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Abstract
Natural hazards, such as flood, landslide, and erosion, are the reality of human life. spatial 
prediction of these hazards and their effectiveness factors are extremely important. The 
main goal of this study was to prepare multi-hazard probability mapping (flood, landslide, 
and gully erosion) of the Gorganrood Watershed. In addition, different machine learning 
models such as Random Forest (RF), Support Vector Machine (SVM), Boosted Regression 
Tree (BRT), and Multivariate Adaptive Regression Spilines (MARS) were applied. First, a 
flood, landslide, and gully erosion inventory map was produced using GPS in the field sur-
veys and Google Earth. Factors affecting the hazards were identified, and GIS maps were 
prepared. The MARS model (AUC = 99.1%) provided the highest predictive performance 
for flood, landslide, and gully erosion hazards. However, for flood and landslide, the RF 
model exposed excellent and good performance, respectively. According to the variable 
importance analysis, drainage density (89.4%), digital elevation model (30.5%), and rain-
fall (41.7%) were consistently highly ranked variables for flood, landslide, and gully ero-
sion, respectively. Multi-hazard maps can be a valuable tool for the conservation of natural 
resources and the environment, as well as for sustainable land use planning in multi-haz-
ard-prone areas.

Keywords Machine learning models · Multi-hazard probability mapping · Natural 
hazards · Receiver operating characteristic · Spatial prediction

1 Introduction

A natural hazard is a kind of unexpected shock that causes social and economic damage 
to the environment and human life (Gill and Malamud 2014; Karaman 2015; Kourtit 
et al. 2023). In recent years, the impact of natural disasters has increased. Man-made 
human activities are also one of the main factors that may affect degradation processes 
(Kavian et al. 2017; Ge et al. 2021). In order to mitigate the threat of natural hazards 
and improve risk management, a UN flowchart has strongly highlighted the identifica-
tion of multi-hazard zones (Pourghasemi et  al. 2019; Widantara and Mutaqin 2024). 
Many parts of Iran are susceptible to a variety of devastating disasters. Numerous 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-024-06670-6&domain=pdf


11988 Natural Hazards (2024) 120:11987–12010

1 3

hazards such as flood, landslide, and erosion have seriously affected Northern Iran in 
multiple ways (Kornejady et  al. 2017; Islam et  al. 2021). These basic problems are 
known as natural hazards because they jeopardize nature and human life (Soulard et al. 
2016; Al Mamun et al. 2023). The average annual economic loss due to flood and land-
slide is approximately $1.705.000 (Norouzi and Taslimi 2012). Acceleration of flooding 
caused by irresponsible human activities (Moghaddam et al. 2019; Nyantakyi-Frimpong 
et  al. 2023). Most areas in northern Iran are also affected by gully erosion and land-
slide (WRCG 2013). The Gorganrood watershed in Golestan province was chosen as the 
study area due to its history of disasters such as flood, landslide, and erosion (Kavian 
et al. 2023). The region has experienced significant damage and loss of life due to natu-
ral hazards, including a devastating flood in August 2019, which resulted in numerous 
casualties and extensive financial damage. The prevalence of land use practices contrib-
ute to flood production capacity and erosion, coupled with the presence of steep lands 
prone to landslides, makes the Gorganrood watershed a critical area for hazard mapping 
and risk assessment studies. By focusing on this region, researchers aim to better under-
stand and mitigate the impacts of these hazards, contributing to disaster preparedness 
and prevention efforts in Golestan province and beyond. However, flooding, landslides, 
and erosion are complex events that occur topographically in different places (Shi et al. 
2023). In addition, natural events have different effects on different elements of hazard-
ous processes; therefore, it is possible to map the distributions of their occurrence in a 
single map. The fundamental requirement for a Multi-Hazard-Map (MHM) as a proper 
tool in a situation where a region is exposed to more than one event (Sheikh et al. 2019) 
which can be very useful and valuable for the decision makers, local administrators and 
hazard managers (Pourghasemi et  al. 2019; Sari 2023). In addition, identifying prior-
ity zones in the form of MHM is crucial for prognosticating potential impacts (UNEP 
1992).

