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We discuss the resonant activation phenomenon on a Josephson junction due to the coupling of
the Josephson system with axions. We show how such an effect can be exploited for axion detection.
A nonmonotonic behavior, with a minimum, of the mean switching time from the superconducting
to the resistive state versus the ratio of the axion energy and the Josephson plasma energy is found.
We demonstrate how variations in switching times make it possible to detect the presence of the
axion field. An experimental protocol for observing axions through their coupling with a Josephson
system is proposed.
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I. INTRODUCTION

Very recently the dark-matter axion detection has
become a promising and fruitful research field [1–14].
Josephson systems are recognized of paramount impor-
tance as a sensitive experimental tool, as a playground
for many theoretical models, and for their applications
in fast, low-noise electronics [15–27]. In the last years,
a Josephson junction (JJ) has been supposed to interact
with axions, the hypothetical elementary particles pro-
posed as a possible component of cold dark matter [28–
30], by exploiting the matching between the energies of
the axion and the JJ [31–33]. Very recently, hard X-ray
emission from neutron stars has been explained by axion
emission [34, 35]. The axion’s mass estimation is com-
patible with the values postulated by the Peccei-Quinn
theory introduced in 1977 to solve the strong CP prob-
lem in quantum chromodynamics [36]. The theory in-
troduces a new scalar field which spontaneously breaks
the symmetry at low energies, giving rise to an axion
that suppresses the CP violation [37, 38]. Moreover, un-
explained events in Josephson-based experiments [39–43]
can be well justified on the basis of the axion-JJ cou-
pling. This hypothesis has thus paved the way to think
of JJs as possible axion-detectors. However, up to now,
no systematic investigations of resonance experimental
conditions, suitable for direct Josephson-based axion de-
tection, have been carried out.

Here, we consider a Josephson-based detector to ex-
ploit the measurable voltage drop that appears across
the device when the combined action of bias current and
thermal fluctuations induces the switch from the super-
conducting to the resistive state [27, 44–46]. In the pres-
ence of axion coupling, the analysis of the mean switching
times (MST), τMST , for the JJ reveals the occurrence of a

resonance effect. This is the axion-induced resonant acti-
vation phenomenon characterized by a nonmonotonic be-
havior of τMST , with a minimum, versus the ratio of the
axion to the Josephson plasma energy. Furthermore, our
work allows the identification of the suitable experimen-
tal conditions for a Josephson system to effectively detect
such an axion-JJ resonance. Based on these findings, an
experimental procedure for observing axions coupled to
a JJ system is proposed.

The paper is organized as follows. The physical char-
acteristics and the mathematical formalism of the two
subsystems, JJ and axion, and the composed axion-JJ
system are presented in Secs. II, III and IV, respectively.
In Sec. V, the axion-induced resonant activation phe-
nomenon is discussed in detail, while in Sec. VI the out-
lines of two possible experimental schemes are proposed.
Finally, conclusive remarks are reported in Sec. VII.

II. RCSJ MODEL

We consider a superconductor-normal metal-
superconductor JJ (see Appendix A 1), Fig. 1(a),
whose phase dynamics can be described within the
resistively and capacitively shunted junction (RCSJ)
model [15, 27, 47, 48] as

β
C

d2ϕ(τc)

dτ2c
+
dϕ(τc)

dτc
+ sin [ϕ (τc)] = in(τc) + ib. (1)

The time is normalized to the inverse of the characteristic
frequency, that is τc = ωc t with ωc = (2e/~) IcR. Ic is
the maximum Josephson current that can flow through
the device, while ib = Ib/Ic and in = In/Ic are, respec-
tively, the normalized external bias current and thermal
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noise current. β
C

= ωcRC is the Stewart-McCumber pa-
rameter, with R and C being the normal-state resistance
and capacitance of the JJ, respectively. A JJ can be ef-
fectively described in terms of a particle moving along
a washboard potential tilted by ib (see Appendix A 1),
see Fig. 1(b). Increasing ib, the slope of the washboard
potential increases and the height of the confining poten-
tial barrier reduces, up to vanish altogether for ib = 1.
Overdamped and underdamped JJs are characterized by
β

C
� 1 and β

C
� 1, respectively.

