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Abstract. We consider a semilinear Robin problem driven by the Laplacian plus
an indefinite and unbounded potential and a Caratheodory reaction term which is
resonant both at zero and ±∞. Using the Lyapunov-Schmidt reduction method and
critical groups (Morse theory), we show that the problem has at least two nontrivial
smooth solutions.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study
the following semilinear Robin problem

(1)

{ −∆u(z) + ξ(z)u(z) = f(z, u(z)) in Ω,
∂u
∂n

+ β(z)u = 0 on ∂Ω.

In this problem ξ ∈ Ls(Ω) (s > N) is an indefinite (that is, sign changing) and
unbounded potential. The reaction term f(z, x) is a Caratheodory function (that is, for
all x ∈ R, z → f(z, x) is measurable and for a.a. z ∈ Ω, x → f(z, x) is continuous).
We assume that for almost all z ∈ Ω, f(z, ·) is linear near ±∞ and asymptotically as
x → ±∞ resonance can occur with respect to any eigenvalue of u → −∆u + ξ(z)u
with Robin boundary condition. Also, at zero we have resonance with respect to any
eigenvalue different from the one for which we have resonance at ±∞. The boundary
coefficient β(·) belongs in W 1,∞(∂Ω) and we assume that β(z) ≥ 0 for all z ∈ ∂Ω. If β ≡
0, then our problem reduces to the Neumann problem. Hence our work, here contains
as a special case the Neumann problem. Under these conditions of double resonance
at both zero and infinity and using the Lyapunov-Schmidt reduction method together
with Morse theory (critical groups), we prove the existence of two nontrivial smooth
solutions. The Lyapunov-Schmidt reduction method for semilinear elliptic problems
was first developed by Amann [2] and Castro-Lazer [3].

Existence and multiplicity results for doubly resonant semilinear Dirichlet prob-
lems with zero potential (that is, ξ ≡ 0), were obtained by Liang-Su [15], Liu [16].
For Neumann problems with zero potential (that is, ξ ≡ 0), there are the works of
Gasiński-Papageorgiou [10, 11], Motreanu-Motreanu-Papageorgiou [17]. Semilinear el-
liptic problems driven by the Laplacian plus an indefinite potential were studied re-
cently by Gasiński-Papageorgiou [12], Kyritsi-Papageorgiou [14], Papageorgiou-Papalini
[20] (Dirichlet problems), Papageorgiou-Radulescu [21, 23], Papageorgiou-Smyrlis [25]
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(Neumann problems) and Hu-Papageorgiou [13] (Robin problems with logistic reac-
tion). We mention also the very recent nonlinear works on problems driven by the
p-Lapalcian plus an indefinite potential by Mugnai-Papageorgiou [19] and Fragnelli-
Mugnai-Papageorgiou [7, 8] and the semilinear works of D’Agùı-Marano-Papageorgiou
[5], Papageorgiou-Radulescu [24].

2. Mathematical Background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say that ϕ satisfies the Cerami
condition (the “C-condition” for short), if the following is true:

• Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and
(1 + ‖un‖)ϕ′(un) → 0 in X∗ as n → +∞, admits a strongly convergent sub-
sequence.

In the study of problem (1), we will use the Sobolev space H1(Ω), the Banach space
C1(Ω) and the boundary Lebesgue spaces Lq(∂Ω), 1 ≤ q ≤ ∞. By ‖ · ‖ we denote the
norm of the Sobolev space H1(Ω), defined by

‖u‖ =
[
‖u‖2

2 + ‖∇u‖2
2

]1/2
for all u ∈ H1(Ω).

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using
this measure, we can define in the usual way the boundary Lebesgue spaces Lq(∂Ω)
(1 ≤ q ≤ ∞). From the theory of Sobolev spaces, we know that there exists a unique
continuous linear map γ0 : H1(Ω)→ L2(∂Ω), known as the “trace map”, such that

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

So, we understand the trace map as representing the boundary values of a Sobolev
function u ∈ H1(Ω). We know that γ0 is compact into Lq(∂Ω) with 1 ≤ q < 2N−2

N−2
if

N ≥ 3 and into Lq(∂Ω) with q ≥ 1 if N = 1, 2. Also, we have

im γ0 = H
1
2
,2(∂Ω) and ker γ0 = H1

0 (Ω).

In the sequel, for the sake of notational simplicity, we drop the use of the trace map γ0.
All restrictions of the Sobolev functions on ∂Ω are understood in the sense of traces. Our
hypotheses on the data of problem (1), involve the spectrum of the differential operator
u→ −∆u+ ξ(z)u with Robin boundary condition. So, we consider the following linear
eigenvalue problem:

(2)

{
−∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω,

∂u
∂n

+ β(z)u = 0 on ∂Ω.

