PAIRS OF SOLUTIONS FOR ROBIN PROBLEMS WITH AN INDEFINITE AND UNBOUNDED POTENTIAL, RESONANT AT ZERO AND INFINITY

NIKOLAOS S. PAPAGEORGIOU, CALOGERO VETRO, FRANCESCA VETRO

ABSTRACT. We consider a semilinear Robin problem driven by the Laplacian plus an indefinite and unbounded potential and a Caratheodory reaction term which is resonant both at zero and $\pm \infty$. Using the Lyapunov-Schmidt reduction method and critical groups (Morse theory), we show that the problem has at least two nontrivial smooth solutions.

1. INTRODUCTION

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial \Omega$. In this paper we study the following semilinear Robin problem

(1)
$$\begin{cases} -\Delta u(z) + \xi(z)u(z) = f(z, u(z)) & \text{in } \Omega, \\ \frac{\partial u}{\partial n} + \beta(z)u = 0 & \text{on } \partial\Omega. \end{cases}$$

In this problem $\xi \in L^s(\Omega)$ (s > N) is an indefinite (that is, sign changing) and unbounded potential. The reaction term f(z, x) is a Caratheodory function (that is, for all $x \in \mathbb{R}, z \to f(z, x)$ is measurable and for a.a. $z \in \Omega, x \to f(z, x)$ is continuous). We assume that for almost all $z \in \Omega, f(z, \cdot)$ is linear near $\pm \infty$ and asymptotically as $x \to \pm \infty$ resonance can occur with respect to any eigenvalue of $u \to -\Delta u + \xi(z)u$ with Robin boundary condition. Also, at zero we have resonance with respect to any eigenvalue different from the one for which we have resonance at $\pm \infty$. The boundary coefficient $\beta(\cdot)$ belongs in $W^{1,\infty}(\partial\Omega)$ and we assume that $\beta(z) \ge 0$ for all $z \in \partial\Omega$. If $\beta \equiv$ 0, then our problem reduces to the Neumann problem. Hence our work, here contains as a special case the Neumann problem. Under these conditions of double resonance at both zero and infinity and using the Lyapunov-Schmidt reduction method together with Morse theory (critical groups), we prove the existence of two nontrivial smooth solutions. The Lyapunov-Schmidt reduction method for semilinear elliptic problems was first developed by Amann [2] and Castro-Lazer [3].

Existence and multiplicity results for doubly resonant semilinear Dirichlet problems with zero potential (that is, $\xi \equiv 0$), were obtained by Liang-Su [15], Liu [16]. For Neumann problems with zero potential (that is, $\xi \equiv 0$), there are the works of Gasiński-Papageorgiou [10, 11], Motreanu-Motreanu-Papageorgiou [17]. Semilinear elliptic problems driven by the Laplacian plus an indefinite potential were studied recently by Gasiński-Papageorgiou [12], Kyritsi-Papageorgiou [14], Papageorgiou-Papalini [20] (Dirichlet problems), Papageorgiou-Radulescu [21, 23], Papageorgiou-Smyrlis [25]

Key words and phrases. Robin boundary condition, indefinite and unbounded potential, resonance, Lyapunov-Schmidt reduction method, critical groups.

²⁰¹⁰ Mathematics Subject Classification: 35J20, 35J60,58E05.

Work partially supported by the GNAMPA-INdAM Project "Visiting Professors - 2016".

(Neumann problems) and Hu-Papageorgiou [13] (Robin problems with logistic reaction). We mention also the very recent nonlinear works on problems driven by the *p*-Lapalcian plus an indefinite potential by Mugnai-Papageorgiou [19] and Fragnelli-Mugnai-Papageorgiou [7, 8] and the semilinear works of D'Aguì-Marano-Papageorgiou [5], Papageorgiou-Radulescu [24].

2. MATHEMATICAL BACKGROUND

Let X be a Banach space and X^* its topological dual. By $\langle \cdot, \cdot \rangle$ we denote the duality brackets for the pair (X^*, X) . Given $\varphi \in C^1(X, \mathbb{R})$, we say that φ satisfies the Cerami condition (the "C-condition" for short), if the following is true:

• Every sequence $\{u_n\}_{n\geq 1} \subseteq X$ such that $\{\varphi(u_n)\}_{n\geq 1} \subseteq \mathbb{R}$ is bounded and $(1 + ||u_n||)\varphi'(u_n) \to 0$ in X^* as $n \to +\infty$, admits a strongly convergent subsequence.

In the study of problem (1), we will use the Sobolev space $H^1(\Omega)$, the Banach space $C^1(\overline{\Omega})$ and the boundary Lebesgue spaces $L^q(\partial\Omega)$, $1 \leq q \leq \infty$. By $\|\cdot\|$ we denote the norm of the Sobolev space $H^1(\Omega)$, defined by

$$||u|| = [||u||_2^2 + ||\nabla u||_2^2]^{1/2}$$
 for all $u \in H^1(\Omega)$.

On $\partial\Omega$ we consider the (N-1)-dimensional Hausdorff (surface) measure $\sigma(\cdot)$. Using this measure, we can define in the usual way the boundary Lebesgue spaces $L^q(\partial\Omega)$ $(1 \leq q \leq \infty)$. From the theory of Sobolev spaces, we know that there exists a unique continuous linear map $\gamma_0: H^1(\Omega) \to L^2(\partial\Omega)$, known as the "trace map", such that

$$\gamma_0(u) = u|_{\partial\Omega}$$
 for all $u \in H^1(\Omega) \cap C(\overline{\Omega})$.

So, we understand the trace map as representing the boundary values of a Sobolev function $u \in H^1(\Omega)$. We know that γ_0 is compact into $L^q(\partial\Omega)$ with $1 \leq q < \frac{2N-2}{N-2}$ if $N \geq 3$ and into $L^q(\partial\Omega)$ with $q \geq 1$ if N = 1, 2. Also, we have

im
$$\gamma_0 = H^{\frac{1}{2},2}(\partial \Omega)$$
 and ker $\gamma_0 = H_0^1(\Omega)$.