Many previous studies have used machine learning (MLe) algorithm as a single sus-
ceptibility phenomenon map to determine floods (Khosravi et al. 2016; Brito et al. 2018; 
Arabameri et al. 2019; Moghaddam et al. 2019; Costache et al. 2020, 2024; El-Magd 
and Ahmed; 2022; Hai et  al. 2023), gully erosion (Conforti et  al. 2011; Conoscenti 
et al. 2013, 2014; Gayen et al. 2020; Wang et al. 2022; Raji et al. 2023; Li et al. 2024) 
and landslides areas (Marjanović et al. 2011; Micheletti et al. 2014; Chen et al. 2017; 
Sameen et al. 2020; Alqadhi et al. 2022; Ganesh et al. 2023; Nanda et al. 2024). The 
spatial anticipation of an occurrence is known as susceptibility, which is defined as the 
link between the impressive environmental parameters and the event samples (sheikh 
et al. 2019). However, several hazards can occur simultaneously in one area. Multi-haz-
ard potentiality map (MHPM) illustrates susceptibility and potentiality information of a 
region, on a single united map (Pourghasemi et al. 2019). The study of MHM as an inte-
grated approach was recently enhanced (Komac 2006; El Morjani 2007; Karaman 2015; 
Bathrellos et al. 2017; Pourghasemi et al. 2018, 2019; Aksha et al. 2020).

Random Forest (RF), Support Vector Machine (SVM), Boosted Regression Tree 
(BRT), and Multivariate Adaptive Regression Splines (MARS) are the most popular 
types of machine learning that can forecast flood, landslide, and gully erosion in the 
areas at risk (Hong et al. 2015; Bui et al. 2016b; Youssef et al. 2016; Zhao et al. 2018; 
Kalantar et  al. 2018; Avand et  al. 2019; Javidan et  al. 2020). Random Forest model 
is an ensemble learning method that operates by constructing multiple decision trees 
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during training and outputs the mode of the classes or mean prediction of the individ-
ual trees. It is known for its high accuracy, robustness to overfitting, and capability to 
handle large datasets with high dimensionality (Gayen et  al. 2020). SVM is a super-
vised learning algorithm used for classification and regression tasks. It works by finding 
the hyperplane that best separates the classes in the feature space. SVM is effective for 
high-dimensional data and in cases where the data is not linearly separable (Marjanović 
et  al. 2011). Boosted Regression Tree is a machine learning technique that combines 
the power of regression trees with boosting, a method of building models sequentially 
to reduce prediction errors. It is known for its ability to handle complex interactions in 
the data and provide high predictive accuracy (Youssef et al. 2016). MARS is a non-
parametric regression technique that models the relationship between predictors and the 
target variable as a series of piecewise linear segments (Conoscenti et al. 2013, 2014). It 
is suitable for capturing nonlinear relationships in the data and can handle interactions 
between variables effectively.

on the other handnot yet specified which of these accurate models is the best for devel-
oping an MHM. It is undeniable that it is possible to predict which areas are at risk, such as 
flooding, landslides or gully erosion.

To address this considerable study gap, RF, SVM, BRT, and MARS methods were 
used as benchmarks to determine which of these accurate models is the best to develop 
an MHM. This study goes beyond traditional hazard assessment methods by employing 
a range of machine learning models. The thorough comparison of these models and the 
identification of the most effective one for predicting multi-hazard probabilities demon-
strate the innovative application of advanced techniques in hazard mapping. By integrating 
the modeling of multiple hazards into a single framework, our study offers a more holistic 
understanding of the combined risks faced by the region, which can be crucial for effective 
disaster risk management and land use planning. By emphasizing the practical implica-
tions of multi-hazard mapping for natural resource conservation, environmental protection, 
and sustainable land use planning, this study offers valuable insights for decision-makers 
and stakeholders involved in mitigating risks associated with multiple hazards in the Gor-
ganrood Watershed. The potential for using multi-hazard maps as a tool for enhancing 
resilience and preparedness in hazard-prone areas further underscores the innovative and 
impactful nature of this research. It is undisputed which zones are prone to multi-natural 
disasters such as flood (F), landslide (L), or gully erosion (Ge) (FLGe). Thus, the current 
research paper was conducted in the Gorganrood watershed, which is highly predisposed 
to three natural phenomena such as FLGe with these targets: (1) Compare the accuracy 
of different machine learning methods (Random Forest, Support Vector Machine, Boosted 
Regression Tree, and Multivariate Adaptive Regression Splines) in creating sensitivity 
maps for each hazard (flood, landslide, gully erosion), (2) Developing a MHPM based on 
the output maps from the best hazard predictor model, (3) Identifying zones prone to mul-
tiple hazards using the best-performing method. These objectives aim to address the com-
plex mechanisms and various factors influencing the occurrence of flood, landslide, and 
gully erosion. By pinpointing high-risk areas, this research can assist land managers and 
planners in implementing effective land management and development strategies.
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2  Material and methods

