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Abstract

We survey known results and open problems in abelian combinatorics on words. Abelian combinatorics

on words is the extension to the commutative setting of the classical theory of combinatorics on words.

The extension is based on abelian equivalence, which is the equivalence relation defined in the set of

words by having the same Parikh vector, that is, the same number of occurrences of each letter of the

alphabet. In the past few years, there was a lot of research on abelian analogues of classical definitions

and properties in combinatorics on words. This survey aims to gather these results.
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1 Introduction

Combinatorics on words is the algebraic study of symbolic sequences. Given a finite set Σ, called the alphabet,

one can construct a free monoid Σ∗ by equipping the alphabet with the operation of concatenation. The

specificity of the theory is that the concatenation operation is not commutative. However, over the past

years researchers built up a commutative theory by restricting the attention to the number of occurrences of

letters in a word rather than to the order in which they appear. Formally speaking, fixed an ordered alphabet

Σd = {0, 1, . . . , d− 1}, of cardinality d > 11, one can consider the map P defined on the set Σ∗
d of words over

Σd by P(w) = (|w|0, |w|1, . . . , |w|d−1), where |w|i denotes the number of occurrences of i in the word w. The

equivalence relation induced by P is called the abelian equivalence and is at the basis of the theory of abelian

combinatorics on words. A natural aim of the theory is to extend to the abelian setting the main definitions

and results that have been introduced and discovered in the noncommutative setting. In the past few years,

there was a lot of research on abelian analogues of classical definitions and properties in combinatorics on

words. This survey aims to gather these results.

Some specific aspects of abelian combinatorics on words have already been the object of a survey, e.g.,

avoidance. In these cases, we shortly recall the results. Otherwise, we present a more detailed description of

the results and give references to the published papers. Even if our aim is to give a comprehensive view of

the subject, in some cases we decided to select only the results that we find more relevant or interesting.

The content of the document covers the following topics: Among the various definitions of complexity for

an infinite word, the classical one is the factor complexity, i.e., the integer function that counts for each n

1The case of a unary alphabet, d = 1, is not interesting in this context, since it can be trivially reduced to elementary
arithmetic.
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the number of distinct factors of length n occurring in the word. When this number of factors is counted up

to abelian equivalence, one has the notion of abelian complexity, which is the object of Sec. 3. The study of

repetitions in words has been generalized to the abelian setting and is the object of Sec. 4. Another classical

subject in combinatorics of words is that of avoidability of patterns. The extension of avoidability to the

abelian setting is the object of Sec. 5. For finite words, many of the classical results about periods and

borders have an abelian counterpart, presented in Sec. 6. One of the most studied classes of words is that of

Sturmian words; Abelian properties of Sturmian words are the object of Sec. 7. In Sec. 8, we present some

interesting modifications of the abelian equivalence, e.g., k-abelian equivalence, weak abelian equivalence

and k-binomial equivalence. Finally, in Sec. 9, we present some results on abelian counterparts of specific

definitions, e.g., subshifts or palindromic richness.

Combinatorics on words has found applications in several disciplines, e.g., text processing, bioinformatics,

error-correction codes, etc. The field referring to the applications of combinatorial properties of words to the

design of efficient algorithms for string pattern matching is sometimes referred to as “stringology”. Recently,

some of the results in abelian combinatorics on words we present in this survey have found applications in

what is called “abelian stringology”, or abelian pattern matching (also called jumbled pattern matching).

We do not cover these results, however, since the focus of this survey is more on the algebraic aspects of the

theory.

In this document, we briefly recall the basic definitions of the classical theory of combinatorics on words,

pointing the reader to the classical books on the subject for further details. In this way, the document

remains self-contained and accessible to all interested readers. We made a particular effort in trying to make

the notation uniform all along the presentation of the results. For this reason, the notation we use in this

document may differ with respect to that used in the original papers.

2 Preliminaries

We start by recalling some standard definitions. For other basics of combinatorics on words we refer the

reader to the classical books on the subject [4, 10, 28, 95–97,118, 130].

Let f, g be integer functions. We write f ∈ O(g) if there exists a constant C > 0 such that for every

n, f(n) ≤ Cg(n). In this case we also write g ∈ Ω(f). If f ∈ O(g) and g ∈ O(f), we write f ∈ Θ(g). If

limn→∞ f(n)/g(n) = 0, we write f ∈ o(g).

We let Σd = {0, 1, . . . , d− 1} denote a d-ary alphabet. A word over Σd is a concatenation of letters from

Σd. The length of a word w is denoted by |w|. The empty word ε has length 0. The set of all words (resp.

all nonempty words) over Σd is denoted Σ∗
d (resp. by Σ+

d ), while the set of all words of length equal to n over

Σd is denoted by Σn
d .

Let w = uv, with u, v ∈ Σ∗
d. We say that u is a prefix of w and that v is a suffix of w. A factor of w is a

prefix of a suffix (or, equivalently, a suffix of a prefix) of w. The sets of prefixes, suffixes, factors of a word w

are denoted, respectively, by Pref(w), Suff(w),Fact(w). We also use Prefk(w), Suffk(w) to denote the prefix

and the suffix of length k of w, respectively.

An integer p is a period of a word w = w1w2 · · ·wn, wi ∈ Σd, if wi = wj whenever i = j mod p. We call

the period of w the smallest of its periods, denoted π(w). The exponent of a word w is the ratio |w|/π(w).
A word w is a k-power, k > 1, if it has length kp and p > 0 is a period of w. A 2-power is simply called a

square and a 3-power is simply called a cube. A word that is not a k-power for any k > 1 is called primitive.

Let w be a k-power. Then its prefix u of length |w|/k is called a root of w. The primitive root of the

word w is the shortest of its roots, that is, its prefix of length π(w) (notice that the primitive root of a word

is a primitive word). For example, the word aaaa, a ∈ Σd, is both a square (with root aa) and a 4-power,

with primitive root a.
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We say that a nonempty word v is a border of a word w 6= v if w = vu = u′v for some words u, u′. It

follows from the definition that v is a border of w if and only if |w| − |v| is a period of w of length ≤ |w|.
A nonempty word w = w1w2 · · ·wn, wi ∈ Σd, is a palindrome if it coincides with its reversal wR =

wnwn−1 · · ·w1. The empty word is also assumed to be a palindrome. The set Pal(w) of palindromic factors

of w has cardinality |Pal(w)| ≤ |w|+ 1; w is called rich if the equality holds.

An infinite word (or right-infinite word) over Σd is a non-ending concatenation of letters from Σd. An

infinite word is called purely periodic if it has a period, i.e., it can be written as vω for some finite word v

(the notation uω stands for uuu · · · ); ultimately periodic if it has a purely periodic infinite suffix, i.e., it can

be written as uvω for some finite words u, v; or aperiodic otherwise, i.e., if it is not ultimately periodic.

An infinite word x is recurrent if every finite factor of x occurs in x infinitely often; uniformly recurrent

if for every finite factor u of x there exists an integer N (that depends on u) such that u occurs in every

factor of x of length N ; linearly recurrent if there exists an integer m such that for every finite factor u of x,

u occurs in every factor of x of length m|u|.
A substitution is a map h from Σd to Σ∗

d such that the image of every letter is nonempty. The notion of

a substitution is generalized from letters to words in a natural way by concatenation: h(uv) = h(u)h(v). If

for a letter a ∈ Σd, h(a) is a word of length at least 2 beginning with a, the substitution has a unique fixed

point beginning with a, which is the infinite word limn→∞ hn(a). An infinite word is called purely morphic

if it is a fixed point of a substitution.

A substitution is uniform if all the images have the same length and primitive if for every letter a

there exists an iterate of the substitution on a that contains all the letters of Σd. Fixed points of primitive

substitutions are known to be linearly recurrent.

More generally, given two alphabets Σ and ∆, a morphism between Σ∗ and ∆∗ is a map h such that

for every u, v ∈ Σ∗, one has h(uv) = h(u)h(v). A morphism can be specified by giving the list of images of

letters in Σ. A morphism is non-erasing if the images of all letters are nonempty. Notice that a substitution

is therefore a non-erasing endomorphism.

Given an infinite word x over Σd, the factor complexity of x is the integer function px(n) = |Fact(x)∩Σn
d |

counting the number of distinct factors of length n of x, for each n ≥ 0.

An infinite word is aperiodic if and only if its factor complexity is unbounded. In particular, a classical

result of Morse and Hedlund [104] is that the factor complexity of an aperiodic word x verifies px(n) ≥ n+1

for every n. An aperiodic word with minimal factor complexity px(n) = n+1 for every n is called a Sturmian

word. A famous example of Sturmian word is the Fibonacci word

f = 010010100100101001 · · ·

which can be obtained as the fixed point of the substitution 0 7→ 01, 1 7→ 0. Sturmian words can be defined

in many equivalent ways; in particular, via balance, iterated palindromic closure and Sturmian morphisms.

The most natural generalization of Sturmian words to nonbinary alphabets, which shares many structural

properties of Sturmian words, is Arnoux–Rauzy words, or strict episturmian words [5, 48]. One of the ways

to define Arnoux–Rauzy words — and in particular Sturmian words — is via iterated palindromic closure.

The right palindromic closure of a finite word u ∈ Σ∗
d, denoted by u(+), is the shortest palindrome that has u

as a prefix. The iterated (right) palindromic closure operator ψ is defined recursively by the following rules:

ψ(ε) = ε, ψ(ua) = (ψ(vu)a)(+)

for all u ∈ Σ∗
d and a ∈ Σd. For example, ψ(0110) = 0101001010.

The definition of ψ can be extended to infinite words over Σd, d ≥ 2, as follows: ψ(u) =

limn→∞ ψ(Prefn(u)), i.e., ψ(u) is the infinite word having ψ(Prefn(u)) as its prefix for every n ∈ N. Let

u be an infinite word over the alphabet Σd such that every letter occurs infinitely often in u. The word
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x = ψ(u) is then called a characteristic (or standard) Arnoux–Rauzy word and u is called the directive se-

quence of x. An infinite word x is called an Arnoux–Rauzy word if it has the same set of factors of a (unique)

characteristic Arnoux–Rauzy word. For d = 2, this gives an equivalent definition of Sturmian words [42]. An

example of characteristic Arnoux–Rauzy word is given by the Tribonacci word

tr = 010201001020101020100 · · ·

which has directive sequence (012)ω. The Tribonacci word can also be defined as the fixed point of the

substitution 0 7→ 01, 1 7→ 02, 2 7→ 0.

The critical exponent χ(x) of an infinite word x is the supremum of the exponents of its factors. We say

that an infinite word x is β-free (resp. β+-free), for a real number β, if no factor has exponent β or larger

(resp., if no factor has exponent larger than β). For example, the critical exponent of the Fibonacci word

is 2 + ϕ, where ϕ = (1 +
√
5)/2 is the golden ratio [101]; hence the Fibonacci word is (2 + ϕ)-free (and in

particular 4-free).

It is a trivial fact that every word over Σ2 of length at least 4 contains a square factor, so there do not

exist infinite binary square-free words. Still, there exist infinite binary words that are 2+-free. An example

is the Thue–Morse word

tm = 01101001100101101001 · · ·

which can be obtained as the fixed point starting with 0 of the substitution 0 7→ 01, 1 7→ 10.

Another famous word we will mention in this paper is the regular paperfolding word :

p = 001001100011011000100 · · ·

which, contrarily to the Fibonacci and the Thue–Morse words, cannot be obtained as the fixed point of a

substitution. It can be defined as a Toeplitz word with pattern v = 0?1?, that is, starting from the word vω,

we replace the occurrences of the characters ? with the word vω , then in the new word we again replace the

remaining occurrences of ? with vω and so on, thus defining a word without ?.

More generally, one can construct an infinite (actually, uncountable) family of words, called paperfolding

words, by alternating the replacements of the occurrences of ? with vω0 and vω1 , where v0 = 0?1? and v1 = 1?0?,

according to a binary directive sequence.

We will need a symbolic dynamical notion of the subshift generated by an infinite word. A subshift

X ⊆ ΣN

d , X 6= ∅, is a closed set (with respect to the product topology of ΣN

d ) and is invariant under the

shift operator σ, defined by σ(a0a1a2 · · · ) = a1a2 · · · , that is, σ(X) ⊆ X . We call ΣN

d the full shift over Σd.

A subshift X ⊆ ΣN

d is called minimal if X does not contain any proper subshifts. For a subshift X ⊆ ΣN

d

we let Fact(X) = ∪y∈X Fact(y). Let x ∈ ΣN

d . We let Ωx denote the shift orbit closure of x, that is, the set

{y ∈ ΣN

d : Fact(y) ⊆ Fact(x)}. Thus, Fact(Ωx) = Fact(x) for an infinite word x ∈ ΣN

d . It is known that Ωx is

minimal if and only if x is uniformly recurrent. See [94] for more on the topic.

