working electrode, the SCE served as reference electrode and a Pt foil electrode was used as counter electrode [30]. A Zsimpwin software was plotted to acquire the equivalent circuit and the values of different resistances.

2.4. Analysis and calculations

 The concentrations of acetate and the residual hydrogen in the headspace of the cathodic chamber were measured with a gas chromatograph (GC7900, Tianmei, China), and the results of H² were normalized to the volume of the catholyte and 226 operational time $(m^3/m^3/d)$. The concentration of inorganic carbon in the catholyte was determined according to the national standard method (DZ/T 0064.49-93) and the consumption of inorganic carbon (%) was calculated according to the difference between the initial and the final inorganic carbon concentrations in the catholyte, 230 divided by the initial inorganic carbon concentration. The concentration of Ag₃PO₄ (%) leached in the catholyte was measured by atomic absorption spectroscopy (AAnalyst 700, PerkinElmer), while the amount leached was calculated from the 233 amount of Ag_3PO_4 in the catholyte divided by the initial amount of Ag_3PO_4 on the 234 cathode. The in-situ produced H_2O_2 was measured by titanyl sulfate spectrophotometric method as previously described [22].

 The electrotrophic viability was assessed by a high-sensitivity flow cytometry in the presence of the photocatalyst and light irradiation [7]. At the end of each fed-batch operation, samples were collected from both the cathode electrode and from the catholyte. Firstly, the electrotroph was split off by sonicating with a low specific power of 9 J/mL (Bran-sonic CPXH Ultrasonifier). The mixed solution was centrifuged and the electrotrophic pellets were re-suspended in a physiological saline solution, which contained 50 ug/mL propidium iodide. After culturing for 15 minutes 243 at 37 °C in the dark, the cells were finally rinsed (twice), re-suspended in a normal 244 physiological saline solution and quantified by FD FACSCanto flow cytometer 245 (Bioscience).

246 The holes, H_2O_2 and radical species generated at the cathode were examined 247 using different trapping agents: 0.1 mM Fe(II)-EDTA for H₂O₂, 0.5 mM sodium 248 oxalate for h^+ , 0.5 mM isopropanol for 'OH, and 2 mM p-benzoquinone for O₂^{$-$}. 249 These concentrations can sufficiently scavenge the photo-generated free radical while 250 negligibly affecting the activities of microorganisms and solution conductivity 251 [31-32].

252 The long-term stability of the $Ag_3PO_4/g-C_3N_4$ photocathodes was evaluated over 16 days operation of the reactors, with periodical supply of bicarbonate. In these experiments, 3.0 ml of catholyte was sampled daily and an equal volume of 113.9 – 255 118.6 mM NaHCO₃ was replenished to maintain the initial concentration of inorganic carbon at 23.8 mM each day. The controls were carried out by the above method, 257 except that the concentration of $NaHCO₃$ supplemented each day was different (Ag3PO4: 80.0 – 87.0 mM; g-C3N4: 82.3 – 87.6 mM; bare graphite felt: 76.2 – 80.5 mM), to maintain the initial concentration at 23.8 mM.

260 The *CE*_{acetate} and the residual hydrogen (*CE*_{H2}) were calculated according to Eqs.

 $261 \t 1 - 2$:

262
$$
CE_{\text{acetate}} = \frac{8 \times n_{\text{a}} \times F}{\int_0^t I dt} \times 100\%
$$
 (1)

100% (2) I dt $CE_{H2} = \frac{2 \times n_b \times F}{f^t}$ $\mathbf{0}$ $_{\text{H2}} = \frac{2 \times n_{\text{b}} \times F}{f} \times$ \int_{0} 263

264 where n_a (mol) is the mole amount of acetate, n_b (mol) is the mole amount of H_2 , $I(A)$

 is the current, F (96485 C/mole electron) is the Faraday constant and *t* is the operation time (s).

3 Results and discussion

3.1 Characterization of prepared photo-assisted cathode

 The characteristic peaks in the XRD patterns of Ag3PO⁴ were consistent with the crystal planes of body-centered cubic Ag3PO⁴ (JCPDS 06-0505), exhibiting 20.96° (110), 29.76° (200), 33.36° (210), 36.64° (211), 47.84° (220), 52.76° (310), 55.12° (222), 57.34° (320), 61.72° (400) and 73.92° (322) (Fig. 1A) [20,33]. Those at 12.6° 274 (100) and 27.4° (002) corresponded to g-C₃N₄ [34]. The Ag₃PO₄/g-C₃N₄ exhibited 275 diffraction peaks corresponding to both Ag_3PO_4 and $g-C_3N_4$, confirming the successful combination of Ag3PO⁴ and g-C3N4. The absence of characteristic diffraction peak assigned to Ag nanoparticles excluded the photocorrosion 278 phenomenon for the pristine $Ag_3PO_4/g-C_3N_4$, which was instead observed in other 279 studies on photocatalytic reduction of $CO₂$ to CO and $CH₄$ [17].

Here Fig. 1

 PL spectra characterized the separation efficiency of the photoinduced carriers. 282 The maximum emission intensity of $Ag_3PO_4/g-C_3N_4$ was significantly weaker than 283 that of $g - C_3N_4$ at the same wavelength of 455 nm (Fig. 1B), indicating strong 284 interactions between Ag_3PO_4 and $g-C_3N_4$ and thus a much lower recombination rate of the photo-generated carriers.

286 The $Ag_3PO_4/g-C_3N_4$ cathode exhibited an order of magnitude higher

287 photocurrent than either Ag_3PO_4 or g-C₃N₄ (Fig. 1C), confirming a highly efficient 288 charge carrier separation and transport in the $Ag_3PO_4/g-C_3N_4$ heterojunction. In the 289 absence of electrotroph the photocurrent of the $Ag_3PO_4/g-C_3N_4$ cathode slightly 290 increased (Fig. S2) due to the reduction of the electrotrophic photon absorption 291 efficiency, however, the catalytic effect exerted by the electrotroph reduced the charge 292 transfer resistance $(R_{\rm ct})$ and was essential for the production of acetate from inorganic 293 carbon. Similar behaviors have been observed with *Methanosarcina barkeri* on 294 indium phosphide photocathode used for the production of methane [6], and with 295 *Moorella thermoacetica* on cadmium sulfide (CdS) [2,5] or with *Serratia marcescens* 296 on WO₃/MoO₃/g-C₃N₄ [7] used for the production of acetate from inorganic carbon.