2.1  Study area

The Gorganrood watershed is located in the northeastern part of Iran between latitudes of 
36° 35′ and 38° 15′ N and longitudes of 45° 10′ and 56° 26′ E. The study area occupies 
nearly 10.197  km2 (Fig. 1) and is elevated from 95 to 3.652 m a.s.l. The southern part of 
the region has a mountainous morphology with steep slopes (up to 69°), whereas the north-
ern part has deserts and flat areas. The central areas are climatologically categorized as 
mainly the Mediterranean (Sheikh et al. 2019). The annual mean precipitation is approxi-
mately 454 mm per year, with average temperatures of approximately 11–18.5 °C in winter 
and summer, respectively (Conrwmgp 2009). The main land cover category in this region 
is agricultural land with an area of approximately 4390  km2. Some hazard-prone lithologi-
cal formations include the Dalichay, Durod, Shemshak, Mobarak, and Alluvial terraces. 
Approximately 59% of this area is covered by Quaternary sediment. In recent years, this 
region has experienced multiple natural phenomena such as flood, landslide, and erosion 
due to blind development, deforestation, climate conditions, and diverse geology. There-
fore, this area was chosen as a case study for multi-hazard potentiality evaluation (MHPE) 
(Fig. 1).

Fig. 1  Location of the study area in the province of Golestam and Iran (a), sampling points and elevation 
(b), View of flood (c), landslide (d) and gully erosion (e) in Golestan Province
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2.2  2–2 Methodology

Figure 2 presents a flowchart of the different stages of multiple hazard mapping, modeling, 
and preparation of FLGe susceptibility mapping using data mining techniques and statisti-
cal models. Due to the critical nature of the natural hazards of the Gorganrood watershed, 
most parts of this area were visited in the field and eventually selected as a search area.

2.2.1  Preparing predictor variable base maps

Several geological maps at scale 1:100,000 were used to identify the geological features 
of the study area and develop a lithological map. The Golestan Watershed Management 
Department developed land use map of the study area using Landsat satellite imagery. The 
ETM + 2008 images from the GLOVIS1 site were used in the analysis of satellite images. 
The map has been modified as a result of field studies and adaptation to the land-use real-
ity in the region, Google Earth images and satellite images. A digital elevation model of 
the study area was prepared from the Department of Natural Resources and Watershed 
Management of Golestan Province and obtained by using topographic maps at a scale of 
1:25,000 with a spatial resolution of 30 × 30 m.

Factors affecting hazard susceptibility in the study area were prepared using Arc-
GIS10.5 and SAGA software and turned into raster layers with a spatial resolution of 
30 × 30 m. Commonly used predictors for the three hazards of FLGe include digital ele-
vation model (m), slope direction, slope percentage, slope longitudinal curvature (SLC), 
transverse slope curvature (TSC), land use, soil texture, slope length factor, topographic 

Fig. 2  Methodological flowchart for the study of Multi-Hazard

1 The USGS Global Visualization Viewer.
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wetness index (TWI), distance from stream network (m), drainage density, annual rain-
fall (mm), stream power index (SPI) relative slope position (RSP), Melton roughness 
coefficient, lithological formations, distance from road (m), and distance from the fault 
(m) (Fig. 3). The last two factors were not used for the flood. After preparing the lay-
ers, SPSS software was used to analyze the alignment data. Alignment can be prop-
erly judged by controlling the tolerance thresholds and variance inflation factor (VIF) 
(Greene 2000).

In addition, VIF is the reverse tolerance threshold (Daoud 2017). A disposal sensitiv-
ity analysis and a JackKnife test of the maximum entropy model were used to determine 
the impact of environmental variables on the occurrence of each hazard. After preparing 
the information layers, the factors affecting each risk were classified using the natural 
breaking method, and the percentage of FLGe risks in each categorywas determined. 
The hazard frequency in each categorization was then obtained using the overlap of the 
hazard distribution map with each factorial layer. The correct weight for each category 
is computed using this method.