Given a word w over Σd, we let |w|i denote the number of occurrences of the letter i of Σd in w.

The Parikh vector (also called composition vector or abelianization) of the word w is the vector P(w) =

(|w|0, |w|1, . . . , |w|d−1), counting the occurrences of the letters of Σd in w.

Two words have the same Parikh vector if and only if one is an anagram of the other. In particular, if

two words have the same Parikh vector, then they must have the same length, which is also the sum of the

components of the Parikh vector (called the norm of the Parikh vector).

Definition 1. The equivalence relation ∼ab defined on Σ∗
d by the property of having the same Parikh vector

is called abelian equivalence.

For example, the words 01101 and 10011 are abelian equivalent, while the words 01101 and 10010 are not.

Besides combinatorics on words, the concepts of Parikh vector (and Parikh matrix) and abelian equivalence
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are used in semigroup theory and are applied in formal language theory; see, e.g., Parikh theorem for context-

free languages [107].

3 Abelian complexity

In this section, we discuss abelian modifications of the classical notion of factor complexity of an infinite word

and of the pattern complexity introduced by Kamae and Zamboni [77].

3.1 Abelian complexity and periodicity

The abelian complexity of the word x over Σd is the integer function

ax(n) = |(Fact(x) ∩ Σn
d )/∼ab| ,

where ∼ab is the abelian equivalence, i.e., ax is the function that counts the number of distinct Parikh vectors

of factors of length n of x, for every n ≥ 0.

If an infinite word x is ultimately periodic, then its abelian complexity is bounded. Indeed, by the Morse–

Hedlund theorem, the usual factor complexity of ultimately periodic words is bounded, and the abelian

complexity cannot be greater than the factor complexity, since the identity is a refinement of the abelian

equivalence.

On the other hand, there exist aperiodic words with bounded abelian complexity. As an example, all

Sturmian words are aperiodic and have abelian complexity equal to 2, as we will see in Section 7. In fact, it

is easy to see that an aperiodic word cannot have an abelian complexity equal to 1 for any n:

Lemma 1. If there exists n > 0 such that ax(n) = 1, then x is purely periodic. More precisely, the smallest

period of x is the least such n.

Proof. Let n be the least integer such that ax(n) = 1, that is, all the factors of x of length n have the

same Parikh vector. In particular, the prefix x1x2 · · ·xn of length n of x has the same Parikh vector as the

factor x2x3 · · ·xn+1. This implies that xn+1 = x1. Analogously, one deduces that xn+2 = x2 and so on. We

therefore have that x has period n.

The maximal abelian complexity is realized, for example, by words with full factor complexity, like, e.g.,

the binary Champernowne word 0 1 10 11 100 101 110 111 · · · obtained by concatenating the binary expansions

of the natural numbers in the natural order (with zero represented by 0). We have:

Theorem 2. For all infinite words x over Σd, and for all n ≥ 0,

1 ≤ ax(n) ≤
(

n+ d− 1

d− 1

)

.

In particular, the abelian complexity is bounded by O(nd).

Proof. The maximum value of the abelian complexity of a word over Σd is the maximum number of ways of

writing n as the sum of d nonnegative integers. This well-known number is called the number of compositions

of n into d parts and its value is given by the binomial coefficient
(

n+d−1
d−1

)

.

However, there exist infinite binary words having maximal abelian complexity but linear factor complexity.

For example, take the alphabet ∆ = {a, b, c} and let f and g be the morphisms defined by f(a) = abc,
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f(b) = bbb, f(c) = ccc, g(a) = 0 = g(c) and g(b) = 1. Let x be the fixed point of f beginning in a. Then the

image of x under g is the word

x′ = 0
∏

i≥0

13
i

03
i

The word x′ has maximal abelian complexity but linear factor complexity.

Definition 2. A (finite or infinite) word w over Σd is C-balanced for an integer C > 0 if for every letter

a ∈ Σd and every two factors u, v of w of the same length, one has ||u|a− |v|a| ≤ C. For C = 1, the constant

is usually omitted and the word is simply called balanced.

The balance function of w is the function

Bw(n) = max
a∈Σd

max
u,v∈Fact(w)∩Σn

d

||u|a − |v|a|.

Clearly, a word is C-balanced if and only if its balance function is bounded by C.

In other words, a word is C-balanced if for every letter a, taking a window of any fixed size sliding on the

word one has a number of a’s falling in the window that ranges from a minimal value k, depending on the

size of the window, to a maximal value k + C. An immediate consequence of this remark is the following:

Proposition 3. Let x be an infinite word. Then the abelian complexity of x is bounded if and only if x is

C-balanced for some C > 0.

A well-known result by Coven and Hedlund [33] states that a binary aperiodic word is 1-balanced if and

only if it is Sturmian, which can be reformulated in terms of abelian complexity as follows:

Theorem 4. Let x be an aperiodic binary word. Then x is Sturmian if and only if ax(n) = 2 for every

n ≥ 1.

3.2 Abelian complexity of some families of words

We start with the Thue–Morse word tm. Its abelian complexity is given by:

atm(n) =

{

2 if n is odd,

3 if n is even.

Indeed, the Thue–Morse word consists of blocks 01 and 10, so its factors of odd length contain several blocks

plus either 1 or 0, hence abelian complexity is 2. For even lengths, a factor contains either several complete

blocks, or several complete blocks plus two letters, which can be both 0, both 1 or 0 and 1, the latter case

giving the same abelian class as factors consisting of full blocks; hence the abelian complexity is 3 for even

lengths.

The abelian complexity together with the factor complexity almost characterize the Thue–Morse word,

in the sense that an infinite word has the same abelian and factor complexity as the Thue–Morse word if and

only if it is in its shift orbit closure [128].

Let tr be the Tribonacci word. For every n ≥ 1, atr(n) ∈ {3, 4, 5, 6, 7}. Moreover, each of these five values

is assumed [129], and the exact value of atr(n) can be effectively computed [138, 142]. However, in general,

Arnoux–Rauzy words can have unbounded abelian complexity (or, equivalently, there exist Arnoux–Rauzy

words which are not C-balanced for any C) [21].
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Madill and Rampersad [98] studied the abelian complexity of the regular paperfolding word p and char-

acterized it by proving the following recursive relations:

ap(4n) = ap(2n)

ap(4n+ 2) = ap(2n+ 1) + 1

ap(16n+ 1) = ap(8n+ 1)

ap(16n+ {3, 7, 9, 13}) = ap(2n+ 1) + 2

ap(16n+ 5) = ap(4n+ 1) + 2

ap(16n+ 11) = ap(4n+ 3) + 2

ap(16n+ 15) = ap(2n+ 2) + 1.

From these formulas, it follows that the regular paperfolding word has unbounded abelian complexity.

Blanchet-Sadri et al. studied the abelian complexity of the ternary squarefree word of Thue (also

called Hall word, or Variant of Thue–Morse) vtm = 012021012102012 · · · — which can be obtained as

the fixed point of the substitution 0 7→ 012, 1 7→ 02, 2 7→ 1 — and that of the period-doubling word

pd = 01000101010001000 · · · , which is equal to vtm modulo 2 and is the fixed point of the substitution

0 7→ 01, 1 7→ 00 [12].

Rauzy [126] asked whether an infinite word exists with constant abelian complexity equal to 3. Richomme,

Saari and Zamboni [128] answered this question positively by showing that any aperiodic balanced word over

Σ3 has this property. It has been proved that there are no recurrent words of constant abelian complex-

ity 4 [37]. However, for every integer c ≥ 2, there is a recurrent word x with abelian complexity ax(n) = c

for every n ≥ c− 1. [135].

We now discuss the (abelian) complexity of purely morphic words. A well-known classification of factor

complexities of fixed points of morphisms has been obtained in a series of papers, finally completed by

Pansiot [106], and states that there are 5 classes of possible complexity growths: Θ(1), Θ(n), Θ(n logn),

Θ(n log logn) and Θ(n2). The abelian complexity of purely morphic words is more complicated and is

completely classified only for fixed points of binary morphisms (more precisely, only the superior limit of the

abelian complexity has been classified).

The balance function of primitive morphic words has been characterized by Adamczewski [2]. As

an immediate corollary of this characterization, we get a classification of abelian complexities of fixed

points of primitive binary morphisms. For integer functions f and g, let us write f(n) = Ω′(g(n)) if

lim supn→∞ f(n)/g(n) > 0. Then the abelian complexity of a purely morphic word is either Θ(1), or

(O ∩ Ω′)(log n), or (O ∩ Ω′)(n logθ1 θ2), where θ1 and θ2 are the first and second largest eigenvalues of

the adjacency matrix of the morphism. 2

A classification of abelian complexities of fixed points of non-primitive binary morphisms is due to

Blanchet-Sadri, Fox and Rampersad [13] and completed by Whiteland [145]: this can be either Θ(1), or

Θ(n), or Θ(n/ logn), or Θ(nlogk l) with 1 < k < l, or it can fluctuate between Θ(1) and Θ(log(n)). Some

algorithmic aspects of computing the abelian complexity of fixed points of uniform morphisms have been

studied in [14].

3.3 Abelian pattern complexity

The pattern complexity, a modification of the notion of factor complexity, introduced by Kamae and Zam-

boni [77], can also be well generalized to the abelian setting. A pattern S is a k-element subset of nonnegative

2We cannot write Θ in place of (O∩Ω′) because the functions could be oscillating; however, here we are essentially interested
in their maximum values.
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integers: S = {s1 < s2 < · · · < sk}. For an infinite word w, we put

w[S] = ws1ws2 · · ·wsk .

For each n, the word w[n+ S] is called an S-factor of w, where n+ S = {n+ s1, n+ s2, . . . , n+ sk}. We

let Fw(S) denote the set of all S-factors of w. The pattern complexity pattw(S) is then defined by

pattw(S) = |Fw(S)|,

and the maximal pattern complexity patt∗w(k) by

patt∗w(k) = sup
S⊂N

|S|=k

pattw(S).

An infinite word w over Σd is called periodic by projection if there exists a nonempty set B ( Σd such

that 1B(w) = 1B(w0)1B(w1)1B(w2) · · · ∈ {0, 1}N is ultimately periodic (where 1B denotes the characteristic

function of B). A word is aperiodic by projection if it is not periodic by projection. The following connection

between the maximal pattern complexity and periodicity is known:

Theorem 5. [75] Let w be an infinite aperiodic by projection word over Σd, d ≥ 2. Then for every positive

integer k, patt∗w(k) ≥ dk.

We can then define an abelian analogue of the notion of the pattern complexity by

pattabw (S) = |Fw(S)/ ∼ab |,

and the maximal pattern abelian complexity patt∗abw (k) by

patt∗abw (k) = sup
S⊂N,|S|=k

pattabw (S).

Then the following abelian analogue of Theorem 5 holds:

Theorem 6. [76] Let w be a recurrent and aperiodic by projection infinite word over Σd, d ≥ 2. Then for

every positive integer k,

patt∗abw (k) ≥ (d− 1)k + 1.

When d = 2, the equality always holds. Moreover, for k = 2 and general d, there exists w satisfying the

equality.

In the abelian case, the condition of recurrence is necessary, since there exist non-recurrent counterexam-

ples satisfying the inequality.

4 Abelian repetitions

Recall that an abelian square is a nonempty word of the form uv, where u and v are abelian equivalent,

i.e., have the same Parikh vector. For example, 0110110011 is an abelian square: 01101 ∼ab 10011. More

generally, an abelian k-power is a word of the form u1u2 · · ·uk, where all the ui have the same Parikh vector.

An asymptotic estimate of the number of abelian squares of length n has been given in [127].

4.1 Abelian complexity and abelian powers

There is a relationship between abelian complexity and abelian powers, stated in the following theorem:
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Theorem 7. [128] If a word has bounded abelian complexity, then it contains abelian k-powers for every

k > 1.

However, this is not a characterization of words with bounded abelian complexity. Indeed, Holub proved

that all paperfolding words contain abelian powers of every order, and paperfolding words have unbounded

abelian complexity.

Theorem 8. [70] All paperfolding words contain abelian k-powers for every k > 1.

In the case of the Thue–Morse word, we even have that every infinite suffix begins with an abelian k-

power for every positive integer k. However, it is possible to construct a uniformly recurrent binary word

with bounded abelian complexity such that none of its prefixes is an abelian square [24].

4.2 Abelian critical exponent

Recall that the critical exponent χ(x) of an infinite word x is the supremum of rational numbers β such that

uβ occurs in x for some factor u of x. Notice that the critical exponent of an infinite word can be infinite, as

in the case, for example, for any (ultimately) periodic word.

The following theorem was proved by Krieger and Shallit [88].

