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Abstract: The correct recognition of the etiology of ischemic stroke (IS) allows tempestive interven-
tions in therapy with the aim of treating the cause and preventing a new cerebral ischemic event.
Nevertheless, the identification of the cause is often challenging and is based on clinical features
and data obtained by imaging techniques and other diagnostic exams. TOAST classification system
describes the different etiologies of ischemic stroke and includes five subtypes: LAAS (large-artery
atherosclerosis), CEI (cardio embolism), SVD (small vessel disease), ODE (stroke of other deter-
mined etiology), and UDE (stroke of undetermined etiology). AI models, providing computational
methodologies for quantitative and objective evaluations, seem to increase the sensitivity of main IS
causes, such as tomographic diagnosis of carotid stenosis, electrocardiographic recognition of atrial
fibrillation, and identification of small vessel disease in magnetic resonance images. The aim of this
review is to provide overall knowledge about the most effective AI models used in the differential
diagnosis of ischemic stroke etiology according to the TOAST classification. According to our results,
AI has proven to be a useful tool for identifying predictive factors capable of subtyping acute stroke
patients in large heterogeneous populations and, in particular, clarifying the etiology of UDE IS
especially detecting cardioembolic sources.

Keywords: artificial intelligence; ischemic stroke; machine learning; deep learning; toast classification

1. Introduction

Stroke is one of the main causes of morbidity and mortality worldwide. According to
the World Stroke Organization, there are over 12.2 million new strokes each year. Globally,
one in four people over age 25 will have a stroke in their lifetime [1]. Ischemic stroke (IS) is
the most frequent kind of stroke (80% of all cases). The correct recognition of the etiology
of IS allows tempestive interventions in therapy with the aim of treating the cause and
preventing a new cerebral ischemic event. Nevertheless, the identification of the cause is
often challenging and is based on clinical features and data obtained by imaging techniques
and other diagnostic exams.

Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification system describes
the different etiologies of ischemic stroke and includes five subtypes: LAAS (large-artery
atherosclerosis), CEI (cardio embolism), SVD (small vessel disease), ODE (stroke of other
determined etiology) and UDE (stroke of undetermined etiology) [2].

Time of diagnosis is crucial for time-related treatments, which allow the improve-
ment of clinical outcomes and the reduction of disability, according to the adage, “time
is brain” [3]. In clinical practice, early identification of the mechanism of acute ischemic
stroke is highly dependent on a reliable imaging examination that must be interpreted
promptly [4]. Imaging techniques are the cornerstone of the work-up in stroke patients. The
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commonly used imaging studies are computed tomographic angiography (CTA), magnetic
resonance imaging (MRI), and ultrasound (US). Artificial intelligence (AI) is a branch of
computer science that experienced huge developments in the past five years, with signif-
icant implications for medical imaging. It represents a new technology able to analyze
complex data using automated algorithms for obtaining a final output. IS is one of the
medical fields that have been extensively affected by the AI revolution [4]. In fact, AI algo-
rithms have been shown to be able to perform accurate lesion classification, detection, and
segmentation in brain tissue. AI also has been used for imaging-guided decision-making
and outcome prediction. AI models may detect precociously and quantify intracranial hem-
orrhage, microbleeds, and acute ischemic stroke, which includes the presence of cerebral
infarction and large vessel occlusions not always detectable to the human eye [5].

Since the time interval between the onset of IS and its diagnosis and treatment is
crucial for a favorable clinical outcome, the rapid solutions offered by the AI model rep-
resent a potential tool for the correct and efficient diagnostic classification of ischemic
stroke [6]. The aim of this review is to provide overall knowledge about the most effective
AI models used in the differential diagnosis of ischemic stroke etiology according to the
TOAST classification.

2. Overview of Artificial Intelligence

AI can be identified as the use of any device to mimic the human cognitive process
and involves learning, applying, and solving complex problems [7]. This became the
basis of computer development programmed to “think and reason”. The first AI-based
technology was approved in April 2018 by the US Food and Drug Administration, which
was an ophthalmic application for screening diabetic retinopathy [8]. After this approval, a
growing number of applications followed with different health claims. AI-based methods
are increasingly taking up space in the healthcare industry as they have helped to calculate
risk, guide treatment, and predict outcomes using advanced algorithms applied to a large
multimodality dataset. AI comprehends several models and methods, including machine
learning (ML), deep learning (DL), and convolutional neural networks (CNNs). In ML,
multiple learning methods are used, each of them with a different task and with the ability
to solve different classes of problems ranging from automation of processes to predictive
analytics. ML represents a subfield of AI that focuses on developing algorithms that can
learn from data and make predictions or decisions based on that learning without being
explicitly programmed. The process of learning in ML usually involves training, testing,
and validation processes, and the algorithms are categorized into three types: supervised,
unsupervised, and reinforcement learning. Supervised learning is the most commonly used
method in diagnostic imaging. It includes learning from labeled data, where the algorithm
is trained on a set of input-output pairs (i.e., the features and their corresponding labels)
and then uses that learning to predict the labels of new, unseen data. Supervised learning is
used when the task can be precisely defined, and the algorithm is expected to learn based
on the known data. In the medical field, for example, two sets of data can be used, one
associated with the chosen outcome and the other one not. Based on the first set of data, the
algorithm will learn to assign the correct outcome to the not-labeled group. Unsupervised
learning, on the other hand, involves learning from unlabeled data, where the algorithm
tries to find patterns or structures in the data without any guidance. In this case, two sets
of data should be used, both without the labeled outcome. The algorithm provides the
ability to group data into categories based on the similarity of characteristics taken into
consideration (laboratory markers, symptoms, age, and gender). Reinforcement learning
is a type of learning that involves learning from interactions with an environment, where
the algorithm receives rewards or penalties based on its actions and learns to make better
decisions over time. Thus, the algorithm completes tasks without previous instructions, but
it can learn while failing to complete the task. It is therefore guided with some basic rules in
how to perform the task using his own experiences [8,9]. ML can be divided into two types
based on whether the features are handcrafted or not. Handcrafted features are usually
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defined by experts and are believed to be effective in differentiating between different
data classes. In contrast, techniques without handcrafted features can learn directly from
the data and optimize their problem-solving capabilities without relying on pre-defined
features. This approach is often referred to as deep learning, and it has shown remarkable
success in various applications, including image recognition, natural language processing,
and speech recognition. DP is a subset of machine learning that uses a layered structure of
artificial neural networks (Artificial Neuronal Networks, ANNS) inspired by the neural
network of the human brain, with the advantage of processing a greater amount of data in
different formats such as video, audio, and text [10].