In this work, the random current is modeled as a stan-
dard Gaussian white noise associated to the JJ resistance,
with the usual statistical properties < in(τ) >= 0 and
< in(τ)in(τ + τ̃) >= 2D δ(τ̃). The amplitude of the nor-
malized correlation is connected with the physical tem-
perature T through the relation [15]

D =
kBT

R

ωc
I2c
. (2)

III. AXION FIELD

An axion field a is characterized by two parameters,
the axion misalignment angle θ and the axion coupling
constant fa, namely a = fa θ [49]. Within the Robertson-
Walker metric, which is appropriate to describe the early
universe, the homogeneous equation of motion of the ax-
ion misalignment angle θ reads [37]

d2θ(t)

dt2
+ 3H

dθ(t)

dt
+
m2
ac

4

~2
sin [θ (t)] = 0. (3)

Here, H ≈ 2 × 10−18 s−1 is the Hubble parameter and
ma denotes the axion mass.

It is evident the similarity between the equations of
motion governing the axion and the RCSJ systems: the
axion dynamics is analogous to that of a RCSJ with no
externally applied bias current. Besides the formal math-
ematical analogy between the two systems, it is physically
remarkable that the parameters characterizing the two
equations are quite similar as their order of magnitude is
concerned (see Appendix A 2).

IV. AXION-JJ SYSTEM

The interaction between axion and JJ can be formally
written as

ϕ̈+ a1ϕ̇+ b1 sin(ϕ) = γ(θ̈ − ϕ̈), (4a)

θ̈ + a2θ̇ + b2 sin(θ) = γ(ϕ̈− θ̈), (4b)

where (a1, a2) and (b1, b2) are the dissipation and fre-
quency parameters, respectively; γ is the coupling con-
stant between axion and JJ and its value can be inferred
from experimental quantities [33]. In analogy to what
happens in resonant cavities, the axion-JJ coupling is
supposed to be responsible for the decay of the axion

FIG. 1: (a) Schematic illustration of the device. An axion
field a through the weak link is also represented. (b) Phase
particle in a minimum of the washboard potential U , tilted by
a bias current. The phase can overcome the potential barrier,
∆U , rolling down along the potential because of the combined
effect of thermal noise and axion-JJ coupling.

into two photons, one of which (that characterized by a
vanishing moment) generates electron-hole pairs which in
turn create a supercurrent [28–31].

By considering the presence of both a bias current and
thermal fluctuations in the JJ equation, the axion-JJ sys-
tem [Eqs. (4)] can be conveniently rewritten as (see Ap-
pendix B)

βc
k2

ϕ̈+ ϕ̇+ sin(ϕ) +
k1
k2

ε sin(θ) = ib + in, (5a)

βc
k1

θ̈ + ϕ̇+ sin(ϕ) +
k2
k1

ε sin(θ) = ib + in, (5b)

with

k1 =
γ

1 + 2γ
, k2 =

1 + γ

1 + 2γ
, βc =

ω2
c

ω2
p

, ε =

(
mac

2

~ωp

)2
, (6)

where ωp =
√

(2eIc)/(~C) is the Josephson plasma fre-
quency. We assume that the additional sinusoidal
term depending on θ in Eq. (5a) can be ascribed to the
Cooper-pair current indirectly induced by the axion en-
tering the junction. In other words, the axion induces an
extra current term. The ε parameter indicates the ra-
tio between the axion energy and the Josephson plasma
energy, ~ωp, and represents our “control knob” to set the
most convenient working point for the detection of an ax-
ion field interacting with the JJ. Indeed, the Josephson
plasma frequency, and therefore the energy ratio ε, can
be “adjusted” as needed, since Ic can be lowered by rais-
ing the temperature [50], applying a magnetic field [51] or
a gate voltage [52, 53]. In this way, the system response
can be tuned to achieve a working regime in which the
switching dynamics of the axion-JJ coupled system well
deviates from the Josephson response in the absence of
axions. This condition makes the axion-JJ interaction
clearly detectable.
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FIG. 2: Semilog plot of the mean switching time (τMST ) ver-
sus the inverse noise intensity (D−1), in the under- [(a)] and
over- [(b)] damped regime for a JJ, that is the coupling and
decoupling regime, respectively, in the presence of thermal
noise and an external bias current ib = 0.8, at different values
of γ. The legend in (a) refers to both panels.