297 UV-vis DRS spectra confirmed the optical absorption and band gaps of the 298 photocatalysts (Fig. 1D). The considerable red-shift in the absorption edges of 299 Ag₃PO₄/g-C₃N₄ (541 nm) and Ag₃PO₄ (526 nm) in comparison to g-C₃N₄ (454 nm) 300 suggested that the $Ag_3PO_4/g-C_3N_4$ heterojunction utilizes a higher portion of the 301 visible light spectrum to improve photocatalytic performance $[20]$. The band gaps (E_{\circ}) 302 of g-C₃N₄ (2.73 eV) and Ag₃PO₄ (2.36 eV) were estimated by the Tauc plots (Fig. 1D) 303 [35]. The positive slopes of the linear plots in the Mott-Schottky curves (Fig. S3) 304 indicated that both $g - C_3N_4$ and Ag_3PO_4 were n-type semiconductors, while the 305 conduction band edge potential (E_{CB}) of n-type semiconductor was usually 0.1 to 0.3 306 eV more negative than its flat-band potential (E_{FB}) [36]. Thus, the E_{CB} of g-C₃N₄ 307 (-1.15 eV) and Ag₃PO₄ (0.25 eV) were calculated based on the E_{FB} for g-C₃N₄ and 308 Ag3PO⁴ using the Mott-Schottky plots (Fig. S3). The valence band edge potentials 309 (E_{VB}) of g-C₃N₄ (1.58 eV) and Ag₃PO₄ (2.61 eV) were obtained according to the 310 following formula $E_{VB} = E_{CB} + E_g$ [35]. The bands of the two semiconductors align to 311 a potential Z-scheme mechanism.

312 The value of carrier density N_D for Ag₃PO₄/g-C₃N₄ (9.77 \times 10¹⁷ cm⁻³), calculated 313 from the Mott-Schotty plots (Fig. $S3$), was significantly higher than the N_D of either 314 Ag₃PO₄ (2.63 \times 10¹⁷ cm⁻³) or g-C₃N₄ (2.80 \times 10¹⁷ cm⁻³), indicating smaller charge 315 transfer resistance and faster charge transfer in the heterojunction, thereby enhancing 316 the photocatalytic process [37].

317 FTIR spectra were used to probe the chemical structure of the obtained samples 318 (Fig. 1E). Pure Ag_3PO_4 represented two strong peaks at 542 and 943 cm⁻¹, which were 319 assigned to the P-O stretching vibrations of PO_4^{3-} , while the strong characteristic 320 peaks of g-C₃N₄ in the range $1200 - 1700$ cm⁻¹ corresponded to the typical stretching 321 vibrations of the CN heterocycles $[26]$. The FTIR spectrum of Ag₃PO₄/g-C₃N₄ 322 exhibited an overlap of the Ag_3PO_4 and $g-C_3N_4$ spectra, where the frequency of the 323 two characteristic peaks of the Ag_3PO_4 phase, at 549 and 951 cm⁻¹ in the 324 Ag₃PO₄/g-C₃N₄ heterojunction, increased [26]. These results suggest structural 325 interaction between the Ag₃PO₄ and g-C₃N₄ phases in the Ag₃PO₄/g-C₃N₄ 326 heterojunction.

327 The absolute zeta potential values of $Ag_3PO_4/g-C_3N_4$ were invariably higher than 328 those of $g-C_3N_4$ in the pH range from 4 to 12 (Fig. 1F), indicating improved 329 dispersion of g-C₃N₄ through the introduction of Ag₃PO₄ [35]. In addition, the zeta 330 potentials of Ag₃PO₄/g-C₃N₄ were always more negative than those of g-C₃N₄. The 331 more negative zeta potential of $Ag_3PO_4/g-C_3N_4$ and its improved dispersion, 332 compared with the $g - C_3N_4$ consistently contributed to enhance the adsorption of the 333 positively charged H⁺ which favors a higher rate of H_2 production and in turn a high 334 rate of acetate production through the Wood – Ljungdahl pathway in this system. 335 The visible C, N, O, Ag and P signals in the XPS spectra of $Ag_3PO_4/g-C_3N_4$ (Fig. 336 2A) confirmed its hybrid structure, consistent with the XRD results (Fig. 1A). The C 337 1s peak at 284.70 eV was attributed to C-C bonding of graphitic or amorphous 338 carbons in Ag₃PO₄/g-C₃N₄ (Fig. 2B), whereas the other peak of C 1s at 287.28 eV was 339 assigned to the C-(N)₃ in g-C₃N₄ [38]. The N 1s peak at 398.50 eV was assigned to 340 sp^2 -hybridization of N element (C=N-C) in Ag₃PO₄/g-C₃N₄ (Fig. 2C) whereas the 341 peak at 399.52 eV belonged to amino functional groups having a hydrogen atom 342 (C-N-H) and 401.04 eV ascribed to tertiary nitrogen $(N-(C_3)$ [26,38]. Regarding the 343 Ag 3d spectrum in Ag₃PO₄/g-C₃N₄ (Fig. 2E), the two peaks at 367.82 (Ag 3d_{5/2}) and 344 373.80 eV (Ag $3d_{3/2}$) were assigned to the Ag⁺ of Ag₃PO₄ [20,33]. The binding 345 energies at 530.55 and 531.68 eV were attributed to O 1s (Fig. 2D), whereas the peak 346 at 530.55 eV was associated with the O_2 in Ag₃PO₄ and the peak at 531.68 eV 347 ascribed to -OH groups on the surface of $Ag_3PO_4/g-C_3N_4$ [20]. The bond energy of P 348 2p of 132.91 eV was associated with the P^{5+} of Ag₃PO₄ (Fig. 2F) [20]. It is worth 349 mentioning that the binding energies of C 1s and N 1s had slight negative shifts 350 compared to g-C3N4, while the binding energies of Ag 3d, P 2p and O 1s exhibited 351 slight red shifts compared to Ag3PO4. These results collectively indicated the strong 352 interaction between g-C₃N₄ and Ag₃PO₄ due to π -backing bonding, similar to reports with other photocatalysts [20,39].

Here Fig. 2

Here Fig. 4

 Compared with the abiotic controls (Fig. 4B, F and J), the attached electrotroph exhibited Na and K signals in EDS spectra, and the content of P increased accordingly (Fig. 4D, H and L). The simultaneous presence of C, N, P, O and Ag signals in the 376 abiotic $Ag_3PO_4/g-C_3N_4$ cathode (Fig. 4B) indicated the successful assembling of the 377 g-C₃N₄ and Ag₃PO₄ in the composite.

3.2 Optimization of operating parameters

380 The ratio of Ag_3PO_4 and $g-C_3N_4$ of 1 : 2 achieved the highest rate of acetate 381 production (Fig. S4A), the optimal *CE*_{acetate} (Fig. S4B), the most efficient separation of electron-hole pairs (Fig. S4C), and the highest light response current (Fig. S4D). Different Ag3PO⁴ and g-C3N⁴ ratios can form different electronic and structural 384 interactions in the $Ag_3PO_4/g-C_3N_4$ composite and thus influence the photocatalytic 385 performance as also observed in Z-scheme $Ag_3PO_4/g-C_3N_4$ composites used for 386 converting $CO₂$ to fuels [17]. The intensity of photoluminescence shown in Fig. S4C is not only related to the separation efficiency of the charge carriers, but is also affected by surface defects, oxygen vacancies and other properties of the measured samples [41]. Thus, the photoluminescence results were expected to deviate from the transient photocurrent response (Fig. S4D), which instead reflected more closely the separation efficiency of the charge carriers [41].

