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A B S T R A C T

Poor quality of Public Transport (PT) services is one of the main causes of social exclusion for people living in the 
suburbs. Public transport companies usually allocate few financial resources to these areas, providing transport 
services with low frequency, poor accessibility, poor reliability, and high waiting times at stops. Recently, 
microtransit has emerged as an effective solution to improve the travel experience in suburban areas, particularly 
for non-commuting trips during off-peak hours. This paper presents an integrated methodological approach for 
designing microtransit services to meet the mobility needs of people living in low-density suburbs. By conducting 
a Reveled Preference (RP) and Stated Preference (SP) survey and developing a travel demand model, the demand 
was estimated and used as input to simulate and size the service. Combining GIS and simulation models, Key 
Performance Indicators (KPIs) were assessed; fleet size to meet the trip requests was identified and the fare was 
selected using a sensitivity analysis. The method was applied to a real case study to design a new microtransit 
service with flexible routes and on-demand stops in a suburban area in Palermo, Italy. The results highlight how 
introducing a microtransit service with 30 nine-seater vans could change the mobility habits of people living in 
the suburban area, being attractive and financially sustainable if costing 2 €, or just a little more than the existing 
fixed-route bus service. It could improve the travel experience by reducing the average waiting time at stops to 
around 5 min and improve access to amenities and PT hubs by guaranteeing a walking time of maximum about 8 
min.

1. Introduction

Poor quality of conventional Public Transport (PT) services is one of 
the main causes of social exclusion in suburbs and rural areas. People 
living in these areas often experience difficulties in reaching desired 
destinations such as schools, workplaces, food shops and healthcare 
facilities as well as sporting, leisure, and cultural activities (Stanley & 
Lucas, 2008).

Resources for PT are limited, thus PT companies usually allocate 
most of their financial resources to more densely populated areas, where 
the transport demand is higher; on the other hand, in rural and suburban 
communities characterized by low-density areas, PT companies often 
provide transport services with low frequency and reliability, with 
consequent poor accessibility (Cooke & Behrens, 2017). These 

communities become highly car-dependent and traffic congestion 
worsens non-motorized travel conditions; moreover, policymakers tend 
to be less concerned with the needs of non-drivers. In these contexts, 
non-drivers face many issues, including limited travel options and high 
travel times due to poor-quality PT services (Han, Lee, Yu, & Dejno, 
2021). Indeed, traditional PT services often cannot effectively and 
economically meet the mobility needs of people living in low-density 
areas; this becomes challenging especially for older people, people 
with disabilities, and low-income people, i.e. groups at risk of social 
exclusion (MacLeod, Kamruzzaman, & Musselwhite, 2022).

In recent years, a wide range of shared mobility services has emerged 
to improve the accessibility and social inclusion for people living in low- 
density areas, operating as feeders to existing high-capacity PT net-
works, such as metro or rail lines. In this way, shared mobility makes 
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access to jobs and other public services easier and more equitable 
(Shaheen, Cohen, Chan, & Bansal, 2020). Among these services, 
including carsharing, bikesharing and scooter sharing, microtransit has 
received increased attention in recent years.

Microtransit, also known as Demand-Responsive Transit (DRT), is 
“an intermediate form of PT, somewhere between a regular service route 
that uses small low floor buses and variably routed, highly personalized 
transport services offered by taxis” (Brake, Nelson, & Wright, 2004). 
Thus, microtransit is considered a hybrid service that combines the 
features of conventional buses and taxis. However, Papanikolaou, Bas-
bas, Mintsis, and Taxiltaris (2017) described flexibility and capacity as 
the main operational features differentiating microtransit from taxis and 
conventional buses. Taxi has flexible routes, but it can serve a low 
number of passengers without trip sharing. Conventional buses operate 
on predefined routes according to a fixed schedule, having no flexibility, 
but they can serve more passengers. DRT falls in the middle with a 
greater flexibility than buses and serving fewer people than a conven-
tional bus due to the smaller size of vehicles (i.e., cars, vans, or 
minibuses).

The introduction of microtransit services in low-density areas, i.e. 
rural or suburban areas, offers numerous benefits: increased access to 
essential services; a better travel experience for people with disabilities, 
older people, and young students; a greater social inclusion (Sörensen, 
Bossert, Jokinen, & Schlüter, 2021); greater flexibility through combi-
nation with other transport services (i.e. with fixed-route services); and 
a reduction in noise and air pollution (Viergutz & Schmidt, 2019).