Now we analyze how the axion affects the MST, i.e.
the average time the JJ system takes to switch from the
initial superconducting state (particle at the bottom of
the well) to the resistive state. Due to random thermal
fluctuations, the particle can escape from the potential
well, even if the junction is biased by a current below
the critical value (i.e., ib < 1). According to Kramers’
theory, in the strong damping limit the average escape
rate from a neighbouring potential barrier ∆U(ib) in the
presence of a noise source, with intensity D expressed by
Eq. (2), is given in the simplest approximation by the
following expression [47]

r(ib, D) =
ωc
2π

(
1− i2b

) 1
4 e−

∆U(ib)

D . (7)

In Fig. 2 we show the behavior of the normalized
MST, τMST , as a function of the inverse of the noise
intensity, D−1, under different damping conditions,
performing N = 104 independent numerical realizations
from Eqs. (5). The linear behavior of τMST vs D−1

characterizes a Kramers-like law. We note that if we
multiply Eq. (4a) by βc, the latter appears only in the

second-derivative terms, while the first-derivative term
will be multiplied by the square root of βc. Conse-
quently, under the overdamped approximation (βc � 1)
the coupling term βcγ(θ̈ − ϕ̈) becomes negligible with
respect to all the other terms in Eq. (4a) and the two
equations decouple, as it is evident by comparing the
two panels in Fig. 2. Therefore, a suitable regime for the
JJ system to detect axions is the underdamped regime
(βc � 1).

Furthermore, the axion-coupling induces only a shift
of the τMST curves upwards as the coupling parameter
increases, while the slope is substantially unchanged
(Fig. 2). Therefore, only the prefactor of the Kramers-
like law is influenced by γ and not the height of the
effective potential barrier [54, 55], which is given by the
slope of the curves of Fig. 2(a).

V. RESONANT ACTIVATION EFFECT

In light of the above result, it is interesting to study
the dependence of the MST on the ratio ε between the
axion energy and the Josephson plasma energy. We fur-
ther emphasize that the Josephson energy depends on
the plasma frequency ωp and, therefore, it can be tuned
in experiments. However, the energy cannot be lowered
at will, for example it is always necessary to ensure that
the intensity of the thermal fluctuations is much lower
than the critical current of the junction.

Figure 3(a) clearly shows a significant nonmonotonic
behavior of τMST vs ε, with a minimum in the range
ε ∈ [0.1, 1], which is a signature of an axion-JJ resonant
activation phenomenon, observed in JJs both in the ab-
sence and presence of a noise source [16, 18, 56]. This res-
onant phenomenon is ascribed to the frequency-matching
condition between the frequency associated to the axion
angle field θ and the JJ plasma frequency (see Appendix
B). In fact, the term (k1/k2)ε sin(θ) in Eq. (5a) can be
interpreted as an oscillating current for the Josephson
system, which is responsible for the resonant activation
phenomenon [16, 18]. The minimum is less pronounced
for low and high values of γ. In particular, for low val-
ues of the coupling parameter, γ . 0.5, the minimum
is affected by the decoupling, which smoothes the curve
towards a constant behavior; for high coupling values,
γ � 0.5, very high values of τMST , due to the confine-
ment of the JJ phase particle (ε & 1), tend to shallow
the minimum. In the intermediate range, the minimum
is more pronounced showing the resonant activation phe-
nomenon. Indeed, by linearizing Eqs. (4), in the absence
of noise, we get in the underdamped regime the expres-
sion for the frequency associated with the axion-JJ sys-
tem (see Appendix B)

ω+
p (γ, ε) = ωp

√
k2(ε+ 1) + f(γ, ε)