In the sequel, for the sake of notational simplicity, we drop the use of the trace map γ_0 . All restrictions of the Sobolev functions on $\partial\Omega$ are understood in the sense of traces. Our hypotheses on the data of problem (1), involve the spectrum of the differential operator $u \to -\Delta u + \xi(z)u$ with Robin boundary condition. So, we consider the following linear eigenvalue problem:

(2)
$$\begin{cases} -\Delta u(z) + \xi(z)u(z) = \widehat{\lambda}u(z) & \text{in } \Omega, \\ \frac{\partial u}{\partial n} + \beta(z)u = 0 & \text{on } \partial\Omega. \end{cases}$$

This problem, for Neumann boundary condition, was investigated by Papageorgiou-Radulescu [21, 23], Papageorgiou-Smyrlis [25] and for the *p*-Laplacian by Mugnai-Papageorgiou [19]. For Robin boundary condition, it was studied by Papageorgiou-Radulescu [24] and D'Aguì-Marano-Papageorgiou [5]. Assume that $\xi \in L^s(\Omega)$ (s > N)and let $\gamma : H^1(\Omega) \to \mathbb{R}$ be the C^2 -functional defined by

$$\gamma(u) = \|\nabla u\|_2^2 + \int_{\Omega} \xi(z) u^2 dz + \int_{\partial \Omega} \beta(z) u^2 d\sigma \quad \text{for all } u \in H^1(\Omega).$$

The eigenvalue problem (2) has a smallest eigenvalue $\widehat{\lambda}_1 > -\infty$ given by

(3)
$$\widehat{\lambda}_1 = \inf\left[\frac{\gamma(u)}{\|u\|_2^2} : u \in H^1(\Omega), u \neq 0\right].$$

Then we can find $\mu > 0$ such that

(4)
$$\gamma(u) + \mu \|u\|_2^2 \ge c_0 \|u\|^2$$
 for all $u \in H^1(\Omega)$, some $c_0 > 0$ (see [5]).

If we use (4) and the spectral theorem for compact self-adjoint operators, we produce the spectrum of (2), which consists of a sequence $\{\widehat{\lambda}_k\}_{k\geq 1}$ of eigenvalues such that $\widehat{\lambda}_k \to +\infty$ as $k \to +\infty$. By $E(\widehat{\lambda}_k)$ we denote the eigenspace corresponding to the eigenvalue $\widehat{\lambda}_k$. We have

$$E(\widehat{\lambda}_k) \subseteq C^1(\overline{\Omega}) \quad (\text{see Wang } [27])$$

and it has the unique continuation property (the UCP for short), that is, if $u \in E(\widehat{\lambda}_k)$ and u(z) = 0 for all z in a set of positive measure, then u = 0 (see Motreanu-Motreanu-Papageorgiou [18]). If $\overline{H}_m = \bigoplus_{k=1}^m E(\widehat{\lambda}_k)$ and $\widehat{H}_m = \overline{H}_m^{\perp} = \bigoplus_{k \ge m+1}^n E(\widehat{\lambda}_k)$, then \overline{H}_m is finite dimensional and we have the following orthogonal direct sum decomposition

$$H^1(\Omega) = \overline{H}_m \oplus H_m$$

The higher eigenvalues $\{\widehat{\lambda}_m\}_{m\geq 2}$ have the following variational characterizations:

(5)

$$\widehat{\lambda}_{m} = \inf \left[\frac{\gamma(u)}{\|u\|_{2}^{2}} : u \in \widehat{H}_{m}, u \neq 0 \right] \\
= \sup \left[\frac{\gamma(u)}{\|u\|_{2}^{2}} : u \in \overline{H}_{m}, u \neq 0 \right], \quad m \ge 2.$$

In both (3) and (5) the infimum (and for (5) also the supremum) is realized on the corresponding eigenspace. The first eigenvalue $\hat{\lambda}_1 \in \mathbb{R}$ is simple and has eigenfunctions of constant sign. In fact, if \hat{u}_1 denotes the L^2 -normalized (that is, $\|\hat{u}_1\|_2 = 1$) positive eigenfunction corresponding to $\hat{\lambda}_1$, then $\hat{u}_1(z) > 0$ for all $z \in \overline{\Omega}$. All the other eigenvalues have nodal (that is, sign changing) eigenfunctions.

Using (3) and (5) and the UCP of the eigenspaces, we have the following useful inequalities.

Proposition 1. (a) If $\eta \in L^{\infty}(\Omega)$, $\eta(z) \leq \widehat{\lambda}_k$ for a.a. $z \in \Omega$ and the inequality is strict on a set of positive measure, then there exists $c_1 > 0$ such that

$$\gamma(u) - \int_{\Omega} \eta(z) u^2 dz \ge c_1 ||u||^2 \quad \text{for all } u \in \widehat{H}_k.$$

(b) If $\eta \in L^{\infty}(\Omega)$, $\eta(z) \leq \widehat{\lambda}_k$ for a.a. $z \in \Omega$ and the inequality is strict on a set of positive measure, then there exists $c_2 > 0$ such that

$$\gamma(u) - \int_{\Omega} \eta(z) u^2 dz \le -c_2 ||u||^2 \quad \text{for all } u \in \overline{H}_k$$

Finally, let us recall some basic definitions and facts from Morse theory (critical groups).

Let X be a Banach space, $\varphi \in C^1(X, \mathbb{R})$ and $c \in \mathbb{R}$. We introduce the following sets:

$$\varphi^c = \{ u \in X : \varphi(u) \le c \},\$$

$$K_{\varphi} = \{ u \in X : \varphi'(u) = 0 \},$$

$$K_{\varphi}^{c} = \{ u \in K_{\varphi} : \varphi(u) = c \}.$$

Let (Y_1, Y_2) be a pair of spaces such that $Y_2 \subseteq Y_1 \subseteq X$. For every $k \in \mathbb{N}$, by $H_k(Y_1, Y_2)$ we denote the k^{th} -relative singular homology group for the pair (Y_1, Y_2) with integer coefficients. Let $u \in K_{\varphi}^c$ be isolated. Then the critical groups of φ at u are defined by

$$C_k(\varphi, u) = H_k(\varphi^c \cap U, \varphi^c \cap U \setminus \{u\}) \text{ for all } k \in \mathbb{N}_0,$$

where U is a neighborhood of u such that $K_{\varphi} \cap \varphi^c \cap U = \{u\}$. The excision property of singular homology implies that the above definition of critical groups is independent of the isolating neighborhood U.

Suppose that $\varphi \in C^1(X, \mathbb{R})$ satisfies the *C*-condition and $-\infty < \inf \varphi(K_{\varphi})$, then the critical groups of φ at infinity are defined by

$$C_k(\varphi, \infty) = H_k(X, \varphi^c)$$
 for all $k \in \mathbb{N}_0$ and with $c < \inf \varphi(K_{\varphi})$.

Using the second deformation theorem (see Gasiński-Papageorgiou [9], p. 628), we see that this definition of critical groups of φ at infinity is independent of the choice of the level $c < \inf \varphi(K_{\varphi})$.

Suppose that K_{φ} is finite. We define the following expressions:

$$M(t, u) = \sum_{k \ge 0} \operatorname{rank} C_k(\varphi, u) t^k \quad \text{for all } t \in \mathbb{R}, \text{ all } u \in K_{\varphi}$$
$$P(t, \infty) = \sum_{k \ge 0} \operatorname{rank} C_k(\varphi, \infty) t^k \quad \text{for all } t \in \mathbb{R}.$$

The "Morse relation" is the following equality:

$$\sum_{u \in K_{\varphi}} M(t, u) = P(t, \infty) + (1+t)Q(t) \quad \text{for all } t \in \mathbb{R},$$

where $Q(t) = \sum_{k \ge 0} \beta_k t^k$ is a formal series in $t \in \mathbb{R}$ with nonnegative integer coefficients β_k .