The goal of DL is to simulate the function of the human brain’s neural networks,
allowing machines to learn from and make decisions based on raw data without being
explicitly programmed to do so. DP is generally based on NN (neural networks) architec-
tures, using multiple layers to gradually extract higher-level features from the inputs. The
output from each layer is fed into the next layer, allowing the system to learn increasingly
complex representations of the input data. This layered, hierarchical approach allows DL
models to learn from vast amounts of data, often achieving state-of-the-art performance
in tasks such as image and speech recognition, natural language processing, and more.
The success of DL is due in part to the availability of large datasets, powerful computing
resources such as graphical processing units, and the development of efficient learning
algorithms such as backpropagation. DL has been used to achieve impressive results in a
wide range of applications, from self-driving cars and facial recognition to drug discovery
and medical diagnosis. The ANN structure can have many layers, and the amounts of
layers are proportional to the complexity of the final architecture it can achieve. Some
of the most common architectures of DL include convolutional NNs (CNNs), recurrent
NNs, variational autoencoders, and generative adversarial NNs [11]. Although this area of
learning is much more advanced than the other forms described above, some limitations of
the DP must be considered: a large number of training examples are needed to create a more
accurate and reproducible model; the number and quality of input data influence the final
result, as well the human intervention. In fact, it is up to the physician to interpret whether
the characteristics identified by the DL model are compatible with clinical knowledge of
the disease and the implications of such findings. In many medical specialties, such as
radiology, neurology, and dermatology, diagnosis is supported and based on images [12].
Automatic image diagnosis is probably the domain with more studies of medical artificial
intelligence applications.

3. Ischemic Stroke and Artificial Intelligence: Are You a Bot? Please Select All Images
Containing Ischemic Stroke

Programs based on AI, such as ML, DL, and artificial neural networks (ANNs), have
been applied in numerous studies evaluating the impact of AI in IS in different stages of
care management, from prevention and diagnosis to rehabilitation and prognosis (Figure 1).
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Figure 1. Artificial intelligence in stroke diagnosis according to TOAST classification. Artificial intelli-
gence path over recent years has been a stairway to matching human complexity, introducing increas-
ingly complex networks of data processing, among which deep learning is nowadays one of the lead-
ing figures. These complex algorithms allow for elaborate input data (e.g., MRI, ECG leads), which are 
acquired, read, and finally processed and interpreted. The possibility to elaborate data from ECG, MRI, 
CT images, and ultrasound allow for an elaborate algorithm for stroke subtype diagnosis. 

Prediction of IS in patients with atrial fibrillation (AF) represents one of the most 
studied issues. The use of ML and DL for electrocardiogram evaluation in the attempt to 
recognize occult flutter and AF is just an example of AI application with solid results in 
terms of accuracy and sensitivity of diagnosis [13]. Interestingly, several large-scale Asian 
studies [14–16] have used the ML approach to estimate stroke risk prediction in patients 
with AF. AI has also recently been employed to improve adherence to the guidelines on 
the use of anticoagulants in primary prevention. ML-powered clinical decision support, 
producing a warning for medical doctors responsible for patients with atrial fibrillation at 
thromboembolism risk, seemed to improve adherence to guidelines [17]. Regarding diag-
nosis, the discrimination of minor stroke and transient ischemic attack (TIA) from their 
mimics represents an important field of application of AI. One real-life helping study has 
effectively used ML to differentiate TIA and minor stroke from their mimics [18]. Moreo-
ver, ML has been used to recognize and differentiate ischemic stroke from clinical data 
[19] and to predict the modified Rankin Scale of 90 days to identify patients who need 
thrombectomy [20]. Undoubtedly, AI has found its maximum expression of potential with 
its application in diagnostic imaging exams. The employment of AI in large datasets ob-
tained from imaging exams appears to be promising in overcoming the limit of heteroge-
neity of traditional qualitative interpretation performed by clinicians. In this context, ML 
is emerging as a notable approach to easily perform automatic diagnosis and image seg-
mentation. In regard to LAAS prevention, Deep CNN has been successfully employed in 
carotid plaque ultrasound evaluation in order to predict plaque tissue rupture risk [21]. 
In addition, the application of CNN for an inexpensive exam like an intracranial ultra-
sound for the recognition of intracerebral stenosis demonstrated good sensitivity and 
specificity, overcoming the operator-dependent problems closely related to ultrasound 
examination [22]. In addition, several studies have employed ML in CTA imaging 

Figure 1. Artificial intelligence in stroke diagnosis according to TOAST classification. Artificial
intelligence path over recent years has been a stairway to matching human complexity, introducing
increasingly complex networks of data processing, among which deep learning is nowadays one of
the leading figures. These complex algorithms allow for elaborate input data (e.g., MRI, ECG leads),
which are acquired, read, and finally processed and interpreted. The possibility to elaborate data from
ECG, MRI, CT images, and ultrasound allow for an elaborate algorithm for stroke subtype diagnosis.