2
, (8)
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FIG. 3: (a) Log-log plot of the dependence of the mean switch-
ing time (τMST ) on the energy ratio ε, in underdamped regime
(βc = 100), with ib = 0.5 and D = 0.1 for a JJ subject to
thermal noise and coupled with an axion field. The statis-
tics is based on a set of 5 · 104 realizations. (b) Semilog plot
of two normalized frequencies ω+

p (dashed blue line) and ω−
p

(dotted red line)], which characterize the axion-JJ dynamics
in the underdamped (βc = 100) small-oscillation (ϕ̇ → 0)
regime with γ = 1.0, vs the ratio ε. The solid gray line repre-
sents the effective normalized plasma frequency of the system
ω̃p/ωp = (1 − i2b)1/4 resulting from the application of a bias
current ib = 0.5 (see Appendix B).

with

f(γ, ε) =
√
k22(ε− 1)2 + 4k21ε. (9)

The frequency matching between ω+
p and the effective

plasma frequency ω̃p = ωp(1 − i2b)1/4 occurs at ε ' 0.7
[see Fig. 3(b)], just close to the position of the mini-
mum in the curves of τMST vs ε in Fig. 3(a). The reso-
nant matching condition is robust enough to be observed
with a different set of parameter values (see Appendix
B). Furthermore, the position of this local minimum
depends on both the coupling parameter γ and the ap-
plied bias current ib, and moves towards lower values of
ε for higher values of γ. For low values of ib the resonant
effect is more visible [Fig. 3(a)], while for higher bias val-
ues it tends to disappear as γ increases (see Appendix B).
At low noise intensity, the resonant effect is still present,

and even more evident (see Appendix B). Moreover, for
ε � 1 and ε � 1, the curves approach two different
plateaux. For ε � 1, the two equations describing the
dynamics of the two systems, JJ and axion, decouple,
since the effects of θ(t) on ϕ(t) in Eq. (5a) are due to
the term (k1/k2)ε sin(θ). For ε � 1, the oscillations of
θ(t) are highly damped, so as to compensate the high
values of ε. This can be seen in Eq. (5b) where the term
(k2/k1)ε sin(θ) is responsible for the sinusoidal shape of
the potential felt by the axion. For ε � 1 the potential
well is extremely deep so that the axion oscillations are
narrowly confined.

Furthermore, due to the term (k1/k2)ε sin(θ), which is
always opposite to the bias term, the total effective cur-
rent becomes smaller than ib (results not shown). This
feature indicates that the presence of an axion tends to
confine the effective phase particle representing the JJ
system behavior. This explains why the value of the
MST tends to increase for ε & 10−2. Thus, the two
plateaux at low and high ε are somewhat different when
γ & 0.5, while for lower couplings the two plateaux are
practically at the same level. In fact, for γ � 1 the
weight of the term (k1/k2)ε sin(θ) is lessened by the pres-
ence of k1/k2 = γ/(1 + γ), which vanishes if γ tends to
zero and the axion-JJ equations decouple. Therefore, in
the ε� 1 region a MST that deviates significantly from
the expected unperturbed value (ε � 1) represents, to-
gether with the presence of the minimum, a hallmark of
an axion-JJ interaction and therefore of the axion de-
tection. The comparison between the MST measure-
ments in the unperturbed case (ε�1), predicted also by
Kramers theory, and those obtained for ε� 1 can lead to
an estimate of γ. In particular, first the behaviour of the
MST as a function of the parameter ε is obtained. Af-
terwords, through a comparison of the theoretical curves
shown in Figs. 3(a) and 4 with the experimental one, the
value of the coupling parameter can be determined.

The observation that higher values of γ give higher
values of the MST, both for ε� 1 and for ε� 1, is well
justified too. In fact, since (k1/k2)ε sin(θ) effectively be-
haves as a current term in Eq. (5a), a stronger axion-JJ
coupling results in an effective lower bias current which
further confines the Josephson phase particle. This
confinement, therefore, is due to both a greater axion-JJ
coupling constant γ and a greater energy ratio ε.