If X = H is a Hilbert space, $\varphi \in C^2(H, \mathbb{R})$ and $u \in K_{\varphi}$, then we say that u is "nondegenerate", if $\varphi''(u) \in \mathcal{L}(H, H)$ is invertible. Also, the Morse index m of u is defined to be the supremum of the dimensions of the vector subspaces of H on which $\varphi''(u)$ is negative definite. If $u \in K_{\varphi}$ is isolated and nondegenerate, then

$$C_k(\varphi, u) = \delta_{k,m}\mathbb{Z}$$
 for all $k \in \mathbb{N}_0$ (*m* is the Morse index of *u*).

Here by $\delta_{k,m}$ we denote the Kronecker symbol defined by

$$\delta_{m,k} = \begin{cases} 1 & \text{if } k = m, \\ 0 & \text{if } k \neq m. \end{cases}$$

3. Multiplicity Theorem

In this section we prove the existence of two nontrivial smooth solutions for problem (1). The hypotheses on the data of problem (1) are the following:

$$\begin{split} H(\xi) &: \xi \in L^s(\Omega) \text{ with } s > N. \\ H(\beta) &: \beta \in W^{1,\infty}(\partial \Omega) \text{ and } \beta(z) \geq 0 \text{ for all } z \in \partial \Omega. \end{split}$$

Remark 1. The case $\beta \equiv 0$ is possible and corresponds to the Neumann problem.

- $H\colon f:\Omega\times\mathbb{R}\to\mathbb{R}$ is a Caratheodory function such that f(z,0)=0 for a.a. $z\in\Omega$ and
 - (i) there exist $m \in \mathbb{N}$ and $\eta \in L^{\infty}(\Omega)$ such that
 - $\diamond \ \eta(z) \leq \widehat{\lambda}_{m+1} \text{ for a.a. } z \in \Omega,$
 - ♦ the above inequality is strict on a set of positive measure,
 - $\diamond (f(z,x) f(z,y))(x-y) \le \eta(z)(x-y)^2 \text{ for a.a. } z \in \Omega, \text{ all } x, y \in \mathbb{R};$
 - (ii) $\widehat{\lambda}_m \leq \liminf_{x \to \pm \infty} \frac{f(z,x)}{x}$ uniformly for a.a. $z \in \Omega$ and if $F(z,x) = \int_0^x f(z,s) ds$, then

$$\lim_{x \to \pm \infty} [f(z, x)x - 2F(z, x)] = -\infty \quad \text{uniformly for a.a. } z \in \Omega;$$

(iii) there exist $l \in \mathbb{N}$, $l \neq m$ and $\delta > 0$ such that

$$\widehat{\lambda}_l x^2 \le f(z, x) x \le \widehat{\lambda}_{l+1} x^2$$
 for a.a. $z \in \Omega$, all $|x| \le \delta$.

Remark 2. Hypothesis H(ii) implies that asymptotically at $\pm \infty$ we can have resonance with respect to any eigenvalue of the differential operator. In fact hypotheses H(i), (ii)imply that

$$\widehat{\lambda}_m \leq \liminf_{x \to \pm \infty} \frac{f(z,x)}{x} \leq \limsup_{x \to \pm \infty} \frac{f(z,x)}{x} \leq \eta(z) \quad \text{uniformly for a.a. } z \in \Omega.$$

Hypothesis H(iii) implies that at zero, we can have resonance with respect to both endpoints of any spectral interval distinct from $[\widehat{\lambda}_m, \widehat{\lambda}_{m+1}]$ (double resonance).

A simple function satisfying the above conditions is the following. For the sake of simplicity we drop the z-dependence

$$f(x) = \begin{cases} \widehat{\lambda}_l x + cx^3 & \text{if } |x| < 1, \\ \widehat{\lambda}_m x - \frac{\widehat{\lambda}_m - (\widehat{\lambda}_l + c)}{x^3} & \text{if } 1 < |x|, \end{cases} \text{ with } m > l, \ c \le \widehat{\lambda}_{l+1} - \widehat{\lambda}_l, \ \widehat{\lambda}_m > \widehat{\lambda}_l + c.$$

Let $\varphi: H^1(\Omega) \to \mathbb{R}$ be the energy functional for problem (1) defined by

$$\varphi(u) = \frac{1}{2}\gamma(u) - \int_{\Omega} F(z, u(z))dz$$
 for all $u \in H^{1}(\Omega)$.

Evidently $\varphi \in C^1(H^1(\Omega))$. In what follows, we set

$$Y = \overline{H}_m = \bigoplus_{i=1}^m E(\widehat{\lambda}_i) \quad \text{and} \quad V = \widehat{H}_m = \overline{\bigoplus_{i \geq m+1} E(\widehat{\lambda}_i)} = Y^\perp.$$

We have the following orthogonal direct sum decomposition

$$H^1(\Omega) = Y \oplus V.$$

So, every $u \in H^1(\Omega)$ can be written in a unique way as

$$u = y + v$$
 with $y \in Y, v \in V$.

Proposition 2. If the hypotheses $H(\xi)$, $H(\beta)$, H hold, then there exists a continuous map $\vartheta: Y \to V$ such that

$$\varphi(y + \vartheta(y)) = \inf[\varphi(y + v) : v \in V] \quad for \ all \ y \in Y.$$

Proof. We fix $y \in Y$ and consider the C^1 -functional $\varphi_y : H^1(\Omega) \to \mathbb{R}$ defined by

$$\varphi_{y}(u) = \varphi(y+u) \text{ for all } u \in H^{1}(\Omega).$$

By $i_V: V \to H^1(\Omega)$ we denote the inclusion map. We define

$$\widehat{\varphi}_y = \varphi_y \circ i_V$$

From the chain rule we have

(6)
$$\widehat{\varphi}'_y = p_{V^*} \circ \varphi'_y$$

with p_{V^*} being the orthogonal projection of $H^1(\Omega)^*$ onto V^* . By $\langle \cdot, \cdot \rangle_V$ we denote the duality brackets for the pair (V^*, V) . For $v_1, v_2 \in V$ we have

$$\langle \widehat{\varphi}'_{y}(v_{1}) - \widehat{\varphi}'_{y}(v_{2}), v_{1} - v_{2} \rangle_{V}$$

$$= \langle \varphi_{y}'(v_{1}) - \varphi'_{y}(v_{2}), v_{1} - v_{2} \rangle \quad (\text{see } (6))$$

$$= \|\nabla(v_{1} - v_{2})\|_{2}^{2} + \int_{\Omega} \xi(z)(v_{1} - v_{2})^{2}dz + \int_{\partial\Omega} \beta(z)(v_{1} - v_{2})^{2}d\sigma$$

$$- \int_{\Omega} (f(z, v_{1}) - f(z, v_{2}))(v_{1} - v_{2})dz$$

$$\geq \gamma(v_{1} - v_{2}) - \int_{\Omega} \eta(z)(v_{1} - v_{2})^{2}dz \quad (\text{see hypothesis } H(i))$$

$$\geq c_{3}\|v_{1} - v_{2}\|^{2} \quad \text{for some } c_{3} > 0 \quad (\text{see Proposition } 1),$$

$$\Rightarrow \widehat{\varphi}'_{y} \text{ is strongly monotone, hence } \widehat{\varphi}_{y} \text{ is strictly convex.}$$

