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Abstract. We investigate the existence of fixed points of self-mappings
via simulation functions and measure of noncompactness. We use dif-
ferent classes of additional functions to get some general contractive
inequalities. As an application of our main conclusions, we survey the
existence of a solution for a class of integral equations under some new
conditions. An example will be given to support our results.
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1. Introduction and Preliminaries

The research in fixed point theory is one of the most investigated topics
in metric spaces’ theory. Indeed, the method of proofs still very descendent
from the original one in the contraction principle is a simple and power-
ful tool to approach various problems in nonlinear analysis. Here, we focus
our attention on the concept of simulation function, recently introduced in
Khojasteh-Shukla-Radenović [10] which is a way to unify and extend certain
existing fixed point results in the literature. Based on this paper and the sub-
sequent one of Argoubi-Samet-Vetro [4] (where a slight modification of the
definition of simulation function is proposed), many authors established new
existence results in generalized metric spaces and solved fixed-point problems
involving integral equations, differential equations, variational inequalities
and special classes of operators. Such a kind of problems were investigated in
[12, 13, 20, 22, 24]. Here, we prove the existence of fixed points of certain map-
pings via simulation functions and measure of noncompactness. We shall also
indicate that several results in the literature can be derived from our main
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theorems. For some recent works in this direction see [1, 6, 9, 17, 19, 21]. For
the best proximity point problem, see [2, 11].

We construct our results on the following basic concepts.

Definition 1.1 ([10]). A function σ : [0,∞) × [0,∞) → R is said to be simu-
lation function if it fulfills:
(σ1) σ(0, 0) = 0;
(σ2) σ(t, u) < u− t for all t, u > 0;
(σ3) if {tn}, {un} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
un > 0,

then lim sup
n→∞

σ(tn, un) < 0.

Let Σs be the collection of all simulation functions σ : [0,∞)× [0,∞)→
R. On account of the property (σ2), we conclude that

σ(t, t) < 0 for all t > 0.

Example. Let σ : [0,∞)× [0,∞)→ R be a mapping such that σ(t, u) = u
2 − t

for all t, u ∈ [0,∞). It is obvious that σ is a simulation function. For more
examples of simulation functions see [10].

Suppose (X, d) is a metric space, T is a self-mapping on X and σ ∈ Σs.
We say that T is a Σs-contraction with respect to σ (see [10]), if

σ(d(Tx, Ty), d(x, y)) ≥ 0, for all x, y ∈ X.
For all distinct x, y ∈ X, by (σ2), we have d(Tx, Ty) 6= d(x, y). Thus, we
conclude that whenever a Σs-contraction T (in a metric space) has a fixed
point, then it is necessarily unique.

Theorem 1.2. Every Σs-contraction on a complete metric space has a unique
fixed point.

We also need the following class of operators given in [3] by Altun and
Turkoglu.

Definition 1.3. Let F ([0,∞)) be the class of all functions f : [0,∞)→ [0,∞].
Then by Θ we denote the class of all operators

O(•; ·) : F ([0,∞))→ F ([0,∞)), by f 7→ O(f ; ·)
satisfying the following conditions:

(i) O(f ; t) > 0 for t > 0 and O(f ; 0) = 0;
(ii) O(f ; t) ≤ O(f, s) for t ≤ s;

(iii) lim
n→∞

O(f ; tn) = O(f ; lim
n→∞

tn);

(iv) O(f ; max{t, s}) = max{O(f ; t), O(f ; s)} for some f ∈ F ([0,∞)).

Definition 1.4. Let X and Y be normed linear spaces and K be a subset of
X. A mapping T : K → Y is said to be a compact operator if T is continuous
and maps bounded sets into relatively compact sets.

Here, we recall the well-known generalization of Schauder’s fixed point
theorem.
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Theorem 1.5. Let K be a nonempty, bounded, closed and convex subset of a
Banach space X and T : K → K be a compact operator. Then T has a fixed
point.