2.2.2  Preparation of a FLGe risk distribution map in the case study

Preparing a distribution map of point of occurrence is a key step in the preparation of a 
sensitivity map (Conoscenti et al. 2014; Gnyawali et al. 2023). FLGe hazards have been 
studied in field studies and surveys and their geographical location has been recorded 
using a GPS2 global positioning device. Geological formations, road construction, land-
use change, and inadequate slope conversion and tillage have been the major causes of 
these hazards in the study area. The locations of 283. 351 landslide, and 127 flood points 
were recorded, and a distribution map of the locations of these hazards was prepared in 
ArcGIS10.5 software. A random partition algorithm was used to segregate training points 
from validation points (Rahmati et al. 2016). Finally, 70% of participants were selected as a 
training group and the remaining 30% as the validation group.

2.2.3  Multi-hazards modeling using data mining models

Various machine learning models, including Random Forest (RF), Support Vector Machine 
(SVM), Boosted Regression Tree (BRT), and Multivariate Adaptive Regression Splines 
(MARS), were also implemented to establish the spatial relationship between these hazards 
and the geo-environmental factors (GEFs) and any hazard susceptibility mapping sepa-
rately. Finally, to determine the best multi-hazard map, the evaluation of multi-hazard map-
ping with different combinations of multi-hazard maps was done.

2.2.4  Susceptibility map

Preparation of a distribution map of occurrence points is a key step in preparing a sensitiv-
ity map (Conoscenti et al. 2014). Depending on the purpose and accessibility of the data, 
the natural hazard distribution map includes two categories: local scale and national scale, 
which were prepared by various techniques such as aerial photo interpretation, geomor-
phological studies, satellite imagery, past events, and field surveys (Guzzetti et al. 2000). A 
susceptibility map of each hazard in the GIS was prepared for this purpose.

2 Global Positioning System.



11993Natural Hazards (2024) 120:11987–12010 

1 3

Fig. 3  Maps displaying the FLGe conditioning factors: a DEM (m), b Slope percent c Slope aspect, d Land 
use, e Profile curvature (g), f Plan curvature, g Soil texture, h Topographic Position Index (TPI) i Topo-
graphic Wetness Index (TWI), j Distance to streams (m), k Drainage density (km/km2), l Annual mean 
rainfall (mm), m Stream Power Index, n Relative Slope Position, o Terrain Ruggedness Index, p Lithology, 
q LS factor, r Distance to road (m), s Distance to faults (m)
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Fig. 3  (continued)
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2.2.5  Evaluation of multi-hazard model predictive performance

At this stage, FLGe hazards were modeled based on the occurrence of validation group 
hazards (30% of past events) using the receiver operating characteristic curve (ROC) 
method for all the models used. The area under this curve (AUC) is used as a quantitative 
measure for validation (Felicĺsimo et al. 2013). The accuracy of the model will be accept-
able if the area under the curve is greater than 70% (Yesilnacar 2005). For qualitative and 
quantitative correlations below the curve and estimation estimates were used, divide 0.9–1 
excellent, 0.8–0.9 very good, 0.7–0.8 good, 0.6–0.7 moderate and 0.6–0.5 poor (Yesilnacar 
and Topal 2005; Devkota 2013). At this stage, we compared the performance of all the 
models used (RF, SVM, BRT, and MARS) to determine the favorable areas for these haz-
ards. The ROC curve axes were obtained based on the criteria of sensitivity and detection. 
Finally, we identify the most appropriate and superior model (in terms of precision, time, 
and data needed for simulation).

2.2.6  Multi hazard potentiality map

The best hazard map model was selected after determining the efficiency and accuracy of 
each hazard map using different models. This method determines which model is most suit-
able for preparing a flood risk map or any other individual risk. Subsequently, the superior 

Fig. 3  (continued)
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methods of each hazard were combined. A multi-hazard susceptibility map was obtained 
using ArcGIS tool by integrating the susceptibility map related to FLGe hazards by com-
bining different methods. The final map was classified for each model for each hazard 
using the natural breaking method. By combining these three maps and executing a com-
bined command, these three maps became multiple hazard maps with eight classes. This 
multi-hazard map includes a map resulting from a combination of superior and selected 
models of each hazard, as well as a combination of other methods used to prepare a single 
hazard map.