We have

(8)

$$\langle \widehat{\varphi}'_{y}(v), v \rangle_{V} = \langle \widehat{\varphi}'_{y}(v) - \widehat{\varphi}'_{y}(0), v \rangle_{V} + \langle \widehat{\varphi}'_{y}(0), v \rangle_{V}$$

$$\geq c_{3} \|v\|^{2} - c_{4} \|v\| \quad \text{for some } c_{4} > 0 \quad (\text{see } (7)),$$

$$\Rightarrow \widehat{\varphi}'_{y} \text{ is coercive.}$$

Note that $\widehat{\varphi}'_{y}(\cdot)$ being continuous and monotone, it is maximal monotone (see Gasiński-Papageorgiou [9], p. 309). But a maximal monotone and coercive map is surjective (see Gasiński-Papageorgiou [9], p. 319). So, we can find $v_0 \in V$ such that

(9)
$$\widehat{\varphi}'_{u}(v_0) = 0.$$

From (7) it is clear that $v_0 \in V$ is unique. In fact, it is the unique minimizer of the strictly convex functional $\widehat{\varphi}_y = \varphi_y|_V$. So, we can define the map $\vartheta : Y \to V$ by setting $\vartheta(y) = v_0$. We have

(10)
$$p_{V^*}\varphi'(y+\vartheta(y))=0$$
 and $\varphi(y+\vartheta(y))=\inf[\varphi(y+v):v\in V].$

Next we establish the continuity properties of the map $\vartheta: Y \to V$. So, let $y_n \to y$ in Y. For all $n \in \mathbb{N}$, we have

$$0 = \langle \widehat{\varphi}'_{y_n}(\vartheta(y_n)), \vartheta(y_n) \rangle_V \quad (\text{see } (9))$$

$$\geq c_3 \|\vartheta(y_n)\|^2 - c_4 \|\vartheta(y_n)\| \quad (\text{see } (8))$$

$$\Rightarrow \{\vartheta(y_n)\}_{n \geq 1} \subseteq V \text{ is bounded.}$$

Passing to a suitable subsequence if necessary, we may assume that

(11)
$$\vartheta(y_n) \xrightarrow{w} \tilde{v} \text{ in } H^1(\Omega), \tilde{v} \in V.$$

The Sobolev embedding theorem and the compactness of the trace map imply that φ is sequentially weakly lower semicontinuous. So, from (11) we have

(12)
$$\varphi(y+\tilde{v}) \le \liminf_{n \to +\infty} \varphi(y_n + \vartheta(y_n))$$

From (10), we have

$$\varphi(y_n + \vartheta(y_n)) \leq \varphi(y_n + v) \quad \text{for all } n \in \mathbb{N}, \text{ all } v \in V,$$

$$\Rightarrow \limsup_{n \to +\infty} \varphi(y_n + \vartheta(y_n)) \leq \varphi(y + v) \quad (\text{since } y_n \to y \text{ in } Y)$$

$$\Rightarrow \varphi(y + \tilde{v}) \leq \varphi(y + v) \quad \text{for all } v \in V \text{ (see (12))}$$

$$\Rightarrow \tilde{v} = \vartheta(y).$$

So, by the Urysohn criterion, for the initial sequence $\{\vartheta(y_n)\}_{n\geq 1}$ we get

$$\vartheta(y_n) \xrightarrow{w} \vartheta(y)$$
 in $H^1(\Omega)$

For all $n \in \mathbb{N}$ we have

$$0 = \langle \varphi'(y_n + \vartheta(y_n)), \vartheta(y_n) - \vartheta(y) \rangle \quad (\text{see } (10)) \\ \Rightarrow \gamma(y_n + \vartheta(y_n)) \to \gamma(y + \vartheta(y)) \\ \Rightarrow \|\nabla(y_n + \vartheta(y_n))\|_2 \longrightarrow \|\nabla(y + \vartheta(y))\|_2 \\ \Rightarrow y_n + \vartheta(y_n) \longrightarrow y + \vartheta(y) \quad (\text{Kadec-Klee property}) \\ \Rightarrow \vartheta(y_n) \longrightarrow \vartheta(y) \text{ in } H^1(\Omega) \\ \Rightarrow \vartheta : Y \to V \text{ is continuous.}$$

Moreover, from (10) we have

$$\varphi(y + \vartheta(y)) = \inf[\varphi(y + v) : v \in V]$$

	_	
	п.	
	-	

We set

(13)
$$\varphi_0(y) = \varphi(y + \vartheta(y)) \text{ for all } y \in Y$$

Using Proposition 2, we see that φ_0 is continuous. In fact, we can say more.

Proposition 3. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then $\varphi_0 \in C^1(Y, \mathbb{R})$ and $\varphi'_0(y) = p_{Y^*}\varphi'(y + \vartheta(y))$ for all $y \in Y$.

Proof. Let $y, h \in Y$ and t > 0. From (12) and Proposition 2, we have

(14)

$$\frac{1}{t}[\varphi_{0}(y+th)-\varphi_{0}(y)] \\
\leq \frac{1}{t}[\varphi(y+th+\vartheta(y))-\varphi(y+\vartheta(y))] \\
\Rightarrow \limsup_{t\to 0} \frac{1}{t}[\varphi_{0}(y+th)-\varphi_{0}(y)] \leq \langle \varphi'(y+\vartheta(y)),h \rangle$$

Also we have

$$\frac{1}{t}[\varphi_0(y+th) - \varphi_0(y)]$$

$$\geq \frac{1}{t}[\varphi(y+th + \vartheta(y+th)) - \varphi(y+\vartheta(y+th))]$$

(15)
$$\Rightarrow \liminf_{t \to 0} \frac{1}{t} [\varphi_0(y+th) - \varphi_0(y)] \ge \langle \varphi'(y+\vartheta(y)), h \rangle$$
 (since $\varphi \in C^1(H^1(\Omega), \mathbb{R})$ and $\vartheta(\cdot)$ is continuous, see Proposition 1).