Theorem 9. The following statements hold:

1. For every real number β > 1 there exists an infinite word over some alphabet whose critical exponent is

β;

2. For every real number β ≥ 2 there exists an infinite binary word whose critical exponent is β.

The maximum exponent of an abelian power occurring in an infinite word does not give any interesting

information on abelian powers, e.g., in words with bounded abelian complexity. Therefore, the following

generalization to the abelian case has been proposed [56]:

Definition 3. Let x be an infinite word. For every integer m > 1, let km be the maximum exponent of an

abelian power of period m in x. The abelian critical exponent of x is defined as

χab(x) = lim sup
m→∞

km
m
. (4.1)

Peltomäki and Whiteland proved the following result:

Theorem 10. [111] For every nonnegative real number β there exists an infinite binary word having abelian

critical exponent β.

We will see in a later section that for every nonnegative real number β greater than a constant cF ≃ 4.53

there exists a Sturmian word having abelian critical exponent β.

4.3 Abelian square factors

In this section, we consider the problem of counting the number of abelian squares in a word of length n. For

classical squares, their maximal number in a word of length n is less than n. More precisely, Fraenkel and

Simpson [62] showed that a word of length n contains less than 2n distinct squares, and conjectured that the

bound is actually n. After several improvements, the conjecture was recently solved by Brlek and Li [15] (see

also [91]).
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As for the number of abelian square factors, it is easy to see that a word of length n can contain Θ(n2)

distinct abelian square factors; e.g., words of the form 0m10m10m.

If one considers only abelian squares that are not abelian equivalent, then it can be shown that a word

of length n can contain Θ(n3/2) nonequivalent abelian square factors [87]. It is conjectured that a word of

length n always contains O(n3/2) nonequivalent abelian square factors.

For other open problems on abelian squares the reader is referenced to [141].

The largest number of distinct abelian square factors in an infinite word has also been studied. We need

some notation. Given a finite or infinite word w, we let ASn(w) denote the number of distinct abelian-square

factors of w of length n. Of course, ASn(w) = 0 if n is odd, so this quantity is significant only for even values

of n. Furthermore, for a finite word w of length n, we let AS(w) =
∑

m≤n ASm(w) denote the total number

of distinct abelian-square factors, of all lengths, in w.

Definition 4. An infinite word w is abelian-square-rich if there exists a positive constant C such that for

every n one has
1

pw(n)

∑

v∈Fact(w)∩Σn

AS(v) ≥ Cn2.

Christodoulakis et al. [31] proved that a binary word of length n contains Θ(n
√
n) distinct abelian-square

factors on average; hence a random infinite binary word is almost surely not abelian-square-rich.

In an abelian-square-rich word the number of distinct abelian squares contained in any factor is, on

average, quadratic in the length of the factor. A stronger condition is that every factor contains a quadratic

number of distinct abelian squares:

Definition 5. An infinite word w is uniformly abelian-square-rich if there exists a positive constant C such

that AS(v) ≥ C|v|2 for all v ∈ Fact(w).

Clearly, if a word is uniformly abelian-square-rich, then it is also abelian-square-rich, but the converse

is not always true. However, in the case of linearly recurrent words, the two definitions are equivalent.

Moreover, a uniformly abelian-square-rich word is always β-free for some β [57]. Examples of uniformly

abelian-square-rich words are the Thue–Morse word and the Fibonacci word.

In the opposite direction, one can ask what is the minimum number of abelian square factors in a word

of length n. Let fd(n) be the least number of distinct abelian square factors in a word of length n over Σd.

By a result of Keränen, f4(n) = 0 for every n (see Theorem 16). Rao and Rosenfeld proved that f3(n) ≤ 34

for every n (see Theorem 19 below). For binary words, Entringer, Jackson and Schatz [52] proved that every

binary word of length n2 + 6n contains an abelian square of length 2n, hence f2(n) is unbounded. The

following conjecture is supported by computer experiments:

Conjecture 11. [60] Every binary word of length n contains at least ⌊n/4⌋ distinct abelian square factors.

That is, f2(n) = ⌊n/4⌋.
Should this conjecture be true, the bound is realized by words of the form 0⌊n/2⌋10n−⌊n/2⌋−1.

Abelian square factors give a characterization of a property related to shuffling. For finite words u and v

we say that v is a shuffle of u with its reversal uR if there exist sequences of finite words (Ui)
n
i=0 and (Vi)

n
i=0

such that v =
∏n

i=0 UiVi, u =
∏n

i=0 Ui, u
R =

∏∞
i=0 Vi. The following proposition gives a necessary condition

for a word to be a shuffle of another word with its reversal:

Theorem 12. [69] A binary word v is an abelian square if and only if there exists a word u such that v is

a shuffle of u with its reversal uR.

Moreover, the “if” direction holds for arbitrary alphabets. However, there exist counterexamples for the

“only if” part: the word 012012 is an example of a ternary abelian square that cannot be written as the

shuffle of a word with its reversal [69].
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4.4 Abelian antipowers

Opposite to the notion of k-power, there is the notion of k-antipower [59]. A k-antipower , or antipower of

order k, is a word of the form v1v2 · · · vk where all vi’s have the same length and are pairwise distinct. For

example, 001000111010 is a 4-antipower.

Fici, Restivo, Silva and Zamboni proved the following result:

Theorem 13. [59] Every infinite word contains powers of every order or antipowers of every order.

By Theorem 7, we have that if a word has bounded abelian complexity, then it cannot contain abelian

powers of every order, so in particular cannot contain powers of every order, therefore by Theorem 13 it must

contain antipowers of every order.

The abelian counterpart of an antipower is an abelian antipower. An abelian k-antipower, or abelian

antipower of order k, is a word of the form v1v2 · · · vk such that all vi’s have the same length and pairwise

distinct Parikh vectors. For example, 010011 is an abelian antisquare and an abelian anticube. It is an open

question whether Theorem 13 can be generalized to abelian antipowers:

Problem 14. Does every infinite word contain abelian powers of every order or abelian antipowers of every

order?

Notice that if a word contains abelian antipowers of every order, then it must have unbounded abelian

complexity.

By Theorem 8, all paperfolding words contain abelian powers of every order. It has been proved that all

paperfolding words also contain abelian antipowers of every order:

Theorem 15. [58] All paperfolding words contain abelian k-antipowers for every k > 1.

5 Abelian avoidability

In this section we give a short overview of results and problems related to abelian avoidability. We do not go

into details due to two recent excellent book chapters on abelian avoidance and related questions [105, 120].

5.1 Avoidability of abelian powers

Avoidability of powers and patterns is a well-studied area in combinatorics on words. In this subsection,

we provide some results on avoidability of abelian powers. The study of abelian avoidance started with a

question of Erdős, who asked whether it is possible to construct an infinite word containing no abelian square

factor [53].

A k-power is a particular case of an abelian k-power. So, unavoidability of k-powers implies unavoidability

of abelian k-powers (but not vice versa). So, for example, since every sufficiently long binary word contains a

square, it is not possible to construct infinite binary words without abelian squares. Notice that by Theorem 7,

if a word avoids abelian powers, then it must have unbounded abelian complexity.

The following theorem gives the minimal sizes of the alphabet for avoiding abelian powers:

Theorem 16. [44,84]

1. There exists an infinite word over an alphabet of size 4 with no abelian square factor.

2. There exists an infinite ternary word over with no abelian cube factor.

3. There exists an infinite binary word with no abelian 4-power factor.

The sizes of the alphabets are optimal.
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usual abelian
squares 3 4
cubes 2 3

4-powers 2 2

Table 1: Minimal sizes of the alphabets over which the corresponding powers are avoidable.

The first statement of the theorem has been proved by Keränen in 1992 [84], who improved a previous

bound of 5 given by Pleasants [115] and the first bound of 25 given by Evdokimov [54]; the two other state-

ments by Dekking in 1979 [44]. It is worth mentioning that Keränen’s result relies on computer verification,

while the two results by Dekking have a short elegant proof. We also refer to [86] for more on abelian

square-free morphisms and to [16] for a shorter proof of item 1 in the theorem.

Moreover, it is known that the number of abelian square-free words of length n on a four-letter alphabet

grows exponentially in n [17]. The same is true for ternary abelian-cube-free and binary abelian-4-free

languages [1, 34].

The summary of results on avoidability of (abelian) k-powers is provided in Table 1.

To prove the avoidability results, it is enough to construct a word avoiding the corresponding power.

An example of an infinite word over Σ4 with no abelian square is given by a fixed point of the 85-uniform

substitution

ψ :



















0 7→ 0120232123203231301020103101213121021232021013010203212320231210212320232132303132120

1 7→ 1231303230310302012131210212320232132303132120121310323031302321323031303203010203231

2 7→ 2302010301021013123202321323031303203010203231232021030102013032030102010310121310302

3 7→ 3013121012132120230313032030102010310121310302303132101213120103101213121021232021013

where the image of the letter i is obtained from the image of the letter i−1 by adding 1 to each letter modulo

4.

The example of a ternary word with no abelian cube factor is the fixed point of the substitution

ψ′ :















0 7→ 0012

1 7→ 112

2 7→ 022

The example of a binary word with no abelian 4-power factor can also be constructed as the fixed point

of a substitution:

ψ′′ :

{

0 7→ 011

1 7→ 0001

It is easy to see the optimality for the size of the alphabet: indeed, one can simply show, for example using

a search tree, that there are only finitely many words without corresponding abelian powers. For example,

for the three-letter alphabet we have the following:

Proposition 17. Every ternary word of length 8 contains an abelian square.

To prove that abelian cubes are not avoidable over a binary alphabet, one has simply to increase the

length:

Proposition 18. Every binary word of length 10 contains an abelian cube.
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For more on constructions of abelian power-free words we refer to paragraph 4.6 in [120]. For avoiding

abelian powers and their generalizations see [105].

Although abelian squares are unavoidable over a binary alphabet, one can ask whether it is possible to

construct an infinite binary word containing only a finite number of abelian squares (as in the case of ordinary

squares, where there exists an infinite binary word containing only 00, 11 and 0101 as square factors). The

answer to this question is known, and it is negative; however, in the ternary case, it is possible to construct

infinite words containing only a finite number of abelian squares:

Theorem 19. [52,125] The following holds true:

1. Every infinite binary word contains arbitrarily long abelian squares.

2. There exists an infinite ternary word with no abelian square of length 12 or greater.

We refer to [52] for a proof of the first part of the theorem, and to [125] for the second part. The ternary

word showed in [125] can be obtained by applying the morphism

g :















































0 7→ 1110010002

1 7→ 1220222122

2 7→ 2222111212

3 7→ 2222222200

4 7→ 1111120100

5 7→ 0000000100

to the fixed point of the substitution

h :















































0 7→ 024

1 7→ 035

2 7→ 135

3 7→ 132

4 7→ 054

5 7→ 124

This word contains precisely 34 distinct abelian squares, the longest of which has length 10.

The following conjecture is believed to be true, but is still unproved:

Conjecture 20 (Mäkelä, [85]). There exists an infinite ternary word whose only abelian squares are 00, 11,

22.

Another conjecture stated by Mäkelä was that there exists an infinite binary word containing only 000 and

111 as abelian cube factors, but this has been shown to be false in [124]. However, the following modification

of Mäkelä’s question is still open:

Problem 21. Is it possible to construct an infinite binary word containing only a finite number of abelian

cubes?

Finally, Peltomäki and Whiteland [112] considered cyclic abelian avoidance. A finite word w avoids

abelian k-powers cyclically if for each abelian k-power of period m occurring in the infinite word wω, one has

m ≥ |w|. For example, let w = 1000100. Then both w and w2 avoid abelian 5-powers. However, the word w3

has the abelian 5-power 100 · 010 · 010 · 001 · 001 of period 3 as a prefix. Therefore, w does not avoid abelian
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5-powers cyclically. It does not avoid abelian 6-powers cyclically either, since w4 contains an abelian 6-power

of period 4 beginning from the second letter. However, it avoids abelian 7-powers cyclically [112]. Let A(d)

be the least integer k such that for all n there exists a word of length n over a d-letter alphabet that avoids

abelian k-powers cyclically. Similarly, let A∞(d) be the least integer k such that there exist arbitrarily long

words over a d-letter alphabet that avoid abelian k-powers cyclically.

Theorem 22. [112] One has 5 ≤ A(2) ≤ 8, 3 ≤ A(3) ≤ 4, 2 ≤ A(4) ≤ 3, and A(d) = 2 for every d ≥ 5.

Moreover, A∞(2) = 4, A∞(3) = 3, and A∞(4) = 2.

5.2 Avoiding fractional abelian repetitions and other generalizations of abelian

powers

In the classical (non-abelian) sense a fractional repetition is defined as a word of the form wnv, n > 0, where

w is primitive and v is a prefix of w. The exponent of the repetition is then n+ |v|
|w| . For example, the word

0010010 has exponent 7/3 so it is a 7/3-power.