3  Results

According to Table 1, Terrain Ruggedness Index (TRI) for FLGe with VIF > 5 and toler-
ance < 0.1 was eliminated. Therefore, other factors will be used for future analyses, and 
the results show no multi-collinearity among the remaining independent variables in the 
present study. Figures 4, 5, and 6 show the FLGe susceptibility maps produced using the 
RF, SVM, BRT, and MARS models in four categories: low (L), moderate (M), high (H), 
and very high (VH) based on the output susceptibility maps using the most authentic natu-
ral break classifying method. The RF model revealed that sloping and highland areas have 
high and low occurrence potentials for landslide and gully erosion, respectively, and allu-
vial and flat central parts adjacent to surface currents have a moderate to high potential for 
flood risk. The SVM model shows that alluvial and flat central areas are prone to floods 
and erosion, respectively, and sloping and highland areas are also prone to landslide. On 
the basis of the BRT model, sloping, high, and away from surface currents have low and 
moderate susceptibility to floods and gully erosion and high susceptibility to landslide. 
Central flat sections adjacent to surface currents and susceptible soils have a high potential 
for flooding and gully erosion. In addition, there is a high probability of landslide in a large 
area of the region (43%). Finally, the MARS model shows that the steep parts of the study 
area are more prone to landslide.

Figure 7 shows the relative distribution of the mean classes of FLGe susceptibility 
maps for the four models: RF, SVM, BRT, and MARS. On the basis of these results for 
flood susceptibility classes, most classes of models FR, MARS, and BRT are in the low 
range, and SVM models are in the moderate range. According to landslide susceptibil-
ity classes, most classes of FR, SVM, and MARS models are in the low range, whereas 
the BRT model is in the high range. The gully erosion susceptibility classes showed that 
most of the models FR, BRT, SVM, and MARS are in the low range. Table 2 shows the 
statistical characteristics of the probabilistic prediction of the three hazards obtained 
from RF, SVM, BRT, and MARS models.

The validation of multi-hazard area forecast maps is illustrated in Fig. 8 and Table 3. 
On the basis of these results, the MARS model had the highest accuracy for flooding 
(AUC = 99.1), landslide (AUC = 87.4), and gully erosion risk (AUC = 98.5). The RF 
model for floods (AUC = 97.2) and landslide (AUC = 82.9) had the most accuracy.

Comparing different methods and determining the best method for each risk and com-
bining different and superior methods for preparing multi-hazard sensitivity maps showed 
that the MARS model is the best model for mapping any hazard (Figs. 9 and 10). Accord-
ingly, the maximum and minimum areas are related to no hazard (46.43%) and three com-
bined hazards FLGe (0.55%), respectively. Table 4 shows the results of validation of the 
MARS model for FLGe hazard based on the kappa coefficient and statistical characteristics 
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of its upper and lower limits. As a pessimistic criterion in the validation process, Kappa 
coefficient values showed good performance for flood and trench erosion risk and moderate 
performance for landslide.

Fig. 4  Flood susceptibility maps produced using: a RF model; b SVM model; c BRT model; d MARS 
model

Fig. 5  Landslide susceptibility maps produced using: a RF model; b SVM model; c BRT model; d MARS 
model
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4  Discussion

The most important causes of multiple hazards in the Gorganrood watershed are the 
mountainous nature of the region, the presence of landslide-prone lithology units, sea-
sonal and circadian temperature differences, heavy rains, and human interference in the 
natural environment. The selection of the study area for this research, focused on sus-
ceptibility mapping of gully erosion, landslide, and flood hazards, was based on sev-
eral key considerations. These include the historical occurrence of these hazards, the 
availability of relevant data, and the potential impact of the study on enhancing hazard 
mitigation strategies in the region. Gully erosion, a significant hazard in the study area, 
is influenced by various factors. These include soil texture, land cover changes, rainfall 
patterns, and topographic characteristics. The interaction of these factors plays a cru-
cial role in the initiation and propagation of gullies, impacting the overall vulnerability 
of the landscape. Building upon the discussion of gully erosion factors, it is important 
to consider how these factors interplay with those influencing landslide hazards. The 
transition from gully erosion to landslide involves a shift in focus towards slope stabil-
ity, geological conditions, land use practices, and precipitation as key drivers of land-
slide susceptibility in the study area. Landslide occurrence is governed by a complex 
interplay of factors, including slope, soil texture, land use, and lithology. By examining 
these factors in relation to the study area, a more comprehensive understanding of land-
slide hazard dynamics can be achieved, contributing to improved susceptibility map-
ping efforts. The discussion on landslide hazards naturally leads to an exploration of 
flood hazards, as landslides can significantly impact hydrological processes and increase 
flood risk. Factors such as channel morphology, land use changes, extreme precipitation 
events, and infrastructure development all contribute to the vulnerability of the study 
area to flooding, highlighting the interconnected nature of these hazards. In conclusion, 

