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An Input Observer-based Stiffness Estimation
Approach for Flexible Robot Joints

Adriano Fagiolini1, Maja Trumić2, and Kosta Jovanović3

Abstract—This paper addresses the stiffness estimation prob-
lem for flexible robot joints, driven by variable stiffness actuators
in antagonistic setups. Due to the difficulties of achieving consis-
tent production of these actuators and the time-varying nature
of their internal flexible elements, which are subject to plastic
deformation over time, it is currently a challenge to precisely
determine the total flexibility torque applied to a robot’s joint
and the corresponding joint stiffness. Herein, by considering the
flexibility torque acting on each motor as an unknown signal
and building upon Unknown Input Observer theory, a solution
for electrically-driven actuators is proposed, which consists of a
linear estimator requiring only knowledge about the positions
of the joints and the motors as well as the drive’s dynamic
parameters. Beyond its linearity advantage, another appealing
feature of the solution is the lack of need for torque and velocity
sensors. The presented approach is first verified via simulations
and then successfully tested on an experimental setup, comprising
bidirectional antagonistic variable stiffness actuators.

Index Terms—Flexible Robots, Natural Machine Motion, Cal-
ibration and Identification, Failure Detection and Recovery.

I. INTRODUCTION

SOFT robots have been brought into the limelight as
cutting-edge technology, primarily with the vision of en-

abling humans a harmless physical interaction with robots [1].
Practically divided into soft-bodied and articulated soft robots,
whose dynamics have just recently been shown to match
under suitable assumptions [2], they are intrinsically endowed
with the capacity of dynamically modulating elasticity while
moving, which opens many opportunities for the amelioration
of various life aspects [3], [4]. For articulated soft robots,
i.e. robots with elasticity concentrated mostly at their joints,
the achievement of human-like abilities, such as dexterity
and robustness, relies on the availability of so-called Variable
Stiffness Actuators (VSA). Most attention is nowadays turned
to electrically-driven VSAs, that enable accurate position and
velocity control, while also allowing online compliance adjust-
ment [5]. These actuators are generally preferred to their pneu-
matic and hydraulic counterparts for their greater compactness,
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Fig. 1. Block scheme of the algorithm for estimation of stiffness in flexible
robot joints, actuated by antagonistic VSA.

for being more silent, and not requiring external devices,
such as air compressors. Systems such as Kuka’s lightweight
robot, endowed with active compliance control [6], and other
novel cost-effective, open-source solutions, including e.g. the
products by Natural Machine Motion Initiative [7], are now
emerging on the market, all sharing the common aspiration to
empower faster development of this field.

The advantages of variable stiffness actuation arise in var-
ious tasks, such as when performing cyclic movements for
dribbling a ball [8], during explosive actions of autonomous
hammering [9], for safe human-robot interaction [10], and
indeed in many others. However, the key enabler of these
benefits is in fact the capacity of effectively controlling the
stiffness, at the joint or end-effector level. Different solutions
of closed-loop stiffness control have already been explored,
including feedback linearization [11], backstepping [12], adap-
tive control [13], LQR-based gain scheduling [14], all with
the assumption that an accurate and reliable stiffness estimate
is available. On the contrary, so far, since stiffness is not
measurable, its regulation is mostly done in open-loop, by
leveraging on model-based computation. In this case, one can
either do an extensive experimentation and identification, in
order to obtain an accurate stiffness model, or can rely on
datasheets from the manufacturers. Even in the case that the
provided datasheets are initially reliable, the continuous wear
induced by the impact of forces, acting on the elastic elements,
the temperature drifts, and the torque hysteresis eventually
result in additional inaccuracies [15]. This motivates the de-
velopment of online stiffness estimators, which is the goal of
the current paper.
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Previous work. The main concept behind the stiffness
estimation problem is that of finding the first derivative of the
flexibility torque with respect to the flexible transmission. Pio-
neering results focused on estimating Cartesian stiffness [16],
under the assumption that the robot’s end-effector is in contact
with the environment. Moreover, joint stiffness estimation
appears to be more convenient as it covers a general case when
the contact between robot and environment can also happen
sideway. To this regard, the online non-parametric stiffness
estimator presented in [17] is able to identify stiffness from
the link side, without needing any information of the actuating
drive. Beyond the need to compute the time derivative of
torque sensor from possibly noisy data, the practical appli-
cability of such approaches remains challenging also because
the state observability property is lost when the robot’s link is
in steady state.