Prediction of IS in patients with atrial fibrillation (AF) represents one of the most
studied issues. The use of ML and DL for electrocardiogram evaluation in the attempt to
recognize occult flutter and AF is just an example of AI application with solid results in
terms of accuracy and sensitivity of diagnosis [13]. Interestingly, several large-scale Asian
studies [14–16] have used the ML approach to estimate stroke risk prediction in patients
with AF. AI has also recently been employed to improve adherence to the guidelines on
the use of anticoagulants in primary prevention. ML-powered clinical decision support,
producing a warning for medical doctors responsible for patients with atrial fibrillation
at thromboembolism risk, seemed to improve adherence to guidelines [17]. Regarding
diagnosis, the discrimination of minor stroke and transient ischemic attack (TIA) from
their mimics represents an important field of application of AI. One real-life helping study
has effectively used ML to differentiate TIA and minor stroke from their mimics [18].
Moreover, ML has been used to recognize and differentiate ischemic stroke from clinical
data [19] and to predict the modified Rankin Scale of 90 days to identify patients who
need thrombectomy [20]. Undoubtedly, AI has found its maximum expression of poten-
tial with its application in diagnostic imaging exams. The employment of AI in large
datasets obtained from imaging exams appears to be promising in overcoming the limit
of heterogeneity of traditional qualitative interpretation performed by clinicians. In this
context, ML is emerging as a notable approach to easily perform automatic diagnosis and
image segmentation. In regard to LAAS prevention, Deep CNN has been successfully
employed in carotid plaque ultrasound evaluation in order to predict plaque tissue rupture
risk [21]. In addition, the application of CNN for an inexpensive exam like an intracranial
ultrasound for the recognition of intracerebral stenosis demonstrated good sensitivity and
specificity, overcoming the operator-dependent problems closely related to ultrasound
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examination [22]. In addition, several studies have employed ML in CTA imaging interpre-
tation to detect stroke and large vessel occlusion [23,24]. Moreover, ML has also been shown
to be promising in predicting and quantifying the ischemic core, starting with Computed
tomography perfusion in the acute phase [23,25]. Based on MRI data, DL has shown good
performance in classifying the time of onset of ischemic stroke [26] and phenotyping acute
ischemic lesions according to the volume of lesions thanks to DL [27,28]. Furthermore,
thanks to sophisticated algorithms developed on MRI images, some researchers focused
on the study of white matter hyperintensities in order to recognize IS secondary to small
intracranial vessels diseases and distinguish from other potentially similar conditions such
as neurodegenerative diseases and multiple sclerosis [29,30]. Additionally, recognizing
the correct etiology of IS according to TOAST classification leads to better management,
therapeutic choice, and prognosis stratification of patients. In this regard, the development
of an artificial neural network algorithm for the determination of TOAST subtypes by
estimating probabilities for the main IS subtypes: atherothrombotic, cardioembolic, and
lacunar, with high diagnostic and predictive significant results [31]. The complexity of the
algorithm should require data from the results of computer tomography, duplex scanning
of brain vessels, echocardiography, Holter monitoring, electrocardiography, and clinical
estimation. The impact of AI has not been limited to the diagnostic process of ischemic
stroke but, actually, prognosis studies represent one of the most frequent applications of
ML especially focusing on the prediction of stroke-related risk of death [32,33]. Several
studies have employed ML algorithms to predict functional outcomes of three months and
recurrence after an ischemic stroke [34–37]. Finally, AI has been additionally applied to
improve rehabilitation in an attempt to personalize rehabilitation programs and optimize
resources and recovery time [38].

4. Research Strategy

A simple PubMed search of the keywords “Artificial Intelligence and stroke” yielded
699 publications. The first articles were published in the nineties but only twenty-six (26)
publications before 2010 and 604 in the last five years. This trend demonstrated the growing
interest and popularity of artificial intelligence applied to ischemic stroke. Since the rapid
and continuous evolution in the last five years of this field with the introduction of new
models and very different algorithms, the overall presentation was provided in terms of
“narrative review”. In this review, our aim was to clarify the apport of artificial intelligence
in ischemic stroke subtyping in accordance with TOAST classification. We conducted our
research strategy on PubMed and Google Scholar to identify the most valuable evidence
in the area of artificial intelligence applied to the etiologic diagnosis of stroke. We take
into major consideration articles published in the last 5 years. The initial research was
improved by introducing some keywords: “TOAST classification”, “stroke subtyping”,
“carotid stenosis”, “atrial fibrillation”, “cardioembolic stroke”, “large artery stroke”, “small
vessel disease”, “ESUS”, “PFO”, “stroke of unknown origin”. The references from the
research were also shortlisted to complete the structure of this review. This narrative review
is the results of more than 100 studies considering the application of AI to diagnostic
subtyping of ischemic stroke that were meticulously screened by experts in the field. Since
the objective of this review is to provide the broadest and most comprehensive knowledge
of the tools that exploit artificial intelligence for the etiological diagnosis of ischemic stroke,
the selected publications concerning the applications of models and algorithms to first-level
diagnostic tests have been considered, such as ultrasound and electrocardiogram as well as
second level diagnostic tests such as computed tomography and magnetic resonance.

5. Results

The possible causes of ischemic stroke can be multiple, and often, two or more poten-
tially responsible conditions can be present simultaneously in the same patient. Therefore,
it is not always easy to identify the correct etiological diagnosis starting from the character-
istics of the ischemic lesion found on brain CT and the patient’s comorbidities. Generally, in
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clinical practice, this diagnostic process involves the execution of several instrumental tests
aimed at excluding or confirming the presence of relevant conditions for the identification
of the cause. Despite this, the percentage of strokes classified as UDE is around 20–40%
of all cases. The use of artificial intelligence with the intrinsic ability to process numerous
data to identify connections that cannot be detected by clinical investigations is finding
more and more space in this field. At the moment, however, not many quality studies
have applied large-scale AI models considering data from multiple diagnostic tests, even
heterogeneous, such as ECG-Holter for the identification of atrial fibrillation, ultrasound of
the carotid artery for the diagnosis of stenosis and occlusion of the cerebro-afferent vessels
and MRI for identification of small vessel disease. In fact, most studies have focused on
the characterization of a single TOAST subtype. For this reason, the results of this review
are presented below using a subdivision that follows the main TOAST subtypes: LAAS,
Cardioembolic, SVD, and UDE.