An improved version of Theorem 1.5 was presented by Darbo [8] using
a notion of measure of noncompactness.

Definition 1.6 (Kuratowski, 1930). Let (X, d) be a metric space and Σb be
the family of all nonempty and bounded subsets of X. The function α : Σb →
[0,∞) defined as

α(B) = inf{ε > 0 : B can be covered by finitely many sets with diameter ≤ ε},

for every B ∈ Σb, is called the Kuratowski measure of noncompactness.

We also mention that if we define χ : Σb → [0,∞) by

χ(B) = inf{ε > 0 : B can be covered by finitely many balls with radius ≤ ε},

for every B ∈ Σb, then χ is said to be a Hausdorff measure of noncompactness
which was firstly introduced in Gohberg-Goldenštein-Markus[14]; clearly it is
an extension of Kuratowski measure of noncompactness. We refer to Ayerbe
Toledano-Dominguez Benavides-López-Acedo[5] for more interesting infor-
mation related to measures of noncompactness.

We collect some interesting properties of Kuratowski and Hausdorff
measures of noncompactness as follows.

Definition 1.7. Let (X, d) be a complete metric space and Σb be the family
of all bounded subsets of X. A function µ : Σb → [0,∞) is called a measure
of noncompactness (MNC, for short) if it satisfies the following conditions:

(i) µ(A) = 0 iff A is relatively compact;
(ii) µ(A) = µ(A) for all A ∈ Σb;

(iii) µ(A ∪B) = max{µ(A), µ(B)} for all A,B ∈ Σb.

If µ is an MNC on Σb, then the following properties can be concluded
immediately (see Ayerbe Toledano-Dominguez Benavides-López-Acedo [5]):

(p1) if A ⊆ B, then µ(A) ≤ µ(B);
(p2) µ(A ∩B) ≤ min{µ(A), µ(B)} for all A,B ∈ Σb;
(p3) if A is a finite set, then µ(A) = 0;
(p4) if {An} is a decreasing sequence of nonempty, bounded and closed sub-

sets of X such that lim
n→∞

µ(An) = 0, then A∞ := ∩n≥1An is nonempty

and compact.

Also, if X is a Banach space and we denote by co(A) the closed and
convex hull of a set A, then

(p5) µ(co(A)) = µ(A) for all A ∈ Σb;
(p6) µ(tA) = |t|µ(A), for any number t and A ∈ Σb;
(p7) µ(A+B) ≤ µ(A) + µ(B), for all A,B ∈ Σb.
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2. Main results

We establish the existence of at least one fixed point for self-mappings under
suitable hypotheses. So, to obtain our first theorem, we use the following class
of functions.

Definition 2.1. Let Ψ denote the class of all functions ψ : [0,∞) → [0,∞)
which satisfy the following conditions:

(i) ψ is non-decreasing;
(ii) ψ is continuous;

(iii) ψ−1(0) = 0;
(iv) ψ(t) < t for t > 0;
(iv) lim

n→∞
ψn(t) = 0 for each t ≥ 0.

Theorem 2.2. Let C be a nonempty, bounded, closed and convex subset of a
Banach space X and let T : C → C be a continuous operator satisfying

σ(O(f ;µ(T (X)) + ϕ(µ(T (X)))), ψ(O(f ;µ(X) + ϕ(µ(X))))) ≥ 0, (2.1)

for any ∅ 6= C ⊆ X, where µ is an arbitrary MNC, f ∈ F ([0,∞)), O(•; ·) ∈
Θ, ψ ∈ Ψ, ϕ : [0,∞) → [0,∞) is a continuous function. Then T has at least
one fixed point in C.

Proof. We construct a sequence {Cn}∞n=0 by

C0 := C, Cn := co(T (Cn−1)), for all n = 1, 2, . . . .