A different perspective to the challenging problem of online
stiffness estimation, which uses also measurements from the
motor side, is the one offered by the promising research
line of the work in [18]. In the solution therein proposed,
joint stiffness estimator is achieved via a two-phase process:
first, an estimate of the flexibility torque applied to each
motor is obtained by using residuals, and then a Recursive
Least Square (RLS) algorithm is used to determine torque
and stiffness approximations, which are parameterized with
respect to the flexible transmission. The approach requires
knowledge of the motor speed, which is estimated through
a Modified Kinetic Kalman Filter (MKKF), whose parameters
have to be properly tuned [19]. Another interesting method
estimating instead stiffness in a direct way, and not requiring
the computation of time derivatives, is the one proposed
in [20], which uses so-called modulating functions. While
the approach is advantageous as it provides a proof of the
estimation error convergence, it requires an a-priori choice of
the RLS algorithm parameters and of the integration window
length, one of the modulating function parameter.

Contributions. This paper proposes an alternative technique
for the estimation of stiffness and flexibility torque in robot
joints. Similarly to above-mentioned methods, the challenge is
tackled here from the motor side, but here, as a pivotal point of
the strategy, by considering the flexibility torque signal as an
unknown input of the linear motor model. With this regard,
Unknown Input Observers (UIO) are useful tools that have
mainly been used for detecting system failures, by achieving
correct state estimation independently of the unknown inputs.
In this case, however, we focus on estimating the unknown
input, which is a nonlinear time-variant function of our system
variables. Among the input-observer categories studied in the
literature, so-called “delayed” input-observers [21], [22], [23]
are preferable for our problem as they provide more informa-
tion about the system. Indeed, thanks to the use of multiple
output values, collected over consecutive sampling times, they
are capable of estimating both the system’s states and inputs,
with a constant and predetermined delay, and they involve
looser existence conditions for the realization of the input-
observer. This leads us to the appealing feature of being able
to asymptotically reconstruct the unknown flexibility torque,
without velocity sensor measurements, otherwise necessary

with the observer obtained via the zero-delay approach [24].
Finally, compared to the approach in [25], the one in [21],
which we rely on, leads to a smaller state space of the observer.
Once flexibility torque is estimated via the UIO, the stiffness
is straightforwardly determined by the RLS.

Furthermore, compared to the solution presented in [17],
approaching the problem from the link side, the current
approach avoids the known observability issue and does not
require the installation of torque sensors, as it considers the
problem from the motor side. Moreover, compared to the
method presented in [19], the present one requires no tuning
of a Kalman Filter, thanks to the capacity of the UIO to
simultaneously estimate velocity of motors and flexibility
torque. However, similarly to [19], our approach estimates
both joint stiffness and flexibility torque, which is useful for
model-based control laws, but on the other hand it lacks
the proof of stiffness convergence which is provided instead
in [20]. Finally, while the approach in [20] requires a suitable
tuning of the integration window length depending on the
signal to be elaborated, our UIO-based approach involves
matrices that are a-priori determined and thus independent of
the signal rate. As a consequence, the UIO output alone tends
to be more susceptible to noise, but the concurrently running
RLS algorithm is capable of successfully compensating for it.
It is also worth mentioning that, thanks to the decentralized
structure of motor dynamic equations, our method can be
applied for the stiffness estimation in flexible joints of robots
with multiple degrees of freedom, joints driven by different
VSA configurations, and, consequently, for Cartesian stiffness
estimation based on joints’ positions and stiffnesses.