Fig. 6  Gully erosion susceptibility maps produced using: a RF model; b SVM model; c BRT model; d 
MARS model
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the integration of factors affecting gully erosion, landslides, and flood hazards is essen-
tial for developing comprehensive vulnerability maps and enhancing risk assessment 
strategies. By establishing clear transitions and organizing ideas cohesively, this study 
aims to provide a structured framework for understanding and addressing multiple haz-
ards in the study area.

Based on the results obtained from Table  1, in relation to environmental factors, the 
highest percentage and amount of FR for FLGe hazards in Gorganrood watershed occurred 
in the following categories. The sections prone to gully erosion have sensitive lithology 

Fig. 7  Three hazards susceptibil-
ity distribution areas of the RF, 
SVM, BRT and MARS models: 
Floods (a); Landslide (b) and 
Gully erosion (c)
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(Quaternary sediments), soil texture, silty clay loam texture, and agricultural and range-
land use, and the annual rainfall was 384–549 mm. In addition, lowlands and south and 
southeast directions were observed at heights less than 500 m with a slope 26% > , SLC 

Table 2  Statistical characteristics 
of the probability values obtained 
from RF, SVM, BRT and MARS 
models

Hazards Models Probabilistic prediction 
values

Mean SD

Flood RF 0.155 0.222
SVM 0.236 0.248
BRT 0.269 0.164
MARS 0.139 0.259

Landslide RF 0.313 0.229
SVM 0.321 0.327
BRT 0.438 0.115
MARS 0.276 0.286

Gully erosion RF 0.137 0.207
SVM 0.174 0.269
BRT 0.339 0.157
MARS 0.109 0.245

Fig. 8  ROC curves for three hazards (a) floods (b), landslide, and gullies (c)
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0.01 > , TSC 0.01 < , drainage density 0–0.067 km/km2, RSP 0–0.164, TWI 5.12–7.33, SPI 
0–1343.97.

Landslide prone areas at an altitude of 807–1418 m with slopes above 45%, less than 
4000 m from the fault, less than 900 m from the road, 1774 m distance from stream net-
work, Qft group lithology, Delichai Formation (Murmg), soil texture Silty clay loam and 
silty loam, SPI 0–1343.97, TWI 1.20–5.12, RSP 0–0.164, drainage density 0.067–0.6, 

Table 3  AUC values of validation data set

Three hazards Models Area Standard error Asymptotic 
significant

Asymptotic 95% confidence 
interval

Lower bound Upper bound

Flood RF 0.972 0.016 0.000 0.940 1.004
SVM 0.961 0.018 0.000 0.924 0.997
BRT 0.940 0.007 0.000 0.978 1.004
MARS 0.991 0.000 0.000 0.874 1.006

Landslide RF 0.829 0.028 0.000 0.774 0.833
SVM 0.760 0.033 0.000 0.696 0.824
BRT 0.695 0.036 0.000 0.624 0.765
MARS 0.874 0.025 0.000 0.826 0.922

Gully erosion RF 0.969 0.011 0.000 0.947 0.991
SVM 0.939 0.018 0.000 0.904 0.974
BRT 0.926 0.020 0.000 0.886 0.965
MARS 0.985 0.06 0.000 0.973 0.998

Fig. 9  Multi-hazard map produced by MARS model synthesizing the three hazard maps
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annual rainfall 608.21–810.28, SLC < 0.01, TSC < 0.01, forest land use and west slope 
direction were among the areas prone to landslide.