Now, let us prove that

Cn+1 ⊆ Cn, T (Cn) ⊆ Cn, for all n = 1, 2, . . . . (2.2)

The first inclusion will be proved via mathematical induction method.
Let n = 0. Since C0 = C, C is convex and closed, then we have C1 =
co(T (C0)) ⊂ C0. Now assume that Cn ⊂ Cn−1. Then co(T (Cn)) ⊂ co(T (Cn−1)).
So we obtain that Cn+1 ⊂ Cn. The second inclusion follows immediately from
the first one

T (Cn) ⊂ co(T (Cn)) = Cn+1 ⊂ Cn.
If there exists N ∈ N such that µ(CN ) + ϕ(µ(CN )) = 0 then µ(CN ) =

ϕ(µ(CN )) = 0 so CN is compact and the Schauder’s fixed point theorem
ensures that T has a fixed point in CN where CN ⊂ C.

Suppose An := µ(Cn) + ϕ(µ(Cn)) > 0 for each n ∈ N. Now, by (2.1),
we have

Bn := σ(O(f ;µ(Cn+1)) + ϕ(µ(Cn+1))), ψ(O(f ;µ(Cn) + ϕ(µ(Cn)))))

= σ(O(f ;µ(co(T (Cn))) + ϕ(µ(co(T (Cn))))), ψ(O(f ;µ(Cn) + ϕ(µ(Cn)))))

= σ(O(f ;µ(T (Cn)) + ϕ(µ(T (Cn)))), ψ(O(f ;µ(Cn) + ϕ(µ(Cn)))))

= σ(O(f ;An+1), ψ(O(f ;An)))

≤ ψ(O(f ;An))−O(f ;An+1).

So, we get

0 < O(f ;An+1) ≤ ψ(O(f ;An)) < O(f ;An), (2.3)
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and also 0 < An+1 ≤ An. Thus lim
n→∞

An = s for some s ≥ 0. If s > 0, by

using the properties (ii) and (iii) of ψ and the property (iii) of O(•; ·), we
must have

lim
n→∞

ψ(O(f ;An)) = ψ(O(f ; lim
n→∞

An)) = ψ(O(f ; s)).

By (2.3), we obtain

lim
n→∞

O(f ;An) = lim
n→∞

ψ(O(f ;An)) = r.

Now, by (σ3), we get

0 ≤ lim sup
n→∞

σ(O(f ;An), ψ(O(f ;An))) < 0,

which is a contradiction. This ensures that r = 0. Hence, by the property
(iii) of O(•; ·) and the continuity of ϕ, we conclude that

lim
n→∞

O(f ;An) = lim
n→∞

O(f ;µ(Cn) + ϕ(µ(Cn)))

= O(f ; lim
n→∞

µ(Cn) + ϕ( lim
n→∞

µ(Cn))).

It now follows from the property (i) of O(•; ·) that lim
n→∞

µ(Cn) = 0. Now the

conclusion follows by (2.2) and (p4). �

In the next theorem, we use the following class of Geraghty’s functions
in [15] (see also [7]).

Definition 2.3. Let 4 denote the class of all functions β : [0,∞) → [0, 1)
which satisfy the condition

tn → 0 whenever β(tn)→ 1.

Theorem 2.4. Let C be a nonempty, bounded, closed and convex subset of a
Banach space X and let T : C → C be a continuous operator satisfying

σ(ψ(O(f ;µ(T (X)) + ϕ(µ(T (X))))),

β(O(f ;ψ(µ(X))))ψ(O(f ;µ(X) + ϕ(µ(X))))) ≥ 0, (2.4)

for any ∅ 6= C ⊆ X, where µ is an arbitrary MNC, f ∈ F ([0,∞)), O(•; ·) ∈ Θ,
ϕ : [0,∞)→ [0,∞) is a continuous function, β ∈ 4 and ψ ∈ Ψ. Then T has
at least one fixed point in C.