If by $\langle \cdot, \cdot \rangle_Y$ we denote the duality brackets for the pair (Y^*, Y) , from (14) and (15) we have

$$\langle \varphi'_0(y), h \rangle_Y = \langle \varphi'(y + \vartheta(y)), h \rangle \quad \text{for all } y, h \in Y,$$

$$\Rightarrow \varphi_0 \in C^1(Y, \mathbb{R}) \text{ and } \varphi'_0(y) = p_{Y^*} \varphi'(y + \vartheta(y)) \text{ for all } y \in Y.$$

Proposition 4. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then the functional φ_0 is anticoercive (that is, if $||y|| \to +\infty$, $y \in Y$, then $\varphi_0(y) \to -\infty$).

Proof. We argue indirectly. So, suppose we could find $\{y_n\}_{n\geq 1} \subseteq Y$ such that

(16)
$$||y_n|| \to +\infty$$
 and $\varphi_0(y_n) \ge -M_1$ for some $M_1 > 0$, all $n \in \mathbb{N}$.

We have

(17)
$$-M_1 \le \varphi_0(y_n) \le \frac{1}{2}\gamma(y_n) - \int_{\Omega} F(z, y_n) dz \quad \text{for all } n \in \mathbb{N}$$

(see Proposition 1 and (13)).

Let $w_n = \frac{y_n}{\|y_n\|}$, $n \in \mathbb{N}$. Then $\|w_n\| = 1$, $w_n \in Y$ for all $n \in \mathbb{N}$. Because Y is finite dimensional, we may assume that

(18)
$$w_n \to w \text{ in } H^1(\Omega), \quad w \in Y, \quad ||w|| = 1.$$

From (17) we have

(19)
$$-\frac{M_1}{\|y_n\|^2} \le \frac{1}{2}\gamma(w_n) - \int_{\Omega} \frac{F(z, y_n)}{\|y_n\|^2} dz \text{ for all } n \in \mathbb{N}.$$

Hypothesis H(i) implies that

(20)
$$F(z,x) \le \frac{1}{2}\eta(z)x^2$$
 for a.a. $z \in \Omega$, all $x \in \mathbb{R}$.

On the other hand, hypotheses H(ii), (iii) imply that

(21)
$$F(z,x) \ge -c_5 x^2$$
 for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, some $c_5 > 0$.

From (20) and (21), it follows that

$$\left\{\frac{F(\cdot, y_n(\cdot))}{\|y_n\|^2}\right\}_{n \ge 1} \subseteq L^1(\Omega) \text{ is uniformly integrable.}$$

So, by the Dunford-Pettis theorem and hypotheses H(i), (ii), we have

(22)
$$\frac{F(\cdot, y_n(\cdot))}{\|y_n\|^2} \xrightarrow{w} \frac{1}{2}\widehat{\eta}w^2 \text{ in } L^1(\Omega),$$

(23)
$$\widehat{\lambda}_m \leq \widehat{\eta}(z) \leq \eta(z) \text{ for a.a. } z \in \Omega,$$

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 30). So, if in (19) we pass to the limit as $n \to +\infty$ and use (18) and (22), we obtain

(24)
$$\int_{\Omega} \widehat{\eta}(z) w^2 dz \le \gamma(w).$$

If $\widehat{\eta} \neq \widehat{\lambda}_m$, then from (24) and Proposition 1, we have

$$0 \leq \gamma(w) - \int_{\Omega} \widehat{\eta}(z) w^2 dz \leq -c_6 ||w||^2 \quad \text{for some } c_6 > 0$$

$$\Rightarrow w = 0, \text{ which contradicts (18).}$$

Next, we assume that $\hat{\eta}(z) = \hat{\lambda}_m$ for a.a $z \in \Omega$ (resonant case). Because of hypothesis H(ii) given any $\mu > 0$, we can find $M_2 = M_2(\mu) > 0$ such that

(25)
$$f(z,x)x - 2F(z,x) \le -\mu \quad \text{for a.a. } z \in \Omega, \text{ all } |x| \ge M_2.$$

We have

$$\frac{d}{dx}\left(\frac{F(z,x)}{|x|^2}\right) = \frac{f(z,x)x - 2F(z,x)}{|x|^2x} \begin{cases} \leq -\frac{\mu}{x^3} \text{ for a.a. } z \in \Omega, \text{ all } x \geq M_2 \\ \geq -\frac{\mu}{|x|^2x} \text{ for a.a. } z \in \Omega, \text{ all } x \leq -M_2 \end{cases}$$

(26)

$$(\text{see }(25)) \Rightarrow \frac{F(z,v)}{|v|^2} - \frac{F(z,u)}{|u|^2} \le \frac{\mu}{2} \left[\frac{1}{|v|^2} - \frac{1}{|u|^2} \right] \text{ for a.a. } z \in \Omega, \text{ all } |v| \ge |u| \ge M_2.$$

Evidently hypotheses H(i), (ii) imply that

(27)
$$\widehat{\lambda}_m \leq \liminf_{x \to \pm \infty} \frac{2F(z,x)}{|x|^2} \leq \limsup_{x \to \pm \infty} \frac{2F(z,x)}{|x|^2} \leq \eta(z)$$
 uniformly for a.a. $z \in \Omega$.

So, if in (26) we pass to the limit as $|v| \to +\infty$ and use (27), then

(28)
$$\frac{\lambda_m}{2}|u|^2 - F(z,u) \le -\frac{\mu}{2} \quad \text{for a.a. } z \in \Omega, \text{ all } |u| \ge M_2.$$

Since $\mu > 0$ is arbitrary, from (28) we infer that

(29)
$$\frac{\lambda_m}{2}|u|^2 - F(z,u) \to -\infty$$
 uniformly for a.a. $z \in \Omega$, as $|u| \to +\infty$.

From (17), we see that for all $n \in \mathbb{N}$ we have

(30)
$$-M_{1} \leq \frac{1}{2}\gamma(y_{n}) - \int_{\Omega} F(z, y_{n})dz$$
$$\leq \int_{\Omega} \left[\frac{\widehat{\lambda}_{m}}{2}y_{n}^{2} - F(z, y_{n})\right]dz \quad (\text{see } (5) \text{ and recall } y_{n} \in Y).$$

From (18) we see that, if $\Omega_0 = \{z \in \Omega : w(z) = 0\}$, then $|\Omega \setminus \Omega_0|_N > 0$ (here by $|\cdot|_N$ we denote the Lebesgue measure on \mathbb{R}^N). Then

(31)
$$|y_n(z)| \to +\infty$$
 for a.a. $z \in \Omega \setminus \Omega_0$.

From (29) and (31) and Fatou's lemma, we have

(32)
$$\int_{\Omega} \left[\frac{1}{2} \widehat{\lambda}_m y_n^2 - F(z, y_n) \right] dz \to -\infty \quad \text{as } n \to +\infty.$$

Comparing (30) and (32), we reach a contradiction. This proves the anticoercivity of φ_0 .

From this proposition, we infer that φ_0 satisfies the compactness-type condition (see Papageorgiou-Winkert [26]).

Corollary 1. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then the functional φ_0 satisfies the *C*-condition.

The next lemma is a straightforward observation. For completeness we include its proof (see also Castro-Lazer [3]).