This problem, for Neumann boundary condition, was investigated by Papageorgiou-
Radulescu [21, 23], Papageorgiou-Smyrlis [25] and for the p-Laplacian by Mugnai-
Papageorgiou [19]. For Robin boundary condition, it was studied by Papageorgiou-
Radulescu [24] and D’Agùı-Marano-Papageorgiou [5]. Assume that ξ ∈ Ls(Ω) (s > N)
and let γ : H1(Ω)→ R be the C2-functional defined by

γ(u) = ‖∇u‖2
2 +

∫
Ω

ξ(z)u2dz +

∫
∂Ω

β(z)u2dσ for all u ∈ H1(Ω).

The eigenvalue problem (2) has a smallest eigenvalue λ̂1 > −∞ given by
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(3) λ̂1 = inf

[
γ(u)

‖u‖2
2

: u ∈ H1(Ω), u 6= 0

]
.

Then we can find µ > 0 such that

(4) γ(u) + µ‖u‖2
2 ≥ c0‖u‖2 for all u ∈ H1(Ω), some c0 > 0 (see [5]).

If we use (4) and the spectral theorem for compact self-adjoint operators, we produce

the spectrum of (2), which consists of a sequence {λ̂k}k≥1 of eigenvalues such that

λ̂k → +∞ as k → +∞. By E(λ̂k) we denote the eigenspace corresponding to the

eigenvalue λ̂k. We have

E(λ̂k) ⊆ C1(Ω) (see Wang [27])

and it has the unique continuation property (the UCP for short), that is, if u ∈ E(λ̂k)
and u(z) = 0 for all z in a set of positive measure, then u = 0 (see Motreanu-Motreanu-

Papageorgiou [18]). If Hm =
⊕m

k=1E(λ̂k) and Ĥm = H
⊥
m =

⊕
k≥m+1E(λ̂k), then Hm is

finite dimensional and we have the following orthogonal direct sum decomposition

H1(Ω) = Hm ⊕ Ĥm.

The higher eigenvalues {λ̂m}m≥2 have the following variational characterizations:

λ̂m = inf

[
γ(u)

‖u‖2
2

: u ∈ Ĥm, u 6= 0

]
= sup

[
γ(u)

‖u‖2
2

: u ∈ Hm, u 6= 0

]
, m ≥ 2.(5)

In both (3) and (5) the infimum (and for (5) also the supremum) is realized on the

corresponding eigenspace. The first eigenvalue λ̂1 ∈ R is simple and has eigenfunctions
of constant sign. In fact, if û1 denotes the L2-normalized (that is, ‖û1‖2 = 1) positive

eigenfunction corresponding to λ̂1, then û1(z) > 0 for all z ∈ Ω. All the other eigenvalues
have nodal (that is, sign changing) eigenfunctions.

Using (3) and (5) and the UCP of the eigenspaces, we have the following useful
inequalities.

Proposition 1. (a) If η ∈ L∞(Ω), η(z) ≤ λ̂k for a.a. z ∈ Ω and the inequality is
strict on a set of positive measure, then there exists c1 > 0 such that

γ(u)−
∫

Ω

η(z)u2dz ≥ c1‖u‖2 for all u ∈ Ĥk.

(b) If η ∈ L∞(Ω), η(z) ≤ λ̂k for a.a. z ∈ Ω and the inequality is strict on a set of
positive measure, then there exists c2 > 0 such that

γ(u)−
∫

Ω

η(z)u2dz ≤ −c2‖u‖2 for all u ∈ Hk.

Finally, let us recall some basic definitions and facts from Morse theory (critical
groups).

Let X be a Banach space, ϕ ∈ C1(X,R) and c ∈ R. We introduce the following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c},
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Kϕ = {u ∈ X : ϕ′(u) = 0},
Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

Let (Y1, Y2) be a pair of spaces such that Y2 ⊆ Y1 ⊆ X. For every k ∈ N, by
Hk(Y1, Y2) we denote the kth-relative singular homology group for the pair (Y1, Y2) with
integer coefficients. Let u ∈ Kc

ϕ be isolated. Then the critical groups of ϕ at u are
defined by

Ck(ϕ, u) = Hk(ϕ
c ∩ U,ϕc ∩ U \ {u}) for all k ∈ N0,

where U is a neighborhood of u such that Kϕ ∩ϕc ∩U = {u}. The excision property of
singular homology implies that the above definition of critical groups is independent of
the isolating neighborhood U .

Suppose that ϕ ∈ C1(X,R) satisfies the C-condition and −∞ < inf ϕ(Kϕ), then the
critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕ
c) for all k ∈ N0 and with c < inf ϕ(Kϕ).

Using the second deformation theorem (see Gasiński-Papageorgiou [9], p. 628), we
see that this definition of critical groups of ϕ at infinity is independent of the choice of
the level c < inf ϕ(Kϕ).

