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Abstract— Optimization and proactive management of 

energy systems are crucial for achieving sustainability, 

efficiency and resilience in future smart energy networks. Data-

driven approaches offer promising solutions for tackling the 

complex and dynamic challenges of energy systems, such as 

uncertainty, variability, and heterogeneity. Meanwhile, recent 

advances in decreasing hardware costs and improving data 

accessibility have allowed for the collection of high-quality data, 

leading to the development of more accurate and robust data-

driven models of different energy systems. In this study, a 

comprehensive overview of current and future trends in data-

driven optimization for smart energy systems is presented. After 

introducing the motivation and the background of this research 

field, the potential applications and benefits of optimization in 

various domains is discussed, such as electric vehicles charge, 

district heating networks and energy districts. Subsequently this 

review focuses on different methods and techniques for data-

driven optimization and proactive management, ranging from 

scientific models to machine learning algorithms. Finally, the 

novel European project, DigiBUILD, is introduced, where 

different case studies are tested in several pilots, including 

electric vehicle charging management for increasing renewable 

energy source consumption, district heating network operative 

costs optimization and building energy and comfort 

management.  

Keywords—Fault Detection, Smart Building, Electric 

Vehicles, Energy Management, Optimization 

I. INTRODUCTION  

Urban areas in Europe are accounted for the 80% of energy 
use [1] and the combination of population increase and 
improvement in living standard ensure that energy demand is 
rapidly growing. Due to the unsustainability of fossil fuels and 
the intermittent nature of most of Renewable Energy Sources 
(RES), it is challenging to give balance and resilience of an 
energy system while aiming to its decarbonization. As a result, 
new approaches and paradigms are urgently needed to develop 
a sustainable energy system in the near future. The concept of 
Smart Energy Systems (SESs) was proposed to describe the 
expected new paradigm of energy systems by integrating 
multiple energy sources and vectors. These systems are 

considered “smart” because they include smart materials, 
devices and technologies [2] allowing for aligning 
consumption with RES generation and integrating different 
energy uses (i.e. electricity, heating and cooling). European 
Union support the research and the development of this 
concept by different initiatives [3] and digitalisation of energy 
sector is still necessary for achieving this goal [4]. 

In this framework, smart utility metering, Nearly Zero 
Energy Buildings, multi-source district cooling and heating 
systems, smart grids and RES, are all considered technologies 
to be very important for the development of future SES. 
Without holistically considering these aspects/systems by 
comprehensive solutions, the total performance of the systems 
is hardly optimized as their inherent interrelations among the 
systems are utilized. According to this, new control and 
optimisation approach are required for guaranteeing the best 
design and operation scenarios in such complex systems.  
Generally, the available literature offers different optimization 
purposes, using models and simulation environments it is 
possible to achieve the best design configuration (e.g., size, 
configuration presence of a component) or the best operation 
strategy according to input simulation data. Digital Twin (DT) 
technology, obtaining real-time simulation results basing on 
monitoring system, will allow facility managers (FMs) to 
obtain the best plan of action for managing the considered 
system.  

Optimization tools are essential for improving the design 
and performance of energy systems such as District Heating 
Networks (DHNs). Future District Heating and Cooling 
systems will interact with different sources of heat or cool and 
will include also renewable energy producers which require 
new methods for heat unit cost estimation [5]. An optimal 
management will be also required to determine the most 
efficient combination of heat sources (e.g., power to heat, 
solar collectors and boiler) to meet the heating demand while 
minimizing costs and Green House Gas (GHG) emissions.  In 
a study conducted by Reynolds et al. [6], a multi-vector energy 
center supplying a DHN was examined. By utilizing Artificial 
Neural Network (ANN) to forecast solar photovoltaic 



generation and building data (e.g., demand and interior 
temperatures), a Genetic Algorithm (GA) was employed to 
determine the optimal strategies for managing the DHN 
energy center. The results demonstrated a 44.88% increase in 
profit compared to the base case. In the work by Cox et al. [7], 
a similar data-driven approach was utilized. The authors 
successfully predicted and determined the optimal control 
strategy for an ice storage system in a District Cooling 
Network, with the aim of reducing operating costs while 
adapting to varying loads and energy prices. 