In areas with a height of – 95 to 296 and slope of less than 10%, agricultural land use, 
distance from stream network less than 3725 m, SLC − 0.01 to 0.01, TSC more than 0.01, 
annual rainfall 549.76–609.21, drainage density value 0.268–0.557 km/km2, relative slope 
position 0–0.164, TWI 5.33–7.32, SPI 0–1343/97, silt loam soil texture and lithology of 
Qsw group, due to the concentration of surface and subsurface flows in the region towards 
stream and rivers, floods are most likely to occur. Drainage density factors (49.4%), digital 
elevation model (30.5%), and rainfall (41.7%) were identified as the most important envi-
ronmental factors affecting the occurrence of FLGe in the study area. In addition, the vari-
ables of distance from stream network and lithology for flood risk, lithology and distance 
from fault for landslide risk, and digital elevation and land use model were important for 
trench erosion risk analysis. 77.52% of flooding occurs in areas with a drainage density 
between 0.557 and 0.268  km/km2. Slope maps for SLCs and TSCs have been prepared 
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Fig. 10  Pie diagram of percentage of the study area predicted by MARS model to have combinations of 
FLGe

Table 4  Evaluating prediction performance of MARS model as the superior model

Hazards

Flood Landslide Gully erosion

Sensitivity (%) 95.50 89/09 83.37
Specificity (%) 89.00 55.27 69.02
Efficiency (%) 46.5 46.2 43.2
Positive predictive value (NPP) (%) 89.16 66.58 72.91
Negative predictive value (NPV) (%) 90.36 83.52 80.58
Kappa coefficient 0.79 0.44 0.52
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from digital elevation model maps; therefore, they are very important in modeling and 
determining areas prone to natural hazards. In Gorganrood watershed, 49.19% of landslide 
in areas with a height of 807–1418 m, which have slopes of 26.07–45.29%, have been land-
slide prone areas. Although surface landslide occur on steep slopes, the frequency of their 
occurrence is mostly lower on slopes greater than 45° (Dai et al. 2001; Sidel and Ochiai 
2006). Areas with a height of less than 200 m and a slope of more than 26% are more prone 
to this type of erosion, and approximately 90% of gullies are located in this area, which can 
be attributed to the presence of vegetation (Daba et al. 2003). According to Chen and Yu 
(2011), the areas in the lower reaches have a larger upstream participation area and surface 
currents, which are more conducive to flooding, gully erosion, or landslide. Jokar Sarhangi 
and Khalkhali (2019), analysis of the role of altitude and slope factors in landscaping con-
firm this result.

Low slope areas are more susceptible to gullies and flooding. These results suggest a 
close relationship between the occurrence of gullies and floods on low slopes due to the 
infiltration of surface currents and the formation of tunnel or piping erosion. Kakembo 
et al. (2009) examined the influence of topographic thresholds (slope, curvature, and top-
ographic position) on the occurrence of gullies. The occurrence of gullies is very com-
plex due to several environmental factors (topography, geology, soil, etc.) that need to be 
controlled. As the slope of the ground increases, the thickness of loose material and allu-
vial deposits decreases and the likelihood of gully erosion decreases (Vanwalleghem et al. 
2005; Zhang et al. 2023a, b).

Rainfall is considered to be one of the stimulus factors for erosion. During the process of 
water infiltration into the soil, the suction of the material is gradually reduced, and hence, 
the shear strength of the material is reduced, leading to soil erosion (Hong et  al. 2016; 
Zhang et al. 2023a, b). The highest frequency ratio of gully erosion is 348–500 mm per 
year. Distance from stream network is one of the most important environmental variables 
that affect the magnitude and speed of floods (Band et al. 2020). The stability of a domain 
is controlled by saturating the material on the domain (Yalcin et al. 2011). Floods are most 
likely to occur close to the river in the study area. This may be due to the concentration of 
surface and subsurface flows towards streams and rivers in the region. Lithology plays a 
very important role in determining sensitivity, and different lithological units show signifi-
cant differences in slope instability. Analysis of lithological classes in the study area shows 
that the Qsw and Qft groups with alluvial terrace formations have the highest susceptibility 
to floods and moat erosion, respectively (Avni. 2005).