392 The loading amount of Ag₃PO₄/g-C₃N₄ was optimized between the range $0.18 -$ 393 0.73 mg/cm² and reached an optimum at 0.41 mg/cm² in terms of acetate production, *CE*acetate and photocurrent response (Fig. S5). Overloading of photocatalysts can deactivate the activated molecules by collision with ground state molecules whereas an appropriate loading of photocatalysts may avoid the unnecessary excess catalyst 397 and also ensure efficient absorption of light photons for efficient system performance, 398 similar to other studies using TiO₂ [32]. Thus, a ratio of Ag₃PO₄ to g-C₃N₄ of 1 : 2 and 399 a cathode photocatalyst loading of 0.41 mg/cm² were used in subsequent experiments. 400

401 *3.3 MES performance*

402 The Ag3PO4/g-C3N⁴ photocathode incorporating *S. marcescens* achieved an 403 acetate production rate of 5.4 ± 0.1 mM/d (Fig. 5A) with a CE_{acetate} of $93 \pm 2\%$ (Fig. 404 5D) and a residual hydrogen peroxide concentration of $35.5 \pm 1.3 \mu M$ (Fig. 5C) with 405 inorganic carbon consumption of $26 \pm 1\%$ (Fig. S6A) at a current density of 3.3 ± 0.1 406 A/m^2 (Fig. S6B). These were appreciably higher than the results obtained using a 407 WO3/MoO3/g-C3N⁴ photocathode and *S. marcescens* under same experimental 408 conditions (acetate: 3.1 ± 0.2 mM/d, CE_{acetate} : $73 \pm 4\%$, inorganic carbon consumption: 409 20 \pm 1%, current: 2.5 \pm 0.3 A/m²) [7]. These values were also higher than the 410 production rates observed using CdS/gold nanoclusters and *Moorella thermoacetica* 411 (0.1 - 0.5 mM/d), Si nanowire array/TiO₂/Ni and *Sporomusa ovata* $(4.0 - 5.0 \text{ mM/d})$, 412 or the abiotic $AgCl/g-C_3N_4$ (0.6 mM/d) under similar operational conditions (Table 413 S1) [18,42-44]. The exceptionally high rate of acetate production reported using the 414 abiotic TiO₂ nanotube/g-C₃N₄ system (Table S₁) can be ascribed to the much higher 415 photon flux emitted by the xenon lamp used (approximate 3.0-fold more than in this 416 study) and to the short operational period of 1.0 h, although the long-term stability of 417 the employed photocatalyst and product selectivity remained unexplored (Table S1) 418 [45].

419 The performance was also significantly higher than the controls, under darkness

Here Fig. 5

 The photocorrosion of Ag3PO4/g-C3N⁴ was investigated by XRD (Fig. 5E) and XPS (Fig. 5F; Fig. S6C and D) analyses. Metallic silver in the catholyte was clearly

 Flow cytometry is a high-sensitive approach to quantify the live/dead bacteria ratio in response to the changes in external environments [7]. The radical species produced during the photocatalytic process had negligible detrimental impact on the total amount of *S. marcescens* supported on the Ag3PO4/g-C3N⁴ photocathodes, since the amount of inactive electrotroph varied negligibly: 4.7% under CCCs and light, compared to 4.4% in the absence of illumination, 3.8% using the bare graphite felt under illumination and 0.6% without propidium iodide staining (Fig. S7), consistent 469 with the results obtained using the same electrotroph and $WO_3/M_0O_3/g-C_3N_4$ photocathodes [7]. Similarly, negligible impact of the photocatalytic process has been observed in other photo-electrochemical processes, such as on the methane producer by *Methanosarcina barkeri* [6] or on the acetate producer by *Moorella thermoacetica* 473 [2,5]. Quantification of the hydroxyl radicals by HPLC (0.8 μ M) (Fig. S8) confirmed a significantly lower concentration than the harmful onset value reported for *Pseudomonas aeruginosa* of 3.0 μM [47], implying negligible impact of the hydroxyl radicals on the viability of *S. marcescens*. Moreover, the highest concentration of 477 H₂O₂ produced in-situ (OCCs, 144 ± 3 µM, Fig. 5C) was appreciably lower than the detrimental concentrations reported for other bacteria such as *Xanthobacterflavus* sp. (4.5 mM) [48] or *Escherichia coli* (10 mM) [49]. Thus, potential detrimental effects of hydroxyl radicals and H2O² on the viability of *S. marcescens* were excluded.

3.4 CV and EIS analysis

 The reduction onset potential (*E*onset) in the biotic Ag3PO4/g-C3N⁴ positively shifted to –0.30 V, compared to –0.33 V for the biotic Ag3PO⁴ and –0.35 V for the 485 biotic g-C₃N₄ (Fig. 6A; Table S2). Meanwhile, the maximum reduction peak current 486 for Ag₃PO₄/g-C₃N₄ (Fig. 6A; Table S₂) as well as its broadest peak in the first 487 derivative CV (DCV) plots (Fig. 6B) collectively proved the efficient catalytic role of 488 the Ag₃PO₄/g-C₃N₄ in the photo-assisted biocathodes. The more negative E_{onset} (-0.45 489 V) recorded with the bare graphite felt controls in the presence of *S. marcescens*, 490 reflected the importance of combining both the photocatalyst and the electrotroph to 491 achieve effective MES performance. Other studies using indium phosphide assembled 492 with the *Methanosarcina barkeri* methane producer or CdS with the CO₂-reducing 493 bacterium *Moorella thermoacetica* have reported similar conclusions [2,5-6].

494 **Here Fig. 6**

495 The EIS spectra (Fig. 6C and D) were analyzed by fitting spectra to an 496 equivalent circuit (Fig. S9; Table S2). The presence of light irradiation invariably 497 decreased the diffusion resistance (R_{dif}) and the charge transfer resistance (R_{ct}) in both 498 the biotic (Fig. 6C; Table S2) and the abiotic (Fig. 6D; Table S2) cathodes, compared 499 to the values observed in the absence of light irradiation. The value of R_{ct} was 500 dominant over the electrolyte resistance (R_s) and the R_{dif} , and was significantly lower 501 (30 Ω) than the controls without light irradiation (45 Ω), under abiotic conditions (59 502 Ω), with Ag₃PO₄ only (58 Ω), with g-C₃N₄ only (71 Ω) or with the bare graphite felt 503 (79 Ω) (Fig. 6C and D; Table S2). The presence of the biofilm can change the 504 conditions surrounding the electrode material, and thus the electron transfer 505 mechanisms on the biotic and the abiotic electrodes may not the same [50]. The lower 506 *R*ct recorded under biotic photo-assisted conditions was attributed to the *S. marcescens* 507 biofilm creating a higher proportion of potential active sites on the cathode surface favoring charge transfer reactions. Such effect has also been observed in anodic pure or mixed exoelectrogens in the absence of light irradiation [50]. These results clearly 510 highlighted the impact of light irradiation on the activation of $Ag_3PO_4/g-C_3N_4$ hybrid photocatalyst, which in turn reduced the internal resistance to electron transfer favoring the bio-transformation of inorganic carbon to acetate (Fig. 5A) with enhanced circuital current (Fig. S6B).