Proof. According to the notation used in Theorem 2.2 and by (2.4), we have

Bn := σ(ψ(O(f ;µ(Cn+1) + ϕ(µ(Cn+1)))),

β(O(f ;ψ(µ(Cn))))ψ(O(f ;µ(Cn) + ϕ(µ(Cn)))))

= σ(O(f ;µ(T (Cn)) + ϕ(µ(T (Cn)))),

β(O(f ;ψ(µ(Cn))))ψ(O(f ;µ(Cn) + ϕ(µ(Cn)))))

= σ(ψ(O(f ;An+1)), β(O(f ;ψ(µ(Cn))))ψ(O(f ;An)))

≤ β(O(f ;ψ(µ(Cn))))ψ(O(f ;An))− ψ(O(f ;An+1)).
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So, we obtain

0 < ψ(O(f ;An+1)) ≤ β(O(f ;ψ(µ(Cn))))ψ(O(f ;An))

< ψ(O(f ;An)) < O(f ;An). (2.5)

Therefore,

0 < O(f ;An+1) ≤ O(f ;An),

and so

0 < An+1 ≤ An.
Assume that lim

n→∞
O(f ;An) = r for some r ≥ 0 and lim

n→∞
An = s for

some s ≥ 0. If s > 0, then by (2.5) we have

0 <
ψ(O(f ;An+1))

ψ(O(f ;An))
≤ β(O(f ;ψ(µ(Cn)))) < 1.

Using the property of β ∈ 4 and the property (iii) of O(•; ·) we get

lim
n→∞

β(O(f ;ψ(µ(Cn)))) = 1

which implies

lim
n→∞

O(f ;ψ(µ(Cn))) = 0.

Since

lim
n→∞

O(f ;ψ(µ(Cn))) = O(f ;ψ( lim
n→∞

µ(Cn))),

we conclude that

O(f ;ψ( lim
n→∞

µ(Cn))) = 0

which implies

lim
n→∞

µ(Cn) = 0

and so

lim
n→∞

An = 0,

while lim
n→∞

An = s > 0, which is impossible. �

By particularizing the choice of the simulation function and setting
β(t) = k with k ∈ (0, 1), one can obtain the following result. This means
that various existing results in the literature can be obtained as particular
cases of our theorem.

Corollary 2.5. Let C be a nonempty, bounded, closed and convex subset of a
Banach space X and let T : C → C be a continuous operator satisfying

O(f ;µ(T (X)) +ϕ(µ(T (X)))) ≤ β(O(f ;ψ(µ(X))))ψ(O(f ;µ(X) +ϕ(µ(X)))),

for any ∅ 6= C ⊆ X, where µ is an arbitrary MNC, f ∈ F ([0,∞)), O(•; ·) ∈ Θ,
ϕ : [0,∞)→ [0,∞) is a continuous function, β ∈ 4 and ψ ∈ Ψ. Then T has
at least one fixed point in C.

In what follows, we use the following class of Mizoguchi-Takahashi’s
functions (MT-functions, for short) which was presented in [18].
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Definition 2.6. Let Υ denote the class of all MT-functions χ : [0,∞)→ [0, 1)
satisfying the condition

lim sup
s→t+

χ(s) < 1 for all t ∈ [0,∞).

We note that if χ : [0, 1) → [0, 1) is a non-decreasing function or a
non-increasing function, then χ is an MT-function.

Definition 2.7. Let Ω denote the set of all functions ω : [0,∞) → [0,∞)
satisfying:

(i) ω is non-decreasing;
(ii) ω(t) = 0 if and only if t = 0.

Theorem 2.8. Let C be a nonempty, bounded, closed and convex subset of a
Banach space X and let T : C → C be a continuous operator satisfying

σ(ω(O(f ;µ(T (X)) + ϕ(µ(T (X))))),

χ(O(f ;ω(µ(X))))ω(O(f ;µ(X) + ϕ(µ(X))))) ≥ 0,

for any ∅ 6= C ⊆ X, where µ is an arbitrary MNC, f ∈ F ([0,∞)), O(•; ·) ∈ Θ,
ϕ : [0,∞)→ [0,∞) is a continuous function, χ ∈ Υ and ω ∈ Ω. Then T has
at least one fixed point in C.