5.1. Large-Artery Atherosclerosis Subtype

Detection of large vessel occlusion is one of the most pursuable objectives in applying
AI to cerebrovascular pathology. Furthermore, early recognition of LVO using AI can
be helpful in triage, diagnosis, patient selection for treatment, and stratification of the
prognosis in acute cerebrovascular disease. In recent years, the increasing use of artificial
intelligence through Computer-aided diagnosis (CAD) systems provides computational
methodologies for quantitative and objective evaluations, eliminating as far as possible in-
dividual mistakes and increasing the diagnostic sensitivity in atherosclerotic disease [39,40].
The application of AI in diagnosing LVO aims to identify atherosclerotic lesions in the
carotid arteries and the middle cerebral artery. Using CAD based on CNNs (convolutional
neural networks) allows a more accurate assessment of carotid disease. The CNNs approach
provides a classification model by assessing medical images to derive objective parameters
through convolutional and fully-connected layers able to detect particular patterns and
obtain an output layer in an automated way for future prediction. In these models, inputs
from convolutional layers converge through a rectified linear unit, later selected from a
max pooled layer responsible for downsampling to decrease the spatial dimension of each
feature map and finally directed to fully connected layers. A final dropout layer allows
for avoiding overfitting. The softmax function calculates the final output as a stroke if the
probability is more than 50%, providing a binary method for classifying the events. Several
CNN models have been created for this purpose. One of the first devices designed was
AlexNet, constituted of five convolution layers, three max-pooling layers, and three fully
connected layers [41].

More accurate equipment has been recently developed. Inception-v3 reduces the
computational complexity using a multipath structure involving dimensional reduction
and parallel structures [42]; ResNet adds a skip connection where the gradients can cross
the network [43], while DenseNet links the output of each layer to the input of the following
layer through transition layers, which deliver fewer feature maps than those received [44].
In one study by Agedpchung-Ming Lo et al., the use of CNN models using convolutional,
pooling, and fully connected layers has been proposed to identify diagnostic features
from the carotid color Doppler (CCD) study. Final results showed a significant accuracy,
sensitivity, and specificity of all the CNN architectures, suggesting the possible role of the
CAD system for predicting the risk of ischemic cerebrovascular events using an automatic
and standardized method, even if more studies must be carried out [45]. These data were
confirmed by a more recent study [46] evaluating the feasibility of the application of a
CNN architecture for diagnosing critical carotid stenosis building on the NASCET US
criteria. The algorithm showed a high sensitivity, specificity, and accuracy in detecting
normal carotid artery (91%, 86%, and 92%) and critical carotid stenosis (92%, 87%, and
94%), demonstrating the applicability of the AI in the diagnosing carotid artery disease
in greyscale static DUS images and providing the possibility to non-expert to diagnose
carotid disease.



Biomedicines 2023, 11, 1138 7 of 19

AI has been recently applied to create a machine-learning tool using CTA images for
evaluating intracranial internal carotid artery (ICA) stenosis in patients with acute ischemic
stroke. StrokeSENS LVO model has been created by analyzing retrospectively 400 studies
(217 LVO, 183 other/no occlusion): the algorithm has shown a high accuracy (92.7%),
sensitivity (85.7%), and specificity (87.4%) in detecting intracranial ICA occlusion, without
differences in patient age, sex, or CTA acquisition characteristics [47]. Moreover, Buckler
proposed an interesting deep-learning algorithm for the stratification of atherosclerotic
lesions in different phenotypes based on plaque stability [48]. The results were supported
by histopathological confirmation, proposing this model for detecting the carotid lesions
more susceptible to embolization or thrombosis and thus at high risk of ischemic stroke.
Hyperattenuating artery signal in M1 MCA is a representative sign of a thrombotic event,
detectable in the early phases of cerebral ischemia [49–51]. If the hyperattenuating sign is
detectable in the segmental branch of MCA (M2-M3) within the Sylvian fissure, it is called
the “MCA dot sign” and is associated with a better prognosis [52,53].

Takahashi et al. [54] proposed an SVM (support vector machine) model to detect
MCA dot signs based on the extraction of NCCT—images from the sylvan fissure region,
where the middle cerebral artery is located. The automated system eliminates false positive
signals, identifying the group of patients with MCA dots. In the study, 39 of the 40 patients
with acute stroke and occlusion of the MCA were identified, while one was indicated as a
false positive. In addition, the system could identify people without MCA dots, eliminating
271 false positive patients from the analysis. These data underlined the high sensitivity
of the method (97.5%) in identifying MCA dots, even if the study was affected by some
limitations, such as the small size of the database, the evaluation on one hemisphere, and
the definition of the used parameters in an empirical manner.

Furthermore, You et al. proposed a hierarchical modeling based on three levels for
predicting LVO stroke resulting from MCA occlusion. Level-1 relies on the demographic
features and clinical signs, while Level-2 is based on evaluating pre-existing medical condi-
tions predisposing to cerebral ischemia. Level-3 consists of fully conventional networks
(XGBoost) belonging to a deep learning model comprehensive of an encoding part, which
extracts images from NCCT, and a decoding part able to reconstruct the segmentation label
map. Compared to SVM, Random Forest, and logistic regression, XGBoost showed higher
accuracy (80.0%), sensitivity (95.3%), and specificity (68.4%) in detecting MCA occlusion
directly, independently from the presence of the hyperdense MCA sign, which is an LVO
marker but whose absence does not allow to exclude MCA occlusion [55].

Moreover, a fascinating machine-learning model has been proposed to recognize
the source of a clot in MCA based on its characteristics [56]. The algorithm was created
considering pre-endovascular treatment gradient echo (GRE) MRI images in patients with
middle cerebral artery occlusion. It was able to select patients with occlusion related to atrial
fibrillation with high accuracy. Furthermore, patients with atrial fibrillation had a better
response to endovascular treatment using a stentriever and less probability of restenosis
than patients with intracranial atherosclerosis; in this concern, this model may be helpful
to guide the most appropriate treatment to ensure faster and prolonged recanalization. The
importance of early detection of MCA dot signs is that this signal appears on CT images
before the finding of hypoattenuation of the ischemic stroke regions. For this reason, AI can
be helpful to indirectly diagnose ischemic events which segmentation CAD models could
not detect, accelerating access to treatment. Even if initial evaluation in The Automated
Large Arterial Occlusion Detection IN Stroke Imaging (ALADIN) trial led to few results
in the use of AI for the identification of LVO starting from CT images [57], a computer
system approved by FDA in 2018, called Viz. AI Contact and used by Barreira et al. in a
patient cohort from the ALADIN trial, proved to be a good predictor for artery occlusion
with high sensitivity, specificity, and accuracy (90.1%, 82.5%, and 86%, respectively) [57].
The use of Viz. AI model has been associated with the reduction of 22.5 min of the transfer
times to adequate stroke units, positively affecting complications and the overall outcome
after vessel occlusion [58]. Compared with Viz.AI, RAPID.AI, and Brainomix algorithms
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showed similar accuracy in detecting all LVOs (71% and 77%, respectively), especially in
the case of M1 occlusion where the sensitivity of the models reached higher percentages
(83% and 94%, respectively) [59].