This therefore identifies the suitable experimental
conditions for a JJ-based axion detection. First, as
the MST analysis is concerned, it has been shown that
the underdamped regime is suitable to highlight the
axion-induced effects on the JJ dynamics. Second, it has
been found that for any value of the coupling parameter,
according to the axion-mass estimates [31, 32], it is
convenient to tune the plasma frequency, through the
critical current, to reach the limit ε � 1. This allows
an improved estimate of the parameter γ, thanks to the
greatest spacing between the curves related to different
values of the axion-JJ coupling for γ & 0.5. This makes
the values of γ compatible with the experimental range
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of τMST more easily detectable for ε � 1. Third, and
most importantly, we have found a resonant activation
phenomenon due to the frequency matching condition in
the transition range ε ≈ 1.

The energy of the dark matter axion mac
2 is estimated

in the energy range ∼(0.006−2)meV. To fulfill the ε > 1
condition requires a suitable JJ device with a sufficiently
low critical current Ic, which can be even further reduced
by heating and/or magnetic fields. Therefore, although
the value of ε is not known precisely, it is still possible
to design a setup to control its variation. This makes
possible to range from the almost decoupled working
regime (ε� 1) to the well coupled one (ε > 1).

VI. POSSIBLE EXPERIMENTAL SETUP

Based on the results previously shown, a technique to
setup an experiment to detect the axion field is here out-
lined. First, as the parameter ε depends on the JJ critical
current Ic, Eq. (6), by tuning Ic it is possible to measure
the MST deviation from the dynamical regime charac-
terized by high Ic (which entails small ε and for which
the axion signal is ineffective) to that characterized by
low Ic (which entails large ε and for which the axion sig-
nal is effective). Thus, as the critical current of the JJ
is decreased, for instance by means of a magnetic field,
the effects described by Eqs. (5) become more and more
evident [see Fig. 3(a)] in the same experimental set-up.
Finally, by tuning the frequency matching condition to
observe the resonant phenomenon, the axion should be
revealed.

Another possible experimental setup is to consider
many JJs with significantly different critical currents
and to observe an increase in the MSTs when the critical
current passes the condition ε ≈ 1, that is, after Eq.(6),
Ic . m2

ac
4

~2e/C . Again, a tuning of the resonant matching
condition should reveal the axion. We note that the
increase in Fig. 3(a) is observed in normalized units; the
relation between the actual (tMST ) and the normalized
(τMST ) average switching times also depends on the
critical current: tMST = τMST

~
2eIcR

, according to the
normalization of Eq. (A4). In other words, as ε increases
due to the decrease in Ic, the amplification effect on the
non-normalized MSTs should be even greater than that
shown in Fig. 3(a).

VII. CONCLUSIONS

We have investigated the MSTs of a JJ directly cou-
pled to an axion field and subject to both a dc bias cur-
rent and thermal fluctuations. We have found the ex-
perimental conditions for a JJ-based axion detection: a)
the underdamped regime; b) a Josephson plasma energy

lower than the axion energy; c) the axion-induced reso-
nant activation phenomenon, due to the occurrence of an
effective frequency matching between axion and JJ, when
the ratio of the axion energy to that of the junction falls
in the range ε ∈ [0.1, 1]. Furthermore, an experimental
strategy for a JJ-based axion detection is proposed.

Perhaps most importantly, we propose to reveal the
axion presence through the analysis of the escape times
from the superconducting initial state. Thus, studying
the switching time statistics, we have found a resonant
activation phenomenon, based on the plasma frequency,
induced on the JJ by the axion that turns out to act as
an effective time-dependent oscillating bias current.

Finally, our approach can be applied to different phys-
ical scenarios, like damped pendula, two capacitively
coupled JJs [57], excitable coupled JJs [58] and cou-
pled qubits architectures for quantum computing [59, 60],
paving the way to further theoretical achievements and
new technological applications.
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Appendix A

1. RCSJ Model

A short tunnel JJ is a quantum device formed by
sandwiching a thin insulating layer between two super-
conducting electrodes, in which both lateral dimensions
are smaller than the Josephson penetration depth [15].
The dynamics of the Josephson phase ϕ for a dissipative,
current-biased short JJ can be studied within the RCSJ
model [15, 18, 61] that in non-normalized units can be
written as(

Φ0

2π

)2
C
d2ϕ

dt2
+

(
Φ0

2π

)2
1

R

dϕ

dt
+

d

dϕ
U =

(
Φ0

2π

)
IN . (A1)