Proof. Using again the notation in the previous theorems, we get

Bn := σ(ω(O(f ;µ(Cn+1)) + ϕ(µ(Cn+1)))),

χ(O(f ;ω(µ(Cn))))ω(O(f ;µ(Cn) + ϕ(µ(Cn)))))

= σ(ω(O(f ;µ(co(T (Cn))) + ϕ(µ(co(T (Cn))))),

χ(O(f ;ω(µ(Cn))))ω(O(f ;µ(Cn) + ϕ(µ(Cn)))))

= σ(ω(O(f ;µ(T (Cn)) + ϕ(µ(T (Cn)))),

χ(O(f ;ω(µ(Cn))))ω(O(f ;µ(Cn) + ϕ(µ(Cn)))))

= σ(ω(O(f ;An+1)), χ(O(f ;ω(µ(Cn))))ω(O(f ;An)))

≤ χ(O(f ;ω(µ(Cn))))ω(O(f ;An))− ω(O(f ;An+1)).

Therefore, we have

ω(O(f ;An+1)) ≤ χ(O(f ;ω(µ(Cn))))ω(O(f ;An)) ≤ ω(O(f ;An)). (2.6)

So, we get

lim
n→∞

ω(O(f ;An)) = v, (2.7)

for some v ≥ 0. If v > 0, since χ ∈ Υ, we have lim sup
t→v+

χ(O(f ; t)) < 1 and

χ(O(f ; v)) < 1, then there exists δ ∈ [0, 1), ε > 0 such that χ(O(f ; t)) < δ
for all t ∈ [v, v + ε). By (2.7), take N > 0 such that

v ≤ ω(O(f ;An)) < v + ε for all n ≥ N.

Then, by (2.6) we have

ω(O(f ;An+1)) ≤ χ(O(f ;ω(µ(Cn))))ω(O(f ;An)) ≤ δω(O(f ;An)), (2.8)
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for all n ≥ N . Passing to the limit in (2.8) we have v ≤ δv, which means
v = 0 and so

lim
n→∞

ω(O(f ;An)) = 0.

Since {O(f ;ω(An))} is a non-increasing sequence and ω is non-decreasing,
then by the property (ii) of O(•; ·), we have that {An} is also a non-increasing
sequence of positive numbers. So lim

n→∞
An = u for some u ≥ 0. Since ω is non-

decreasing and by the properties (ii)− (iii) of O(•; ·), we have

ω(O(f ;An)) ≥ ω(O(f ;u)),

and hence
0 = lim

n→∞
ω(O(f ;An)) ≥ ω(O(f ;u)),

which implies that u = 0. The rest of proof is similar to the proofs of previous
theorems, so we omit the details. �

3. Application to integral equations

We prove the existence of at least one solution for the integral equation

u(t) = g(t, u(t)) +

∫ t

0

G(t, s, u(s))ds, t ∈ [0,∞), (3.1)

where G : [0,∞) × [0,∞) × R → R and g : [0,∞) × R → R are continuous
(see also Hussain-Kanwal-Mitrović-Radenović [16], Vetro-Vetro [23]).

By BC([0,∞)) we denote the space of all bounded and continuous real
functions on [0,∞). Also, we use the norm ‖u‖ = sup{|u(t)| : t ∈ [0,∞)}.
Moreover, let κ ∈ [0,∞) and C be a nonempty, bounded, closed and convex
subset of BC([0,∞)). For u ∈ C and ε > 0, let ωκ(u, ε) the modulus of
continuity of u on [0, κ], that is,

ωκ(u, ε) = sup{|u(t)− u(s)| : ε ≥ |t− s|, t, s ∈ [0, κ]}.
Set ωκ(C, ε) = sup{ωκ(u, ε) : u ∈ C}, ωκ0 (C) = lim