For a d-letter alphabet (d ≥ 2), the repetition threshold is the number RT (d) which separates d-

unavoidable and d-avoidable repetitions. For example, the Thue–Morse word shows that RT (2) = 2.

The famous Dejean’s conjecture dating back to 1972 [43] stated that RT (3) = 7/4, RT (4) = 7/5, and

RT (d) = d/(d − 1) for every d > 5. The conjecture has been proved in a series of papers — the last cases

have been proved independently by Rampersad and Currie [36], and Rao [121].

In analogy with avoiding of fractional powers, one can wonder whether one can avoid fractional abelian

powers.

Theorem 23. [19] Let β be a real number, 1 < β < 2. There exists an infinite word over a finite alphabet

which contains no factor of the form xyz with |xyz|/|xy| ≥ β and where z is abelian equivalent to x.

This kind of factor can be regarded as a fractional abelian power of exponent β. For example, 01110 has

abelian exponent 5
3 in this sense, with x = 01, y = 1, z = 10.

There are several other natural generalizations of the notion of a fractional power to the abelian case. For

two Parikh vectors P(u) and P(v), we write P(u) ⊆ P(v) if P(u) is component-wise smaller than or equal to

P(v). A word uv is called an abelian inclusion if P(u) ⊆ P(v). Consider a word of the form w = w1 · · ·wmv,

where w1 ∼ab · · · ∼ab wm, and P(v) ⊆ P(w1) (hence P(v) ⊆ P(wi) for every i). A word of this form can be

considered as a fractional abelian repetition of exponent m+ |v|
|w1| .

In [137], three versions of the notion of fractional abelian repetition are considered: in a weak form,

i.e., without additional restrictions; in a strong form, i.e., with a requirement that Pref|v|(w1) ∼ab v; and

in a semi-strong form, i.e., with a requirement that P(v) ⊆ ∨m
i=1 P(Pref|v|(wi)), where

∨

is the operation

of taking the maximum componentwise. The authors found lower and upper bounds for abelian repetition

thresholds, some of which are conjectured to be tight.

In [7], the authors considered avoiding abelian inclusions. For two words u and v, we say that v majorizes

u if for each letter a ∈ Σ, |u|a ≤ |v|a, i.e., if P(u) ⊆ P(v). Let us fix a function f(l) : N → R and call a

word w = uv an f(l)-inclusion if v majorizes u and |v| ≤ |u| + f(|u|). As usual, we say that a word avoids

f(l)-inclusions if none of its factors is an f(l)-inclusion.

Theorem 24. [7] For every arbitrarily small constant c > 0, cl-inclusions are unavoidable.

Theorem 25. [7] For every arbitrarily large constant n, there exists a word on 4(n + 1) letters avoiding

n-inclusions.
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5.3 Abelian pattern avoidance

For two words P and w, we say that w avoids the pattern P if there is no non-erasing morphism h such

that h(P ) is a factor of w, or equivalently if there is no factor w1w2 · · ·w|P | in w such that for every i and j

Pi = Pj implies wi = wj .

Abelian pattern avoidance in defined similarly to usual pattern avoidance. Let P = P1P2 · · ·Pn be a

pattern, where the Pi are letters. Then we say that a word w ∈ Σ∗
d realizes P in the abelian sense if there

exist w1, . . . , wn ∈ Σ+
d such that w = w1w2 · · ·wn and for every i and j Pi = Pj implies wi ∼ab wj .

We say that a pattern is d-avoidable (resp., d-abelian avoidable) if it is avoidable (resp., abelian avoidable)

over Σd.

Pattern avoidance in the usual sense is a well-studied topic. There is an explicit characterization of pat-

terns that are avoidable in the usual sense (Bean, Ehrenfeucht, McNulty [50], and independently Zimin [148]);

see also Chapter 3 in [96]. However, the problem of finding the avoidability index of a pattern, i.e., the mini-

mal size of the alphabet for which it is avoidable, is still unsolved, and not as much is known about avoidability

of abelian patterns. For example, it has been shown in [40] that all long enough binary abelian patterns are

2-abelian avoidable, and the bound has been improved in [134]:

Theorem 26. [134] Binary patterns of length greater than 14 are 2-abelian avoidable.

The best known lower bound is 7 [134]. A similar fact has been proved for avoidance over a three-letter

alphabet:

Theorem 27. [134] Binary patterns of length greater than 8 are 3-abelian avoidable.

It is easy to see that all binary patterns except for short ones (A, AB and ABA, up to renaming letters)

are avoidable over 4 letters. This follows from the fact that abelian squares are avoidable over 4 letters, and

all other binary patterns must contain a square.

In [35], the authors classify ternary patterns which are abelian avoidable. As in the ordinary case, the

problem of determining whether a given pattern is avoidable in the abelian sense over an alphabet of a given

size is yet unsolved. Moreover, no algorithm is known, even if we do not restrict the size of the alphabet,

although in the ordinary sense the solution is given by Zimin algorithm [148].

Since words avoiding patterns in the abelian or in the usual sense are often constructed as fixed points

of substitutions, it is reasonable to consider the following decision problem: Given a substitution h with

an infinite fixed point w and an integer k ≥ 2, determine if w is (abelian) k-power free. The decidability

of this problem for usual powers has been studied in several papers and proved in general by Mignosi and

Séébold [103]. Currie and Rampersad showed that the problem is also decidable for abelian powers in the

case of morphisms satisfying certain conditions [38]. The result has been further generalized in [125] and [134]

for wide classes of patterns and other types of repetitions.

The related problem of determining if a morphism is k-power free (i.e., maps k-power free words to k-

power free words) has also been examined previously. This is not quite the same question as the one posed

above, since it is possible for a morphism to generate a k-power free word without being k-power free. Carpi

gave sufficient conditions for a morphism to preserve abelian k-power freeness, which is conjectured to be a

characterization [16].

6 Abelian periods and borders

The notion of a period can be naturally generalized to the abelian case, and many classical results on

periodicity are generalized to the abelian case. However, in some cases the problem becomes harder (or

easier!), and sometimes there is no clear generalization.
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There are several possible ways to define an abelian period of a word: either we can require a period to

start from the very beginning of the word, or we can admit a preperiod. Depending on the question, one

or another definition is more natural. In this section we make a survey of abelian versions of some classical

results on abelian periods, such as the Fine and Wilf lemma, primitive words, the Critical Factorization

theorem and some others.

6.1 Abelian versions of classical periodicity theorems

In this subsection we discuss how classical periodicity theorems (the Fine and Wilf periodicity lemma and

the Critical Factorization theorem) can be generalized to the abelian setting.

Constantinescu and Ilie [32] introduced the following generalization of the notion of a period of a finite

word to the abelian case. Recall that for a nonempty word u over a fixed ordered alphabet we let P(u) denote

its Parikh vector. We let |P(u)| denote the norm of P(u), that is, the sum of its components. We further

write P(u) ⊂ P(v) if P(u) is component-wise smaller than or equal to P(v) and |P(u)| < |P(v)|.

Definition 6. A word w has an abelian period p, with preperiod h, if w = u0u1 · · ·um−1um for some words

u0, . . . , um such that:

• P(u0) ⊂ P(u1) = · · · = P(um−1) ⊃ P(um),

• |P(u0)| = h, |P(u1)| = p.

The words u0 and um are called resp. the head and the tail of the abelian period. Notice that the length

t = |um| of the tail is uniquely determined by h, p and |w|, namely t = (|w| − h) mod p.

The following lemma gives an upper bound on the number of distinct pairs (p, h) of abelian periods with

preperiods of a word:

Lemma 28. A word of length n can have Θ(n2) different pairs (p, h) of abelian periods with preperiods.

Proof. For every d, the word w = (12 · · · d)n/d has abelian period p with preperiod h for any p ≡ 0 mod d

and every h such that 0 6 h 6 min(p− 1, n− p). Therefore, w has Θ(n2) different pairs (p, h) of the lengths

of abelian periods with prepriods.

Often, we are only interested in the integer p and not in the length h of the head.

Let us recall the following classical result dating back to 1965, known as the Periodicity Lemma or Fine

and Wilf’s Lemma.

Lemma 29 ( [61]). Let w be a word. If p and q are periods of w and |w| ≥ p+ q − gcd(p, q), then gcd(p, q)

is a period of w.

The value p+ q − gcd(p, q) in the statement of Lemma 29 is optimal, in the sense that for any p and q it

is possible to construct a word with periods p and q and length |w| = p+ q− gcd(p, q)− 1 such that gcd(p, q)

is not a period of w. In fact, a word is called central if it has two coprime periods p and q and length equal

to p+ q− 2. For example, 010 and 010010 are central words. Every central word is a binary palindrome (but

there are binary palindromes that are not central). Moreover, central words are rich.

We now present a generalization of the Fine and Wilf’s lemma to the case of abelian periods.

Let alph(w) be the set of distinct letters appearing in w. By Lemma 29, if a word w has two coprime

periods p and q and length |w| ≥ p+ q − 1, then |alph(w)| = 1.

Theorem 30. [32] If a word w has coprime abelian periods p and q and length |w| ≥ 2pq − 1, then

|alph(w)| = 1, that is, w is a power of a single letter.
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The latter result has been generalized by Simpson to the case when the abelian periods p and q are not

coprime:

Theorem 31. [140] If a word w has abelian periods p = p′d and q = q′d and length |w| ≥ 2p′q′d − 1 for

integers d, p′, q′, then |alph(w)| ≤ d.

Moreover, if the difference ||v0| − |u0|| of the lengths of the heads of the two periods p and q is not a

multiple of d, then the previous bound can be reduced to 2p′q′d− 2.

Example 32. Let w = 010201001201020102001 of length 21. Since w can be factored as

w = u0u1u2u3u4u5 = 010 · 2010 · 0120 · 1020 · 1020 · 01
= v0v1v2v3 = 0102 · 010012 · 010201 · 02001

it follows that w has abelian periods 4 = 2 · 2 and 6 = 3 · 2, and we have ||v0| − |u0|| = 1, which is not a

multiple of d = 2. One can see that w cannot be extended to the left nor to the right keeping the same abelian

periods with this factorization. Nevertheless, w can also be factored as

w = v′0v
′
1v

′
2v

′
3 = 01020 · 100120 · 102010 · 2001

and now ||v′0| − |u0|| = 2 = d. One can verify that with these factorizations w can be extended to the right

with the letter 0 keeping the abelian periods 4 and 6, resulting in a word of length 22 = 2 · 3 · 2 − 2. In

accordance with Theorem 31, the word w0 cannot be extended to the left nor to the right to a word of length

23 = 2 · 3 · 2− 1 having abelian periods 4 and 6.

Interestingly enough, in the classical version, the Fine and Wilf’s theorem basically says that if a word

has two periods p and q and is long enough, then it also has period gcd(p, q). This fact cannot be extended

to abelian periods which are not relatively prime. That is, if gcd(p, q) = d > 2, then the two abelian periods

p and q cannot impose the abelian period d, no matter how long the word is. In [32], the authors exhibited

an infinite word, w = (001110100011)ω, which has abelian periods 4 and 6, but not 2.

We now discuss abelian versions of another classical periodicity result, a central factorization theorem.

This result relates global periodicity of a word with its local periods, defined as the length of the shortest

square centered at each position. This relation can be stated for finite, infinite or biinfinite words (a biinfinite

word is a map from Z to Σd). For example, for biinfinite words the following holds:

Theorem 33 ( [25]). A biinfinite word x is periodic if and only if there exists an integer l such that x has

at every position a centered square with period at most l.

A similar result holds for powers to the left of each position, although in this case a square is not enough

to guarantee periodicity, but the threshold is given by the golden ratio:

Theorem 34 ( [102]). A right-infinite word x is ultimately periodic if and only if there exists n0 such that

for every n ≥ n0 the word Prefn(x) has a ϕ2-suffix, where ϕ = (1 +
√
5)/2.

This bound is optimal; an example of an aperiodic word with (ϕ2 − ε)-suffix at each position is given by

the Fibonacci word.

These properties do not seem to generalize well for abelian powers. In particular, for each k, there exist

aperiodic words with an abelian 2k-power centered at each position:

Theorem 35. [6] For every integer k, there exists a bi-infinite aperiodic word with an abelian 2k-power

with period of length at most 2(k + 1)2 centered at each position.
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An infinite word x is called abelian periodic if x = v0v1 · · · , where vk ∈ Σ∗
d for k ≥ 0, and vi ∼ab vj for all

integers i, j ≥ 1; or abelian aperiodic otherwise. There exist words that are not abelian periodic, but contain

a centered abelian square of bounded length at each position [26]. Consider the family of infinite words of

the following form:

(000101010111000111000(111000)∗111010101)ω

where w∗ denotes zero or more repetitions of w and wω = www · · · denotes an infinite concatenation of copies

of w. Words of this form have an abelian square of length at most 12 at each position. It is not hard to see

that this family contains abelian aperiodic words.