Meanwhile, RES and building forecasting are essential 
components of the optimization services for the efficient 
management of energy resources and energy-efficient 
buildings, as accurate prediction of energy supply and demand 
can be critical for optimizing the use of RES and reducing 
energy waste. According to Sarmas et al. [8], deep learning 
techniques such as Long Short-Term Memory have been 
particularly effective in forecasting energy supply and 
demand. Moreover, it has been shown that incremental 
learning of such models can further increase forecasting 
accuracy by resulting in the construction of models that 
dynamically adapt to new patterns of streaming IoT data [9]. 
The use of such models enables energy managers can make 
more accurate predictions of energy supply and demand, 
allowing for more efficient allocation of energy resources. 
Thus, by optimizing energy consumption patterns and 
identifying areas of inefficiency, energy managers can reduce 
overall energy consumption, leading to reduced carbon 
emissions and cost savings, as well as to achieve optimal 
scheduling of flexible loads [10]. Using Data-Driven services 
it is possible to determine the optimal control of the power grid 
to minimize costs while ensuring a correct functioning. In this 
line, Pan et al. [11], developed a model for a microgrid 
consisting of an electrical storage system, a wind turbine, PV 
panels, and a building. By applying reinforcement learning 
techniques, the authors were able to devise medium-term and 
long-term scheduling plans to optimize yearly electricity 
costs, energy consumption by batteries, and energy generation 
from the wind turbine. 

By the use of optimization methods, it is possible to 
determine the optimal charging schedule for EVs to minimize 
costs while ensuring that they are fully charged when needed. 
This can also help to enhance the use of renewable energy 
sources by aligning EV charging with periods of high 
renewable generation. Calise et al. presented an approach to 
optimize the charging strategy for a fleet of EVs within a DHN 
served by a cogeneration [12]. The implementation resulted in 
a primary energy saving index of approximately 32%, 
effectively reducing both primary energy consumption and 
carbon dioxide emissions within the investigated district. In 
[13] the authors presented an optimization method based on 
Multi-Agent Deep Reinforcement Learning. The simulations’ 
results demonstrated that through optimal management of 
EVs and PVs, it is possible to reduce grid energy consumption 
by up to 40% compared to multi-home systems that do not 
engage in energy trading or EVs. Moreover, Liu et al. 
presented a study that highlights the advantages of employing 
a multi-objective optimal charging strategy for peak load 
shaving comparing different optimization algorithms [14]. By 
incorporating constraints such as load balance and capacity 
limits for EVs and electrical storage systems, their simulation 
results demonstrated a significant decrease in load fluctuation 
level (70.6%) and reduction in electricity cost (40.56%) 
compared to the base case. 

Due to diffusion of smart sensors and smart buildings, the 
loads could be managed for achieving an increase in energy 
efficiency. Data-driven services could be used for real time 
and future fault detection in order to reduce yearly 
maintenance costs. Furthermore, there are a lot of examples of 
methods to determine the optimal operation of Heat 
Ventilation Hair Condition (HVAC) systems to minimize 
costs or emissions while ensuring that indoor comfort 
conditions are met. An indicative study is presented by 
Tsolkas et al. [15], where the authors present a novel model 
for enhancing thermal comfort in buildings using indoor 
temperature and humidity forecasts.  Moreover, in a similar 
study, a Deep Neural Network (DNN) approach combined 
with a Particle Swarm Optimization (PSO) algorithm is used 
to maximize efficiency in HVAC systems in a commercial 
building with respect to temperature and humidity [16]. The 
authors demonstrated the effectiveness of DNNs in modelling 
the complex non-linear relationship between controllable 
settings and in reducing energy consumption by 7% during the 
study period. In the same line, Kusiak et al. [17] employed a 
combination of data-driven ANN forecasting models and a 
Strength-Multi-Objective PSO algorithm to compute various 
HVAC control strategies for office buildings. Due to the 
inherent nature of multi-objective analysis concerning both 
comfort and energy consumption, more than one solution was 
proposed. In a study conducted by Pezeshki et al. [18], a GA 
was utilized for the purpose of optimal design. The proposed 
model demonstrated superior performance in comparison to 
other existing approaches in the state of the art. Specifically, 
the model was able to determine the optimal placement of fan 
coils and radiators with the objective of minimizing both 
thermal discomfort and energy consumption.  

In conclusion, this paper will explore current and future 
trends in data-driven approaches for optimization and 
management of future SESs. It will discuss various methods 
and applications of optimization in this field and present real-
world example from the European project DigiBUILD. The 
paper will be divided into four sections: Section 1 will explore 
the reasons for research in optimization in SESs; Section 2 
will focus on different methods of optimization and proactive 
management; Section 3 will present real applications of multi-
purpose optimization in DigiBUILD project; and Section 4 
will conclude the paper by summarizing key findings. 

II. METHODS 

This section presents different optimization methods to 
improve performance and resilience by reducing energy 
consumption, costs, and emissions, by detecting and 
predicting faults, and by optimizing design. 