Lemma 1. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then $y \in K_{\varphi_0}$ if and only if $y + \vartheta(y) \in K_{\varphi}$.

Proof. \Leftarrow : This is immediate from (6) and (10). \Rightarrow : Suppose that $y \in K_{\varphi_0}$. Then

$$0 = \varphi'_0(y) = p_{V^*} \varphi'(y + \vartheta(y))$$
 (see (6) and (13)).

Since $H^1(\Omega)^* = Y^* \oplus V^*$, it follows that $\varphi'(y + \vartheta(y)) \in Y^*$ and so from Proposition 3 we have

$$\langle \varphi'(y + \vartheta(y)), h \rangle = 0 \quad \text{for all } h \in Y,$$

$$\Rightarrow \varphi'(y + \vartheta(y)) = 0,$$

$$\Rightarrow y + \vartheta(y) \in K_{\varphi}.$$

Using the above lemma, we see that we may assume that K_{φ_0} is finite. Otherwise K_{φ} is infinite (see Lemma 1) and so we have a whole sequence of distinct nontrivial solutions of (1) which belong in $C^1(\overline{\Omega})$ (regularity theory, see Wang [27]) and so we are done.

So we assume that K_{φ_0} is finite. Then because of Corollary 1, we can compute the critical groups of φ_0 at infinity. We do this using some ideas of Liu [16].

Proposition 5. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then

 $C_k(\varphi_0, \infty) = \delta_{k, d_m} \mathbb{Z}$ for all $k \in \mathbb{N}_0$ with $d_m = \dim Y = \dim \overline{H}_m$.

Proof. In what follows for any r > 0, we define

$$C_r = \{y \in Y : ||y|| \ge r\}, \quad \partial C_r = \partial B_r^Y = \{y \in Y : ||y|| = r\}.$$

Let $m_0 < \inf \varphi_0(K_{\varphi_0})$. From Proposition 4 we know that φ_0 is anticoercive. So, we can find $\lambda < \tau < m_0$ and R > r such that

$$C_R \subseteq \varphi_0^\lambda \subseteq C_r \subseteq \varphi_0^\tau.$$

We consider the following triples of sets

$$(Y, C_r, C_R)$$
 and $(Y, \varphi_0^{\tau}, \varphi_0^{\lambda})$.

Using these two triples, we introduce the following commutative diagram of homomorphisms of relative singular homology groups

(33)

$$\cdots \to H_k(C_r, C_R) \xrightarrow{i_*} H_k(Y, C_R) \xrightarrow{j_*} H_k(Y, C_r) \xrightarrow{\partial_*} H_{k-1}(C_r, C_R) \to \cdots$$

$$\downarrow h_*|_{C_r} \downarrow h_* \downarrow h_* \downarrow h_* \downarrow h_* \downarrow h_*|_{C_r}$$

$$\cdots \to H_k(\varphi_0^\tau, \varphi_0^\lambda) \xrightarrow{\hat{i}_*} H_k(Y, \varphi_0^\lambda) \xrightarrow{\hat{j}_*} H_k(Y, \varphi_0^\tau) \xrightarrow{\hat{\partial}_*} H_{k-1}(\varphi_0^\tau, \varphi_0^\lambda) \to \cdots$$

In (33) $i_*, \hat{i}_*, j_*, \hat{j}_*, h_*$ are the group homomorphism induced by the corresponding inclusion maps and $\partial_*, \hat{\partial}_*$ are the boundary homomorphisms. In (33) the two horizontal lines are exact and the whole diagram is commutative (see Motreanu-Motreanu-Papageorgiou [18], p. 148).

Since $\lambda < \tau < m_0 < \inf \varphi_0(K_{\varphi_0})$, from the second deformation theorem (see Gasiński-Papageorgiou [9], p. 628), we have that φ_0^{λ} is a strong deformation of φ_0^{τ} . Hence

(34)
$$C_k(\varphi_0^{\tau}, \varphi_0^{\lambda}) = 0$$
 for all $k \in \mathbb{N}_0$

(see Motreanu-Motreanu-Papageorgiou [18], p. 143).

Also, let $h: [0,1] \times C_r \to Y$ be the deformation defined by

$$h(t, u) = (1 - t)u + tR \frac{u}{\|u\|}$$
 for all $t \in [0, 1]$, all $u \in C_r$.

Then $h(1, \cdot)|_{\partial C_R} = id|_{\partial C_R}$ and so $\partial C_R = \partial B_R^Y$ is a deformation retract of C_r . On the other hand, using the radial retraction and Theorem 6.5, p. 325, of Dugundji [6], we see that ∂C_R is also a deformation retract of C_R . Therefore C_r and C_R are homotopy equivalent, which implies

(35)
$$H_k(C_r, C_R) = 0 \quad \text{for all } k \in \mathbb{N}_0$$

(see Motreanu-Motreanu-Papageorgiou [18], Proposition 6.11, p. 143).

The exactness of the two horizontal lines in (33), together with (34), (35) and the rank theorem, imply that

$$0 = \operatorname{im} i_* = \ker j_*, \quad 0 = \operatorname{im} \hat{i}_* = \ker \hat{j}_*,$$

$$\Rightarrow j_* \text{ and } \hat{j}_* \text{ are group isomorphisms.}$$

Invoking the "Five Lemma" (see, for example, Motreanu-Motreanu-Papageorgiou [18], Lemma 6.17, p. 145), we have that h_* is an isomorphism. So, we have

(36)
$$H_k(Y, C_r) = H_k(Y, \varphi_0^{\tau}) \quad \text{for all } k \in \mathbb{N}_0,$$
$$\Rightarrow H_k(Y, C_r) = C_k(\varphi_0, \infty) \quad \text{for all } k \in \mathbb{N}_0 \quad (\text{recall that } \tau < m_0)$$

But as we already established earlier

_

$$\partial C_r = \partial B_r^Y$$
 is a deformation retract of C_r ,

(37)
$$\Rightarrow H_k(Y, C_r) = H_k(Y, \partial B_r^Y) \quad \text{for all } k \in \mathbb{N}_0$$

(see Motreanu-Motreanu-Papageorgiou [18], Corollary 6.15, p. 145).

Recall that Y is finite dimensional. Therefore

(38)
$$H_k(Y, \partial B_r^Y) = \delta_{k, d_m} \mathbb{Z}$$
 for all $k \in \mathbb{N}_0$, with $d_m = \dim Y$.

(see Motreanu-Motreanu-Papageorgiou [18], Example 6.28(i), p. 149).

From (36), (37), (38), we conclude that

$$C_k(\varphi_0, \infty) = \delta_{k, d_m} \mathbb{Z}$$
 for all $k \in \mathbb{N}_0$, with $d_m = \dim Y = \dim H_m$.

Next we compute the critical groups of the energy functional φ at the origin.