ε→0
ωκ(C, ε) and ω0(C) =

lim
κ→∞

ωκ0 (C). Fixed t ∈ [0,∞), we get C(t) = {u(t) : u ∈ C} and hence we

consider the measure of noncompactness µ on the family of all nonempty
bounded, closed and convex subsets of BC([0,∞)), say B(BC([0,∞))), as
follows

µ(C) = ω0(C) + lim sup
t→∞

diamC(t), (3.2)

where diamC(t) = sup{|u(t)− v(t)| : u, v ∈ C}. Next, we define the operator
T on BC([0,∞)) by

(Tu)(t) = g(t, u(t)) +

∫ t

0

G(t, s, u(s))ds, for all t ∈ [0,∞), u ∈ BC([0,∞)).

(3.3)
So, the problem of existence of a solution to (3.1) is equivalent to the problem
of existence of a fixed point to (3.3). We establish the following result.

Theorem 3.1. Let T be the self-operator on BC([0,∞)) in (3.3). If:
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(i) the function t→ g(t, 0) is a member of the space BC([0,∞));
(ii) there exists α ∈ [1,+∞) such that, for each t ∈ [0,∞) and for all

u, v ∈ R, we have |u− v| ≥ 2eα|g(t, u)− g(t, v)|;
(iii) there are continuous c0, c1 : [0,∞)→ [0,∞) with lim

t→∞
c0(t)

∫ t
0
c1(s)ds =

0 and c0(t)c1(s) ≥ |G(t, s, u)| for all t, s ∈ [0,∞) such that t ≥ s, and
for each u ∈ R;

(iv) there exists a positive r0 such that (eα − 1)r0 ≥ eαm, where m is given

by m = sup
t≥0
{|g(t, 0)|+ c0(t)

∫ t
0
c1(s)ds},

then T admits a fixed point in BC([0,∞)).

Proof. We prove that T is well-defined on B(r0) = {u ∈ BC([0,∞)) : ‖u‖ ≤
r0}. From (3.3), by the assumptions on g and G, we have immediately that
Tu is continuous for all u ∈ BC([0,∞)). Moreover, we get

|(Tu)(t)| = |g(t, u(t))− g(t, 0) + g(t, 0) +

∫ t

0

G(t, s, u(s))ds|

≤ |g(t, u(t))− g(t, 0)|+ |g(t, 0)|+ |
∫ t

0

G(t, s, u(s))ds|

≤ 1

2eα
|u(t)|+ |g(t, 0)|+ c0(t)

∫ t

0

c1(s)ds ≤ 1

2eα
|u(t)|+m,

where m is as in (iv). So, we have 2‖Tu‖ ≤ e−α‖u‖+ 2m, which means that
T maps B(r0) into B(r0).

Now, we show that T is continuous on B(r0). We fix ε > 0 so that, for
u, v ∈ B(r0) with ‖u− v‖ ≤ ε, we have

|(Tu)(t)− (Tv)(t)| ≤ 1

2eα
|u(t)− v(t)|+

∫ t

0

|G(t, s, u(s))−G(t, s, v(s))|ds

≤ 1

2eα
|u(t)− v(t)|+

∫ t

0

(|G(t, s, u(s))|+ |G(t, s, v(s))|)ds

≤ 1

2eα
|u(t)− v(t)|+ 2c0(t)

∫ t

0

c1(s)ds, (3.4)

for all t ∈ (0,∞). So, by (iii), there is κ > 0 such that

2c0(t)

∫ t

0

c1(s)ds ≤ ε for all t ≥ κ. (3.5)

From (3.4) and (3.5), we obtain

|(Tu)(t)− (Tv)(t)| ≤ 2 ε for all t ≥ κ. (3.6)

For the modulus of continuity, we set

ωκ(G, ε) = sup{|G(t, s, u)−G(t, s, v)| : t, s ∈ [0, κ], u, v ∈ [−r0, r0], |u−v| ≤ ε}.