Here, U is the washboard potential along which the phase
evolves,

U(ϕ, ib) = EJ0
[1− cos(ϕ)− ibϕ] , (A2)

where EJ0
= (Φ0/2π) Ic. The resulting activation energy

barrier, ∆U(ib), confines the phase ϕ in a metastable po-
tential minimum and can be calculated as the difference
between the maximum and minimum value of U(ϕ, ib).
In units of EJ0

, it can be expressed as

∆U(ib) =
∆U(ib)

EJ0

= 2

[√
1− i2b − ib arccos(ib)

]
. (A3)
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In the phase particle picture, the term ib represents the
tilting of the potential profile; increasing ib the slope of
the washboard increases and the height ∆U(ib) of the
right potential barrier reduces, until this activation en-
ergy vanishes for ib = 1, that is when the bias current
reaches its critical value Ic.

If one normalizes the time to the inverse of the charac-
teristic frequency, that is τc = ωc t with ωc = (2e/~) IcR,
Eq. (A1) can be put in the dimensionless form

β
C

d2ϕ(τc)

dτ2c
+
dϕ(τc)

dτc
+ sin [ϕ (τc)] = in(τc) + ib, (A4)

where β
C

= ωcRC is the Stewart-McCumber param-
eter. Usually, the single-harmonic current-phase rela-
tion (CPR) is appropriate to describe the features of
a JJ [62], i.e., the high-order harmonic terms can be
neglected. However, we observe that a non-sinusoidal
CPR, as in the case of a short SNS junction [63], is not
expected to undermine the feasibility of the Josephson-
based scheme for axion detection discussed in this work,
but only to slightly affect the specific switching time val-
ues. An overdamped junction has β

C
� 1, that is a

small capacitance and/or a small resistance. In con-
trast, a junction with β

C
� 1 has a large capacitance

and/or a large resistance, and is underdamped. An-
other way to obtain a dimensionless form of Eq. (A1)
consists in normalizing with respect to the plasma fre-
quency ωp =

√
2eIc/~C ∈ [1, 1000] GHz. In this case

the normalized RCSJ equation (A1) reads

d2ϕ(τp)

dτ2p
+ α

dϕ(τp)

dτp
+ sin [ϕ (τp)] = in(τp) + ib, (A5)

where α = 1/(ωpRC) is the damping parameter and
τp = ωp t. With this time normalization the under- and
over-damped regimes correspond to α � 1 and α � 1,
respectively.

We note that normalizing with respect to the charac-
teristic frequency ωc, as we did in our numerical simu-
lations, the noise intensity D can be simply expressed
as the ratio of thermal energy to Josephson coupling en-
ergy EJ0

, or D = kBT/EJ0
, without any dependence

on the damping. Normalizing instead with respect to
the plasma frequency ωp, the noise intensity becomes
D = αkBT/EJ0

.
In our numerical simulations, for Gaussian fluctuations

of amplitude D, the stochastic independent increment
reads

∆iN '
√

2D∆t N (0, 1) . (A6)

Here, the symbol N (0, 1) indicates a random function
Gaussianly distributed with zero mean and unit stan-
dard deviation. The stochastic integration of Eqs. (A4)
or (A5) is performed with a finite-difference explicit
method, using a time integration step ∆t = 10−2.

2. Axion paramaters

An axion field a can be formally written as a = fa θ [49,
64], where θ is the axion misalignment angle and fa the
axion coupling constant. The axion’s misalignment angle
dynamics obeys the following homogeneous equation of
motion [37]

d2θ(t)

dt2
+ 3H

dθ(t)

dt
+
m2
ac

4

~2
sin [θ (t)] = 0, (A7)

where ma denotes the axion mass and H ≈ 2×10−18 s−1

the Hubble parameter. The typical ranges of parameters
that are allowed for dark matter axions are [65, 66]

3× 109 GeV ≤ fa ≤ 1012 GeV. (A8)

and

6× 10−6 eV ≤ mac
2 ≤ 2× 10−3 eV. (A9)

The prediction of the axion’s mass based on the average
of the results obtained from five independent condensed
matter experiments is [39–43]

mac
2 = (106± 6)µeV. (A10)

These energies values permit to estimate the correspond-
ing values of the energy ratio ε =

(
mac

2/~ωp
)2, see

Eq. (6). To do this, first of all the main parameters of
Josephson must be set: for example, we can generically
choose the values Ra = 500 Ωµm2, Cs = 100 fF/µm2,
and Jc = 106A/m2 for the resistance per area, the spe-
cific capacitance, and the critical current density, respec-
tively, which gives a plasma frequency ωp ' 170 GHz and
a Stewart-McCumber parameter β

C
' 80.