Suppose that Kϕ is finite. We define the following expressions:

M(t, u) =
∑
k≥0

rank Ck(ϕ, u)tk for all t ∈ R, all u ∈ Kϕ,

P (t,∞) =
∑
k≥0

rank Ck(ϕ,∞)tk for all t ∈ R.

The “Morse relation” is the following equality:∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R,

where Q(t) =
∑

k≥0 βkt
k is a formal series in t ∈ R with nonnegative integer coefficients

βk.
If X = H is a Hilbert space, ϕ ∈ C2(H,R) and u ∈ Kϕ, then we say that u is

“nondegenerate”, if ϕ′′(u) ∈ L(H,H) is invertible. Also, the Morse index m of u is
defined to be the supremum of the dimensions of the vector subspaces of H on which
ϕ′′(u) is negative definite. If u ∈ Kϕ is isolated and nondegenerate, then

Ck(ϕ, u) = δk,mZ for all k ∈ N0 (m is the Morse index of u).

Here by δk,m we denote the Kronecker symbol defined by

δm,k =

{
1 if k = m,

0 if k 6= m.

3. Multiplicity Theorem

In this section we prove the existence of two nontrivial smooth solutions for problem
(1). The hypotheses on the data of problem (1) are the following:

H(ξ): ξ ∈ Ls(Ω) with s > N .
H(β): β ∈ W 1,∞(∂Ω) and β(z) ≥ 0 for all z ∈ ∂Ω.
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Remark 1. The case β ≡ 0 is possible and corresponds to the Neumann problem.

H: f : Ω× R→ R is a Caratheodory function such that f(z, 0) = 0 for a.a. z ∈ Ω
and
(i) there exist m ∈ N and η ∈ L∞(Ω) such that

� η(z) ≤ λ̂m+1 for a.a. z ∈ Ω,
� the above inequality is strict on a set of positive measure,
� (f(z, x)− f(z, y))(x− y) ≤ η(z)(x− y)2 for a.a. z ∈ Ω, all x, y ∈ R;

(ii) λ̂m ≤ lim inf
x→±∞

f(z,x)
x

uniformly for a.a. z ∈ Ω and if F (z, x) =
∫ x

0
f(z, s)ds,

then

lim
x→±∞

[f(z, x)x− 2F (z, x)] = −∞ uniformly for a.a. z ∈ Ω;

(iii) there exist l ∈ N, l 6= m and δ > 0 such that

λ̂lx
2 ≤ f(z, x)x ≤ λ̂l+1x

2 for a.a. z ∈ Ω, all |x| ≤ δ.

Remark 2. Hypothesis H(ii) implies that asymptotically at ±∞ we can have resonance
with respect to any eigenvalue of the differential operator. In fact hypotheses H(i), (ii)
imply that

λ̂m ≤ lim inf
x→±∞

f(z, x)

x
≤ lim sup

x→±∞

f(z, x)

x
≤ η(z) uniformly for a.a. z ∈ Ω.

Hypothesis H(iii) implies that at zero, we can have resonance with respect to both

endpoints of any spectral interval distinct from [λ̂m, λ̂m+1] (double resonance).

A simple function satisfying the above conditions is the following. For the sake of
simplicity we drop the z-dependence

f(x) =

λ̂lx+ cx3 if |x| < 1,

λ̂mx−
λ̂m − (λ̂l + c)

x3
if 1 < |x|,

with m > l, c ≤ λ̂l+1 − λ̂l, λ̂m > λ̂l + c.

Let ϕ : H1(Ω)→ R be the energy functional for problem (1) defined by

ϕ(u) =
1

2
γ(u)−

∫
Ω

F (z, u(z))dz for all u ∈ H1(Ω).

Evidently ϕ ∈ C1(H1(Ω)). In what follows, we set

Y = Hm =
m⊕
i=1

E(λ̂i) and V = Ĥm =
⊕
i≥m+1

E(λ̂i) = Y ⊥.

We have the following orthogonal direct sum decomposition

H1(Ω) = Y ⊕ V.
So, every u ∈ H1(Ω) can be written in a unique way as

u = y + v with y ∈ Y, v ∈ V.

Proposition 2. If the hypotheses H(ξ), H(β), H hold, then there exists a continuous
map ϑ : Y → V such that

ϕ(y + ϑ(y)) = inf[ϕ(y + v) : v ∈ V ] for all y ∈ Y.
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Proof. We fix y ∈ Y and consider the C1-functional ϕy : H1(Ω)→ R defined by

ϕy(u) = ϕ(y + u) for all u ∈ H1(Ω).