Proposition 6. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then

$$C_k(\varphi, 0) = \delta_{k, d_l} \mathbb{Z}$$
 for all $k \in \mathbb{N}_0$, with $d_l = \dim \overline{H}_l$.

Proof. Let $\overline{Y} = \overline{H}_l = \bigoplus_{i=1}^l E(\widehat{\lambda}_i)$ and $\overline{V} = \overline{Y}^{\perp} = \widehat{H}_l = \overline{\bigoplus_{i\geq l+1} E(\widehat{\lambda}_i)}$. We have the following orthogonal direct sum decomposition

$$H^1(\Omega) = \overline{Y} \oplus \overline{V}.$$

Then every $u \in H^1(\Omega)$ can be written in a unique way as

(39)
$$u = \overline{y} + \overline{v} \quad \text{with } \overline{y} \in Y, \ \overline{v} \in \overline{V}.$$

Let $\lambda \in (\widehat{\lambda}_l, \widehat{\lambda}_{l+1})$ and consider the C^2 -functional $\psi : H^1(\Omega) \to \mathbb{R}$ defined by

$$\psi(u) = \frac{1}{2}\gamma(u) - \frac{\lambda}{2} ||u||_2^2 \quad \text{for all } u \in H^1(\Omega)$$

We consider the homotopy h(t, u) defined by

$$h(t,u) = (1-t)\varphi(u) + t\psi(u) \quad \text{ for all } (t,u) \in [0,1] \times H^1(\Omega).$$

Suppose we can find $\{t_n\}_{n\geq 1} \subseteq [0,1]$ and $\{u_n\}_{n\geq 1} \subseteq H^1(\Omega) \setminus \{0\}$ such that (40) $t_n \to t, \ u_n \to 0 \text{ in } H^1(\Omega)$ and $h'_u(t_n, u_n) = 0$ for all $n \in \mathbb{N}$.

Since
$$K_{\varphi}$$
 is finite, we may assume that $t_n \neq 0$ for all $n \in \mathbb{N}$. We have

$$(1 - t_n)\langle \varphi'(u_n), h \rangle + t_n \langle \psi'(u_n), h \rangle = 0 \quad \text{for all } n \in \mathbb{N}, \text{ all } h \in H^1(\Omega),$$

$$\Rightarrow \int_{\Omega} (\nabla u_n, \nabla h)_{\mathbb{R}^N} dz + \int_{\Omega} \xi(z) u_n h dz + \int_{\partial \Omega} \beta(z) u_n h d\sigma$$

$$(41) \qquad = \int_{\Omega} [(1 - t_n) f(z, u_n) + t_n \lambda u_n] h dz \quad \text{for all } n \in \mathbb{N}, \text{ all } h \in H^1(\Omega),$$

which implies

$$\begin{cases} -\Delta u_n(z) + \xi(z)u_n(z) = (1 - t_n)f(z, u_n(z)) + t_n\lambda u_n(z) & \text{for a.a. } z \in \Omega, \\ \frac{\partial u_n}{\partial n} + \beta(z)u_n = 0 & \text{on } \partial\Omega \end{cases}$$

(see Papageorgiou-Radulescu [22]).

Then from Wang [27] and the Calderon-Zygmund estimates we see that there exist $\alpha \in (0, 1)$ and $M_3 > 0$ such that

$$u_n \in C^{1,\alpha}(\overline{\Omega})$$
 and $||u_n||_{C^{1,\alpha}(\overline{\Omega})} \leq M_3$ for all $n \in \mathbb{N}$.

Exploiting the compact embedding of $C^{1,\alpha}(\overline{\Omega})$ into $C^1(\overline{\Omega})$ and using (40) we can say that

 $u_n \to 0$ in $C^1(\overline{\Omega})$ as $n \to +\infty$.

So, we can find $n_0 \in \mathbb{N}$ such that

(42)
$$u_n(z) \in [-\delta, \delta] \text{ for all } z \in \overline{\Omega}, \text{ all } n \ge n_0$$

In (41) we choose $h = \overline{v}_n \in \overline{V} \subseteq H^1(\Omega)$ (see (39)). Then since \overline{Y} and \overline{V} are orthogonal and using hypothesis H(iii) (see (42)), we have

$$\gamma(\overline{v}_n) \le \int_{\Omega} [(1 - t_n)\widehat{\lambda}_{l+1} + t_n\lambda]\overline{v}_n^2 dz \quad \text{for all } n \ge n_0$$

$$\Rightarrow c_7 \|\overline{v}_n\|^2 \le 0 \quad \text{for all } n \ge n_0, \text{ some } c_7 > 0$$

(see Proposition 1 and recall $t_n \neq 0$ for all $n \in \mathbb{N}$, $\lambda \in (\widehat{\lambda}_l, \widehat{\lambda}_{l+1})$),

(43) $\Rightarrow \overline{v}_n = 0$ for all $n \ge n_0$.

Next in (41) we choose $h = \overline{y}_n \in \overline{Y} \subseteq H^1(\Omega)$ (see (39)). Then as above we have

$$\begin{split} \gamma(\overline{y}_n) &\geq \int_{\Omega} [(1-t_n)\widehat{\lambda}_l + t_n\lambda]\overline{y}_n^2 dz \quad (\text{see } (42) \text{ and hypothesis } H(iii)), \\ \Rightarrow c_8 \|\overline{y}_n\|^2 &\leq 0 \quad \text{for all } n \geq n_0, \text{ some } c_8 > 0, \\ \Rightarrow \overline{y}_n &= 0 \quad \text{for all } n \geq n_0, \\ \Rightarrow u_n &= 0 \quad \text{for all } n \geq n_0 \quad (\text{see } (43) \text{ and } (39)), \end{split}$$

a contradiction.

So, (40) can not occur. This permits the use of Theorem 5.2 of Corvellec-Hantoute [4] (the homotopy invariance of the critical groups). Hence we have

(44)
$$C_k(\varphi, 0) = C_k(\psi, 0) \quad \text{for all } k \in \mathbb{N}_0.$$

Since $\lambda \in (\widehat{\lambda}_l, \widehat{\lambda}_{l_H})$, u = 0 is a nondegenerate critical point of $\psi \in C^2(H^1(\Omega))$ with Morse index $d_l = \dim \overline{Y} = \dim \overline{H}_l$. Therefore

(45)
$$C_k(\psi, 0) = \delta_{k, d_l} \mathbb{Z}$$
 for all $k \in \mathbb{N}_0$, with $d_l = \dim \overline{Y}$.

(see Motreanu-Motreanu-Papageorgiou [18], Theorem 6.51, p. 155). From (44) and (45), we conclude that

$$C_k(\varphi, 0) = \delta_{k, d_l} \mathbb{Z}$$
 for all $k \in \mathbb{N}_0$.