6.2 Abelian primitive words

An abelian k-power is a nonempty word of the form w = w1w2 · · ·wk, where all w1, w2, . . . , wk have the same

Parikh vector. A word is called abelian primitive if it is not an abelian k-power for any k. A word w has

an abelian root u if u is a prefix of w and w is an abelian |w|/|u|-power. If u is an abelian root of length

ℓ of a word w of length n, then clearly w has also abelian roots of length ℓ′ for each ℓ′ multiple of ℓ that

divides n. If u is abelian primitive, then it is called an abelian primitive root. Recall that in the classical

case the primitive root of a word is unique. On the contrary, in the abelian case a word can have more than

one abelian primitive root. Indeed, the example from the previous section (due to [32]) gives an infinite word

with two distinct abelian periods not dividing each other, namely w = (001110100011)ω which has abelian

periods 4 and 6. The situation has been studied in [46], where it has been proved that if u and v are distinct

abelian primitive roots of the same word, then gcd(|u|, |v|) ≥ 2. The authors also gave upper and lower

bounds on the number of distinct abelian primitive roots of a word.

Another natural question is related to the generalization of the classical Lyndon–Schützenberger lemma:

Lemma 36. Let u, v be two words. Then uv = vu if and only if u and v have the same primitive root.

Let us write u ≈n v if u and v can be decomposed in the same number of contiguous blocks of length n

all having the same Parikh vector. For example, 012021012 ≈3 210120120. The following generalization of

Lemma 36 has been proved in [46]:

Lemma 37. Let u, v be two words such that uv ≈n vu. If u has an abelian primitive root of length n, then

v does as well, and these abelian primitive roots are the same.

Finally, in [46] it has been proved that the language of abelian primitive words is not context-free, while

an analogous result for primitive words is a longstanding open question (see [47]).

6.3 Abelian borders

A finite word is called bordered if it has a border, i.e., a proper prefix which is also a suffix, and unbordered

otherwise. A natural generalization is therefore: a finite word has an abelian border if it has a proper prefix

that is abelian equivalent to the suffix of the same length. If a word does not have any abelian border, it is

called abelian unbordered. Of course, if a word has a border then it has an abelian border, but there exist

unbordered words having an abelian border, e.g. the unbordered abelian square 00110101. Clearly, a word

of length n has an abelian border of length ℓ ≤ n/2 if and only if it has an abelian border of length n− ℓ.

Remember that if a word w has a border of length ℓ, then |w| − ℓ is a period of w. With the definition

of abelian period given in Definition 6, it is not always true that if w has an abelian border of length ℓ, then

|w| − ℓ is an abelian period of w.

In [65], the authors counted binary abelian bordered words via a bijection with irreducible symmetric

Motzkin paths. Besides that, the lengths of the abelian unbordered factors occurring in the Thue–Morse word
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are characterized using the automatic theorem-proving tool Walnut, a software package that implements a

mechanical decision procedure for deciding certain combinatorial properties of automatic sequences. We refer

to the recent book of J. Shallit for more results obtained using Walnut [139].

Concurrently and independently of [65], in [30] the authors proved the following result:

Theorem 38. [30] The number of binary words of length n with shortest abelian border of length k is

Θ( 2n

k
√
k
). In fact, that number is 2

√
2 2n

k
√
πk

+ o( 2n

k
√
πk

).

The exact number, however, has been recently found by Blanchet-Sadri, Chen and Hawes:

Theorem 39. [11] The number of binary words of length n with shortest abelian border of length k is

2n−2k+1 · 1
n

(

2n−2
n−1

)

.

A classical result of Ehrenfeucht and Silberger [51] gives a relation between periodicity and bordered

factors; it states that an infinite word is purely periodic if and only if it contains only finitely many unbordered

factors:

Theorem 40. [51] An infinite word x is purely periodic if and only if there exists a constant C such that

every factor v of x with |v| ≥ C is bordered.

If we replace periodic with abelian periodic, an analogous assertion does not hold: abelian periodicity

does not imply a finite number of unbordered factors. For example, the Thue–Morse word has abelian period

2, but contains unbordered factors of unbounded lengths since it is aperiodic. If we replace borders with

abelian borders, the reciprocal does not hold even in a stronger form: even if all long factors have short

abelian borders, the word does not have to be periodic.

Proposition 41. [26] There exist an infinite aperiodic word x and constants C, D such that every factor

v of x with |v| ≥ C has an abelian border of length at most D.

Whether it holds for abelian periodicity is an open question:

Problem 42. [26] Let x be an infinite word and C a constant such that every factor v of x with |v| ≥ C is

abelian bordered. Does it follow that x is abelian periodic?

However, there exists an abelian analogue of the following weaker version of Theorem 40:

Theorem 43. Let x be an infinite word having only finitely many unbordered factors. Then there exists a

constant N such that x contains at most N factors of each given length n ≥ 1. In other words, x has bounded

factor complexity.

Notice that boundedly many unbordered factors implies ultimate periodicity but not, in general, pure

periodicity. Take for example the word 01ω, which in fact has infinitely many unbordered factors.

Theorem 44. [26] Let x be an infinite word having only finitely many abelian unbordered factors. Then

there exists a constant N such that x contains at most N abelian equivalence classes of factors of each given

length n ≥ 1. In other words, x has bounded abelian complexity.

See also Subsection 8.2 for other generalizations of Theorem 40 in the abelian setting.

Abelian borders turn out to be a useful instrument for studying some combinatorial properties of words

which do not seem to be directly related at the first glance. For example, they give a necessary condition for

a word to be self-shuffling. An infinite word x is called self-shuffling if there exist sequences of finite words

(Ui)
∞
i=0 and (Vi)

∞
i=0 such that x =

∏∞
i=0 UiVi =

∏∞
i=0 Ui =

∏∞
i=0 Vi. In other words, x is a shuffle of two

copies of itself. The following proposition gives a necessary condition for a word to be self-shuffling:
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Proposition 45. [27] If x is self-shuffling, then for every positive integer N there exists a positive integer

M such that every prefix u of x with |u| ≥M has an abelian border v with |u|/2 ≥ |v| ≥ N . In particular, x

must begin in only a finite number of abelian unbordered words.

We discussed shuffling in relation with abelian squares in Subsection 4.3 .

Furthermore, abelian borders turn out to be useful for studying certain palindromicity properties. For

example, in [71] a notion of a minimal palindromic word has been introduced. Let w = w1 · · ·wn be a word

of length n over Σd, and let l ≤ n. Let s : N → N be an increasing map such that s(l) < n. Then the

word ws(1) · · ·ws(l) is a scattered subword of length l of w. Clearly, every binary word contains a palindromic

scattered subword of length at least half of its length – a power of the prevalent letter. A word is called

minimal palindromic if it contains a palindromic scattered subword longer than half of its length. Holub and

Saari [71] proved that minimal palindromic binary words are abelian unbordered. This has been recently

generalized to any size of the alphabet by Ago and Basic:

Theorem 46. [3] Minimal palindromic words are abelian unbordered.

7 Abelian properties of Sturmian words

A Sturmian word can be defined as an infinite word that has n + 1 distinct factors of each length n ≥ 0.

There exists a vast literature on Sturmian words (see, e.g., Chapter 2 in [96] for a presentation of the topic).

We now give some basic notions that are needed to present the results on their abelian combinatorics.

An infinite aperiodic binary word is Sturmian if and only if it is balanced, in the sense of Definition 2.

Therefore, for every n ≥ 0, the n + 1 factors of length n of a Sturmian word are partitioned in two abelian

equivalence classes (often called light factors and heavy factors, depending on the number of 1s they contain).

For example, the 5 factors of length 4 of the Fibonacci word are: 0010, 0100 (light factors), 0101, 1001 and

1010 (heavy factors).

A useful description of Sturmian words is the following. Given an irrational number 0 < α < 1 and a real

number ρ, the Sturmian word sα,ρ (resp., sα,ρ) with slope α and intercept ρ is the infinite word

sn = ⌊α(n+ 1) + ρ⌋ − ⌊αn+ ρ⌋

resp.,

sn = ⌈α(n+ 1) + ρ⌉ − ⌈αn+ ρ⌉,

for every n ≥ 0. We let I0 denote the interval [0, 1 − α), I1 the interval [1 − α, 1). Denoting by {θ} the

fractional part θ − ⌊θ⌋ of a real number θ, we have that for every n ≥ 0

sn =

{

0 if {ρ+ nα} ∈ I0,

1 if {ρ+ nα} ∈ I1.

The same expression can be written for sn with I0 = (0, 1− α] and I1 = (1 − α, 1].

Notice that sα,ρ = sα,ρ except when ρ+ nα is an integer for some n ≥ 0, that is, ρ is congruent to −nα
modulo 1, in which case the two words differ at position n, and also at position n− 1 if n > 0. In particular,

when ρ = 0, we have sα,0 = 0sα,α and sα,0 = 1sα,α. If ρ = α, the Sturmian word sα,α is called characteristic

or standard.

Recall that the (simple) continued fraction of an irrational number α, 0 < α < 1, is

α =
1

a1 +
1

a2 + . . .

(7.1)
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m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

km 2 4 6 2 11 3 3 17 2 5 4 2 29 2 3 8 2 8 3 2 46

Table 2: The first few values of the maximum exponent km of an abelian power of period m in the Fibonacci
word f . The values corresponding to the Fibonacci numbers are in bold.

and is usually denoted by its sequence of partial quotients as follows: α = [0; a1, a2, . . .]. Each finite truncation

[0; a1, a2, . . . , ai] is a rational number pi/qi (we take pi and qi coprime) called the i-th convergent to α. The

sequence (qi)i≥0 can be defined by: q−1 = 0, q0 = 1 and qn = anqn−1 + qn−2 for n ≥ 1. We say that

α = [0; a1, a2, . . .] has bounded partial quotients if the sequence (ai)i≥0 is bounded.

For example, one has ϕ − 1 = [0; 1, 1, . . .], where ϕ is the golden ratio, and the sequence (qi)i≥0 is the

sequence of Fibonacci numbers.

The characteristic Sturmian word sα,α of slope α, 0 < α < 1, can be obtained as the limit of the sequence

of words (sn)n≥0 defined recursively as follows: Let [0; d0 +1, d1, d2, . . .] be the continued fraction expansion

of α, and define s−1 = 1, s0 = 0 and sn+1 = sdn
n sn−1 for every n ≥ 0. Note that sα,α starts with letter 1

if and only if α > 1/2, i.e., if and only if d0 = 0. In this case, [0; d1 + 1, d2, . . .] is the continued fraction

expansion of 1− α, and s1−α,1−α is the word obtained from sα,α by exchanging 0’s and 1’s.

The finite words sn are called standard words. A standard word sn, n ≥ 1, is always of the form sn = c01

or sn = c10, where c is a central word (recall from Sec. 6 that a central word is a word that has two coprime

periods p and q and length equal to p+ q − 2).

It is known that two Sturmian words have the same set of finite factors if and only if they have the same

slope α. Hence, in what follows, we will write sα to denote any Sturmian word of slope α.

7.1 Abelian powers in Sturmian words

Richomme, Saari and Zamboni [128] proved that in every Sturmian word, for any position and for every

positive integer k, there is an abelian k-power starting at that position.

Recall that ‖α‖ denotes the distance between a real number α and the nearest integer, i.e., ‖α‖ =

min({α}, {−α}). In [56], the following result is proved:

Theorem 47. Let sα be a Sturmian word of slope α and m be a positive integer. Then sα contains an abelian

power of period m and exponent k ≥ 2 if and only if ‖mα‖ < 1
k . In particular, the maximum exponent km of

an abelian power of period m in sα is the largest integer k such that ‖mα‖ < 1
k , i.e.,

km =

⌊

1

‖mα‖

⌋

.

Example 48. In Table 2 we give the first values of the sequence km for the Fibonacci word f . We have

k2 = 4, since {2(ϕ − 1)} ≈ 0.236, so the largest k such that {2(ϕ − 1)} < 1/k is 4. Indeed, 10100101 is an

abelian power of period 2 and exponent 4, and the reader can verify that no factor of f of length 10 is an

abelian power of period 2.

For m = 3, since {−3(ϕ − 1)} ≈ 0.146, the largest k such that {−3(ϕ − 1)} < 1/k is 6. Indeed,

001001010010010100 is an abelian power of period 3 and exponent 6, and the reader can verify that no factor

of f of length 21 is an abelian power of period 3.
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7.2 Abelian critical exponent of Sturmian words

Mignosi and Pirillo proved that the critical exponent of the Fibonacci word is 2 + ϕ [101]. In general, the

critical exponent of a Sturmian word can be finite or infinite. The following theorem gives a characterization

of Sturmian words with finite critical exponent.