In a recent study performed in 2021 by Ryan et al., AUTCanon’s Stroke Solution LVO
application has shown a high specificity and sensitivity in detecting ICA occlusion, while
it has demonstrated lower sensitivity in the diagnosis of M1 MCA occlusion. Moreover,
Canon’s software showed a high negative predictive value (84%) in case of clot lack in
M1 MCA, allowing to rule out patients not requiring thrombectomy. Furthermore, the
sensitivity of the software decreased with the vessel size reduction, demonstrating the
poor ability to detect M2 MCA occlusion [60]. The application of AI in predicting the
outcome of patients with acute ischemic stroke concerns not only the early detection of
clots into large vessels, which represents the stroke subtype more related to disability, but
also the identification of patients at increased risk of developing complications in this
population. Ding et al. have proposed the creation of a deep neural network -model
based on six variables from the Acute Stroke Registry to predict a 3-month mRS score
better than the traditional clinical scores (Acute Stroke Registry, Analysis of Lausanne
score) [61]. Other studies confirm the benefit of applying ML algorithms built on factors
such as small infarct core, NIHSS score after 24 h, premorbid mRS score, and infarction
volume on post-interventional CT to prognosticate the functional outcome after acute vessel
occlusion [62–66]. Evaluating the extension of the ischemic core and vital tissue in the brain
lesions helps define the right strategy for treatment. The ASPECT score is traditionally used
to estimate lesion segmentation in the case of acute middle cerebral artery stroke involving
two strategic cerebral regions, the basal ganglia plane, and the supraganglionic plane. It is
a 10-point numerical topographic CT score obtained, detracting one point from the total for
any sign of ischemic signals [67].

Starting from this scoring system, some automated software (RAPID ASPECT score,
Frontier ASPECT Score Prototype, and e-ASPECTS Brainomix software) have been gen-
erated and have been recognized to have similar accuracy in detecting the difference
between ischemic and non-ischemic brain tissue in comparison with expert neuroradiol-
ogists [68–70]. The e-ASPECTS Brainomix software uses a deep learning classification to
generate an ASPECT score with a sensitivity of 83%, even if the expert evaluation should
be recommended in case of pre-existing cerebral abnormalities [71]. Since vessel occlusion
leads to the diversion of the blood flow, activating circles of compensation, collateral circu-
lation is one evaluation to define the reperfusion treatment candidacy. The combination of
classical images from CTA and ML classifiers has been used to create modules for the rapid
and automatic identification of collateral flow, with similar accuracy to a consensus expert
CTA–collateral scoring approach [72,73]. Finally, intracranial hemorrhage is a potential
complication of thrombolytic treatment, so evaluating the risk may guide the choice of
recourse to reperfusion therapy. In this concern, starting from data obtained from MR
perfusion and DWI, machine learning algorithms have been created to predict the risk of
bleeding after thrombolysis with an accuracy of 83.7% [74].

5.2. Cardioembolic Source Detection

The cardioembolic ischemic stroke subtype embraces patients with arterial occlusions
due to embolus emerging from the heart. Thus, at least one cardiac source for an embo-
lus must be identified to confirm the diagnosis [2]. Cardioembolic stroke accounts for
14–30% of all cerebral infarctions [75,76], and despite advanced therapies for dyslipidemia
and arterial hypertension, it constitutes a rising source of stroke in wealthy nations. In
particular, AF is a common arrhythmia and determines the increased risk of stroke and
systemic embolism [77]. Although AF diagnosis requires simple tools (electrocardiogra-
phy (ECG) documentation), the screening is often challenging, especially in patients with
paroxysmal AF due to the frequent absence of symptoms [78]. Although since the 1900s,
initially promising computer programs have accomplished an automated analysis of ECGs’
patterns, their performance is now notably inconsistent and full of inaccuracies [78]. AI
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and, in particular, ML provide systems with the ability to learn from data and thus escape
the limitations of common automated computerized ECG interpretation programs [78].
Recently, Attia et al. [79] demonstrated that an AI-ECG algorithm, developed by using
more than 500,000 normal sinus rhythm standard 12-lead ECGs from over 180,000 patients,
had a strong potential for detecting patients with a high likelihood of paroxysmal AF or
atrial flutter suggesting a potential and substantial change in stroke risk assessment and
management. DL is perhaps the most commonly used technique for ECG analysis and
interpretation [78]. In particular, CNNs are more and more widely used in automated
ECG classification [80]. As already described, CNN is a model that is generally used to
analyze data that has a grid pattern, such as an image, and is designed to learn spatial
hierarchies of features. At the end of the process, it is possible to classify objects in an
image [81], such as ECG patterns. Several researchers have studied neural networks’ ability
to detect cardiac arrhythmias, mainly by using a single-lead source and rarely a 12-lead
source [80,82–85]. However, AI-ECG has its own limitations: (i) quality of data comes from
the signal acquisition, which is operator-dependent, intrinsically associated with human
error, and environment-dependent, which can be noisy [86]. (ii) AI-ECG algorithms are
trained on homogenous populations; hence the risk of generalization since the impact
of race and ethnicity on ECG analysis via ML is actually unknown. Large volume data
from diverse demographics will be helpful in order to define a more accurate and tailored
application of models. Furthermore, ML was successfully used to perform cardioembolic
stroke subtyping using an electronic health record database [87]. The best model presented
an accuracy of 92.2%, identifying atrial fibrillation, age, dilated cardiomyopathy, congestive
heart failure, patent foramen ovale, mitral annulus calcification, and recent myocardial in-
farction as the main discriminatory features. Moreover, the majority of the abovementioned
studies have taken into account only one of twelve leads, while it would be desirable in the
future to develop CNNs able to accurately process more data.