According to Shaheen et al. (2020), microtransit is always charac-
terized by one or more of the following features: route deviation (being 
demand-responsive, vehicles can deviate from a fixed route to meet 
travel requests); point deviation (vehicles serve a limited number of 
stops without a fixed route between stops); demand-responsive con-
nections (vehicles operate in a demand-responsive geographic zone with 
one or more fixed-route connections); request stops (passengers can 
request unscheduled stops); flexible-route segments (demand-respon-
sive service is available within segments of a fixed-route); zone routes 
(vehicles operate along a route corridor). All these aspects, related to 
service operational features and users’ needs, make the design proced-
ure of a microtransit service complex. Determining the proper number of 
vehicles needed to meet demand without oversizing the fleet (which 
increases costs) or undersizing it (which worsens the service) is a sig-
nificant challenge. Indeed, on the one hand, minimizing waiting times 
for passengers and ensuring that vehicles arrive on time is crucial for 
user satisfaction; on the other hand, establishing a pricing model to be 
competitive but also cover operating costs is difficult.

Within this framework, this paper aims to describe an integrated 
methodological approach for the design of microtransit services in 
suburban areas, using a mode choice model calibrated by stated pref-
erence (SP) surveys to estimate the users’ requests, and implementing a 
simulation model to simulate the service and optimize the fleet size, 
considering the number of travel requests that can be served and the 
travel time experienced by passengers. Therefore, several simulations 
were performed, considering the demand (i.e. O/D matrices) estimated 
through RP/SP surveys and a travel demand model as input data. The 
implemented simulation model, based on a Geographic Information 
System (GIS) platform, led to the optimization of the service by identi-
fying the number of vehicles needed to meet the demand. Finally, an 
objective function with constraints was used to perform a sensitivity 
analysis and set the best microtransit fare, considering customers, 
community, and operator perspectives.

The methodological approach was tested considering a real case 
study, i.e. a suburban area in Palermo, Italy, where a low number of bus 
lines with low frequency makes PT inadequacy evident.

The paper is organized as follows. Section 2 gives a brief overview of 
the methods for designing DRT services, and the consequences of the 
introduction of microtransit in suburban areas. The method we devel-
oped is outlined in Section 3. In the Section 4, the case study is 

presented. After describing the steps to estimate the number of trip re-
quests generated by the study area, the results of the simulation model 
are analyzed in Section 5, setting the fleet and the fare through a 
sensitivity analysis. Our conclusions are drawn in Section 6.

2. Literature Review

At the beginning of their introduction, on-demand services were seen 
as social services rather than a legitimate public service: they were used 
just by some social groups (e.g. older people, people with disabilities, 
students, etc.) and received high subsidies (Papanikolaou et al., 2016). 
These services provided not very flexible travel plans and were used in 
low-density suburban areas primarily for leisure-related trips. They were 
often criticized for their high operational costs, their lack of flexibility in 
route planning, and inability to handle many trip requests. However, the 
rapid and well-established development of telecommunication and in-
formation technology supported the implementation of DRT services, 
with more efficient and flexible schemes, and a dynamic management of 
travel requests and vehicle routing (Sörensen et al., 2021).

To design a DRT microtransit service which yields a reduction in car 
trips, the service area should not be limited to the city centre, but rather 
cover a typical commuting area, including suburbs. In this way, intro-
ducing this service, people living in suburbs can become less car 
dependent. Some literature works pointed out that the neighborhood of 
residence has influence on the potential risk of exclusion (Stanley, 
Hensher, & Stanley, 2022). In this regard, suburbs and rural areas are 
often characterized by both social disadvantage and transport disad-
vantage (Lucas, 2012). The implementation of microtransit services can 
represent a way to improve the capacity to move within these areas, 
prevent social exclusion and reduce the transport disadvantage, by 
providing accessibility to Points of Interest – POIs (i.e., amenities and 
transportation hubs) and enhancing the quality of life (Brumfield, 
2023). Thus, microtransit may help to reduce gaps in employment 
accessibility between low-income zero-auto households and high- 
income communities, helping transit-dependent households to reduce 
travel times and access to workplaces more quickly and easily (Bills, 
Twumasi-Boakye, Broaddus, & Fishelson, 2022).

Several studies focused on microtransit applying different method-
ological approaches to forecast the demand and simulate the service, 
evaluating the impacts in transport mobility, social equity and accep-
tance of the service among different users.

Coutinho et al. (2020) analyzed the impacts deriving from the con-
version of a fixed bus line in a demand-responsive system within a rural 
area of Amsterdam, in terms of distances, number of passengers, costs, 
emissions, and user perceptions. Their findings showed that the GHG 
emissions per passenger were lower. Moreover, the system was also well 
positively perceived by users and reliability was a determinant of 
satisfaction with the microtransit system.

Wang, Quddus, Enoch, Ryley, and Davison (2015) conducted a 
customer survey and developed an ordered logit model to assess the 
propensity to use a microtransit service in the rural area of Lincolnshire 
in U.K. The authors found that females and elderly people have the 
highest probability to make more frequent trips using microtransit to go 
shopping or attend medical appointments.

Nyga, Minnich, and Schlüter (2020) performed an online survey to 
assess the willingness to pay of different users’ groups for door-to-door 
microtransit services. They found that women, employed and low- 
income users are willing to pay more for the DRT service. In addition, 
willingness to pay is closely related to environmental friendliness, 
especially in rural areas. Moreover, they concluded that the fare should 
cover costs as far as possible, be socially acceptable, and attract a suf-
ficient transport demand for minimizing external effects.