Then, from Eq. (A9) we get ε ∈ (0.003 − 300), which
is approximately the range of values we have explored in
this work. Moreover, these values match the almost de-
coupled working regime (ε� 1) and the well coupled one
(ε > 1), at which the τMST vs ε curves approach two dif-
ferent plateaux. Finally, the average value in Eq. (A10)
corresponds to an energy ratio ε ∼ 0.85, i.e., a value
just close to the resonant matching condition discussed
in Sec. V.

Appendix B: Linearization and Frequency Matching
Condition

The interaction model proposed for a coupled axion-JJ
system reads [Eqs. (4) of the main text]

ϕ̈+ a1ϕ̇+ b1 sin(ϕ) = γ(θ̈ − ϕ̈), (B1a)

θ̈ + a2θ̇ + b2 sin(θ) = γ(ϕ̈− θ̈), (B1b)

where γ is the coupling parameter. In the presence of
both a bias and a stochastic current, by normalizing with
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FIG. 4: Log-log plot of the dependence of the mean switching time τMST on the axion-JJ coupling ε, in underdamped regime
(βc = 100), with ib = 0.8 and (a) D = 0.05, (b) D = 0.1 for a JJ subject to thermal noise and coupled with an axion field. The
statistics is based on a set of 5 · 104 realizations.

respect to the squared plasma frequency ω2
p = b1, the

system (4) can be rewritten as

ϕ̈+ k2 α ϕ̇+ k2 sin(ϕ) + k1 ε sin(θ) = k2[ib + in],
(B2a)

θ̈ + k1 α ϕ̇+ k1 sin(ϕ) + k2 ε sin(θ) = k1[ib + in],
(B2b)

with

τp = ωp t, α =
a1√
b1

=
1

ωpRC
≈ 100 − 101, (B3a)

and the term proportional to θ̇ can be neglected, since

a2√
b1

=
3H

ωp
≈ 10−30 ∼ 0. (B4)

Normalizing with respect to the characteristic frequency
ωc, the system of differential equations becomes

βc ϕ̈+ k2 ϕ̇+ k2 sin(ϕ) + k1 ε sin(θ) = k2[ib + in],
(B5a)

βc θ̈ + k1 ϕ̇+ k1 sin(ϕ) + k2 ε sin(θ) = k1[ib+in],
(B5b)

with τc = ωc t.
In this work, by numerically solving Eqs. (5), we report

the calculation of the MST as a function of the energy
ratio ε. Specifically, in Fig. 4 the curves of MST versus ε
are shown for a higher bias value, ib = 0.8, with respect to
that shown in Fig. 3(a) of the main text and for two noise
intensity values, namely D = 0.05 and D = 0.1. These
curves show that the resonant phenomenon tends to dis-
appear for higher bias values and that it is still present
and more evident at low noise intensity. Indeed, the res-
onant activation phenomenon is observed in the presence
and in the absence of a noise source, see Refs. [16, 18, 56]
(and references therein).

Let us consider the limit of small oscillations for both
the JJ and the axion, in the absence of a noise source. In
this case, we can approximate sinϕ ∼ ϕ and sin θ ∼ θ in
Eqs. (5). The resulting linearized system reads

βϕ̈+ ϕ̇+ ϕ+ kεθ = ib, (B6a)

βθ̈ + kϕ̇+ kϕ+ εθ = kib, (B6b)

with β = βc/k2 and k = k1/k2 = γ/1 + γ. In the over-
damped regime (βc � 1), the first term can be neglected
in both equations. By adding and subtracting the two
equations, we obtain

ϕ̇+ ϕ− ib = −εθ, (B7a)
ϕ̇+ ϕ− ib = εθ, (B7b)

which implies

ϕ̇+ ϕ− ib = 0 → ϕ(τc) = ib +
ϕ0

2
e−τc , (B8a)

εθ = 0 → θ(τc) = 0. (B8b)

Therefore, the two equations describing the dynamics of
the two systems decouple. This indicates that the over-
damped linearized regime is unsuitable for axion detec-
tion.