The paper is organized as follows. Section II introduces
the model of elastic joint driven by variable stiffness actuator
in antagonistic setup. The UIO existence conditions and the
design procedures are presented in Section III, thus leading to
the development of our flexibility torque estimator. Section IV
and V present a simulative evaluation of the solution and final
experimental results, respectively. Section VI summarizes the
achievements and presents a final discussion.

II. PROBLEM STATEMENT

Consider an n degree-of-freedom robot with flexible joints
driven by electrical VSAs in agonist-antagonistic configura-
tions. More precisely, each joint of the robot is actuated by
a couple of DC motors, which are connected to the joint
via tendons as in Fig. 1. By changing the internal motors’
positions, it is possible to vary both joint’s position (if motors
rotate in the same direction) and stiffness (when motors rotate
in opposite directions). As described in [26], the robot’s
dynamical model can be written as follows:

BL θ̈L + hL(θL, θ̇L) + τet (φ1, φ2) + g(θL) = τext ,

B1 θ̈1 +D1 θ̇1 − τe1 (φ1) = τ1 ,

B2 θ̈2 +D2 θ̇2 − τe2 (φ2) = τ2 ,

(1)

where θL ∈ Rn is the link angle vector, τet is the total
flexibility torque vector, and where θi ∈ Rn, τei , and τi
are the motor position vectors, flexibility torque vectors, and
commanded torque vectors, respectively, for the agonistic
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(i = 1) and antagonistic (i = 2) motor. Moreover, BL is
the robot link inertia matrix, hL(·) includes Coriolis, viscous
friction, and centrifugal terms, and g(·) is a vector of gravity
forces; matrices Bi = diag(bi,j) and Di = diag(di,j) contain
motor’s inertia and damping coefficients, respectively; finally,
τext is the external torque, assumed to be null in the remainder
of the work.

Furthermore, having denoted with φi = θL − θi the trans-
mission deflection vectors of the agonistic and antagonistic
motor’s transmission, the total flexibility torque τet , in the first
equation of the model, is given by

τet = τe1 (φ1) + τe2 (φ2) . (2)

The above element-wise dependency on the transmission de-
flection, i.e. the fact that for the j-th joint τei,j = τei,j(φi,j),
along with the diagonal form of the motor’s inertia and damp-
ing matrices, justifies a decentralized viewpoint of motor’s
dynamics. It can be assumed that the flexibility torque is an
odd function, meaning that compression and extension have
the same effect on transmission behavior. The components σi,j
of the stiffness vector σi of each transmission are by definition

σi,j(φi,j) =
∂τei,j
∂φi,j

(φi,j) ,

leading to the total joint stiffness

σt = σ1(φ1) + σ2(φ2) . (3)

Finally, for the i-th motor of the j-th joint, one can define
the state vector xi,j = (θi,j , θ̇i,j)

T , the input vector ui,j =
(τei,j , τi,j)

T , and the output vector yi,j = (θi,j , τi,j)
T . The

motor’s dynamics then reads

ẋi,j = Ac xi,j +Bc ui,j ,
yi,j = C xi,j +Dui,j ,

(4)

with

Ac =

(
0 1
0 −di,j/bi,j

)
, Bc =

(
0 0

1/bi,j 1/bi,j

)
,

C =

(
1 0
0 0

)
, D =

(
0 0
0 1

)
.

The aim is thus finding a solution for estimating the state and
the unknown input for each motor, which will also justify the
choice of output and feed-through matrices made above.

III. THE PROPOSED STIFFNESS ESTIMATION APPROACH

This section thoroughly presents the design procedure of
a UIO. First, a general framework for the observation of a
linear system with unknown inputs is recalled from [21]; then,
the properties of a DC motor system are explored and the
appropriate UIO is designed; finally, an RLS algorithm is
illustrated for stiffness estimation.