Theorem 49. [49,100] Let sα be a Sturmian word of slope α. The following are equivalent:

1. sα is β-free for some β;

2. α has bounded partial quotients;

3. sα is linearly recurrent.

Let α = [0; a1, a2, . . .] and suppose that the sequence (ai) of partial quotients of α is bounded. Let

pi/qi = [0; a1, a2, . . . , ai] be the sequence of convergents of α. Then the critical exponent χ(sα) of sα is given

by (see [18, 41, 143])

χ(sα) = max

{

a1, 2 + sup
i≥2

{ai + (qi−1 − 2)/qi}
}

Thus, the critical exponent of the Fibonacci word is the least critical exponent a Sturmian word can have.

Before studying the abelian critical exponent (see Definition 3) of Sturmian words further, we explore its

connection to a number-theoretical concept known as the Lagrange spectrum.

Definition 7. Let α be a real number. The Lagrange constant of α is defined as

λ(α) = lim sup
m→∞

(m‖mα‖)−1.

Let us briefly motivate the definition of the Lagrange constants. The famous Hurwitz’s Theorem states

that for every irrational α there exists infinitely many rational numbers n/m such that

∣

∣

∣
α− n

m

∣

∣

∣
<

1√
5m2

and, moreover, the constant
√
5 is best possible. Indeed, if α = ϕ− 1, then for every k >

√
5 the inequality

∣

∣

∣

n

m
− α

∣

∣

∣
<

1

km2

has only a finite number of solutions n/m.

For a general irrational α, the infimum of the real numbers λ such that for every k > λ the inequality

|n/m− α| < 1/km2 has only a finite number of solutions n/m, is indeed the Lagrange constant λ(α) of

α. The set of all finite Lagrange constants of irrationals is called the Lagrange spectrum L. The Lagrange

spectrum has been extensively studied, yet its structure is still not completely understood. Markov proved

that L∩ (−∞, 3) = {ℓ1 =
√
5 < ℓ2 =

√
8 < ℓ3 =

√
221/5 < . . .} where ℓn is a sequence of quadratic irrational

numbers converging to 3 (so the beginning of L is discrete). Then Hall proved that L contains a whole half

line, and Freiman determined the biggest half line that is contained in L, which is [cF ,+∞), with

cF =
2221564096+ 283748

√
462

491993569
= 4.5278295661 . . .

Using the terminology of Lagrange constants, we have the following direct consequence of Theorem 47.

Theorem 50. [56] Let sα be a Sturmian word of slope α. Then χab(sα) = λ(α). In other words, the abelian

critical exponent of a Sturmian word is the Lagrange constant of its slope.
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The abelian critical exponent of the Fibonacci word is
√
5. It is the smallest possible. Indeed, from

Theorem 50 one gets the following result.

Theorem 51. [56] For every Sturmian word sα of slope α, we have χab(sα) ≥
√
5.

Actually, thanks to Theorem 50, one can obtain a formula to compute the abelian critical exponent of a

Sturmian word, as in the classical case:

Proposition 52. Let sα be a Sturmian word of slope α. Then the abelian critical exponent of sα is

χab(sα) = lim sup
i→+∞

([ai+1; ai+2, . . .] + [0; ai, ai−1, . . . , a1]) .

In conclusion, one has the following generalization of Theorem 49 to the abelian case:

Theorem 53. [56] Let sα be a Sturmian word of slope α. The following are equivalent:

1. χab(sα) is finite;

2. α has bounded partial quotients;

3. sα is β-free for some β.

7.3 Abelian periods of factors of Sturmian words

The Fibonacci word has another remarkable property: the smallest period of any of its finite factors is a

Fibonacci number:

Proposition 54. [39] The set of smallest periods of factors of the Fibonacci infinite word is the set of

Fibonacci numbers.

This result can be generalized to abelian periods, in the sense of Definition 6. For example, the smallest

abelian period of 01001010 = 0 · 10 · 01 · 01 · 0 is 2.

Proposition 55. [56] The set of smallest abelian periods of factors of the Fibonacci infinite word is the set

of Fibonacci numbers.

For a general Sturmian word, Currie and Saari [39] characterized the set of the smallest periods of factors:

Theorem 56. [39] The set of smallest periods of factors of a Sturmian word of slope α having continued

fraction expansion [0; a1, a2, . . .] is {ℓqk + qk−1 | k ≥ 0, ℓ = 1, 2, . . . , ak+1}, where the sequence (qk) is the

sequence of denominators of convergents of α.

Peltomäki [114] gave a generalization of the latter result to the case of abelian periods, even though a full

characterization seems more involved in this case:

Theorem 57. [114] If m is the smallest abelian period of a nonempty factor of a Sturmian word of slope

α having continued fraction expansion [0; a1, a2, . . .], then either m = tqk for some k ≥ 0 and 1 ≤ t ≤ ak+1

or m = ℓqk + qk−1 for some k ≥ 1 and some 1 ≤ ℓ ≤ ak+1, where the sequence (qk) is the sequence of

denominators of convergents of α.
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7.4 Abelian returns

Definition 8. Let x be an infinite recurrent word. A word w is a first return (or simply a return) to a factor

u of x if wu is a factor of x and u occurs only twice in wu, as its prefix and as its suffix.

In other words, given a factor u of a recurrent word x, we know that u must eventually reoccur in x,

and we consider the factors of x between two consecutive occurrences of u (which may overlap) in w. For

example, in the Fibonacci word f , the returns to 101 are 10100 and 10100100.

Theorem 58. [144] An infinite word is Sturmian if and only if each of its factors has exactly two returns.

This is once again tight, because if a factor of an infinite recurrent word x has only one return, then x is

ultimately periodic. We now present an extension of this result to the abelian case.

We consider two abelian modifications of the notion of return word. Given a factor u of an infinite word

x, let n1 < n2 < n3 < . . . be all the integers ni such that wni
· · ·wni+|u|−1

is abelian equivalent to u. Then

we call each wni
· · ·wni+1−1 a semi-abelian return to u. By an abelian return to u we mean the abelian class

of wni
· · ·wni+1−1. We note that in both cases these definitions depend only on the abelian class of u. For

example, in the Fibonacci word, the word abelian class of 010 has three abelian ands semi-abelian returns: 0

(in the factors 0100 and 0010), 1 (in the factor 1001) and 01 (in the factor 01010).

Each of these notions of abelian returns gives rise to a characterization of Sturmian words. Moreover, the

characterizations are the same in terms of abelian and semi-abelian returns:

Theorem 59. A binary recurrent infinite word x is Sturmian if and only if each factor u of x has two or

three (semi-)abelian returns in x.

In [132], the authors define the set APRx as the set of all semi-abelian returns to all prefixes of an infinite

word x. This definition gives a characterization of Sturmian words of intercept 0 among all other Sturmian

words:

Theorem 60. [132] Let x be a Sturmian word. The set APRx is finite if and only if x does not have a

null intercept.

In [99], the authors provide explicit formulas for the cardinality of the set APRx of abelian returns of all

prefixes of a Sturmian word x in terms of the partial quotients of its slope, depending on the intercept. They

also provide a complete description of the set APRx for characteristic Sturmian words.

In [119], the result from Theorem 60 is generalized to rotation words, another generalization of Sturmian

words. Given α, β ∈ (0, 1) and ρ ∈ [0, 1), the rotation word r = r(α, β, ρ) is the word r = r0r1 · · · satisfying,
for all i ≥ 0,

ri =

{

1, if Ri
α(ρ) ∈ [1− β, 0);

0, otherwise.

Theorem 61. [119] Let α be irrational. Let m be an integer. Let r = r(α, {mα}, ρ) be a rotation word.

The set APRr is finite if and only if ρ /∈ {{−iα}|0 ≤ i < m}.

7.5 Minimal abelian squares

A square is called minimal if it does not have square prefixes. For example, 0101 is a minimal square, while

001001 is not.

Theorem 62. [136] Any aperiodic word contains at least 6 minimal squares.
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Every Sturmian word contains exactly 6 minimal squares — however, there are aperiodic words with

exactly 6 minimal squares that are not Sturmian.

For example, the minimal squares of the Fibonacci word are: 00, 0101, 1010, 010010, 100100 and

1001010010. Moreover, in each position of the Fibonacci word one of these squares starts.

Thus, one can also consider the decomposition of a Sturmian word s in these minimal squares. By deleting

half of each square one obtains a new infinite word
√
s, and this word is again a Sturmian word and has the

same slope of s [110].

In the case of the Fibonacci word

f = 010010 · 100100 · 1010 · 0101 · 00 · 1001010010 · 0101 · 00 · 1010 · · ·

one obtains the Sturmian word

√

f = 010 · 100 · 10 · 01 · 0 · 10010 · 01 · 0 · 10 · · ·

There is a generalization of Theorem 62 to the abelian setting:

Theorem 63. [136] Any aperiodic word contains at least 5 minimal abelian squares.

Here, a minimal abelian square is one such that none of its proper prefixes is an abelian square.

Sturmian words have exactly 5 minimal abelian squares, and in each position one of these 5 minimal

abelian squares starts. For example, the minimal abelian squares of the Fibonacci word are 00, 010010, 0101,

1001 and 1010.

One can also consider the decomposition of a Sturmian word s in these minimal abelian squares. By

deleting half of each abelian square one obtains a new infinite word ab
√
s, and this word is again a Sturmian

word with the same slope of s [109].

In the case of the Fibonacci word, for example, the decomposition in minimal abelian squares is

f = 010010 · 1001 · 00 · 1010 · 0101 · 00 · 1001 · 010010 · 0101 · 00 · 1010

and one has ab
√
f =

√
f .

8 Modifications of abelian equivalence

In these section we discuss some relevant modifications of the notion of abelian equivalence.

8.1 k-abelian equivalence

Let k be a positive integer. Two words u and v are k-abelian equivalent, denoted by u ∼k v, if |u|t = |v|t for
every word t of length at most k, where |w|t denotes the number of occurrences of the factor t in w. This

defines a family of equivalence relations ∼k, bridging the gap between the usual notion of abelian equivalence

(when k = 1) and equality (when k = ∞).

Equivalently, u and v are k-abelian equivalent if both the following conditions hold:

• |u|t = |v|t for every word t of length exactly k;

• Prefk−1(u) = Prefk−1(v) and Suffk−1(u) = Suffk−1(v) (or u = v, if |u| < k − 1 or |v| < k − 1).

For instance, 00101 ∼2 01001, but 00101 ≁2 00011. It is clear that k-abelian equivalence implies k′-abelian

equivalence for every k′ < k. In particular, k-abelian equivalence for any k ≥ 2 implies abelian equivalence,

that is, 1-abelian equivalence.
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8.1.1 Avoidance

Similarly to usual and abelian powers, we naturally define a k-abelian l-power as a concatenation of l words

that are k-abelian equivalent one to another. The basic problem to consider is k-abelian avoidability. We

ask what is the size of the smallest alphabet where k-abelian squares or cubes can be avoided, for a fixed

k. Clearly, the size of the smallest alphabet for k-abelian avoidability lies between the smallest sizes of the

alphabet necessary for avoiding abelian and usual powers. For example, as squares are avoidable over a

3-letter alphabet and abelian squares are avoidable over a 4-letter alphabet (see Theorem 16), we have that

the smallest alphabet over which k-abelian squares are avoidable consists of 3 or 4 letters.

Theorem 64. [73,122] The following holds:

• The longest ternary word which is 2-abelian square-free has length 537, so there does not exist an infinite

2-abelian square-free word over a ternary alphabet.

• 2-abelian-cubes are avoidable over a binary alphabet.

• 3-abelian-squares are avoidable over a ternary alphabet.

Similarly to Theorem 19 in the abelian case, the following has been shown:

Theorem 65. [124, 125] One can avoid 3-abelian-squares of period at least 3 in infinite binary words, 2-

abelian-squares of period at least 2 in infinite ternary words, and 2-abelian squares of period more than 63 in

infinite binary words.

8.1.2 Complexity

Given an infinite word x, we consider the associated complexity function p
(k)
x = |(Fact(x) ∩ Σn

d )/∼k|, which
counts the number of k-abelian equivalence classes of factors of x of length n.

Theorem 66. [82] Let k be a positive integer and x an aperiodic word. The following conditions are

equivalent:

• x is Sturmian;

• p
(k)
x (n) =

{

n+ 1 for 0 ≤ n ≤ 2k − 1,

2k for n ≥ 2k.

Interestingly, the 2-abelian complexity of the Thue-Morse word is unbounded [83] (unlike the abelian

complexity). Moreover, the 2-abelian complexity of the Thue-Morse word, as well as the period-doubling

word, is a 2-regular sequence [108].