514

515 *3.5 Photocatalytic mechanism over Ag3PO4/g-C3N⁴*

516 ESR analysis was performed to detect oxygen-containing radicals formed in the 517 MES (Fig. 7A-B). DMPO-'OH signals (four characteristic peaks, 1:2:2:1) were 518 clearly observed for the biotic $Ag_3PO_4/g-C_3N_4$ cathode under light irradiation, while 519 no signals were detected in the absence of light irradiation. The signals strength in 520 both biotic and abiotic Ag3PO4/g-C3N⁴ cases were of equivalent amplitude and both 521 were appreciably lower than the signal recorded with the biotic $Ag_3PO_4/g-C_3N_4$ under 522 OCC (Fig. 7A) as expected. Moreover, no DMPO- O_2 ⁻⁻ signals were observed under 523 the same conditions, excluding the presence of O_2 ^{$-$} in the MES (Fig. 7B). Thus, it 524 was clearly demonstrated the photocatalytic generation of 'OH formed from water 525 oxidation over the irradiated $Ag_3PO_4/g-C_3N_4$ heterojunction, with the amount of 'OH 526 consistent with the residual amount of H_2O_2 formed after fast recombination of 'OH 527 (Fig. 5C). A similar pattern has been observed in other studies using $Ag_3PO_4/g-C_3N_4$ 528 or g-C₃N₄ photocatalysts $[16,26,29]$.

529 The predominant photocatalytic mechanisms over $Ag_3PO_4/g-C_3N_4$ were further

530 investigated through active species trapping experiments to determine the main 531 reactive radical species in the system. In the presence of trapping agents such as 532 Fe(II)-EDTA, isopropanol or sodium oxalate, the acetate production $(-28 \pm 2\%)$ (Fig. 533 7C), the current density $(-17 \pm 1\%)$ and the *CE*_{acetate} $(-13 \pm 2\%)$ (Fig. 7D) decreased 534 by equal amounts, reflecting the positive impact of H_2O_2 on this system performance. 535 Since H_2O_2 was not detected in these anaerobic trapping reactions (Fig. 7C), the 536 in-situ production of H_2O_2 can be attributed to the fast recombination of hydroxyl 537 radicals formed by water oxidation by the photogenerated holes (Reactions $5 - 6$), 538 which was further supported by the decreased current in the presence of the 539 scavengers. The addition of the 'OH scavenger, isopropanol, resulted in complete 540 disappearance of H_2O_2 (formed by fast 'OH recombination) (Fig. 7C), confirming the 541 existence of 'OH in this MES, in agreement with the ESR results (Fig. 7A). The O_2 ^{\sim} 542 scavenger *p*-benzoquinone negligibly affected system performance (Fig. 7C), 543 indicating that O_2 ^{\sim} was not a radical species present in the system, as also shown by 544 the ESR results (Fig. 7B). The anaerobic conditions in the catholyte also excluded the 545 possibility of forming O_2 ⁻⁻. These results and the position of the band levels of the 546 semiconductors suggest a Z-scheme photocatalytic mechanism for the anaerobic 547 Ag₃PO₄/g-C₃N₄ photocathode MES system (Fig. 8). Under visible light irradiation, 548 g-C3N⁴ and Ag3PO⁴ were induced to generate electron-hole charge pairs. The 549 photo-induced electrons were excited from the VB to the corresponding CB, whereas 550 the photo-generated electrons were injected from the CB of Ag3PO⁴ into the VB of 551 g-C₃N₄, thereby suppressing the recombination of charge carriers in the same material.

 Here Fig. 8

3.6 MES performance as a function of operational time

 Acetate production (Fig. 9A) and *CE*acetate (Fig. 9B) were negligibly affected at a prolonged operational time of 1.0 d and decreased thereafter, due to the progressive 569 reduction of the concentration of $HCO₃$ in the system (Fig. 9C), while the amount of 570 residual H_2O_2 produced in-situ (34.6-35.5 μ M) (Fig. 9D) and the circuital current (Fig. S10) did not vary. These values were always higher than those in the controls using g-C3N⁴ only, Ag3PO⁴ only, or bare graphite felt only cathodes (Fig. 9; Fig. S10), 573 confirming the photocatalytic Z-scheme mechanism over the $Ag_3PO_4/g-C_3N_4$ electrode.

575 **Here Fig. 9**

576 EIS analysis (Fig. 9E and F) show the dominant role and sharp increase of the 577 diffusional resistance R_{dif} from 34 Ω at 0.5th day to 90 Ω at 1st day and the further 578 sharp climb to 1830 Ω at 2nd day, compared to a very slight increase of R_s and R_{ct} 579 (Table S3). This phenomenon resulted from the progressive depletion of $HCO₃$ in the 580 semi-batch system, until insufficient supply of $HCO₃$ decreased the diffusion rate of 581 reactant and thus *R*_{dif} reached extremely high values. A similar behavior has been 582 reported in other studies on the production of acetate performed with the hybrid of 583 CdS and *Moorella thermoacetica* [5] under an inadequate supply of CO₂. Thus, 584 bicarbonate was subsequently added after 1.0 day operation to sustain high rates of 585 acetate production over prolonged continuous operation of the MES up to 16 days.

586

587 *3.7 MES performance with periodical addition of bicarbonate*

588 Prolonged operation of the MES cell up to 16 days with periodical addition of 589 bicarbonate increased the acetate production linearly, accumulating up to 81.0 ± 0.2 590 mM of acetate (Fig. 10A) with a reasonably flat CE_{acetate} of 89 \pm 1% (Fig. 10B) and a 591 regular change of bicarbonate (Fig. $10C$) at $16th$ days operation, appreciably higher 592 than the results with the bare graphite felt cathode. The average acetate production 593 rate of 5.03 ± 0.01 mM/d was 3.06, 2.84 and 3.26 times higher than the rates observed 594 with the Ag₃PO₄ only, the g-C₃N₄ only or the bare graphite felt only cathodes, 595 respectively (Fig. 10A). The acetate production rate was higher than the reported 2.83 596 \pm 0.01 mM/d by mixed culture on a 3D reduced graphene oxide modified carbon felt 597 cathode with continuous $CO₂$ sparging in the absence of light irradiation [51] at 598 similar operational periods. Residual H_2 was reasonably lower than the values in the 599 controls using Ag_3PO_4 only, $g-C_3N_4$ only or bare graphite felt only cathodes (Fig. 600 S11A), consistent with the higher rate of acetate production in Fig. 10A.