By iV : V → H1(Ω) we denote the inclusion map. We define

ϕ̂y = ϕy ◦ iV
From the chain rule we have

(6) ϕ̂′y = pV ∗ ◦ ϕ′y,

with pV ∗ being the orthogonal projection of H1(Ω)∗ onto V ∗. By 〈·, ·〉V we denote the
duality brackets for the pair (V ∗, V ). For v1, v2 ∈ V we have

〈ϕ̂′y(v1)− ϕ̂′y(v2), v1 − v2〉V
=〈ϕy ′(v1)− ϕ′y(v2), v1 − v2〉 (see (6))

=‖∇(v1 − v2)‖2
2 +

∫
Ω

ξ(z)(v1 − v2)2dz +

∫
∂Ω

β(z)(v1 − v2)2dσ

−
∫

Ω

(f(z, v1)− f(z, v2))(v1 − v2)dz

≥γ(v1 − v2)−
∫

Ω

η(z)(v1 − v2)2dz (see hypothesis H(i))

≥c3‖v1 − v2‖2 for some c3 > 0 (see Proposition 1),(7)

⇒ϕ̂′y is strongly monotone, hence ϕ̂y is strictly convex.

We have

〈ϕ̂′y(v), v〉V = 〈ϕ̂′y(v)− ϕ̂′y(0), v〉V + 〈ϕ̂′y(0), v〉V
≥ c3‖v‖2 − c4‖v‖ for some c4 > 0 (see (7)),(8)

⇒ ϕ̂′y is coercive.

Note that ϕ̂′y(·) being continuous and monotone, it is maximal monotone (see Gasiński-
Papageorgiou [9], p. 309). But a maximal monotone and coercive map is surjective (see
Gasiński-Papageorgiou [9], p. 319). So, we can find v0 ∈ V such that

(9) ϕ̂′y(v0) = 0.

From (7) it is clear that v0 ∈ V is unique. In fact, it is the unique minimizer of the
strictly convex functional ϕ̂y = ϕy|V . So, we can define the map ϑ : Y → V by setting
ϑ(y) = v0. We have

(10) pV ∗ϕ′(y + ϑ(y)) = 0 and ϕ(y + ϑ(y)) = inf[ϕ(y + v) : v ∈ V ].

Next we establish the continuity properties of the map ϑ : Y → V . So, let yn → y in
Y . For all n ∈ N, we have

0 = 〈ϕ̂′yn(ϑ(yn)), ϑ(yn)〉V (see (9))

≥ c3‖ϑ(yn)‖2 − c4‖ϑ(yn)‖ (see (8))

⇒ {ϑ(yn)}n≥1 ⊆ V is bounded.

Passing to a suitable subsequence if necessary, we may assume that

(11) ϑ(yn)
w−→ ṽ in H1(Ω), ṽ ∈ V.
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The Sobolev embedding theorem and the compactness of the trace map imply that
ϕ is sequentially weakly lower semicontinuous. So, from (11) we have

(12) ϕ(y + ṽ) ≤ lim inf
n→+∞

ϕ(yn + ϑ(yn)).

From (10), we have

ϕ(yn + ϑ(yn)) ≤ ϕ(yn + v) for all n ∈ N, all v ∈ V,
⇒ lim sup

n→+∞
ϕ(yn + ϑ(yn)) ≤ ϕ(y + v) (since yn → y in Y )

⇒ϕ(y + ṽ) ≤ ϕ(y + v) for all v ∈ V (see (12))

⇒ṽ = ϑ(y).

So, by the Urysohn criterion, for the initial sequence {ϑ(yn)}n≥1 we get

ϑ(yn)
w−→ ϑ(y) in H1(Ω).

For all n ∈ N we have

0 = 〈ϕ′(yn + ϑ(yn)), ϑ(yn)− ϑ(y)〉 (see (10))

⇒ γ(yn + ϑ(yn))→ γ(y + ϑ(y))

⇒ ‖∇(yn + ϑ(yn))‖2 −→ ‖∇(y + ϑ(y))‖2

⇒ yn + ϑ(yn) −→ y + ϑ(y) (Kadec-Klee property)

⇒ ϑ(yn) −→ ϑ(y) in H1(Ω)

⇒ ϑ : Y → V is continuous.

Moreover, from (10) we have

ϕ(y + ϑ(y)) = inf[ϕ(y + v) : v ∈ V ].

�

We set

(13) ϕ0(y) = ϕ(y + ϑ(y)) for all y ∈ Y.
Using Proposition 2, we see that ϕ0 is continuous. In fact, we can say more.

Proposition 3. If hypotheses H(ξ), H(β), H hold, then ϕ0 ∈ C1(Y,R) and ϕ′0(y) =
pY ∗ϕ′(y + ϑ(y)) for all y ∈ Y .