A. Theoretical Framework

The use of a so-called UIO filter has the advantage of
simultaneously allowing state estimation and unknown input
reconstruction. The main concept capitalizes on the equiva-
lence between linear system’s invertibility and unknown input
observability, which has been explored in [27], [28]. Let us
consider a linear, time-invariant, discrete-time system in a
general form

Xk+1 = AXk +B Uk ,
Yk = C Xk +DUk ,

(5)

where Xk ∈ Rn is a state vector, Uk ∈ Rm contains the
unknown inputs, Yk ∈ Rp is an output vector, A, B, C, and
D are suitable matrices. Given a time delay L, the history of
the system’s output YLk = (Y Tk , · · · , Y Tk+L)T , can be obtained
from [21] as

YLk = OLXk + HL ULk , (6)

where ULk = (UTk , · · · , UTk+L)T is the input history, and

OL =
(
CT , (CA)T , (CA2)T , · · · , (CAL−1)T

)T
=

=
(
CT , (OL−1A)T

)T
,

and

HL =


D 0 0 0 · · · 0
CB D 0 0 · · · 0
CAB CB D 0 · · · 0

...
...

...
...

. . .
...

CAL−1B CAL−2B · · · · · · CB D

 .

are the L-step observability and invertibility matrices, respec-
tively. A discrete-time linear UIO is given by

X̂k+1 = E X̂k + F YLk ,

Ûk = G

(
X̂k+1 −AX̂k

Yk − C X̂k

)
,

(7)

where E and F are observer matrices of suitable dimensions,
being designed such that X̂k → Xk and Ûk → Uk, and where
G = (BT , DT )T † is an input decoupling matrix, with full
column rank, and P † is the pseudo-inverse of a matrix P .

B. System properties

Given a sampling time T , by applying Euler’s method, the
motor dynamics in 4 can be converted to a discrete-time form
equivalent to 5, where A = I2 + TAc, B = TBc, and Id is
an identity matrix of size d. It is straightforward to conclude
that the system is fully observable. However, regarding the
existence conditions of a UIO, it is important to additionally
examine the invertibility and strong observability of the system
through the following:

Proposition 1 (System Invertibility): A linear dynamic sys-
tem with state form as in Eq. 5, with state vector Xk ∈ Rn
and Uk ∈ Rm, is invertible with delay L if, and only if, the
condition rank

(
HL
)

= m+ rank
(
HL−1

)
is satisfied for some

L 6 n, where rank
(
H−1

)
= 0 by definition.
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According to Prop. 1, the sought delay, allowing the un-
known input reconstruction, is L = 2, for which the observ-
ability and invertibility matrices are the following:

O2 =

 C
CA
CA2

 =

(
1 0 1 0 1 0
0 0 T 0 T (2 + βT ) 0

)T
,

H2 =

 D 0 0
CB D 0
CAB CB D

 =


0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
γ γ 0 0 0 0
0 0 0 0 0 1

 ,

where β = −di,jbi,j
and γ = T 2/bi,j . Moreover, as the system

output in Eq. 6 depends also on the initial state, whose
knowledge can be approximate, it is useful to check also the
system’s strong observability according to the following:

Definition 1: A discrete-time system as in Eq.5 is strongly
observable if, for any initial state X0 and any unknown input
sequence U0, U1, ..., there exists a positive integer L such that
X0 can be recovered from the output sequence Y0, Y1, ...

Proposition 2 (Strong Observability): A discrete-time sys-
tem in Eq. 5 where Xk ∈ Rn is strongly observable if, and
only if, for some L 6 n, it holds

rank
([
OL,HL

])
= n+ rank

(
HL
)
.

The strong observability condition is satisfied, in our case,
for a delay L = 2, which allows us to conclude that a
two-sample delay is necessary and sufficient for observing
unknown inputs.

C. Design procedure

We are now able to provide the following result:
Theorem 1 (Stiffness Estimator): Given the motor’s dynamic

model in Eq. 5, a UIO system estimating its state and
its unknown inputs, including the local flexibility torque, is
described by the state-form in Eq. 7, where L = 2 and

E =

(
1 T
− 1
T −1

)
, F =

(
0 0 0 0
0 0 T

bi,j
T
bi,j

)
,

G =

(
0 −bi,j 0 1
0 0 0 1

)
.