601 **Here Fig. 10**

602 Ag leaching was sharply accumulated from 1.1 \pm 0.1% at the 1st day to 3.0 \pm 603 0.1% at the 4th day and stabilized at 3.9 \pm 0.2% after the 7th day (Fig. S11B). EIS 604 analysis demonstrated the stable (99 – 102 Ω) and dominant role of R_{dif} over a slight 605 increase observed in the R_{ct} (from 35 Ω to 41 Ω) and the steady value of R_{s} (4.0 – 4.2 606 Ω) during the entire 16 days operation (Fig. S11C and D; Table S4). This R_{dif} was 607 appreciably lower than the 1019 – 1830 Ω at 1.5 – 2.0 days without periodical supply 608 of bicarbonate (Table S3), confirming the necessity of periodical supply of 609 bicarbonate to achieve lower *R*dif and thus high levels of acetate production.

 Metallic Ag was none detected in the XRD (Fig. 10E) or XPS (Fig. 10F) spectra in addition to the absence of peak splitting in the Ag 3d spectrum, clearly 612 demonstrating the appreciable inhibition of the photocorrosion of Ag_3PO_4 over an 613 uninterrupted operational cycle. The residual concentration of H_2O_2 was stable in the range of 33.7 – 35.7 μM (Fig. 10D), similar to the values observed under fed-batch operation (Fig. 5C) implying negligible detrimental effects on the viability of the *S. marcescens*, also shown by flow cytometry (Fig. S7). The concentration of H_2O_2 was 617 significantly lower than the threshold values $(4.5 - 10 \text{ mM})$ reported for conventional bacteria such as *Xanthobacterflavus* sp. or *Escherichia coli* [48-49].

619 SEM-EDS analysis of the Ag₃PO₄/g-C₃N₄ biocathode after 16 days operation (Fig. S12) demonstrated similar particle size and morphology as those observed after a short operational period of 0.5 d (Fig. 4). Considering the slight increase in internal resistance (Fig. S11C and D), these results clearly confirmed the stability of the 623 Ag₃PO₄/g-C₃N₄ photo-assisted biocathode and the in-situ utilization of H₂O₂ for the 624 inhibition of Ag_3PO_4 photocorrosion.

 The emerging field of bio-electro-photocatalysis for the reduction of inorganic carbon via hydrogen mediation, represents a largely unexplored line of investigation [18]. While effective cathodic materials with appropriate hydrogen catalytic activity at near-neutral pH need to be selected, the assessment of the intracellular complex reactions driven by the cathodic photocatalytic materials remain unexplored. Electrotrophs physiologically respond to changes of the external environment (e.g., circuital current, heavy metals, pH) by releasing [extracellular polymeric substances](http://www.baidu.com/link?url=EdOGwzDPDlQUgIc92PMGJH7OA0EDmjwLwf8HAR-Av5AHF0Jy23TaqXkjInJLMsVS2ou7tNDLz0uVIWw46pgBcaaYlA7p2WsvtTIC_FZ2A7AOm1xLfcQODE6TpeJKiX2Ve71mLAxV3aJXO38k165Dva) (EPS) and by regulating the activity of intracellular enzymes [8,52-55]. Thus, under 633 light irradiation and as a response to the H_2O_2 produced in-situ, the locally anaerobic micro-environment created by the EPS released by the *S. marcescens* and the changes of its typical intracellular enzymatic activities, might have allowed for the efficient system performance and long-term stability. The identification of the associated genetic regulating networks in *S. marcescens* is also necessary to achieve further increase in the acetate yield.

4. Conclusions

641 In summary, a Ag₃PO₄/g-C₃N₄ cathode with excellent photocatalytic activity was successfully applied in a MESs incorporating *S. marcescens* Q1 for efficient acetate 643 production from inorganic carbon. The in-situ produced H_2O_2 through the anaerobic photocatalytic oxidation of water, was simultaneously utilized for effective 645 suppression of the photocorrosion of Ag_3PO_4 and this was crucial for improving the 646 stability of the $Ag_3PO_4/g-C_3N_4$ photocathode. The photoinduced electrons on the 647 conduction band of Ag₃PO₄/g-C₃N₄ were used for the evolution of H₂ and subsequent 648 metabolism by *S. marcescens* Q1 with supplemented HCO₃ for acetate production. 649 Acetate accumulated up to 81.0 ± 0.2 mM with a *CE*_{acetate} of $89 \pm 1\%$ over a 16 days with daily feed of bicarbonate. This study provides a sustainable and feasible strategy 651 for inhibiting the photocorrosion of Ag₃PO₄ in Ag₃PO₄/g-C₃N₄ hybrid photocatalysts, thus achieving efficient acetate production from inorganic carbon in the photo-assisted MESs biocathodes.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

- The authors gratefully acknowledge financial support from the National Natural
- Science Foundation of China (Nos. 21777017 and 52070032).

References

- [1] E. Blanchet, F. Duquenne, Y. Rafrafi, L. Etcheverry, B. Erable, A. Bergel, Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO² reduction, Energy Environ. Sci. 8 (2015) 3731–3744. [DOI:](https://doi.org/DOI:) 10.1039/C5TA05503B
- [2] K.K. Sakimoto, A.B. Wong, P. Yang, Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production, Science. 351 (2016) 74–77. DOI:

10.1126/science.aad3317

- [3] Y. Jiang, R.J. Zeng, Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design - a review, Bioresour. Technol. 269 (2018) 503–512. [DOI:](https://doi.org/DOI:) 10.1016/j.biortech.2018.08.101
- [4] Y. Jiang, H.D. May, L. Lu, P. Liang, X. Huang, J.Z. Ren, Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation, Water Res. 149 (2019) 42–55. [DOI:](https://doi.org/DOI:) [10.1016/j.watres.2018.10.092](https://doi.org/10.1016/j.watres.2018.10.092.)
- [5] K.K. Sakimoto, S.J. Zhang, P.D. Yang, Cysteine-cystine photoregeneration for 674 oxygenic photosynthesis of acetic acid from $CO₂$ by a tandem inorganic-biological hybrid system, Nano Lett. 16 (2016b) 5883–5887. [DOI:](https://doi.org/DOI:) [10.1021/acs.nanolett.6b02740](https://doi.org/10.1021/acs.nanolett.6b02740)
- [6] E.M. Nichols, J.J. Gallagher, C. Liu, Y. Su, J. Resasco, Y. Yu, Y. Sun, P. Yang, M.C.Y. Chang, C.J. Chang, Hybrid bioinorganic approach to solar-to-chemical conversion, Proc, Natl. Acad. Sci. USA. 112 (2015) 11461–11466. [DOI:](https://doi.org/DOI:) [10.1073/pnas.1508075112](https://doi.org/10.1073/pnas.1508075112)
- [7] Z. Cai, L. Huang, X. Quan, Z. Zhao, Y. Shi, G. Li Puma, Acetate production from 682 inorganic carbon (HCO₃⁻) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N⁴ heterojunctions and *Serratia marcescens* species, Appl. Catal. B-Environ. 267 (2020) 118611. [DOI:](https://doi.org/DOI:) 10.1016/j.apcatb.2020.118611
- [8] Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang, H. Stuart-Williams, H. Yang, J.Y. Cao, W.J. Luo, Z.S. Li, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater. 9 (2010) 559–564. [DOI:](https://doi.org/DOI:) 10.1038/nmat2780
- [9] Y.P. Bi, S.X. Ouyang, N. Umezawa, J.Y. Cao, J.H. Ye, Facet effect of single-crystalline Ag3PO⁴ sub-microcrystals on photocatalytic properties, J. Am. Chem. Soc. 133 (2011) 6490–6492. [DOI:](https://doi.org/DOI:) [10.1021/ja2002132](https://doi.org/10.1021/ja2002132)
- [10] N. Umezawa, O.Y. Shuxin, J.H. Ye, Theoretical study of high photocatalytic performance of Ag3PO4, Phys. Rev. B. 83 (2011) 035202. [DOI:](https://doi.org/DOI:) [10.1103/PhysRevB.83.035202](https://doi.org/10.1103/PhysRevB.83.035202)
- [11] D.J. Martin, G.G. Liu, S.J.A. Moniz, Y,P, Bi, A.M. Beale, J.H. Ye, J.W. Tang, Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective, Chem. Soc. Rev. 44 (2015) 7808–7828. [DOI:](https://doi.org/DOI:) 10.1039/C5CS00380F
- 699 [12] J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO₃/g-C₃N₄ step-scheme
- H2-production photocatalyst, Appl. Catal. B-Environ. 243 (2019) 556–565. DOI: 10.1016/j.apcatb.2018.11.011
- [13] Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui, J. Tian, Boosting the photocatalytic 703 ability of g-C₃N₄ for hydrogen production by Ti_3C_2 MXene quantum dots, ACS Appl. Mater. Interfaces 11 (2019) 41440−41447. DOI: 10.1021/acsami.9b14985
- [14] J. Jiang, X. Wang, Y. Liu, Y. Ma, T. Li, Y. Lin, T. Xie, S. Dong, Photo-fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N⁴ nanosheet with rich nitrogen defect: Degradation mechenism, pathways, and products toxicity assessment, Appl. Catal. B-Environ. 278 (2020) 119349. DOI:
- 10.1016/j.apcatb.2020.119349
- [15] J. Jiang, X. Wang, C. Zhang, T. Li, Y. Lin, T. Xie, S. Dong, Porous 0D/3D 711 NiCo₂O₄/g-C₃N₄ accelerate emerging pollutant degradation in PMS/vis system: Degradation mechanism, pathway and toxicity assessment, Chem. Eng. J. 397 (2020) 125356. DOI: 10.1016/j.cej.2020.125356
- [16] X. Yang, L. Tian, X. Zhao, H. Tang, Q. Liu, G. Li, Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution, Appl. Catal. B-Environ. 244 (2019) 240–249. [DOI:](https://doi.org/DOI:) 10.1016/j.apcatb.2018.11.056
- 718 [17] Y. He, L. Zhang, B. Teng, M. Fan, New application of Z-Scheme $Ag_3PO_4/g-C_3N_4$ composite in converting CO² to fuel, Environ. Sci. Technol. 49 (2015) 649–656. [DOI:](https://doi.org/DOI:) 10.1021/es5046309
- [18] S. Cestellos-Blanco, H. Zhang, J.M. Kim, Y. Shen, P. Yang, Photosynthetic semiconductor biohybrids for solar-driven biocatalysis, Nat. Catal. 3 (2020) 245–255. [DOI:](https://doi.org/DOI:) 10.1038/s41929-020-0428-y
- [19] T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong, H. Chen, X. Yi, J. Yuan, X. Xia, C. 725 Liu, S. Luo, Ag_3PO_4/Ti_3C_2 MXene in terface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance, Appl. Catal. B-Environ. 263 (2018) 545–554. DOI: 10.1016/j.apcatb.2018.08.053
- [20] C. Liang, L. Zhang, H. Guo, C. Niu, X. Wen, N. Tang, H. Liu, Y. Yang, B. Shao, G. Zeng, Photo-removal of 2,2′4,4′-tetrabromodiphenyl ether in liquid medium by 730 reduced graphene oxide bridged artificial Z-scheme system of $A\varrho\omega A\varrho_3PO_4/\varrho-C_3N_4$, Chem. Eng. J. 361 (2019) 373–386. [DOI:](https://doi.org/DOI:) [10.1016/j.cej.2018.12.092](https://doi.org/10.1016/j.cej.2018.12.092)
- [21] J. Jia, W. Huang, C. Feng, Z. Zhang, K. Zuojiao, J. Liu, C. Jiang, Y. Wang, 733 Fabrication of $g - C_3N_4/Ag_3PO_4-H_2O_2$ heterojunction system with enhanced visible-light photocatalytic activity and mechanism insight, J. Alloys Compd. 790 (2019) 616–625. [DOI:](https://doi.org/DOI:) [10.1016/j.jallcom.2019.03.238](https://doi.org/10.1016/j.jallcom.2019.03.238)
- [22] Q. Wang, L. Huang, X. Quan, Q. Zhao, Preferable utilization of in-situ produced H2O² rather than externally added for efficient deposition of tungsten and molybdenum in microbial fuel cells, Electrochim. Acta. 247 (2017) 880–890. [DOI:](https://doi.org/DOI:) [10.1016/j.electacta.2017.07.079](https://doi.org/10.1016/j.electacta.2017.07.079)
- [23] R. Cai, Y. Kubota, A. Fujishima, Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles, J. Catal. 219 (2003) 214–218. [DOI:](https://doi.org/DOI:) [10.1016/S0021-9517\(03\)00197-0](https://doi.org/10.1016/S0021-9517(03)00197-0)
- [24] K. Fuku, K. Sayama, Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode, Chem. Commun. 52 (2016) 5406–5409. [DOI:](https://pubs.rsc.org/en/content/articlelanding/2016/CC/C6CC01605G#!divAbstract) 10.1039/C6CC01605G
- [25] Y. Zhao, Y. Liu, J. Cao, H. Wang, M. Shao, H. Huang, Y. Liu, Z. Kang, Efficient 748 production of H_2O_2 via two-channel pathway over $ZIF-8/C_3N_4$ composite photocatalyst without any sacrificial agent, Appl. Catal. B-Environ. 278 (2020) 119289. DOI: 10.1016/j.apcatb.2020.119248
- [26] J. Zhang, J. Lv, K. Dai, C. Liang, J. Zhu, Facile and green synthesis of novel porous g-C3N4/Ag3PO⁴ composite with enhanced visible light photocatalysis,
- Ceram. Int. 43 (2017) 1522–1529. [DOI:](https://doi.org/DOI:) [10.1016/j.ceramint.2016.10.125](https://doi.org/10.1016/j.ceramint.2016.10.125)
- [27] Q. Wang, L. Huang, X. Quan, G. Li-Puma, Sequential anaerobic and electro-Fenton processes mediated by W and Mo oxides for degradation/mineralization of azo dye methyl orange in photo assisted microbial fuel cells, Appl. Catal. B-Environ. 245 (2019) 672–680. [DOI:](https://doi.org/DOI:) 10.1016/j.apcatb.2019.01.026
- [28] Q. Wang, Z. Cai, L. Huang, Y. Pan, X. Quan, G. Li-Puma, Intensified degradation and mineralization of antibiotic metronidazole in photo-assisted microbial fuel cells with Mo-W catalytic cathodes under anaerobic or aerobic conditions in the 762 presence of Fe(III), Chem. Eng. J. 376 (2019) 119566. [DOI:](https://doi.org/DOI:) [10.1016/j.cej.2018.07.168](https://doi.org/10.1016/j.cej.2018.07.168)