Proof. Let y, h ∈ Y and t > 0. From (12) and Proposition 2, we have

1

t
[ϕ0(y + th)− ϕ0(y)]

≤1

t
[ϕ(y + th+ ϑ(y))− ϕ(y + ϑ(y))]

⇒ lim sup
t→0

1

t
[ϕ0(y + th)− ϕ0(y)] ≤ 〈ϕ′(y + ϑ(y)), h〉.(14)

Also we have
1

t
[ϕ0(y + th)− ϕ0(y)]

≥1

t
[ϕ(y + th+ ϑ(y + th))− ϕ(y + ϑ(y + th))]
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⇒ lim inf
t→0

1

t
[ϕ0(y + th)− ϕ0(y)] ≥ 〈ϕ′(y + ϑ(y)), h〉(15)

(since ϕ ∈ C1(H1(Ω),R) and ϑ(·) is continuous, see Proposition 1).

If by 〈·, ·〉Y we denote the duality brackets for the pair (Y ∗, Y ), from (14) and (15) we
have

〈ϕ′0(y), h〉Y = 〈ϕ′(y + ϑ(y)), h〉 for all y, h ∈ Y,
⇒ϕ0 ∈ C1(Y,R) and ϕ′0(y) = pY ∗ϕ′(y + ϑ(y)) for all y ∈ Y.

�

Proposition 4. If hypotheses H(ξ), H(β), H hold, then the functional ϕ0 is anticoercive
(that is, if ‖y‖ → +∞, y ∈ Y , then ϕ0(y)→ −∞).

Proof. We argue indirectly. So, suppose we could find {yn}n≥1 ⊆ Y such that

(16) ‖yn‖ → +∞ and ϕ0(yn) ≥ −M1 for some M1 > 0, all n ∈ N.
We have

−M1 ≤ ϕ0(yn) ≤ 1

2
γ(yn)−

∫
Ω

F (z, yn)dz for all n ∈ N.(17)

(see Proposition 1 and (13)).

Let wn = yn
‖yn‖ , n ∈ N. Then ‖wn‖ = 1, wn ∈ Y for all n ∈ N. Because Y is finite

dimensional, we may assume that

(18) wn → w in H1(Ω), w ∈ Y, ‖w‖ = 1.

From (17) we have

(19) − M1

‖yn‖2
≤ 1

2
γ(wn)−

∫
Ω

F (z, yn)

‖yn‖2
dz for all n ∈ N.

Hypothesis H(i) implies that

(20) F (z, x) ≤ 1

2
η(z)x2 for a.a. z ∈ Ω, all x ∈ R.

On the other hand, hypotheses H(ii), (iii) imply that

(21) F (z, x) ≥ −c5x
2 for a.a. z ∈ Ω, all x ∈ R, some c5 > 0.

From (20) and (21), it follows that{
F (·, yn(·))
‖yn‖2

}
n≥1

⊆ L1(Ω) is uniformly integrable.

So, by the Dunford-Pettis theorem and hypotheses H(i), (ii), we have

(22)
F (·, yn(·))
‖yn‖2

w−→ 1

2
η̂w2 in L1(Ω),

(23) λ̂m ≤ η̂(z) ≤ η(z) for a.a. z ∈ Ω,

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 30). So, if in (19) we pass
to the limit as n→ +∞ and use (18) and (22), we obtain

(24)

∫
Ω

η̂(z)w2dz ≤ γ(w).



PAIRS OF SOLUTIONS FOR ROBIN PROBLEMS 9

If η̂ 6= λ̂m, then from (24) and Proposition 1, we have

0 ≤ γ(w)−
∫

Ω

η̂(z)w2dz ≤ −c6‖w‖2 for some c6 > 0

⇒w = 0, which contradicts (18).

Next, we assume that η̂(z) = λ̂m for a.a z ∈ Ω (resonant case). Because of hypothesis
H(ii) given any µ > 0, we can find M2 = M2(µ) > 0 such that

(25) f(z, x)x− 2F (z, x) ≤ −µ for a.a. z ∈ Ω, all |x| ≥M2.

We have

d

dx

(
F (z, x)

|x|2

)
=
f(z, x)x− 2F (z, x)

|x|2x

{
≤ − µ

x3
for a.a. z ∈ Ω, all x ≥M2

≥ − µ
|x|2x for a.a. z ∈ Ω, all x ≤ −M2

(see (25))⇒F (z, v)

|v|2
− F (z, u)

|u|2
≤ µ

2

[
1

|v|2
− 1

|u|2

]
for a.a. z ∈ Ω, all |v| ≥ |u| ≥M2.

(26)

Evidently hypotheses H(i), (ii) imply that

(27) λ̂m ≤ lim inf
x→±∞

2F (z, x)

|x|2
≤ lim sup

x→±∞

2F (z, x)

|x|2
≤ η(z) uniformly for a.a. z ∈ Ω.

So, if in (26) we pass to the limit as |v| → +∞ and use (27), then

(28)
λ̂m
2
|u|2 − F (z, u) ≤ −µ

2
for a.a. z ∈ Ω, all |u| ≥M2.