Proof 1: The conditions for the observer’s stability are
examined by driving the estimation error to zero, whose
dynamics is:

ek+1 = X̂k+1 −Xk+1 =

= E X̂k + F YLk −AXk −B Uk =
= E ek + F YLk + (E −A)Xk −B Uk =
= E ek + (E −A+ F OL)Xk

+ F HL ULk −B Uk ,
which leads to the conclusion that E has to be a stable matrix
and F has to be chosen so that following is satisfied:

F HL =
(
B 0 · · · 0

)
, (8a)

E = A− F OL . (8b)

The condition for the existence of matrix F is equivalent to the
one given in Prop. 1, while the matrix is obtained by following
the design procedure described in [21], [23], shortly presented
below.

First, let us take a look at the first Eq. 8a which is
also called input-decoupling equation, as it decouples input
from the estimation error. The matrix F can be expressed
as F = F̂ N = (F̂1, F̂2)N , where N is chosen such that

N HL =

(
0 0
Im 0

)
. This straightforwardly leads to the con-

clusion that F̂2 = B. Moving now on to the state-decoupling
equation 8b, named after property to decouple states and
estimation error, the design degree-of-freedom of matrix F̂1

is used to suitably allocate eigenvalues of E, in order to keep
it stable. If any desired eigenvalue position is given, robust
pole placement procedures such as the one described in [29]
are recommended. In the present case, all eigenvalues of E
are already in zero, thus realizing a dead-beat observer with
finite-time convergence, and hence matrix F̂1 is chosen to be
the null matrix. This finally yields the relation presented in
the theorem.

D. Recursive Least Square Algorithm

Once the flexibility torque has been estimated by the UIO,
an RLS algorithm is used to determine the coefficients of
a κ-th order parametric approximation of such torque with
respect to flexible transmission, being τ̂ei,j = Φi,j Πi,j , where
the quantities

Φi,j =
(
φi,j , φ

3
i,j , · · · , φ

2κ+1
i,j

)
,

Πi,j = (πi,j,1, πi,j,2, · · · , πi,j,κ)T ,

are a regressor matrix, comprising only odd powers of the
transmission deflection as we assumed flexibility torque odd-
ness, and the corresponding vector of unknown parameters,
respectively. The order κ is chosen so that the main features
are captured and simultaneously the estimation is denoised.
Having denoted with Π̂i,j [k] = (π̂i,j,1[k], · · · , π̂i,j,κ[k])T the
parameter vector estimated at the k-th step, the following RLS
algorithm proposed in [30] can be used:

εi,j [k] = τ̂ei,j [k]− Φi,j [k] Π̂i,j [k] ,

ρi,j [k] = ΦTi,j [k]Pi,j [k − 1] Φi,j [k] ,

Ki,j [k] = (1 + ρi,j [k])
−1

(Pi,j [k − 1] Φi,j [k]) ,

Π̂i,j [k] = Π̂i,j [k − 1] +Ki,j [k] εi,j [k] ,

Pi,j [k] = Pi,j [k − 1]−Ki,j [k] ΦTi,j [k]Pi,j [k − 1] ,

where Pi,j is the parameter covariance matrix. The algorithm
is initialized with an a-priori assumption of parameters Π̂i,j [0]
and a positive definite covariance matrix Pi,j [0]. Afterward,
stiffness is calculated as a first derivative of the flexibility
torque approximation:

σ̂i,j =
∂τ̂ei,j
∂φi,j

=
∂Φi,j
∂φi,j

Π̂i,j .