Since the critical groups of φ_0 at an isolated critical point y coincide with those of φ at $y + \vartheta(y)$ (see, for example, Liu [16], Lemma 2.3), we have:

Corollary 2. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then

 $C_k(\varphi_0, 0) = \delta_{k,d_l} \mathbb{Z}$ for all $k \in \mathbb{N}_0$, with $d_l = \dim \overline{Y} = \dim \overline{H}_l$.

Now we are ready for the multiplicity theorem which produces two nontrivial smooth solutions for problem (1).

Theorem 1. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then problem (1) admits at least two nontrivial solutions $u_0, \hat{u} \in C^1(\overline{\Omega})$.

Proof. From Proposition 3 we know that the functional φ_0 is anticoercive. So, we can find $y_0 \in Y$ such that

(46)
$$\varphi_0(y_0) = \max[\varphi_0(y) : y \in Y].$$

Since Y is finite dimensional, from Motreanu-Motreanu-Papageorgiou [18], Example 6.45(6) (p. 153), we have

(47)
$$C_k(\varphi_0, y_0) = \delta_{k, d_m} \mathbb{Z}$$
 for all $k \in \mathbb{N}_0$ (recall $d_m = \dim Y = \dim \overline{H}_m$).

From (46) we see that

$$y_0 \in K_{\varphi_0},$$

 $\Rightarrow y_0 + \vartheta(y_0) = u_0 \in K_{\varphi} \quad (\text{see Lemma 1}),$
 $\Rightarrow u_0 \text{ is a solution of (1)} \text{ and } u_0 \in C^1(\overline{\Omega}) \quad (\text{see Wang [27]}).$

Since $d_l \neq d_m$ (recall $l \neq m$, see hypothesis H(iii)), from (47) and Corollary 2 we infer that $y_0 \neq 0$, hence $u_0 \neq 0$. From Proposition 5 we know that

(48)
$$C_k(\varphi_0, \infty) = \delta_{k, d_m} \mathbb{Z}$$
 for all $k \in \mathbb{N}_0$.

Suppose $K_{\varphi_0} = \{0, y_0\}$. Then from (47), (48), Corollary 2 and the Morse relation with t = -1, we have $(-1)^{d_l} = 0$, a contradiction. So, there exists $\hat{y} \in K_{\varphi_0}$, $\hat{y} \notin \{0, y_0\}$. Then $\hat{u} = \hat{y} + \vartheta(\hat{y}) \in C^1(\overline{\Omega})$ is the second nontrivial solution of (1).

Acknowledgment: The authors wish to thank the referee for his/her corrections and useful remarks.

References

- S. Aizicovici, N.S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc., 196 (2008), 70 pp.
- [2] H. Amann, Saddle points and multiple solutions of differential equations, Math. Z., 169 (1979), 127–166.
- [3] A. Castro and A.C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Ann. Mat. Pura Appl., 120 (1979) 113–137.
- [4] J.-N. Corvellec and A. Hantoute, Homotopical stability of isolated critical points of continuous functionals, Set Valued Anal., 10 (2002), 143–164.
- [5] G. D'Aguì, S.A. Marano and N.S. Papageorgiou, Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl., 433 (2016), 1821–1845.
- [6] J. Dugundji, *Topology*, Allyn and Bacon, Boston (1966).
- [7] G. Fragnelli, D. Mugnai and N.S. Papageorgiou, Superlinear Neumann problems with the p-Laplacian plus an indefinite potential, Ann. Mat. Pura Appl., 196 (2017), 479–517.
- [8] G. Fragnelli, D. Mugnai and N.S. Papageorgiou, Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential, Discrete Contin. Dyn. Syst. (Ser. A), 36 (2016), 6133–6166.
- [9] L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis, Ser. Math. Anal. Appl. 9, Chapman and Hall/CRC Press, Boca Raton, (2006).
- [10] L. Gasiński and N.S. Papageorgiou, Neumann problems resonant at zero and infinity, Ann. Mat. Pura Appl., 191 (2012), 395–430.
- [11] L. Gasiński and N.S. Papageorgiou, Pairs of nontrivial solutions for resonant Neumann problems, J. Math. Anal. Appl., 398 (2013), 649–663.
- [12] L. Gasiński and N.S. Papageorgiou, Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential, Commun. Pure Appl. Anal., 12 (2013), no. 5, 1985–1999.
- [13] S. Hu and N.S. Papageorgiou, Positive solutions for Robin problems with general potential and logistic reaction, Commun. Pure Appl. Anal., 15 (2016), 2489–2507.
- [14] S. Kyritsi and N.S. Papageorgiou, Multiple solutions for superlinear Dirichlet problems with an indefinite potential, Ann. Mat. Pura Appl., 192 (2013), 297–315.
- [15] Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009), 147–158.
- [16] S. Liu, Remarks on multiple solutions for elliptic resonant problems, J. Math. Anal. Appl., 336 (2007), 498–505.
- [17] D. Motreanu, V. Motreanu and N.S. Papageorgiou, On resonant Neumann problems, Math. Annalen, 354 (2012), 1117–1145.
- [18] D. Motreanu, V. Motreanu and N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York (2014).
- [19] D. Mugnai and N.S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super. Pisa Cl.Sci. (5) XI (2012), 729–788.
- [20] N.S. Papageorgiou and F. Papalini, Seven solutions with sign information for sublinear equations with indefinite and unbounded potential and no symmetries, Israel J. Math. 201 (2014), 761–796.
- [21] N.S. Papageorgiou and V.D. Rădulescu, Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity, Contemp. Math., 595 (2013), 293–315.

- [22] N.S. Papageorgiou and V.D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), no. 7, 2449–2479.
- [23] N.S. Papageorgiou and V.D. Rădulescu, Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367 (2015), 8723–8756.
- [24] N.S. Papageorgiou and V.D. Rădulescu, Robin problems with indefinite and unbounded potential resonant at $-\infty$, superlinear at $+\infty$, Tohoku Math. J., **69** (2017), 261–286.
- [25] N.S. Papageorgiou and G. Smyrlis, On a class of parametric Neumann problems with indefinite and unbounded potential, Forum Math., 27 (2015), 1743–1772.
- [26] N.S. Papageorgiou and P. Winkert, Resonant (p,2)-equations with concave terms, Appl. Anal., 94 (2015), 342–360.
- [27] X.-J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991), 283–310.

(N.S. Papageorgiou) DEPARTMENT OF MATHEMATICS, NATIONAL TECHNICAL UNIVERSITY, ZO-GRAFOU CAMPUS, 15780, ATHENS, GREECE *E-mail address*: npapg@math.ntua.gr

(C. Vetro) DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF PALERMO, VIA ARCHIRAFI 34, 90123, PALERMO, ITALY

E-mail address: calogero.vetro@unipa.it

(F. Vetro) DEPARTMENT OF ENERGY, INFORMATION ENGINEERING AND MATHEMATICAL MODELS (DEIM), UNIVERSITY OF PALERMO, VIALE DELLE SCIENZE ED. 8, 90128, PALERMO, ITALY *E-mail address:* francesca.vetro@unipa.it