Theorem 67. [82] Fix k ≥ 1. Let x be an infinite word over a finite alphabet Σ having bounded k-abelian

complexity. Let D ⊆ N be a set of positive upper density, that is

lim sup
n→∞

|D ∩ {1, 2, . . . , n}|
n

> 0.

Then, for every positive integer N , there exist i and l such that {i, i + l, i + 2l, . . . , i + Nl} ∈ D and the

N consecutive blocks (x[i + jl, i + (j + 1)l− 1])0≤j≤N−1 of length l are pairwise k-abelian equivalent. In

particular, x contains k-abelian powers for arbitrarily large k .
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Figure 1: Illustration of a k-switching.

8.1.3 k-abelian classes

In this section, we deal with equivalence classes of Σ∗
d under k-abelian equivalence.

Theorem 68. [82] Let k ≥ 1 and Σd a d-letter alphabet, d ≥ 2. The number of k-abelian equivalence classes

of Σn
d is Θ(ndk−dk−1

).

Now we describe rewriting rules of words, which preserve k-abelian equivalence classes and give a char-

acterization of k-abelian equivalence.

Let k ≥ 1 and let u = u1 · · ·un. Suppose that there exist indices i, j, l andm, with i < j ≤ l < m ≤ n−k+
2, such that u[i, i+ k − 1) = u[l, l+ k − 1) = x ∈ Σk−1

d and u[j, j + k − 1) = u[m,m+ k − 1) = y ∈ Σk−1
d .

We thus have

u = u[1, i) · u[i, j) · u[j, l) · u[l,m) · u[m..],

where u[i..] and u[l..] begin with x and u[j..] and u[m..] begin with y. Note here that we allow l = j (in this

case y = x). We define a k-switching on u, denoted by Su,k(i, j, l,m), as

Su,k(i, j, l,m) = u[1, i) · u[l,m) · u[j, l) · u[i, j) · u[m..]. (8.1)

Roughly speaking, the idea is to switch the positions of two factors that both begin and end with the

same factors of length k − 1, and we allow the situation where the factors can overlap.

Example 69. Let u = 0010101000101 and let v = Su,4(2, 3, 4, 11). By (8.1), we have v = 0·0101000·1·0·101.
One can check that u ∼4 v.

Let us define a relation Rk on words by uRkv if and only if u = v or v = Su,k for some k-switching of u.

Now Rk is clearly reflexive and symmetric. The transitive closure R∗
k of Rk is thus an equivalence relation.

In fact, the relations ∼k and R∗
k actually coincide:

Proposition 70. [78] For two words u, v, we have u ∼k v if and only if uR∗
kv.

This characterization can be used for studying the cardinality of k-abelian equivalence classes. For

example, using this characterization, the following upper bound has been established on the number of

k-abelian singleton classes, i.e., classes containing exactly one element:

Theorem 71. [78] The number of k-abelian singleton classes is of order O(nNd(k−1)−1), where

Nd(l) =
1
l

∑

q|l
ϕ(q)dl/q

is the number of conjugacy classes of words of length l over Σd and ϕ is the Euler’s totient function.

It is worth noticing that this bound is conjectured to be tight; in fact the number of k-abelian singleton

classes is of order Θ(nNd(k−1)−1). In [23] it is proved that the sequences of the numbers of singletons, as well

as the numbers of k-abelian classes of length n, are both N-rational (see, e.g., [9] for the definition). Using

28



this result, the following precise values for the numbers Sk,d(n) of singular k-abelian classes of length n over

Σd were obtained for small k and small alphabets:

Proposition 72. [23]

1. For all n ≥ 4, S2,2(n) = 2n+ 4;

2. For all n ≥ 9, S3,2(n) =
1
2n

2 + 16n+ 2
3

(

e
2πi
3 n + e−

2πi
3 n
)

− 535
12 − 3

4 (−1)n;

3. For all n ≥ 6, S2,3(n) = 3n2 + 27n− 63.

Moreover, Whiteland [146, Proposition 6.7] gave a formula for S4,2(n).

Among other studies on k-abelian equivalence, we would like to mention the classification of existence of

k-abelian palindromic poor words [22], as well as a k-abelian version of Fine and Wilf’s Lemma [79].

Finally, Peltomäki and Whiteland [113] extended the results of Sec. 7.2 on the abelian critical exponent

of Sturmian words to the case of k-abelian equivalence.

8.2 Weak abelian equivalence

In this subsection we consider another modification of abelian equivalence: Two finite words u and v are

called weak abelian equivalent if they have the same frequencies of letters. For a finite word w ∈ Σ+
d , the

frequency ρa(w) of a letter a ∈ Σd in w is defined as ρa(w) =
|w|a
|w| . In other words, in the case of weak abelian

equivalence only frequencies of letters are taken into account, but not the lengths of the words. Clearly, weak

abelian equivalent words are abelian equivalent if and only if they have the same lengths.

We define a weak abelian power as a concatenation of weak abelian equivalent words. In [63] the authors

explore the avoidance of weak abelian powers:

Theorem 73. The following holds true:

• Every binary word contains weak abelian k-powers for each k.

• There exists an infinite ternary word containing no weak abelian (511 + 1)-powers.

The number (511 + 1) seems to be far from being optimal.

Recall that an infinite word w is called abelian periodic if w = v0v1 · · · , where vk ∈ Σ∗
d for k ≥ 1, and

vi ∼ab vj for all integers i, j ≥ 1.

Definition 9. An infinite word w is called weakly abelian periodic if w = v0v1 · · · , where vi ∈ Σ+
d , ρa(vi) =

ρa(vj) for all a ∈ Σd and all integers i, j ≥ 1.

In other words, a weakly abelian periodic word is an infinite weakly abelian power (with a preperiod).

Definition 10. An infinite word w is called bounded weakly abelian periodic if it is weakly abelian periodic

with bounded lengths of blocks, i.e., there exists C such that for every i we have |vi| ≤ C.

One can consider the following geometric interpretation of weak abelian equivalence. Let w = w1w2 · · ·
be a finite or infinite word over a finite alphabet Σd. We translate w to a graph visiting points of the infinite

rectangular grid by interpreting letters of w as drawing instructions. In the binary case, we associate 0 with

a move by vector v0 = (1,−1), and 1 with a move v1 = (1, 1). We start at the origin (x0, y0) = (0, 0). At

step n, we are at a point (xn−1, yn−1) and we move by a vector corresponding to the letter wn, so that we

come to a point (xn, yn) = (xn−1, yn−1) + vwn
, and the two points (xn−1, yn−1) and (xn, yn) are connected

with a line segment. So, we translate the word w to a path in Z2. We denote the corresponding graph by gw.

Hence, the graph of a word is a piecewise linear function with linear segments connecting integer points (see
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Figure 2: The graph of the regular paperfolding word with v0 = (1,−1), v1 = (1, 1).

Example 1). It is easy to see that for weakly abelian equivalent words the final points of their graphs and

the origin are collinear, and weakly abelian periodic word w has a graph with infinitely many integer points

on a line with rational slope. Note that instead of the vectors (1,−1) and (1, 1), one can use any other pair

of noncollinear vectors v0 and v1. For a k-letter alphabet one can consider a similar graph in Zk.

Example 74. Recall the regular paperfolding word p = 001001100011 · · · The graph corresponding to the

regular paperfolding word with v0 = (1,−1), v1 = (1, 1) is displayed in Fig. 2. The regular paperfolding

word is not balanced and is weak abelian periodic along the line y = −1 (and actually along any line y = C,

C = −1,−2, . . . ).

In [8], general properties of weak abelian periodicity are studied; in particular, its relationships with the

notions of balance and letter frequency. Also, a characterization of weak abelian periodicity of fixed points

of binary uniform substitutions is provided.

Another result on weak abelian periodicity is a modification of a classical result of Ehrenfeucht and

Silberger on the relationship between periodicity and bordered factors, see Theorem 40. We say that a

finite word u is (weakly) abelian bordered if u contains a non-empty proper prefix which is (weakly) abelian

equivalent to a suffix of u. Although Theorem 40 does not seem to generalize well for abelian equivalence

relation (see a discussion in Subsection 6.3), a similar assertion does hold, surprisingly, for weak abelian

periodicity:

Theorem 75. [8] Let w be an infinite word. If there exists a constant C such that every factor v of w with

|v| ≥ C is weakly abelian bordered, then w is bounded weakly abelian periodic.

However, the converse of the previous statement does not hold. An example of a weakly abelian periodic

word with arbitrarily many weak abelian unbordered factors is given by the word 0102120313 · · · 0n1n · · · .

8.3 k-binomial equivalence

In this subsection we introduce another notion of equivalence refining the abelian equivalence, namely, the

k-binomial equivalence.

The binomial coefficient

(

u

v

)

of two words u and v is defined as the number of occurrences of v as a

scattered subword (see Sec. 6.3 for the definition of scattered subword) in u.

The name comes from the fact that for two natural numbers p > q and for a letter a, one has

(

ap

aq

)

=

(

p

q

)

and
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(

ua

vb

)

=























(

u

vb

)

+

(

u

v

)

, if a = b;

(

u

vb

)

, otherwise.

Definition 11. Two words x and y are k-binomially equivalent, denoted by x ∼bin
k y if, for each word v of

length at most k, one has

(

x

v

)

=

(

y

v

)

.

In other words, two words are k-binomially equivalent if they contain the same number of occurrences of

subwords of length at most k.

Since

(

u

a

)

= |u|a for every a ∈ Σd, it is clear that two words u and v are abelian equivalent if and

only if u ∼bin
1 v. As it holds for k-abelian equivalence, we have a family of refined relations: for all u, v ∈ Σ∗

d,

k ≥ 1, u ∼bin
k+1 v implies u ∼bin

k v.

Example 76. The words 0101110 and 1001101 are 2-binomially equivalent, since for both words we have

coefficients:

(

u

0

)

= 3,

(

u

1

)

= 4,

(

u

00

)

= 3,

(

u

01

)

= 7,

(

u

10

)

= 5,

(

u

11

)

= 6. On the other

hand, they are not 3-binomially equivalent: As an example, we have

(

0101110

001

)

= 3 but

(

1001101

001

)

= 5.

Also, this example shows that the k-binomial equivalence is different from k-abelian equivalence: these two

words are clearly not 2-abelian equivalent.

The following proposition gives the growth order of the number of m-binomial classes for binary words:

Proposition 77. [29,131] Let k ≥ 2. We have

Σn
2/ ∼bin

k ∈ O(n(k−1)2k−1+1).

In particular, for k = 2,

Σn
2/ ∼bin

2 = n3 + 5n+ 6.

This bound can be extended to non-binary alphabets:

Proposition 78. [89] Let k ≥ 1. We have

Σn
m/ ∼bin

k ∈ O(nk2

mk).

Definition 12. The k-binomial complexity b
(k)
x of an infinite word x over Σd maps an integer n to the

number of k-binomial equivalence classes of factors of length n occurring in x:

b(k)x (n) = |(Fact(x) ∩ Σn
d )/ ∼bin

k |.

Note that b
(1)
x corresponds to the usual abelian complexity ax. We have the following relations: for all

k ≥ 1, b
(k)
x (n) ≤ b

(k+1)
x (n) and ax(n) ≤ b

(k)
x (n) ≤ px(n).

Theorem 79. [131] Let k ≥ 2. If x is a Sturmian word, then b
(k)
x (n) = n+ 1 for all n ≥ 0.
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Remark 80. If x is a right-infinite word such that b
(1)
x (n) = 2 for all n ≥ 0, then x is clearly balanced. If

b
(2)
x (n) = n + 1, for all n ≥ 0, then the factor complexity function px is unbounded and x is aperiodic. As

a consequence of Theorem 79, an infinite word x is Sturmian if and only if, for all n ≥ 0 and all k ≥ 2,

b
(1)
x (n) = 2 and b

(k)
x (n) = n+ 1.

A similar result holds for the Tribonacci word, which belongs to the family of Arnoux–Rauzy words (see

the Preliminaries section for the formal definition of Arnoux–Rauzy words). The factor complexity of every

ternary Arnoux–Rauzy word is equal to 2n + 1, and for the Tribonacci word it turns out to be equal to its

k-binomial complexity:

Theorem 81. [90] Let k ≥ 2 and tr be the Tribonacci word. Then b
(k)
tr

(n) = 2n+ 1 for all n ≥ 0.

The proof is surprisingly involved and is completely different from the proof for Sturmian words.

In contrast with Sturmian words and the Tribonacci word, which have the same binomial and factor com-

plexity, certain morphic words (in particular, the Thue–Morse word) have a bounded k-binomial complexity.

Definition 13. Let ϕ be a substitution. If ϕ(a) ∼ab ϕ(b) for all a, b ∈ Σd, then ϕ is said to be Parikh-constant.