- [29] C. Zhao, Z. Chen, J. Xu, Q. Liu, H. Xu, H. Tang, G. Li, Y. Jiang, F. Qu, Z. Lin, X. Yang, Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets, Appl. Catal. B-Environ. 256 (2019) 117867. DOI: 10.1016/j.apcatb.2019.117867
- [30] L. Huang, B. Yao, D. Wu, X. Quan, Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell e Microbial electrolysis cell systems, J. Power Sources 259 (2014) 54–64. [DOI:](https://doi.org/DOI:) 10.1016/j.jpowsour.2014.02.061
- [31] Y. Chen, T.W. Ng, A. Lu, Y. Li, H.Y. Yip, T. An, G. Li, H. Zhao, M. Gao, P. Wong, Comparative study of visible-light-driven photocatalytic inactivation of two different wastewater bacteria by natural sphalerite, Chem. Eng. J. 234 (2013) 43–48. [DOI:](https://doi.org/DOI:) [10.1016/j.cej.2013.08.106](https://doi.org/10.1016/j.cej.2013.08.106)
- [32] Z. Zhao, W. Zhang, X. Lv, Y. Sun, F. Dong, Y. Zhang, Noble metal-free Bi 777 nanoparticles supported on TiO₂ with plasmon-enhanced visible light photocatalytic air purification, Environ. Sci.: Nano. 3 (2016) 1306–1317. [DOI:](https://doi.org/DOI:) [10.1039/C6EN00341A](https://doi.org/10.1039/C6EN00341A)
- [33] Q. Xiang, D. Lang, T. Shen, F. Liu, Graphene-modified nanosized Ag3PO⁴ photocatalysts for enhanced visible-light photocatalytic activity 782 and stability, Appl. Catal. B-Environ. 162 (2015) 196–203. [DOI:](https://doi.org/DOI:) 10.1016/j.apcatb.2014.06.051
- [34] H. Gao, R. Cao, X. Xu, S. Zhang, Y. Huang, H. Yang, X. Deng, J. Li, Construction of dual defect mediated Z-scheme photocatalysts for enhanced photocatalytic hydrogen evolution, Appl. Catal. B-Environ. 245 (2019) 399–409. [DOI:](https://doi.org/DOI:) [10.1016/j.apcatb.2019.01.004](https://doi.org/10.1016/j.apcatb.2019.01.004)
- [35] X. Yang, L. Tian, X. Zhao, H. Tang, Q. Liu, G. Li, Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution, Appl. Catal. B-Environ. 244 (2019) 240–249. [DOI:](https://doi.org/DOI:) 10.1016/j.apcatb.2018.11.056
- [36] F. Meng, J. Li, S.K. Cushing, M. Zhi, N. Wu, Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide, J. Am. Chem. Soc. 135 (2013) 10286–10289. DOI: 795 10.1021/ja404851s
- [37] H.S. Park, K.E. Kweon, H. Ye, E. Paek, G.S.Hwang, A.J. Bard, Factors in the metal doping of BiVO⁴ for improved photoelectrocatalytic activity as studied by
- scanning electrochemical microscopy and first-principles density-functional calculation, J. Phys. Chem. C. 115 (2011) 17870–17879. DOI: 10.1021/jp204492r
- [38] Z. Lan, G. Zhang, X. Wang, A facile synthesis of Br-modified g-C3N⁴ semiconductors for photoredox water splitting, Appl. Catal. B-Environ. 192 (2016) 116–125. [DOI:](https://doi.org/DOI:) 10.1016/j.apcatb.2016.03.062
- 803 [39] W. Yu, D. Xu, T. Peng, Enhanced photocatalytic activity of $g C_3N_4$ for selective 804 CO_2 reduction to CH₃OH via facile coupling of ZnO: a direct Z-scheme mechanism, J. Mater. Chem. A. 3 (2015) 19936–19947. [DOI:](https://doi.org/DOI:) 10.1039/C5TA05503B
- [40] P. Zhu, Y. Chen, M. Duan, M. Liu, P. Zou, Structure and properties of Ag3PO4/diatomite photocatalysts for the degradation of organic dyes under visible light irradiation, Powder Technol. 336 (2018) 3193–3202. DOI: 10.1016/j.powtec.2018.05.060
- [41] A. Galdamez-Martinez, G. Santana, F. Guell, PR. Martinez-Alanis, A. Dutt, Photoluminescence of ZnO nanowires: A review, Nanomaterials. 10 (2020) 857. DOI: 10.3390/nano10050857
- 813 [42] C. Liu, J.J. Gallagher, K.K. Sakimoto, E.M. Nichols, C. J. Chang, M.C.Y. Chang,
- P. Yang, Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals, Nano Lett. 15 (2015) 3634–3639. [DOI:](https://doi.org/DOI:) 10.1021/acs.nanolett.5b01254
- [43] Z. Ji, H. Zhang, H. Liu, O.M. Yaghi, P. Yang, Cytoprotective metal-organic frameworks for anaerobic bacteria, Proc, Natl. Acad. Sci. USA. 115 (2018) 819 10582-10587. [DOI:](https://doi.org/DOI:) 10.1073/pnas.1808829115
- [44] Y. Su, S. Cestellos-Blanco, J. M. Kim, Y. Shen, Q. Kong, D. Lu, C. Liu, H. Zhang, Y. Cao, P. Yang, Close-packed nanowire-bacteria hybrids for efficient solar-driven CO² fixation, Joule. 4 (2020) 800–811. [DOI:](https://doi.org/DOI:) 10.1016/j.joule.2020.03.001
- 824 [45] J. Wu, Y. Feng, D. Li, X. Han, J. Liu, Efficient photocatalytic CO_2 reduction by 825 P-O linked g-C₃N₄/TiO₂ nanotubes Z-scheme composites, Energy 178 (2019) 168−175. [DOI:](https://doi.org/DOI:) 10.1016/j.energy.2019.04.168
- [46] X.J. Shi, S. Siahrostami, G.L. Li, Y.R. Zhang, P. Chakthranont, F. Studt, T.F. Jaramillo, X.L. Zheng, J.K. Norskov, Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide, Nat. Commun. 8 (2017) 830 701. [DOI:](https://doi.org/DOI:) [10.1038/s41467-017-00585-6](https://doi.org/10.1038/s41467-017-00585-6)
- [47] B. Stenuit, L. Eyers, R. Rozenberg, J.L. Habib-Jiwan, S. Matthijs, P. Cornelis, S.N. Agathos, Denitration of 2,4,6-trinitrotoluene in aqueous solutions using small-molecular-weight catalyst(s) secreted by *Pseudomonas aeruginosa* ESA-5, Environ. Sci. Technol. 43 (2009) 2011–2017. [DOI: 10.1021/es8024319](https://doi.org/10.1021/es8024319)
- [48] J. Howsawkeng, R.J. Watts, D.L.Washington, A.L. Teel, T.F. Hess, R.L. Crawford, Evidence for simultaneous abiotic-biotic oxidations in a microbial-Fenton's system, Environ. Sci. Technol. 35 (2001) 2961–2966. [DOI:](https://doi.org/DOI:) [10.1021/es001802x](https://doi.org/10.1021/es001802x)
- [49] B. Demple, J. Halbrook, Inducible repair of oxidative DNA damage in *Escherichia coli*, Nature. 304 (1983) 466–468. [DOI:](https://www.nature.com/articles/304466a0) 10.1038/304466a0
- [50] Z. He, F. Mansfeld, Exploring the use of electrochemical impedance
- spectroscopy (EIS) in microbial fuel cell studies, Energy Environ. Sci. 2 (2019) 215–219. [DOI: 10.1039/B814914C](https://doi.org/10.1039/B814914C)
- [51] G. Mohanakrishna, K. Vanbroekhoven, D. Pant, Impact of dissolved carbon dioxide concentration on the process parameters during its conversion to acetate through microbial electrosynthesis, React. Chem. Eng. 3 (2018) 371–378. [DOI:](https://doi.org/DOI:) 10.1039/C7RE00220C
- [52] X. Hou, L. Huang, P. Zhou, F. Tian, Y. Tao, G. Li Puma, Electrosynthesis of 849 acetate from inorganic carbon $(HCO₃⁻)$ with simultaneous hydrogen production and Cd(II) removal in multifunctional microbial electrosynthesis systems (MES), J. Hazard. Mater. 371 (2019) 463–473. [DOI:](https://doi.org/DOI:) 10.1016/j.jhazmat.2019.03.028
- [53] X. Hou and L. Huang, Synergetic magnetic field and loaded Fe3O4 for simultaneous efficient acetate production and Cr(VI) removal in microbial electrosynthesis systems, Chem. Eng. J. Adv. [2](https://www.sciencedirect.com/science/journal/26668211/2/supp/C) (2020) 100019. [DOI:](https://doi.org/DOI:) [10.1016/j.ceja.2020.100019](https://doi.org/10.1016/j.ceja.2020.100019)
- [54] J. Hou, L. Huang, P. Zhou, Y. Qian, N. Li, Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems, Chemosphere 243 (2020) 125317. [DOI:](https://doi.org/DOI:) 10.1016/j.chemosphere.2019.125317
- [55] H. Yu, Molecular insights into extracellular polymeric substances in activated sludge, Environ. Sci. Technol. 54 (2020) 7742–7750. DOI: 10.1021/acs.est.0c00850
-
-