Interestingly, some authors tried to classify cardioembolic stroke by applying DL to
a simple diagnostic test like chest radiography [88]. The final model demonstrated good
classification feasibility and biological plausibility in differentiating cardioembolic versus
non-cardioembolic stroke with a better performance in high-risk sources such as AF.

Moreover, a recent study used ML to analyze echocardiographic and cardiac resonance
imaging parameters in left ventricular non-compaction cardiomyopathy to find the best
predictors of clinically relevant outcomes, including cardio embolism and stroke [89].
Finally, AI has also been used to clarify the origin of IS with cardioembolic sources in
particular populations like in Chagas Disease [90]. Authors built a sensitive predictive
model for cardioembolic stroke classification in Chagas disease using Random Forest
methodology. This hierarchical model of decision tree appears to be worthy of interest
thanks to its predictive capacity and pragmatic problem-solver methodology in the case
of classification.

5.3. Small Vessel Disease Identification

Cerebral small vessel disease (cSVD) is a definition that gathers different pathological
processes that affect the small vessels of the brain (small arteries and veins and capillary
beds) whose occlusion is responsible for a specific ischemic stroke subtype referred to
as “lacunar stroke”. It accounts for a quarter of ischemic strokes and represents a major
cause of vascular dementia [91,92]. In current clinical practice, MRI is used to make a
diagnosis by evidencing common findings in cSVD patients, such as white matter hyper-
intensities, lacunar infarcts, microbleeds, perivascular spaces (PVS), and cerebral atrophy,
whose evidence is considered diagnostic for cSVD [93]. However, since medical image
interpretations require human observers, they are linked to biases and variations which
come from human error and subjectivity. Recently, CNN was found to be useful both in the
identification of cSVD markers and stratification of cSVD (low, medium, and high severity),
representing an instrument able to overcome flaws intrinsic in human-related neuronal
processes. Lambert et al. [94] studied an automated white matter lesion segmentation
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algorithm to assess the severity of cSVD. Ciulli et al. [95] proposed a machine-learning
algorithm tailored to investigate the link between alterations in executive functions in
patients with mild cognitive impairment and cSVD and to associate them with the brain
substrates of this impairment. Furthermore, interest has recently grown in PVS evaluation.
PVS, also known as Virchow–Robin spaces, are spaces filled with interstitial fluid that
encompass small brain vessels and capillaries following their path inside grey or white
matter and act as a metabolic drainage system for the brain. When they are enlarged, they
are visible in MRI sequences [96], appearing as microscopic (less than 3 mm diameter)
linear or dot-like structures with intensity similar to the cerebrospinal fluid [93]. Although
potentially quantifiable, PVS visual counting and delineation can be time-consuming even
applying computational qualitative and quantitative methods available, which are still
semi-automatic and hence observer-dependent [30,97].

In this regard, González-Castro et al. [98] proposed an automatic scheme to qual-
itatively classify T2-weighted MRI (as having none or few PVS compared with having
many of them) in the basal ganglia region and comparing their results with visual ratings
made by an experienced neuroradiologist and by a trained image analyst showing that
the goodness-of-fit of the model for the automatic classifier was good. Additionally, in a
retrospective analysis conducted on 1156 patients, a deep-learning system for automatic
prediction of white matter hyperintensities on FLAIR images demonstrated good accuracy
with a smaller analysis time for physicians [98].

During the past few years, a possible role of neutrophils containing cytotoxic ag-
gregates has been suggested to be a causative element in endothelial dysfunction, BBB
disruption, and ischemic brain injury [99,100]. Therefore, markers of neutrophil activa-
tion, such as myeloperoxidase and calprotectin, could help both to ascertain neutrophils’
role in cSVD pathogenesis and to identify cSVD patients. Several studies have shown a
relationship between endothelial dysfunction and WMH and lacunar infarction [101–103].
Recently, Karel et al. [92] investigated levels of markers reflecting neutrophil activation,
neutrophil extracellular trap (NET) formation, platelet activation, and vascular inflamma-
tion in plasma samples of cSVD patients and controls. In order to identify differences in
patients’ and controls’ myeloperoxidase and other marker levels, machine-learning tech-
nology was applied and implemented. They found that among above mentioned markers,
only myeloperoxidase levels were altered, and this element was considered an important
feature in the detection and prediction of cSVD. Wang et al. [104] assessed the prognostic
ability of SVD imaging markers on acute ischemic stroke subtypes using machine learning
and logistical regression methods and found that in lacunar stroke patients, models using
SVD imaging markers could rapidly predict prognosis. Nevertheless, the mechanism by
which SVD affects the prognosis of acute ischemic stroke patients is poorly understood.

5.4. Stroke of Undetermined Etiology

Underlying pathologies of stroke of unknown cause include occult paroxysmal AF,
patent foramen ovale (PFO), aortic arch atheroma, and thrombophilia. AF misdiagnosis
burdens stroke diagnostic management since it accounts for 8–15% of embolic stroke of
an undetermined source (ESUS) cases [105,106]. ESUS has a strong social and healthcare
burden since 1 in 20 patients each year experience a recurrent stroke, which is often more
severe than the first one [107,108]. Despite the number of diagnostic tools available, ESUS
often remains unlabeled with an inevitable impact on secondary prevention and focused
treatments to prevent recurrent stroke after ESUS. The detection rate of AF has raised since
methods of prolonged ambulatory cardiac rhythm monitoring devices have been intro-
duced to the diagnostic tools at our disposal. Still, paroxysmal AF is identified only in a
few numbers of patients with ESUS, even after continuous monitoring for three years. This
missed diagnosis cannot be outclassed by directly pursuing anticoagulation therapy regard-
less of AF detection. In fact, RCTs comparing direct oral anticoagulants with antiplatelet
therapy in patients with ESUS did not show benefit from anticoagulation, implying that
a definite diagnosis must be made before embracing anticoagulant therapy [106,107,109].
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Thus, identifying undiagnosed paroxysmal AF in ESUS has a therapeutic advantage, and
the development of tools able to accomplish this difficult task would represent an important
step for these patients’ outcomes. Recently, Kamel H. et al. [110] analyzed 1663 ischemic
stroke patients registered in Cornell AcutE Stroke Academic Registry (CAESAR) from 2011
to 2016 and trained an ML algorithm to distinguish cardioembolic from non-cardioembolic
ESUS associating the predicted probability of a cardioembolic source with the eventual
post-ESUS diagnosis of AF. Among 580 ESUS patients, the estimated likelihood of an occult
cardioembolic source, calculated by a machine-learning algorithm, was associated with the
detection of AF [110]. Interestingly, a study conducted on 800 consecutive ESUS patients
applied a hierarchical k-means clustering algorithm for categorizing potential embolic
sources [111]. This ML analysis identified four different clusters of patients associated
respectively with arterial disease, atrial cardiopathy, PFO, and left ventricular disease, with
a clear prevalence of the first group.