In particular, a Parikh-constant substitution is m-uniform for some m, i.e., for all a ∈ Σd, |ϕ(a)| = m.

Theorem 82. [131] Let x be an infinite word that is a fixed point of a Parikh-constant substitution. Let

k ≥ 2. There exists a constant C > 0 (depending on x and k) such that the k-binomial complexity of x

satisfies b
(k)
x (n) ≤ C for all n ≥ 0.

This result has recently been extended to Parikh-collinear substitutions, i.e., substitutions such that the

images of all letters have collinear Parikh vectors [133]. Equivalently, Parikh-collinear morphisms can be

defined as morphisms which map all infinite words to words with bounded abelian complexity [24].

Similarly to other modifications of abelian equivalence, we can define a k-binomial square (resp., cube

or l-power) as a concatenation of two (resp., three or l) k-binomial equivalent words. The natural questions

concern avoidability and minimal sizes of the alphabets which allow one to avoid certain powers.

Theorem 83. [123] 2-binomial squares (resp. cubes) are avoidable over a 3-letter (resp. 2-letter) alphabet.

The sizes of the alphabets are optimal.

Remark 84. An example of an infinite word avoiding 2-binomial squares (resp., cubes) is given by the fixed

point x = 012021012102012021020121 · · · (resp., y = 001001011001001011001011011 · · ·) of the substitution

g (resp., h):

g :















0 7→ 012,

1 7→ 02,

2 7→ 1;

h :

{

0 7→ 001,

1 7→ 011.

8.4 Additive powers

In this subsection we assume our finite alphabet is a subset of N. An additive k-power is a finite nonempty

word of the form x1x2 · · ·xk where |x1| = · · · = |xk| and
∑

x1 =
∑

x2 = · · · = ∑

xk, where by
∑

xi we

mean the sum of the elements appearing in the word xi. It is worth mentioning that a modification of this

definition without the condition on equal lengths is less interesting, since additive k-powers are unavoidable

if the words do not have to have the same length [67]. Since two words of the same length over {0, 1} have

the same sum if and only if they are permutations one of each other, Dekking’s result on avoiding abelian

4-powers in binary words (see Theorem 16) shows that it is possible to avoid additive 4-powers.
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Theorem 85. [20] The fixed point

x = 031430110343430310110110314303434303434303143011031011011031011 · · ·

of the substitution 0 → 03, 1 → 43, 3 → 1, 4 → 01 avoids additive cubes.

Moreover, additive cubes can be avoided for any alphabet which is not equivalent to {0, 1, 2, 3} in the

following sense (the remaining case of {0, 1, 2, 3} is open so far):

Theorem 86 ( [92, 93]). For any set Σ ⊆ N of size 4 such that Σ cannot be obtained by applying the same

affine function to all the elements of {0, 1, 2, 3}, there is an infinite word over Σ avoiding additive sums.

However, the size of the alphabet to avoid additive cubes considered in the previous theorems is not

optimal. Since an abelian cube is necessarily an additive cube, and we know it is impossible to avoid abelian

cubes over an alphabet of size 2, the alphabet size cannot be 2. The minimal size of the alphabet to avoid

additive cubes has recently been shown to be 3 by M. Rao [122]. The question on whether it is possible

to avoid additive squares remains open. However, it is possible to avoid additive squares over Z2 (with

componentwise addition defined on vectors):

Theorem 87. [125] The fixed point h∞add

(

0

0

)

of the following substitution does not contain any additive

square.

hadd :















































(

0

0

)

→
(

0

0

)(

2

1

)(

2

0

) (

1

1

)

→
(

0

0

)(

0

1

)(

1

0

)

(

2

1

)

→
(

1

1

)(

0

1

)(

1

0

) (

0

1

)

→
(

1

1

)(

0

1

)(

2

1

)

(

2

0

)

→
(

0

0

)(

1

0

)(

2

0

) (

1

0

)

→
(

1

1

)(

2

1

)(

2

0

)

9 Miscellanea

9.1 Abelian subshifts

In the subsection, we consider an abelian version of the symbolic dynamical notion of a subshift. The

subsection is based on [80, 81, 117].

Similarly to the notion of a subshift (see Preliminaries section), the abelian subshifts are defined as follows:

For a subshift X ⊆ ΣN the abelian subshift of X is defined as

AX = {y ∈ ΣN : ∀u ∈ Fact(y), ∃v ∈ Fact(X) with u ∼ab v}.

Taking as X a subshift generated by an infinite word x, one has an abelian subshift Ax generated by the

infinite word x. Observe that for any x ∈ ΣN the abelian subshift Ax is indeed a subshift.

Example 88 (Thue–Morse word). Consider the abelian subshift of the Thue-Morse word tm. For odd lengths

tm has two abelian factors, and for even lengths three. Further, the number of occurrences of 1 in each factor

differs by at most 1 from half of its length. It is easy to see that any factor of any word in {ε, 0, 1} · {01, 10}N
has the same property, i.e., {ε, 0, 1} · {01, 10}N ⊆ Atm. In fact, equality holds: Atm = {ε, 0, 1} · {01, 10}N.
Indeed, let x ∈ Atm. Then x has blocks of each letter of length at most 2 (since there are no factors 000 and

111). Moreover, between two consecutive occurrences of 00 there must occur 11, and vice versa (otherwise
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we have a factor 001010 · · ·0100, where the number of occurrences of 1 differs by more than 1 from half of

its length). Clearly, such word is in {ε, 0, 1} · {01, 10}N. So, for the Thue-Morse word, its subshift is huge

compared to Ωtm: basically, it is a morphic image of the full binary shift.

9.1.1 On abelian subshifts of binary words

The following theorem gives a characterization of Sturmian words among binary words, in terms of abelian

subshifts. We remark that purely periodic balanced words are sometimes also called Sturmian (i.e., one can

consider Sturmian words with rational slope), and we follow this terminology in this section.

Theorem 89. [80] Let x ∈ {0, 1}N be a uniformly recurrent aperiodic word. Then Ax contains exactly one

minimal subshift if and only if x is Sturmian.

An equivalent statement of the previous theorem is the following:

Theorem 90. Let x be an aperiodic binary word. Then Ax = Ωx if and only if x is Sturmian.

However, none of the characterizations extends to non-binary alphabets: Let f = 010010100 . . . be the

Fibonacci word and let ϕ : 0 7→ 02, 1 7→ 12. Then for w = ϕ(f) one has Aw = Ωw (see Theorem 94).

The following theorem shows that abelian subshifts of non-Sturmian uniformly recurrent binary words

cannot contain finitely many minimal subshifts:

Theorem 91. [117] Let x be a binary uniformly recurrent word which is not aperiodic or periodic Sturmian.

Then Ax contains infinitely many minimal subshifts.

This theorem, however, does not extend to the non-binary case either (see the next subsection).

9.1.2 On abelian subshifts of generalizations of Sturmian words to nonbinary alphabets

A natural question is how the characterization of Ωx = Ax from Theorem 90 extends to nonbinary alphabets.

The problem is open so far:

Problem 92. Characterize aperiodic non-binary words x such that Ωx = Ax.

In this section, we will see that the property Ωx = Ax does not characterize natural generalizations

of Sturmian words to nonbinary alphabets following different equivalent definitions of Sturmian words; in

particular, words of minimal complexity, balanced words and Arnoux–Rauzy words.

We start with aperiodic nonbinary words of minimal complexity. Over an alphabet Σd, the minimal factor

complexity of an aperiodic word is known to be n + d − 1. The structure of words of complexity n + C is

related to the structure of Sturmian words and is well understood (see [45, 55, 74]). We will make use of the

following description of aperiodic ternary words of minimal complexity:

Theorem 93 ( [55] as formulated in [74]). A recurrent infinite word x over Σ3 has factor complexity px(n) =

n+ 2 for all n ≥ 1 if and only if (up to permuting the letters) x ∈ Ωϕ(s), where s is a Sturmian word over

Σ2 and ϕ is defined

1. either by 0 7→ 02, 1 7→ 12;

2. or by 0 7→ 0, 1 7→ 12.

The abelian subshifts behave differently for a ternary alphabet and for larger alphabets:

Theorem 94. [81] Let x be a recurrent word of factor complexity n+ C for all n ≥ 1.
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1. For C = 2, if x is as in Theorem 93, item 1, then Ax = Ωx. If x is as in item 2, then Ax contains

uncountably many minimal subshifts.

2. If C > 2, then Ax contains exactly two minimal subshifts.

Now we examine aperiodic uniformly recurrent balanced words and their abelian subshifts. The structure

of such words is well understood and it has been described in [66, 72].

Theorem 95. [81] Let x be aperiodic recurrent and balanced. Then Ax is the union of finitely many minimal

subshifts.

Depending on the balanced word, its abelian subshift can contain either one or several minimal subshifts.

In fact, for any integer k, there exist words (not necessarily balanced) with abelian subshifts containing

exactly k minimal subshifts [81].

Finally, we discuss abelian subshifts of Arnoux–Rauzy words [5,48]. Apparently, the structure of abelian

subshifts of Arnoux–Rauzy words is rather complicated. For example, it is not hard to see that for any

Arnoux–Rauzy word with a characteristic word c its abelian subshift contains 20c (here we assume that 0 is

the first letter of the directive word x and 2 is the third letter occurring in x for the first time, i.e., x has a

prefix of the form 0{0, 1}∗1{0, 1}∗2). On the other hand, 20c /∈ Ωc, so Aw 6= Ωw for an Arnoux–Rauzy word

w. Hejda, Steiner and Zamboni studied the abelian shift of the Tribonacci word tr. They announced that

Atr \ Ωtr 6= ∅ but that Ωtr is the only minimal subshift contained in Atr [68, 147].

An interesting open question is to understand the general structure of the abelian subshifts of Arnoux–

Rauzy words:

Problem 96. Characterize abelian subshifts of Arnoux–Rauzy words.

9.2 Rich words and abelian equivalence

In this subsection, we exhibit a nice fact relating palindromes and abelian equivalence. It is easy to see that

a finite word of length n contains at most n + 1 distinct palindromes (including the empty word). Indeed,

adding a letter to a word, one can introduce at most one new palindrome. Words of length n containing n+1

distinct palindromes are called rich.

Proposition 97. [64] Any two rich words with the same set of palindromic factors are abelian equivalent.

Proof. Let w and w′ be two distinct rich words with the same set of palindromic factors. Any palindromic

factor of w (resp. w′) ending (and hence beginning) with a letter x ∈ Σ is the unique palindromic suffix of

some prefix of w (resp. w′). Thus the number of x’s in w (resp. w′) is the number of palindromic factors

ending with x. So, |w|x = |w′|x for each letter x ∈ Σ. Therefore, w and w′ are abelian equivalent.

The converse of the previous proposition does not hold true, in general. For example, 001 and 010 are

abelian equivalent rich words but their palindromic factors are different.

9.3 Abelian saturated words

Let f be an increasing function. An infinite word w is called abelian f(n)-saturated if there exists a constant

C such that each factor of length n contains at least Cf(n) abelian nonequivalent factors.

Theorem 98. [116] A binary infinite word cannot be abelian n2-saturated, but, for any ε > 0, there exist

abelian n2−ε-saturated binary infinite words.
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The examples of such words can be built using uniform morphisms of the following form:

σ : a 7→ aKb, b 7→ abK .

Choosing K large enough, one gets n2−ε-saturated binary infinite words [116]. The existence of abelian

n2-saturated infinite words over larger alphabets is an open question:

Problem 99. Do there exist abelian n2-saturated infinite words over alphabets of cardinality more than 2?
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Currie, Jarkko Peltomäki, Narad Rampersad, Michel Rigo, Markus Whiteland and Luca Zamboni for reading

a preliminary version of this paper and providing many valuable suggestions.

References

[1] A. Aberkane, J. Currie, and N. Rampersad. The number of ternary words avoiding abelian cubes grows

exponentially. J. Integer Seq., 7:04.2.7, 2004.

[2] B. Adamczewski. Balances for fixed points of primitive substitutions. Theoret. Comput. Sci., 307(1):47–

75, 2003.

[3] K. Ago and B. Basic. On highly palindromic words: The n-ary case. Discret. Appl. Math., 304:98–109,

2021.

[4] J.-P. Allouche and J. O. Shallit. Automatic Sequences – Theory, Applications, Generalizations. Cam-

bridge University Press, 2003.

[5] P. Arnoux and G. Rauzy. Représentation géométrique de suites de complexité 2n+ 1. Bulletin de la
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[82] J. Karhumäki, A. Saarela, and L. Q. Zamboni. On a generalization of abelian equivalence and com-

plexity of infinite words. J. Combin. Theory Ser. A, 120(8):2189–2206, 2013.
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