As G(t, s, u) is uniformly continuous on [0, κ]× [0, κ]× [−r0, r0], we get

lim
ε→0

ωκ(G, ε) = 0.
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By (3.4), for an arbitrarily fixed t ∈ [0, κ], we deduce that

|(Tu)(t)− (Tv)(t)| ≤ ε+

∫ t

0

ωκ(G, ε)ds = ε+ κωκ(G, ε).

Consequently, from (3.6) and the above facts on ωκ(G, ε), we conclude
that T is continuous on B(r0).

Next, we prove that T has a fixed point in B(r0). In fact, let C be
an arbitrary nonempty subset of B(r0), fix ε > 0 and κ > 0, and choose
arbitrarily t, s ∈ [0, κ] such that |t − s| ≤ ε. Without loss of generality we
assume that s < t. So, for u ∈ C, we have

|(Tu)(t)− (Tu)(s)|

≤ |g(t, u(t))− g(s, u(s))|+ |
∫ t

0

G(t, z, u(z))dz −
∫ s

0

G(s, z, u(z))dz|

≤ |g(t, u(t))− g(s, u(t))|+ |g(s, u(t))− g(s, u(s))|

+

∫ t

0

|G(t, z, u(z))−G(s, z, u(z))|dz +

∫ t

s

|G(s, z, u(z))|dz

≤ ωκ1 (g, ε) +
ωκ(u, ε)

2eα
+

∫ t

0

ωκ1 (G, ε)dz + c0(s)

∫ t

s

c1(z)dz

≤ ωκ1 (g, ε) +
ωκ(u, ε)

2eα
+ κωκ1 (g, ε) + ε sup{c0(s)c1(t) : t, s ∈ [0, κ]}, (3.7)

where ωκ1 (g, ε) = sup{|g(t, u)− g(s, u)| : t, s ∈ [0, κ], u ∈ [−r0, r0], |t− s| ≤ ε}
and ωκ1 (G, ε) = sup{|G(t, z, u) − G(s, z, u)| : t, s, z ∈ [0, κ], u ∈ [−r0, r0], |t −
s| ≤ ε}.

From the uniform continuity of g on [0, κ]× [−r0, r0] and G on [0, κ]×
[0, κ] × [−r0, r0], we infer that lim

ε→0
ωκ1 (g, ε) = 0 and lim

ε→0
ωκ1 (G, ε) = 0. Since

c0, c1 are two continuous functions on [0,∞), by (iii) we deduce sup{c0(s)c1(t) :
t, s ∈ [0, κ]} is finite. All these remarks and (3.7) imply that ωκ0 (T (C)) ≤

lim
ε→0

ωκ(C, ε)

2eα
. So, ωκ0 (T (C)) ≤ ωκ0 (C)

2eα
and hence

ω0(T (C)) ≤ ω0(C)

2eα
. (3.8)

Next we choose two arbitrary functions u, v ∈ C so that, for t ∈ [0,∞), we
have

|(Tu)(t)− (Tv)(t)|

≤ |g(t, u(t))− g(t, v(t))|+
∫ t

0

|G(t, s, u(s))|ds+

∫ t

0

|G(t, s, v(s))|ds

≤ 1

2eα
|u(t)− v(t)|+ 2c0(t)

∫ t

0

c1(s)ds.

Starting from the above inequality, using the notion of diameter of a

set, we deduce that diam (T (C))(t) ≤ 1

2eα
diamC(t) + 2c0(t)

∫ t
0
c1(s)ds, and
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so we get

lim sup
t→∞

diam(T (C))(t) ≤ 1

2eα
lim sup
t→∞

diam(C)(t). (3.9)

By (3.2), (3.8) and (3.9), we deduce that

µ(T (C)) ≤ 1

2eα
µ(C),

which means that (2.1) is satisfied with σ : [0,∞) × [0,∞) → R given as
σ(v, s) = s

2 − v for all s, v ∈ [0,∞), ψ : [0,∞)→ [0,∞) given as ψ(s) = e−αs
for all s ∈ [0,∞) and α ∈ [1,∞), ϕ : [0,∞) → [0,∞) given as ϕ(s) = 0 for
all s ∈ [0,∞), and O(f ; ·) : [0,∞)→ [0,∞) given as the identity function on
[0,∞).