Continuing on ESUS, a recent multi-center study by Luo et al. [112] analyzed a small
sample of patients affected by an embolic stroke of unknown source and PFO using
unsupervised hierarchical clustering to detect sub-clusters in post-closure PFO patients and
identifying predictors for adverse outcome. They found that traditional cardiovascular risk
factors remain the best predictors for recurrent stroke and TIA in post-closure PFO patients.

Finally, in a fascinating recent study [113], authors performed an ML cluster analysis
of frequent biomarkers in subjects admitted with severe acute respiratory syndrome coron-
avirus 2 to determine if any were associated with acute ischemic stroke. They conclude that
excess prevalence of acute IS in patients with COVID-19 could be associated with COVID-19
severe respiratory disease or coagulopathy, suggesting that COVID-19-associated ischemic
stroke may be defined as the otherwise cryptogenic cause after full diagnostic evaluation in
the setting of severe systemic COVID-19 disease or COVID-19–associated coagulopathy as
identified by an elevated D-dimer burden.

6. Discussion
6.1. AI and LAAS

The use of AI in the detection of LVO is an essential tool in the management of acute
cerebrovascular disease. Early recognition of LVO using AI can aid in triage, diagnosis,
patient selection for treatment, and stratification of prognosis. CAD systems provide
computational methodologies for objective evaluations, increasing diagnostic sensitivity in
atherosclerotic disease. The CAD models based on CNNs allow for accurate assessments
of carotid disease. Several CNN models, such as AlexNet, Inception-v3, ResNet, and
DenseNet, [41–44] (Table S1), have been developed to classify medical images and derive
objective parameters for future predictions. These models have shown comparable high
sensitivity, specificity, and accuracy in detecting normal and critical carotid stenosis. AI
has also been applied to create a machine-learning tool using CTA images for evaluating
intracranial internal carotid artery stenosis in patients with acute ischemic stroke. The
machine-learning tool called the StrokeSENS LVO model was created using CTA images to
evaluate intracranial internal carotid artery (ICA) stenosis in patients with acute ischemic
stroke [47]. The algorithm showed high accuracy, sensitivity, and specificity in detecting
intracranial ICA occlusion, without differences in patient age, sex, or CTA acquisition
characteristics. Furthermore, a deep-learning algorithm has been proposed for stratifying
atherosclerotic lesions in different phenotypes based on plaque stability, which could
identify carotid lesions susceptible to embolization or thrombosis and thus at high risk of
ischemic stroke [48]. One study by Agedpchung-Ming Lo et al. [45] used CNN models
to identify diagnostic features from carotid color Doppler images. The results showed a
significant accuracy, sensitivity, and specificity of all the CNN architectures, suggesting
the possible role of the CAD system in predicting the risk of ischemic cerebrovascular
events. These interesting results have been confirmed by another study that evaluated the
feasibility of applying a CNN architecture for diagnosing critical carotid stenosis using
greyscale static DUS images [46]. The algorithm showed a high sensitivity, specificity, and
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accuracy in detecting normal and critical carotid stenosis, demonstrating the applicability
of AI in diagnosing carotid artery disease. Moreover, regarding the hyperattenuating artery
signal in M1, Takahashi et al. [54] proposed an SVM model to detect MCA dot signs based
on the extraction of NCCT images from the sylvan fissure region where the middle cerebral
artery is located. The automated system eliminates false positive signals, identifying
the group of patients with MCA dots. The system showed a high sensitivity (97.5%) in
identifying MCA dots. However, some limitations, such as the small size of the database,
the evaluation of one hemisphere, and the empirical definition of parameters, affect the
study. Interestingly, hierarchical modeling based on three levels has been proposed for
predicting LVO stroke resulting from MCA occlusion [55]. Level-1 relies on demographic
features and clinical signs, Level-2 evaluates pre-existing medical conditions predisposing
to cerebral ischemia, and Level-3 considers the imaging features of NCCT and CTA. This
model has demonstrated high accuracy in predicting LVO stroke.

Overall, the abovementioned models have shown promising results in aiding the
diagnosis of cerebrovascular disease, specifically LVO. However, more studies are needed
to validate the accuracy of the models in a larger and more diverse patient population.