Figure captions

 Fig. 1 XRD patterns (A), photoluminescence spectra (B), biotic transient photocurrent responses (C), UV – vis DRS spectra (D), FTIR spectra (E) and Zeta potential (F) of 890 the cathodes with or without (control) g-C₃N₄ or/and Ag₃PO₄ deposits.

 Fig. 2 XPS spectra of survey spectra of (A) g-C3N4, Ag3PO⁴ and Ag3PO4/g-C3N4, and 892 high resolution spectra of C 1s (B), N 1s (C), O 1s (D), Ag 3d (E) and P 2p (F) for 893 g-C₃N₄, Ag₃PO₄ or Ag₃PO₄/g-C₃N₄.

 Fig. 3 TEM images of Ag3PO4/g-C3N⁴ (A and B), Ag3PO⁴ only (C and D), and g-C3N⁴ only (E and F) with different magnifications.

 Fig. 4 SEM images on electrodes of Ag3PO4/g-C3N⁴ (A and C), g-C3N⁴ only (E and G), and Ag3PO⁴ only (I and K) without (A, E and I) or with (C, G and K) *S. marcescens*. EDS spectra on the sites of either no coverage (B, F and J) or coverage (D, H, and L) of *S. marcescens* on electrodes of Ag3PO4/g-C3N⁴ (B and D), g-C3N⁴ 900 only (F and H) and Ag₃PO₄ only (J and L) (Operational time: 0.5 d).

 Fig. 5 Comparison of acetate (A) and hydrogen (B) production, residual hydrogen 902 peroxide (C) and coulombic efficiency for acetate production (*CE*_{acetate}) (D), XRD 903 patterns (E) and high-resolution spectra of Ag 3d (F) of Ag₃PO₄/g-C₃N₄ under various conditions (operation time: 0.5 d).

 Fig. 6 CVs (A) and DCVs (B) of the *S. marcescens* attached cathodes with or without (control) g-C3N⁴ or/and Ag3PO⁴ loads in the presence or absence (control) of illumination. Nyquist plots of EIS analysis of biotic (C) or abiotic (D) cathodes (operational time: 0.5 d).

909 **Fig. 7** ESR spectra of the DMPO-OH (A) and DMPO-O₂^{\cdot} (B) adducts recorded with

- 910 different conditions for Ag₃PO₄/g-C₃N₄. Comparison of acetate and H₂O₂ production
- 911 (C), and current density and *CE*_{acetate} (D) in the presence or absence of different trapping agents (operational time: 0.5 d).
- **Fig. 8** Schematic diagram of the Ag3PO4/g-C3N⁴ photocathode in the photo-assisted biocathode MES.

 Fig. 9 Time course of acetate production (A), *CE*acetate (B), inorganic carbon 916 consumption (C), residual H_2O_2 (D), and Nyquist plots of EIS spectra (E and F) of the 917 cathodes with $Ag_3PO_4/g-C_3N_4$ or bare graphite felt (E), or g-C₃N₄ or Ag₃PO₄ (F) (operational time: 2.0 d).

919 **Fig. 10** Acetate production (A), CE_{acetate} (B), residual inorganic carbon consumption 920 (C), residual H₂O₂ (D) with periodical addition of bicarbonate (Black arrows in A – D indicated the points of bicarbonate addition). XRD (E) and XPS (F) of 922 Ag₃PO₄/g-C₃N₄ at the end of a 16 d operation with periodical addition of bicarbonate.

Highlights

- Ag3PO4/g-C3N⁴ and *S. marcescens* catalyze acetate production in photo-assisted MES;
- \bullet H₂O₂ produced in-situ under anaerobic conditions prevents photoetching of Ag_3PO_4 ;
- Ag₃PO₄/g-C₃N₄ Z-scheme heterojunction enhances electron-holes separation;
- Photo-induced electrons on conduction band of semiconductor enhances H_2 production;
- Photo-generated holes favors higher current and higher rates of acetate production.

Supplementary Material

Click here to access/download Supplementary Material [Supporting Information.doc](https://www.editorialmanager.com/apcatb/download.aspx?id=1408563&guid=200f5830-4ca0-4f29-8a95-5aadc4452845&scheme=1)