Changes in land-use conditions lead to natural imbalances and instability (Sidel and 
Ochiai 2006; Prokopová et  al. 2019). On the basis of land use results, one of the most 
important factors affecting gully erosion has been identified, which agrees with Samani 
et al. (2016) study. In addition, watersheds, whose predominant use is agricultural lands 
with gullies, have produced more sediments and floods than forest areas, even with land-
slide (Lesschen et al. 2007; Haregeweyn et al. 2017). According to the variables impor-
tance analysis, drainage density (89.4%), digital elevation model (30.5%), and rainfall 
(41.7%) were consistently highly ranked variables for flood, landslide, and gully erosion, 
respectively. These findings are consistent with Nohegar and Heydarzadeh (2011), Servati 
et al. (2014), Bui et al. (2016a), Khosravi et al. (2016), Lee et al. (2007), and Azareh et al. 
(2019) studies. The results showed that the model predictions based on all these flood risk 
criteria were better than those based on the landslide and gully erosion criteria. Variables 
that affect the occurrence of natural hazards in one region may be different from other 
regions due to different topological, climatic, hydrological, geomorphological, soil and 
human factors (Barman et al. 2024). Landslides have occurred around rivers in some areas, 
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and distance from the stream network is a major cause (Demir et  al. 2015). Landslide 
caused by human factors around the roads were the main cause of distance from the road 
(Zhang et al. 2024), and based on the research results, it is not possible to suggest a method 
for all the regions (Chen et al. 2017; Pourghasemi and Rahmati. 2018).

5  Conclusion

In this study, RF, SVM, BRT, and MARS models were used to identify areas prone to 
FLGe in the Gorganrood watershed, record the locations of 283 gully erosion points, 351 
landslide points, and 127 flood points in the region, and obtain forecast maps of areas sus-
ceptible to FLGe. The utilization of RF, SVM, BRT, and MARS models in susceptibil-
ity mapping for gully erosion, landslide, and floods within the Gorganrood watershed has 
yielded crucial insights into the spatial distribution of these hazards. The identification of 
high-risk areas, particularly in sloping and high regions for landslide and the alluvial and 
flat central parts for floods, underscores the importance of targeted risk mitigation strate-
gies. The findings highlight the complex interplay of topographical, hydrological, and land 
use factors in shaping the vulnerability landscape of the watershed.

According to the model maps, sloping and high areas have high and low occurrence 
potentials for landslide and gully erosion, respectively, and alluvial and flat central parts 
adjacent to surface currents have a moderate to high flood risk. The SVM, BRT, and 
MARS models had the highest landslide risk in the very high class in the random RF 
model. Each model showcased unique strengths and limitations in capturing the nuances 
of hazard occurrence, emphasizing the need for a multi-model approach to enhance the 
accuracy and reliability of risk mapping efforts. Understanding the specific capabilities and 
constraints of each model can inform decision-makers on selecting the most appropriate 
tool for their risk assessment needs. The results show that approximately 50% of the Gor-
ganrood watershed is at risk and that some of these areas fall within a multi-risk category 
and are therefore susceptible to more than one risk. This map makes it possible to identify 
multiple risk areas.

Based on the study’s findings, key recommendations can be formulated to guide deci-
sion-makers, policymakers, and researchers in enhancing risk mitigation and management 
strategies. These recommendations may encompass improved land use planning practices, 
early warning systems implementation, and targeted infrastructure development to mini-
mize the impact of hazards on vulnerable communities. Additionally, fostering interdisci-
plinary collaborations and investing in continuous monitoring and data collection efforts 
can bolster preparedness and response mechanisms in the face of evolving hazard dynam-
ics. he identification of areas susceptible to multiple hazards underscores the complexity 
and interconnected nature of hazard occurrences within the watershed. Managing such 
multi-risk scenarios necessitates a holistic and adaptive approach that integrates cross-
sectoral expertise, community engagement, and innovative risk communication strategies. 
Addressing the challenges associated with overlapping hazards requires tailored inter-
ventions that prioritize resilience-building measures, sustainable land use practices, and 
ecosystem-based solutions to mitigate the cascading effects of disasters. In conclusion, 
the study’s comprehensive analysis of hazard vulnerabilities in the Gorganrood watershed 
offers valuable insights into the spatial dynamics of gully erosion, landslide, and flood. 
By providing actionable recommendations and highlighting the significance of multi-risk 
areas, this research contributes to the ongoing dialogue on effective risk management 
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strategies and underscores the importance of proactive measures in enhancing community 
resilience to natural hazards.
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