6.2. AI in Cardioembolic Stroke

Cardioembolic stroke is a significant cause of cerebral infarctions and is a rising source
of stroke in wealthy nations. AF is a common arrhythmia and increases the risk of stroke
and systemic embolism. The evidence presented in this review suggests that AI and ML
have the potential to revolutionize stroke risk assessment and management, especially in
detecting patients with a high likelihood of paroxysmal AF or atrial flutter (Table S2). Attia
et al. demonstrated the strong potential of an AI-ECG algorithm, developed using more
than 500,000 normal sinus rhythm standard 12-lead ECGs from over 180,000 patients, to
detect patients with a high likelihood of paroxysmal AF or atrial flutter [79]. Our results
highlight the limitations of AI-ECG, including the quality of data, which comes from signal
acquisition and is operator-dependent, intrinsically associated with human error, and
environment-dependent, which can be noisy. Additionally, AI-ECG models are developed
on homogenous populations, which increases the risk of generalization since the impact
of race and ethnicity on ECG analysis via ML is unknown [86]. According to the results
of this review, DL is perhaps the most commonly used technique for ECG analysis and
interpretation. CNNs are more and more widely used in automated ECG classification and
can accurately classify ECG patterns. ML was successfully used to perform cardioembolic
stroke subtyping using an electronic health record database [87]. The best model identified
atrial fibrillation, age, dilated cardiomyopathy, congestive heart failure, patent foramen
ovale, mitral annulus calcification, and recent myocardial infarction as the main discrimina-
tory features. Interestingly, some authors tried to classify cardioembolic stroke by applying
DL to a simple diagnostic test, like chest radiography. The final model demonstrated good
classification feasibility and biological plausibility in differentiating cardioembolic versus
non-cardioembolic stroke with a better performance in high-risk sources such as AF. In
conclusion, AI and ML have the potential to aid in the diagnosis and management of
cardioembolic ischemic stroke. While there are limitations to these technologies, research
has shown promising results in detecting cardiac arrhythmias, classifying cardioembolic
stroke, and predicting clinically relevant outcomes. Further research is needed to overcome
the limitations of these technologies and improve their accuracy and generalization.

6.3. AI in Small Vessel Disease

In this review, we have discussed the use of different models to diagnose and predict
cSVD. While MRI is commonly used in clinical practice to diagnose cSVD, it is limited by
the subjectivity and bias of human observers. To overcome these limitations, researchers
have turned to machine learning and deep learning models. Several studies have shown
the effectiveness of these models in identifying cSVD markers, stratifying cSVD severity,
and predicting prognosis in patients with lacunar stroke (Table S3). Lambert et al. [94]
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used an automated white matter lesion segmentation algorithm to assess the severity of
cSVD, while Ciulli et al. [95] proposed a machine-learning algorithm to investigate the
link between cSVD and executive function impairments. PVS has also been the focus
of research. Although potentially quantifiable, manual counting and delineation of PVS
can be time-consuming and observer-dependent. González-Castro et al. [98] proposed an
automatic scheme to qualitatively classify T2-weighted MRI based on PVS in the basal
ganglia region, demonstrating good results. Finally, markers of neutrophil activation,
such as myeloperoxidase and calprotectin, have also been investigated to identify cSVD
patients. Karel et al. [92] used machine learning technology to identify differences in
myeloperoxidase levels between cSVD patients and controls, suggesting its potential as an
important feature in detecting and predicting cSVD. Overall, the use of machine learning
and deep learning models in cSVD diagnosis and prognosis prediction holds promise in
overcoming the limitations of human observation and improving accuracy and efficiency.

6.4. Stroke of Unkown Origin and AI

One of the most interesting data discussed in this review derived from the analysis
of different models for strokes of unknown cause, including paroxysmal AF, PFO, aortic
arch atheroma, and thrombophilia. The misdiagnosis of AF as the cause of stroke burdens
diagnostic management and may lead to ineffective treatments. ESUS, which accounts for
a significant portion of embolic stroke cases, has a strong social and healthcare burden due
to the high risk of recurrent stroke, which is often more severe than the first. Despite the
number of diagnostic tools available, ESUS often remains unlabeled, making secondary
prevention and focused treatments challenging. Recent studies have applied machine
learning algorithms to identify potential embolic sources and predict the likelihood of an
occult cardioembolic source associated with AF (Table S4). For instance, Kamel et al. [110]
trained an ML algorithm to distinguish cardioembolic from non-cardioembolic ESUS
and associate the predicted probability of a cardioembolic source with the eventual post-
ESUS diagnosis of AF. Hierarchical k-means clustering algorithms have also been used
to categorize potential embolic sources, identifying four different clusters of patients
associated with arterial disease, atrial cardiopathy, PFO, and left ventricular disease [111].
Furthermore, a recent multi-center study analyzed a small sample of patients affected by
an embolic stroke of unknown source and PFO using unsupervised hierarchical clustering
to detect sub-clusters in post-closure PFO patients and identify predictors for adverse
outcomes [112]. The study found that traditional cardiovascular risk factors remain the best
predictors for recurrent stroke and TIA in post-closure PFO patients. Since the great interest
in COVID-19 coagulopathy, we reported some interesting data about the excess prevalence
of acute IS in patients with COVID-19 [113]. This could be associated with COVID-19 severe
respiratory disease or coagulopathy, suggesting that COVID-19-associated ischemic stroke
may be defined as otherwise cryptogenic cause after full diagnostic evaluation in the setting
of severe systemic COVID-19 disease or COVID-19-associated coagulopathy as identified
by an elevated D-dimer burden. Overall, the abovementioned models aim to improve the
diagnosis and management of stroke of unknown cause, which has a strong social and
healthcare burden. The development of tools able to identify undiagnosed paroxysmal AF
in ESUS patients would represent an important step in improving patient outcomes.

7. Conclusions

Artificial intelligence through ML has proven to be a useful tool for identifying predic-
tive factors capable of subtyping acute stroke patients in large heterogeneous populations.
Additionally, AI seems able to clarify the etiology of recurrent strokes of unknown origin,
especially in detecting cardioembolic sources. Thus, more studies are necessary to validate
AI techniques and models before they can spread and be used in clinical practice. However,
the extensive use of diagnostic images analyzed through DL models seems to favor the
diagnostic and prognostic role of instrumental tests to the detriment of the clinical informa-
tion. Thus, some important issues need to be addressed. First, it is desirable that clinicians
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who will have to take clinical decisions on the basis of AI model results are able to interpret
the algorithms by understanding their limits to not incur serious errors of inaccuracy.
Furthermore, future studies should integrate the algorithms oriented toward diagnostic
imaging with essential clinical information to increase their reliability and accuracy in
clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11041138/s1, Table S1: Application of AI in the
diagnosis of LAAS stroke. Table S2: Application of AI in cardioembolic source detection. Table S3:
Main studies considering application of AI in Small Vessel Disease diagnosis. Table S4: AI application
in stroke of undetermined etiology.
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