IV. SIMULATION VALIDATION

The proposed technique has first been validated in simula-
tions on a two degree-of-freedom soft robot, with rotary joints
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Fig. 2. Simulation run of a two degree-of-freedom flexible joint robot driven by antagonistic VSA. From left to right, commanded torques τi,j
applied to the motors and obtained transmission deflections φi,j , estimated total flexibility torque τ̂et,j for each joint and corresponding error percent-
age τ̃et,j = (τ̂et,j − τet,j)/τ

e
t,j , and estimated stiffness σ̂t,j in each joint and error percentage σ̃t,j = (σ̂t,j − σt,j)/σt,j . Both flexibility torques and stiffnesses

are estimated effectively with quite small relative error.

actuated by antagonistic VSAs, mounted in a vertical plane.
The simulated actuators are Qbmove Maker Pro with servo DC
motors provided by qb-robotics. According to the robot model
in Eq. 1 and data-sheets [31], the flexibility torque generated
by each drive and the corresponding stiffness are

τei,j = ki sinh(ai(θL,j − θi,j)) ,
σi,j = ai ki cosh(ai(θL,j − θi,j)) ,

(9)

where ai and ki denote VSA string characteristic, assumed to
be same for each joint. The total flexibility torque and stiffness
of the joint are straightforwardly determined in compliance
with Eq. 2 and 3. Nominal values for the stated VSA are bi,j =
3 · 10−6 [kgm2], di,j = 10−6 [Nms/rad], a1 = 6.7328 [Nm],
k1 = 0.0227 1/rad, a2 = 6.9602 [Nm], and k2 = 0.0216 1/rad.
Given the decentralized structure of motors’ dynamics (cf.
Sec. II) and the fact that motors have the same characteristics
by construction, the local flexibility torque at every motor i
can be estimated by a copy of the very same UIO, which
is designed only once, with a delay L = 2. Moreover, the
following Taylor expansion of the flexibility torque and the
corresponding stiffness approximation are used:

τ̂ei,j =
∑3
n=0(θL,j − θi,j)2n+1 πi,j,n+1 ,

σ̂i,j =
∑3
n=0(2n+ 1)(θL,j − θi,j)2n πi,j,n+1 .

Starting the RLS algorithm with complete lack of knowl-
edge of the parameter values, i.e. with a null Π̂i,j [0], and an
initial covariance matrix Pi,j [0] = 108I4, the simulation, run
with a sampling period of T = 10−3 [s], gives the results
reported in Fig. 2 and Fig. 3. More precisely, Fig. 2 shows
the commanded torques to drives, which are chosen to be
sinusoidal with the same amplitude of 0.15 [Nm] and with
different frequencies of 0.25 [Hz] for τ1,1, 0.06 [Hz] for τ1,2,
0.17 [Hz] for τ2,1, and 0.08 [Hz] for τ2,2, and corresponding
deflections. The figure also reports the total flexibility torque
and stiffness estimation via UIO and RLS algorithm, as well as
the relative error of the estimation with respect to the reference
models. It is apparent that the UIO accurately estimates the
flexibility torque with a negligible delay of 2 milliseconds.
Estimation errors of flexibility torque and joint stiffness of few
percents appear only during an initial phase, when the parame-
ters’ convergence has not been achieved yet. Furthermore, it is

Fig. 3. Temporal evolution of the parameter vectors estimated via the
RLS algorithm in Matlab/Simulink. Parameters rapidly converge and remain
constant.

TABLE I
EVALUATION CRITERIA FOR SIMULATED RESULTS

MSE [Nm2/rad2] MSREP [%]

Stiffness estimation 1st joint 1.84 · 10−7 3.34 · 10−7

2nd joint 1.92 · 10−7 3.38 · 10−7

Torque estimation 1st joint 1.49 · 10−11 2.85 · 10−9

2nd joint 1.62 · 10−11 2.84 · 10−9

worth noticing that the estimation performance is not affected
by the joints’ dynamic coupling, which is in accordance with
the result in [19], stating that the decentralized structure of
motor dynamics allows the approach to be applied also to
multiple degree-of-freedom robots. Moreover, Fig. 3 shows
the estimated parameters’ evolution over time. It is noticeable
that, with rigid robot links as in our case, the robot’s Cartesian
stiffness can be straightforwardly calculated based on its well-
known relation with joint stiffness [26]. Finally, Tab. I reports
a summary of the estimation performance for both torque and
stiffness in each joint. Given two sample sequences of a real
signal χ and an estimated signal χ̂, the Mean Square Error
(MSE) and Mean Square Relative Error Percentage (MSREP)
indices, used in the above table, are defined as follows:

MSE = 1
n2−n1+1

∑n2

n=n1
(χ(n)− χ̂(n))2 ,

MSREP = 1
n2−n1+1

∑n2

n=n1
(χ(n)− χ̂(n))

2
/χ2(n) ,

where n1 and n2 indicate the initial and final time interval.
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Fig. 4. Experiment #1 (One degree-of-freedom setup) - The left-most column includes the desired link position and joint stiffness, motors’ commanded
torques and obtained deflections; the mid and right-most columns report the estimated and model-based computed flexibility torques and stiffnesses without
and with parameter update termination, respectively.

Fig. 5. Experiment #1 (One degree-of-freedom setup) - Temporal evolution of
the parameter vectors experimentally estimated via the RLS algorithm without
update termination.

TABLE II
EXPERIMENT #1 - EVALUATION CRITERIA

MSE [Nm2/rad2] MSREP [%]

With drift Stiffness 0.5304 0.0187
Torque 8.8 · 10−6 3.3 · 10−5

Without drift Stiffness 0.0258 0.001
Torque 1.1 · 10−6 2.7 · 10−6

V. EXPERIMENTAL VALIDATION

This section presents results of the experimental validation
of the proposed approach for stiffness estimation, by using
a real soft robot with flexible joints. Joints are actuated by
Qbmove Maker Pro VSA devices [31], internally driven by two
Hitec DC servo motor drives. For each VSA, three magnetic
encoders with a resolution of 8192 pulses per revolution
measure the position of the two VSA’s motors and of the cor-
responding link, and two current sensors are used to measure
motors’ currents, thereby indirectly providing accurate infor-
mation about the achieved motor torque. Reference flexibility

torque and stiffness models are taken from the manufacturer’s
data-sheet and consists of the ones described in Eq. 9. A
sampling rate T = 5 · 10−3 [s] has been adopted.

In order to first prove the validity of our solution, two
experiments of increasing complexity have been designed.
Both of them include three consecutive test phases: 1) during
the first phase (for t ∈ [0, 200)), both link positions and
joint stiffnesses are chosen as sinusoids, 2) during the second
phase (t ∈ [200, 400)), only link positions are varying and
joint stiffnesses are constant, while 3) during the third phase
(t ∈ [400, 600]) link positions are constant and joint stiffnesses
are required to vary. One of the sought results from the
experiments is indeed also the assessment of the method’s
effectiveness, during different operational conditions. Robots
used for e.g. grasping tasks may be required to keep their link
positions constant, while varying their joint stiffnesses, while
when employed for manipulation they need to guarantee a
constant stiffness for changing position. More precisely, the
desired position and stiffness signals, during the three phases,
are as follows:

Phase 1:
{
θL,j(t) = 0.53 + 0.2 sin(πt/4) [rad] ,
σt,j(t) = 5 + 2.5 sin(πt/8) [Nm/rad] ;

Phase 2:
{
θL,j(t) = 0.53 + 0.2 sin(πt/4) [rad] ,
σt,j(t) = 5 [Nm/rad] ;

Phase 3:
{
θL,j(t) = 0.53 [rad] ,
σt,j(t) = 5 + 2.5 sin(πt/8) [Nm/rad] .

The first experiment has been carried out by using a soft
robot with only one degree of freedom, actuated by a single
VSA device. Fig. 4 and Fig. 5 report the obtained results.
The test reveals that our approach is capable of estimating
both flexibility torque and stiffness. It is noticeable that
simultaneous position and stiffness variations, which occur
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Fig. 6. Experiment #2 (Two degree-of-freedom setup) - The left-most column illustrates desired and commanded quantities for all joints and motors; the mid
and right-most column show estimation results for the first and second joint, respectively.