Since µ > 0 is arbitrary, from (28) we infer that

(29)
λ̂m
2
|u|2 − F (z, u)→ −∞ uniformly for a.a. z ∈ Ω, as |u| → +∞.

From (17), we see that for all n ∈ N we have

−M1 ≤
1

2
γ(yn)−

∫
Ω

F (z, yn)dz

≤
∫

Ω

[
λ̂m
2
y2
n − F (z, yn)

]
dz (see (5) and recall yn ∈ Y ).(30)

From (18) we see that, if Ω0 = {z ∈ Ω : w(z) = 0}, then |Ω \ Ω0|N > 0 (here by | · |N
we denote the Lebesgue measure on RN). Then

(31) |yn(z)| → +∞ for a.a. z ∈ Ω \ Ω0.

From (29) and (31) and Fatou’s lemma, we have

(32)

∫
Ω

[
1

2
λ̂my

2
n − F (z, yn)

]
dz → −∞ as n→ +∞.

Comparing (30) and (32), we reach a contradiction. This proves the anticoercivity of
ϕ0. �

From this proposition, we infer that ϕ0 satisfies the compactness-type condition (see
Papageorgiou-Winkert [26]).
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Corollary 1. If hypotheses H(ξ), H(β), H hold, then the functional ϕ0 satisfies the
C-condition.

The next lemma is a straightforward observation. For completeness we include its
proof (see also Castro-Lazer [3]).

Lemma 1. If hypotheses H(ξ), H(β), H hold, then y ∈ Kϕ0 if and only if y+ϑ(y) ∈ Kϕ.

Proof. ⇐ : This is immediate from (6) and (10).
⇒ : Suppose that y ∈ Kϕ0 . Then

0 = ϕ′0(y) = pV ∗ϕ′(y + ϑ(y)) (see (6) and (13)).

Since H1(Ω)∗ = Y ∗ ⊕ V ∗, it follows that ϕ′(y + ϑ(y)) ∈ Y ∗ and so from Proposition
3 we have

〈ϕ′(y + ϑ(y)), h〉 = 0 for all h ∈ Y,
⇒ ϕ′(y + ϑ(y)) = 0,

⇒ y + ϑ(y) ∈ Kϕ.

�

Using the above lemma, we see that we may assume that Kϕ0 is finite. Otherwise
Kϕ is infinite (see Lemma 1) and so we have a whole sequence of distinct nontrivial
solutions of (1) which belong in C1(Ω) (regularity theory, see Wang [27]) and so we are
done.

So we assume that Kϕ0 is finite. Then because of Corollary 1, we can compute the
critical groups of ϕ0 at infinity. We do this using some ideas of Liu [16].

Proposition 5. If hypotheses H(ξ), H(β), H hold, then

Ck(ϕ0,∞) = δk,dmZ for all k ∈ N0 with dm = dim Y = dim Hm.

Proof. In what follows for any r > 0, we define

Cr = {y ∈ Y : ‖y‖ ≥ r}, ∂Cr = ∂BY
r = {y ∈ Y : ‖y‖ = r}.

Let m0 < inf ϕ0(Kϕ0). From Proposition 4 we know that ϕ0 is anticoercive. So, we
can find λ < τ < m0 and R > r such that

CR ⊆ ϕλ0 ⊆ Cr ⊆ ϕτ0.

We consider the following triples of sets

(Y,Cr, CR) and (Y, ϕτ0, ϕ
λ
0).

Using these two triples, we introduce the following commutative diagram of homomor-
phisms of relative singular homology groups

(33)

· · · −→ Hk(Cr, CR) i∗−→ Hk(Y,CR) j∗−→ Hk(Y,Cr) ∂∗−→ Hk−1(Cr, CR) −→ · · ·

· · · −→ Hk(ϕ
τ
0, ϕ

λ
0) î∗−→ Hk(Y, ϕ

λ
0) ĵ∗−→ Hk(Y, ϕ

τ
0) ∂̂∗−→ Hk−1(ϕτ0, ϕ

λ
0) −→ · · ·

↓ h∗|Cr ↓ h∗ ↓ h∗

· · ·

↓ h∗|Cr
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In (33) i∗, î∗, j∗, ĵ∗, h∗ are the group homomorphism induced by the corresponding

inclusion maps and ∂∗, ∂̂∗ are the boundary homomorphisms. In (33) the two horizon-
tal lines are exact and the whole diagram is commutative (see Motreanu-Motreanu-
Papageorgiou [18], p. 148).