A. Energy, Costs and Emissions reduction 

The increasing complexity of future energy networks, 
encompassing distributed heat source DHNs, smart grids, and 
prosumers, presents significant challenges in terms of 
management. In order to achieve decarbonization goals while 
simultaneously reducing costs, it is essential to implement 
optimal-pursuing algorithms. In this framework, according to 
[19], machine learning (ML) based on big-data collection is a 
promising solution for speeding up the process of optimum 
research and for increasing efficiency in DHNs.  In general, 
the search for optimal solutions involves finding the minimum 
or maximum value of an objective function (or multiple 
objective functions in the case of multi-objective 
optimization). In the context of energy, this function is 



typically related to the minimization of costs, energy 
consumption, or emissions. The objective function represents 
the final step of the optimization problem, which is subject to 
various constraints that limit the solution space [20]. Due to 
variety of optimization algorithms and approaches available, 
many of which are reported in [21], it is important to provide 
examples of their use for achieving energy efficiency 
improvement in order to guide the selection of the most 
suitable alternative. 

GAs are one of the most used algorithms in energy 
efficiency application. This algorithm is based on the 
principles of natural selection and genetics: using a population 
of potential solutions to a problem and applying genetic 
operators (such as selection, crossover, and mutation) the 
population of solution will improve itself (evolving) over 
time. In the study presented by Akhlaghi et al. [22], the 
optimization process requires a multi-objective evolutionary 
optimization using GAs and forecasts from a feed-forward 
neural network. This method was applied to a dew point cooler 
showing COP and power consumption improvements. Arabali 
et al. [23] propose a comparison between GA and 
discontinuous nonlinear programming optimization for 
optimally balance building HVAC load, energy storage, PV 
and wind turbine production. Describing constraints and 
objective function details, their method was able to provide in 
different scenarios cost reductions and efficiency 
improvements.  

 

Fig. 1. Simplified flowchart of a Genetic Algorithm optimization 

B. Design 

Design optimization involves determining the best 
configuration of different components of an energy system to 
minimize costs while ensuring that performance requirements 
are met. This can involve selecting the size and location of 
different components, as well as determining their 
interconnections. Zeng et al. conducted a study on optimizing 
the pipe diameter of a district cooling network using a GA 
[24]. After developing a mathematical model of the district 
and formulating the optimization problem, the results, based 
on hourly data, revealed the optimal pipe configuration. The 
study also demonstrated that using distributed variable speed 
pumps could reduce yearly costs by up to 27.7% compared to 
the base case. The novel approach proposed by Saikia et al. 
simplifies the selection of building retrofit options and it was 
tested in a real case study [25]. By utilizing an improved GA 
and spatial discretization of the structural layer, the authors 
demonstrated that the solution proposed by their method 
resulted in a reduction of electricity consumption by 9.2 
kWh/day in the real building. In [26], a comprehensive 
methodology for determining the optimal design and 
operation strategy for a polygeneration system serving a 
cluster of buildings is presented. The methodology takes into 
account the size and presence of each component, such as 
cogeneration units, thermal energy storage, absorption 
chillers, and pipes. The authors detail the constraints, 
objective functions, and decisional variables of their 
optimization algorithm for both individual buildings and the 
entire cluster. Results presented in [27] demonstrate the 
capability of the developed mixed integer linear programming 
algorithm to determine the optimal size under varying initial 
conditions (e.g., as location and energy prices) as well as the 
optimal operation for managing the load of individual power 
units and thermal flows between buildings. 

C. Fault detection  

In addition to optimization methods, fault detection and 
predictive maintenance are also important aspects of SES 
monitoring. In this framework, using only measured and 
monitoring data, data-driven approaches are widely used in 
modelling real systems and in detecting present and future 
faults. In a study by Kim et al. [28], ML methods were 
compared for their effectiveness in detecting faults in DHNs. 
The proposed model, based on a Gradient Boosting Regressor, 
was able to predict the operational behaviour of a DHN 
substation by distinguishing between well-performing and 
faulty substations. The algorithm was trained using data from 
a Swedish DH system proving high accuracy. Hosamo et al. 
[29] presented a study where, using monitored occupants’ 
comfort data (thermal, visual, and acoustic), they proposed 
different algorithms (e.g., Bayesian Networks, AHU 
performance assessment rules, etc.) for detecting accurately 
faulty systems in existing Norwegian buildings. By using 
advanced sensors and monitoring techniques, it is possible to 
detect faults or anomalies in order to take corrective action 
before they cause serious problems. Rizeakos et al. present a 
study that introduces a data-driven algorithm for fault location 
identification and type classification in low voltage 
distribution grids [30]. By utilizing synthetic data and 
employing a convolutional neural network to identify and 
locate faults, the algorithm achieved an accuracy of over 91% 
in detecting faults and identifying the correct branch. The 
authors also used Bayesian Optimization to calculate the 
optimal hyperparameters for their model. 