So, all the assumptions of Theorem 2.2 hold true and hence T has a
fixed point in B(r0), which is a solution to (3.1) in BC([0,∞)). �

Finally, we give an illustrative example.

Example. Consider the following functional integral equation

u(t) =
1 + t2

2 + t2
ln(1 + |u(t)|)

2
√
eα + ln(1 + |u(t)|

+2e−t+

∫ t

0

cosu(t)

1 + t2
e−tes/2ds t ∈ [0,∞),

in the space BC([0,∞)).

Clearly, g : [0,∞)× R→ R, given by

g(t, u(t)) =
1 + t2

2 + t2
ln(1 + |u(t)|)

2
√
eα + ln(1 + |u(t)|

+ 2e−t, α ∈ [1,∞),

is continuous and such that the function t→ g(t, 0) is an element ofBC([0,∞)).

So, condition (i) of Theorem 3.1 holds.
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Moreover, we have

0 ≤ |g(t, u)− g(t, v)|

=
1 + t2

2 + t2

∣∣∣∣ ln(1 + |u(t)|)
2
√
eα + ln(1 + |u(t)|)

− ln(1 + |v(t)|)
2
√
eα + ln(1 + |v(t)|)

∣∣∣∣
≤ 2

∣∣∣∣ ln(1 + |u(t)|)− ln(1 + |v(t)|)
(2
√
eα + ln(1 + |u(t)|))(2

√
eα + ln(1 + |v(t)|))

∣∣∣∣
≤ 1√

eα

∣∣∣∣∣∣ ln (1+|u(t)|)
(1+|v(t)|)

(2
√
eα + ln(1 + |u(t)|) + ln(1 + |v(t)|))

∣∣∣∣∣∣
≤ 1√

eα

∣∣∣∣∣∣
ln
(

1 + (1+|u(t)|−1−|v(t)|)
(1+|v(t)|)

)
(2
√
eα + ln(1 + |u(t)|) + ln(1 + |v(t)|))

∣∣∣∣∣∣
≤ 1√

eα

∣∣∣∣ ln (1 + |u(t)− |v(t)|)
(2
√
eα + ln(1 + |u(t)|+ |v(t)|))

∣∣∣∣
≤ 1√

eα

∣∣∣∣ ln (1 + |u(t)− |v(t)|)
(2
√
eα + ln(1 + |u(t)− v(t)|))

∣∣∣∣
=

1√
eα

ln(1 + |u(t)− v(t)|)
2
√
eα + ln(1 + |u(t)− v(t)|)

≤ 1

2eα
|u(t)− v(t)| for all α ∈ [1,∞),

which means that condition (ii) of Theorem 3.1 holds.

Let c1, c2 : [0,∞)→ [0,∞) be defined by

c1(t) = e−t, c2(s) = es/2 for all t, s ∈ [0,∞),

Now,

|(G(t, s, u)| ≤ cosu(t)

1 + t2
e−tes/2 ≤ e−tes/2 for all t, s ∈ [0,∞).

Clearly,

lim
t→∞

e−t
∫ t

0

es/2ds = lim
t→∞

2e−t(et/2 − 1) = 0,

and hence the condition (iii) of Theorem 3.1 is also true.

Next,

m = sup
t≥0
{|g(t, 0)|+ c0(t)

∫ t

0

c1(s)ds},

= sup
t≥0
{2e−t + 2e−t(2et/2 − 1)}

= 2.
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So, if we put r0 = 3, the condition (iv) of Theorem 3.1 is satisfied. Thus, all
the hypotheses of Theorem 3.1 hold, which means that the operator

T (u(t)) = g(t, u(t)) +

∫ t

0

G(t, s, u(s))ds, t ∈ [0,∞),

has a fixed point, that is a solution to (3.1).
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