Since λ < τ < m0 < inf ϕ0(Kϕ0), from the second deformation theorem (see Gasiński-
Papageorgiou [9], p. 628), we have that ϕλ0 is a strong deformation of ϕτ0. Hence

(34) Ck(ϕ
τ
0, ϕ

λ
0) = 0 for all k ∈ N0

(see Motreanu-Motreanu-Papageorgiou [18], p. 143).
Also, let h : [0, 1]× Cr → Y be the deformation defined by

h(t, u) = (1− t)u+ tR
u

‖u‖
for all t ∈ [0, 1], all u ∈ Cr.

Then h(1, ·)|∂CR = id|∂CR and so ∂CR = ∂BY
R is a deformation retract of Cr. On the

other hand, using the radial retraction and Theorem 6.5, p. 325, of Dugundji [6], we
see that ∂CR is also a deformation retract of CR. Therefore Cr and CR are homotopy
equivalent, which implies

(35) Hk(Cr, CR) = 0 for all k ∈ N0

(see Motreanu-Motreanu-Papageorgiou [18], Proposition 6.11, p. 143).
The exactness of the two horizontal lines in (33), together with (34), (35) and the

rank theorem, imply that

0 = im i∗ = ker j∗, 0 = im î∗ = ker ĵ∗,

⇒ j∗ and ĵ∗ are group isomorphisms.

Invoking the ”Five Lemma” (see, for example, Motreanu-Motreanu-Papageorgiou
[18], Lemma 6.17, p. 145), we have that h∗ is an isomorphism. So, we have

Hk(Y,Cr) = Hk(Y, ϕ
τ
0) for all k ∈ N0,

⇒ Hk(Y,Cr) = Ck(ϕ0,∞) for all k ∈ N0 (recall that τ < m0).(36)

But as we already established earlier

∂Cr = ∂BY
r is a deformation retract of Cr,

⇒ Hk(Y,Cr) = Hk(Y, ∂B
Y
r ) for all k ∈ N0(37)

(see Motreanu-Motreanu-Papageorgiou [18], Corollary 6.15, p. 145).
Recall that Y is finite dimensional. Therefore

(38) Hk(Y, ∂B
Y
r ) = δk,dmZ for all k ∈ N0, with dm = dimY.

(see Motreanu-Motreanu-Papageorgiou [18], Example 6.28(i), p. 149).
From (36), (37), (38), we conclude that

Ck(ϕ0,∞) = δk,dmZ for all k ∈ N0, with dm = dimY = dimHm.

�

Next we compute the critical groups of the energy functional ϕ at the origin.

Proposition 6. If hypotheses H(ξ), H(β), H hold, then

Ck(ϕ, 0) = δk,dlZ for all k ∈ N0, with dl = dimH l.
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Proof. Let Y = H l =
⊕l

i=1 E(λ̂i) and V = Y
⊥

= Ĥl =
⊕

i≥l+1E(λ̂i). We have the
following orthogonal direct sum decomposition

H1(Ω) = Y ⊕ V .
Then every u ∈ H1(Ω) can be written in a unique way as

(39) u = y + v with y ∈ Y, v ∈ V .

Let λ ∈ (λ̂l, λ̂l+1) and consider the C2-functional ψ : H1(Ω)→ R defined by

ψ(u) =
1

2
γ(u)− λ

2
‖u‖2

2 for all u ∈ H1(Ω).

We consider the homotopy h(t, u) defined by

h(t, u) = (1− t)ϕ(u) + tψ(u) for all (t, u) ∈ [0, 1]×H1(Ω).

Suppose we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ H1(Ω) \ {0} such that

(40) tn → t, un → 0 in H1(Ω) and h′u(tn, un) = 0 for all n ∈ N.
Since Kϕ is finite, we may assume that tn 6= 0 for all n ∈ N. We have

(1− tn)〈ϕ′(un), h〉+ tn〈ψ′(un), h〉 = 0 for all n ∈ N, all h ∈ H1(Ω),

⇒
∫

Ω

(∇un,∇h)RNdz +

∫
Ω

ξ(z)unhdz +

∫
∂Ω

β(z)unhdσ

=

∫
Ω

[(1− tn)f(z, un) + tnλun]hdz for all n ∈ N, all h ∈ H1(Ω),(41)

which implies{ −∆un(z) + ξ(z)un(z) = (1− tn)f(z, un(z)) + tnλun(z) for a.a. z ∈ Ω,
∂un
∂n

+ β(z)un = 0 on ∂Ω

(see Papageorgiou-Radulescu [22]).
Then from Wang [27] and the Calderon-Zygmund estimates we see that there exist

α ∈ (0, 1) and M3 > 0 such that

un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤M3 for all n ∈ N.

Exploiting the compact embedding of C1,α(Ω) into C1(Ω) and using (40) we can say
that

un → 0 in C1(Ω) as n→ +∞.
So, we can find n0 ∈ N such that

(42) un(z) ∈ [−δ, δ] for all z ∈ Ω, all n ≥ n0.