TABLE III
EXPERIMENT #2 - EVALUATION CRITERIA

Without drift MSE [Nm2/rad2] MSREP [%]

Stiffness estimation 1st joint 0.048 0.002
2nd joint 0.033 0.001

Torque estimation 1st joint 9 · 10−4 0.002
2nd joint 1.1 · 10−5 4 · 10−5

during the first phase, have a positive overall benefit to the
estimation process. Indeed, apart from the initial estimation
error of the RLS, due to the imprecise initialization of its
parameters, the algorithm itself shows good performance,
which only degrades when its input signals (including the
transmission deflection φi) are poorly exciting. To be more
precise, it is known from [19] that, to better estimate the time-
varying joint stiffness, it is necessary that the transmission
deflection φi covers larger ranges, so that more information
is provided to the estimation process. It is apparent that,
during the second phase, the transmission deflection is instead
almost constant (refer to the bottom-left plot in Fig. 4), which
leads to worse RLS performance, and, consequently, to the
observed drift of the stiffness estimation. Furthermore, the
estimation performance is improved when the input signal has
a richer spectral content. As a rule of thumb [30], given the
κ parameters of the RLS, it is advisable to have κ spectral
lines in the spectrum of the algorithm’s input signal, meaning
that the input signal is persistently exciting of order κ. To this
respect, by observing frequency domain of the transmission
deflection, the richest spectral content of the RLS input is
present during the first phase, where indeed it shows its best
accuracy. In line with this, if the transmission deflection is

Fig. 7. Torque model validation.

constant or it has poor frequency content with respect to the
number of the RLS algorithm parameters, then it presents
poor excitation to the RLS algorithm which becomes prone
to instability and divergence.

Therefore, a strategy to avoid this limitation and prevent
such negative side-effects (including the drift of stiffness
estimation in the second phase), is to stop the parameters’
update, whenever the poor excitation condition is detected. In
our experiment, during the first phase, when the input signal is
sufficiently exciting, parameters reach a combination of values
allowing an accurate enough estimation of the flexibility torque
function, and consequently of the stiffness. This in turn enables
good estimation performance even afterward (for t > 200 [s]),
when the parameter update is terminated (see the last column
of Fig. 4). The corresponding MSE and MSREP criteria are
presented in Tab. II.

Capitalizing on the outcomes of the first experiment, a
second test has been carried out by using a two degree-
of-freedom setup, with the main purpose to experimentally
validate the proposed method for multiple link robots with
flexible joints. Specifically, results reported in Fig. 6 show
that the dynamic coupling between joints does not impact the
performance of the flexibility torque and stiffness estimation
processes. As for the previous experiment, MSE and MSREP
criteria have been calculated and listed in Tab. III.
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As a final step towards the method validation, we have
verified the accuracy of the sensor model in Eq. 9 by using a
force/torque sensor ATI Axia80. Fig. 7 shows the comparison
of measured torque and model-based computation of it, during
a sinusoidal motion of the link.

VI. CONCLUSION

The problem of estimating stiffness in flexible robot joints
driven by electrical VSAs was addressed in this work. The
proposed solution included a delayed UIO, reconstructing flex-
ibility torques at each electrical drive, and an RLS algorithm,
subsequently obtaining stiffness from a parameterization of
the torque expression with respect to the flexible transmis-
sion. Validation via simulation showed that both flexibility
torque and stiffness are well estimated, while experimental
tests revealed a slow stiffness estimation drift in case of
poor excitation. However, as we showed, the problem can be
overcome by stopping parameter vector updates when such
condition occurs. Moreover, the solution has shown several
advantages. First, there are no observability issues, since the
problem is tackled from the motor side. Secondly, torque
and velocity sensors do not have to be mounted, as the UIO
simultaneously estimates the motor’s speed and reconstructs
the flexibility torque. Third, the observer’s matrices are a-priori
calculated, making tuning of this method easier than that of
state-of-the-art solutions. Fourth, thanks to the decentralized
property of motor’s dynamics, the proposed solution can be
applied to multiple degree-of-freedom articulated soft robots.
The main limitation of the method is the need for persistent
excitation of the RLS algorithm. However, we are confident
that, in the future, more elegant solutions can be found. Future
work will extend the research in order to also estimate other
relevant impedance parameters.
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