III. DIGIBUILD SERVICES 

The DigiBUILD European project aims to apply 
optimization and efficient management methods to SESs. 
Innovative data-driven services will be developed for the 
management of building and DHNs. These optimization 
services will target cost and energy consumption reduction 
across multiple cutting-edge areas within the current scientific 
and research landscape. This will be achieved through the 
practical application of pilot projects. Algorithms will be 
employed to provide suggestions and alerts for anomalies in 
building systems as part of fault detection and proactive 
management services. The interaction between EVs and RES 
both locally and within the national grid, will be optimized 
through the development of efficient management methods. 
Additionally, two DHNs will benefit from optimal 
management services that efficiently utilize various heat 
sources (e.g., biomass and gas boilers, photovoltaic-to-heat 
technologies) to reduce operational costs. 

A. Services for fault detection and proactive management 

These applications aim to detect faulty sensors and provide 
maintenance and operation suggestions related to energy 
consumption and discomfort in buildings of the University 
College of London and Iasi (Romania). 

Data is stored in 15-minute intervals from different sensors 
designed to track variables needed for the estimation of indoor 
and outdoor air quality, building thermal and electric 
consumption, and occupancy levels.  Upon analysis of the 
collected data, rule-based algorithms will be utilized to 
identify issues such as sensor malfunctions (by verifying the 
validity of each measurement) or improper functioning of 
HVAC systems that may cause discomfort (by comparing 
measured variables with comfort or set-point conditions). 
Concurrently, AI algorithms will be employed to forecast 
building load consumption at various levels of detail (e.g., 
room, system, or building). These predictions will be 
compared with real-time measurements to detect anomalous 
energy demand in specific rooms or buildings. In the event of 
sensor issues or unexpected energy demands, the cause will be 
investigated using data-driven algorithms. Within this 
framework, ML algorithms will be trained on various types of 
data (e.g., electric and thermal consumption, air temperature, 
water consumption) to develop real-time and future fault 
detection algorithms supported by future forecasts. Based on 
these results, the building manager will receive reports of 
malfunctions and recommendations for resolving problems in 
the buildings and optimizing in real time HVAC system 
operation and maintenance. 

B. Services for Balancing PV production with EVs and 

building loads 

One application of these services is to balance PV energy 
with EV charging and building loads to maximize self-
consumption while reducing operational costs and associated 
GHG emissions. In a case study involving Emotion, an Italian 
company, multi-purpose algorithms will be used to match PV 
production with the charging of a fleet of EVs.  

Vehicle data will be collected using on-board diagnostics 
(OBD) systems, while smart meters installed in the buildings 
and charging columns will gather data on electricity 
consumption. An optimization algorithm will consider various 
decision variables (e.g., charging power, number of vehicles 
to charge, time scheduling), user vehicle needs, real-time and 
forecasted data of PVs and building load to suggest a charging 

schedule and modulation strategy. The DT of the user will 
then autonomously charge the vehicles based on the 
optimization results. Building modulable loads (e.g. machines 
or electric boilers) will also be taken into account: if further 
energy savings are possible, another algorithm will be 
employed. A decision support system will advise the FM on 
how to manage building loads to increase consumption of 
available PV production. The optimization algorithms will 
also run in real-time to make automated corrections based on 
monitored perturbations. 

These methods will help the pilot achieve several goals. 
Firstly, electricity consumption from the grid will be reduced, 
lowering costs and GHG-related emissions. Optimal 
management will also reduce peak power consumption, 
further reducing billing costs. Once these services are 
implemented and results are collected, they will serve as a 
beacon for future applications of these algorithms in building 
and EV management to move closer to zero emissions goals. 

C. Services for EV’s Management for CO2 reduction 

This use case proposes an optimization algorithm that 
leverages available data from grid operators, building data, 
and e-mobility data to determine optimal EV charging 
schedules. E-mobility is a very important part of the flexible 
sources and thus several research attempts focus on 
optimizing its operation [31]. In this context, grid operator 
provides pertinent information on the CO2 footprint of the 
energy to be consumed, through energy mix and grid status 
data, whereas building data includes historical consumption 
data and pricing policies. E-mobility data, on the other hand, 
captures EV historical data from charging sessions and 
electric vehicles. The proposed optimization algorithm 
employs machine learning-based forecasts to combine the 
above variables and ensure that EV charging needs are 
adequately met. The optimization process also maximizes the 
use of green energy from the grid while minimizing costs. 
Furthermore, the algorithm ensures that the total building 
consumption remains within acceptable limits during peak 
times. For the needs of this service either a global optimization 
algorithm or a heuristic algorithm may be used according to 
the computational complexity of each specific use case [32]. 