In the underdamped regime the normalization with re-
spect to ωp allows to more easily interpret the frequency-
matching phenomenon. Indeed, by putting α = 0 (un-
derdamped regime) in Eqs. (B2) and neglecting the noisy
fluctuating current term, the linearized system, this time,
remains coupled

ϕ̈+ k2ϕ+ k1εθ = k2ib, (B9a)

θ̈ + k1ϕ+ k2εθ = k1ib. (B9b)

The analytical solutions, for the initial conditions con-
sidered in the main text, namely [ϕ(0), ϕ̇(0), θ(0), θ̇(0)] =
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p

(dashed blue line) and ω−
p (dotted red line)], which charac-

terize the axion-JJ dynamics in the underdamped (βc = 100)
small-oscillation (ϕ̇→ 0) regime, on the parameter ε, the ra-
tio of the axion energy to the Josephson plasma energy, for
the axion-JJ coupling γ = 0.25. The solid gray line repre-
sents the effective normalized plasma frequency of the system
ω̃p/ωp = (1 − i2b)1/4 resulting from the application of a bias
current ib = 0.8.

[ϕ0, 0, 0, 0], are

ϕ(t) = ib + (ϕ0 − ib)
[
A−(γ, ε) cos(ω+

p t)+

εA+(γ, ε) cos(ω−
p t)

]
, (B10a)

θ(t) = (ϕ0 − ib)B(γ, ε)
[
cos(ω+

p t) + cos(ω−
p t)

]
(B10b)

where

ω±
p (γ, ε) =ωp

√
k2(ε+ 1)± f(γ, ε)

2
, (B11a)

f(γ, ε) =
√
k22(ε− 1)2 + 4k21ε, (B11b)

A±(γ, ε) =
2K2

1 +K2 ±K2
2 (ε− 1)

1 +K2(ε+ 1)
, (B11c)

B(γ, ε) = K1 =
k1

f(γ, ε)
, K2 =

k2
f(γ, ε)

. (B11d)

In Fig. 5 we show the behavior of the frequencies
ω±
p (γ, ε), in units of ωp, as a function of ε at γ = 0.25

and ib = 0.8. The black solid line indicates the bias-
dependent plasma frequency ω̃p/ωp = (1 − i2b)

1/4. In
Eq. (5), the term k1 ε sin(θ) can be considered as an os-
cillating drive, with two specific characteristic frequencies
given by ω±

p . Therefore, a resonant effect on the switch-
ing dynamics is expected when one of the two characteris-
tic frequencies of the oscillating drive and the Josephson
plasma frequency match. This is the resonant activa-
tion phenomenon observed both in the absence and in
the presence of a noise source [16, 18]. In particular, in
Fig. 5 it is shown the expected frequency matching at
ε ' 0.7, that is just close to the position of the central
minimum in the curves of τMST vs ε in Fig.2 of the main
text. Here, the frequency matching is with ω− and the
parameter values are different from those used to get the
curves of Fig. 3 in the main text. This indicates that
the resonant matching condition is robust enough to be
observed with a different set of parameter values.

For ε = 1 we get the following simpler expressions

ϕ(τp) =ib +
ϕ0 − ib

2

[
cos (τp) + cos

(
τp√

1 + 2γ

)]
,

(B12a)

θ(τp) =
ϕ0 − ib

2

[
cos (τp)− cos

(
τp√

1 + 2γ

)]
. (B12b)

In this case, for small oscillations, the axion and the JJ
are characterized by the same two frequencies: ω1 = ωp
and ω2 = ωp/

√
1 + 2γ, and the time evolutions of the

two solutions appear very similar.
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