In (41) we choose h = vn ∈ V ⊆ H1(Ω) (see (39)). Then since Y and V are orthogonal
and using hypothesis H(iii) (see (42)), we have

γ(vn) ≤
∫

Ω

[(1− tn)λ̂l+1 + tnλ]v2
ndz for all n ≥ n0

⇒ c7‖vn‖2 ≤ 0 for all n ≥ n0, some c7 > 0

(see Proposition 1 and recall tn 6= 0 for all n ∈ N, λ ∈ (λ̂l, λ̂l+1)),

⇒ vn = 0 for all n ≥ n0.(43)
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Next in (41) we choose h = yn ∈ Y ⊆ H1(Ω) (see (39)). Then as above we have

γ(yn) ≥
∫

Ω

[(1− tn)λ̂l + tnλ]y2
ndz (see (42) and hypothesis H(iii)),

⇒ c8‖yn‖2 ≤ 0 for all n ≥ n0, some c8 > 0,

⇒ yn = 0 for all n ≥ n0,

⇒ un = 0 for all n ≥ n0 (see (43) and (39)),

a contradiction.
So, (40) can not occur. This permits the use of Theorem 5.2 of Corvellec-Hantoute

[4] (the homotopy invariance of the critical groups). Hence we have

(44) Ck(ϕ, 0) = Ck(ψ, 0) for all k ∈ N0.

Since λ ∈ (λ̂l, λ̂lH ), u = 0 is a nondegenerate critical point of ψ ∈ C2(H1(Ω)) with
Morse index dl = dimY = dimH l. Therefore

(45) Ck(ψ, 0) = δk,dlZ for all k ∈ N0, with dl = dimY .

(see Motreanu-Motreanu-Papageorgiou [18], Theorem 6.51, p. 155). From (44) and
(45), we conclude that

Ck(ϕ, 0) = δk,dlZ for all k ∈ N0.

�

Since the critical groups of ϕ0 at an isolated critical point y coincide with those of ϕ
at y + ϑ(y) (see, for example, Liu [16], Lemma 2.3), we have:

Corollary 2. If hypotheses H(ξ), H(β), H hold, then

Ck(ϕ0, 0) = δk,dlZ for all k ∈ N0, with dl = dimY = dimH l.

Now we are ready for the multiplicity theorem which produces two nontrivial smooth
solutions for problem (1).

Theorem 1. If hypotheses H(ξ), H(β), H hold, then problem (1) admits at least two
nontrivial solutions u0, û ∈ C1(Ω).

Proof. From Proposition 3 we know that the functional ϕ0 is anticoercive. So, we can
find y0 ∈ Y such that

(46) ϕ0(y0) = max[ϕ0(y) : y ∈ Y ].

Since Y is finite dimensional, from Motreanu-Motreanu-Papageorgiou [18], Example
6.45(6) (p. 153), we have

(47) Ck(ϕ0, y0) = δk,dmZ for all k ∈ N0 (recall dm = dimY = dimHm).

From (46) we see that

y0 ∈ Kϕ0 ,

⇒ y0 + ϑ(y0) = u0 ∈ Kϕ (see Lemma 1),

⇒ u0 is a solution of (1) and u0 ∈ C1(Ω) (see Wang [27]).

Since dl 6= dm (recall l 6= m, see hypothesis H(iii)), from (47) and Corollary 2 we infer
that y0 6= 0, hence u0 6= 0. From Proposition 5 we know that

(48) Ck(ϕ0,∞) = δk,dmZ for all k ∈ N0.
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Suppose Kϕ0 = {0, y0}. Then from (47), (48), Corollary 2 and the Morse relation with
t = −1, we have (−1)dl = 0, a contradiction. So, there exists ŷ ∈ Kϕ0 , ŷ /∈ {0, y0}.
Then û = ŷ + ϑ(ŷ) ∈ C1(Ω) is the second nontrivial solution of (1). �

Acknowledgment: The authors wish to thank the referee for his/her corrections and
useful remarks.
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[5] G. D’Agùı, S.A. Marano and N.S. Papageorgiou, Multiple solutions to a Robin problem with in-
definite weight and asymmetric reaction, J. Math. Anal. Appl., 433 (2016), 1821–1845.

[6] J. Dugundji, Topology, Allyn and Bacon, Boston (1966).
[7] G. Fragnelli, D. Mugnai and N.S. Papageorgiou, Superlinear Neumann problems with the p-

Laplacian plus an indefinite potential, Ann. Mat. Pura Appl., 196 (2017), 479–517.
[8] G. Fragnelli, D. Mugnai and N.S. Papageorgiou, Positive and nodal solutions for parametric non-

linear Robin problems with indefinite potential, Discrete Contin. Dyn. Syst. (Ser. A), 36 (2016),
6133–6166.
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