The main objective of the algorithm is to provide optimal 
EV charging schedules that meet charging requirements, 
avoid straining the total building consumption and, above all, 
maximize the use of green energy, i.e. energy generated by 
renewable energy sources and not instead of combustion 
processes. The algorithm's output comprises EV charging 
schedules and a report that compares recommended behavior 
with actual actions taken. The report includes detailed 
information on the followed charging schedules and the 
carbon footprint achieved. By examining this data, it is 
possible to evaluate the effectiveness of the algorithm in 
providing optimal charging schedules and identify areas for 
further optimizing energy usage. 

The findings of this use case will have significant 
implications for imposing better energy management and 
sustainability practices. By optimizing EV charging 
schedules, energy consumption and costs can be reduced, and 
carbon emissions can be minimized. The algorithm's ability to 
compare recommended behavior with actual actions taken 
provides valuable insights into user behavior and how it 
affects energy usage and carbon footprint, thus this knowledge 
can be used to develop policies that encourage sustainable 
behavior and optimize energy use in buildings.  



D. Services for optimal management in DHNs 

DHNs provide an efficient and sustainable means of 
distributing heat to multiple buildings within a community. 
However, optimizing heat production within a DHN can be 
challenging due to the complex interactions between heat 
sources, distribution networks, and building loads. In this 
context, DigiBUILD will offer algorithms to VEOLIA’s 
DHNs to optimize heat production, taking into account these 
complexities to improve efficiency and reduce costs for 
district residents. 

CP Fasa and CP Rio Vena are two distinct DHNs that 
require optimization. CP Rio Vena produces heat using three 
different gas boilers and supplies residential buildings. CP 
Fasa is a 4th Generation DHN with multiple heat sources, 
including a 3.7 MW gas boiler, two 540 kW biomass boilers, 
and an electric boiler that uses PV production. By collecting 
multiple data, including heating and domestic hot water 
demand for each building, weather conditions and PV 
production, a ML forecasting model could be trained. In CP 
Fasa, based on prevision of PV production and building 
heating loads, and boiler efficiency, the algorithm will suggest 
the optimal management strategy. At CP Rio Vena, the DHN 
operation will be guided through the use of an algorithm that 
takes into account the forecasted heating demand and a data-
driven model for calculating boiler efficiency. A digital model 
of each DHN will be simulated by the optimization 
algorithms, varying different decision variables (e.g., boiler 
load level, supply temperature, flow rate etc.) to minimize the 
costs. The DT of the DHN will also include the same model 
and optimization algorithms to allow the manager to 
hypothesize and test different operational scenarios. 

 By utilizing these services, the FM will be able to 
determine the best strategy for reducing primary energy 
consumption and costs on district heating while also 
increasing overall system efficiency and moving towards 
decarbonizing the urban sector.  

IV. CONCLUSIONS 

The optimization of SESs is a critical component in 
achieving the EU decarbonization objectives. Utilizing data-
driven algorithms can decrease energy consumption, enhance 
energy efficiency, and demonstrate the advantages of 
digitalization within energy systems. This paper provides a 

comprehensive review of the diverse applications of 
optimization algorithms within systems, including buildings, 
micro grids and DHNs. This review also proposed different 
data-driven algorithms examples which have been classified 
based on their application in efficiency improvement, optimal 
design, and fault detection. While there is a wide range of 
optimization algorithms available, the GA seems to be up to 
date the most prevalent. 

Future applications in the framework of DigiBUILD 
European project were hereby introduced. These applications 
include services for fault detection and proactive management 
and services for the management of EVs and building loads to 
reduce emissions and energy costs. Finally, we presented 
DHN management services for reducing heat supply costs by 
optimal heat source management including RES and gas 
boilers. 

In conclusion, in this work it has been proved that 
optimizing future SESs is essential for achieving the EU goals 
towards the zero-emissions objectives. Data-driven 
algorithms are a necessary medium due to increasing of 
complexity of the energy sector and its management. The 
applications within these systems are diverse and various 
algorithms are available in scientific literature with the scope 
of reducing operating costs, energy consumptions and 
increasing revenue. 
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