The study of Kaddoura, Leich, and Nagel (2020) focused on the im-
pacts of both fare and service area design on microtransit in the Greater 
Berlin area. In several simulation experiments, a significant modal shift 
of users from conventional PT services to microtransit was registered, 
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highlighting this positive effect from the users’ perspective, as users 
experienced reduced travel time and obtained higher utility.

Bruzzone, Scorrano, and Nocera (2021) provided a citizen focus 
groups and a cost analysis to analyze the integration of a microtransit 
system with e-bikesharing and PT in a suburban area of Valenje, 
Slovenia. The interviewees complained about the low quality and poor 
efficiency of the bus service. Moreover, due to the morphological con-
dition of the area and long distances, bicycle use was also reduced. The 
solution of a semi-flexible microtransit service combined with the e- 
bikesharing service allowed to connect isolated urban areas to the train 
station with a single integrated ticket. The results of the study also 
showed that, with funding levels comparable to the existing conven-
tional bus system, a combination of microtransit system and e-bike 
system could be realized by offering extended service hours to increased 
users, also improving access to high-capacity transportation hubs.

As regard the microtransit service simulation, Costa, Cunha, and 
Oliveira Arbex (2021) developed a NP-hard optimization problem to 
simulate a microtransit service in São Paulo, Brazil, and compare it with 
traditional PT in terms of service level, average occupancy, and total 
travelled distance.

Although the authors estimated lower travel times for buses than 
those associated with the microtransit service, the latter has more reli-
able waiting times and reduced walking distances. Additionally, 
microtransit service can be an opportunity to attract users, offering a 
higher level of service than buses, at a competitive cost: by proposing 
six-seater vehicles, a 20 % reduction in cost per passenger could be 
achieved. Nevertheless, the employed combinatorial optimization 
problem becomes exponentially increasing in difficulty as the instance 
size becomes larger, thus requiring complex and efficient algorithms and 
heuristics to solve the dispatching when the trip requests are made in 
advance and handled together before the departure of the vehicles.

Viergutz and Schmidt (2019) used an agent-based simulation to 
compare a stop-based microtransit service and a door-to-door service 
with a conventional bus service in a rural area in Germany. The authors 
found that waiting and in-vehicle times for customers using the stop- 
based DRT services are half of those experienced by the users of the 
conventional bus service. However, to serve the same number of users, 
the DRT services need a larger number of vehicles and drivers, resulting 
in higher costs for the operator.

Similarly to the integration of microtransit service for the connection 
with a transport hub in a suburban area proposed by Bruzzone et al. 
(2021), the study of Scheltes and de Almeida Correia (2017) presented 
an agent-based simulation model to study a system for first mile/last 
mile connection to mass PT modes, provided with on-demand AVs. They 
implemented a dispatching algorithm to distribute travel requests 
among the available vehicles using as reference the Renault Twizy, 
which is a small electric vehicle with a capacity for one passenger. 
Anyway, the limitation is represented by the absence of trip sharing 
among users, which make the system only able to compete with the 
walking mode.

Shen, Zhang, and Zhao (2018) proposed and simulated via an agent- 
based model an integrated AVs and PT system, with a maximum of four 
passengers, based on organizational structure and demand characteris-
tics, considering peak hours.

These works used agent-based simulation models, which are complex 
and often require high computational capacity to simulate the behaviour 
of millions of agents, being time-consuming and demanding in terms of 
computational resources. Additionally, the validation may be tricky, and 
it can be difficult to compare the output of the model with real empirical 
data.

Considering the microtransit demand, the study of Shen et al. (2018)
is based on empirical travel demand and transit operational details 
derived from the smart card data in Singapore. Similarly, Ma, Chow, 
Klein, and Ma (2021) evaluated the introduction of a microtransit ser-
vice in Luxemburg, conducting the study based on a real data set shared 
by the transport company for a period about a semester. Nevertheless, in 

low-density areas a low demand is associated with PT, so it is important 
to be able to estimate the potential demand attracted by a microtransit 
service. Indeed, the current demand for an existing PT service in sub-
urban areas may not correspond to the demand for a microtransit to be 
implemented that could improve the performance and reliability of the 
transport service.

In this regard, we considered the application of RP and SP methods, 
based on data collected through surveys that can be analyzed using less 
computationally demanding standard statistical techniques. RP and SP 
surveys were already used to investigate the factors affecting the 
microtransit choice (Hussin, Osama, El-Dorghamy, & Abdellatif, 2021; 
Rossetti, Broaddus, Ruhl, & Daziano, 2023). However, we included RP/ 
SP surveys in a wider methodological framework, using them as inputs 
for developing a travel demand model and forecasting microtransit 
demand.

Moreover, both works of Scheltes and de Almeida Correia (2017) and 
Shen et al. (2018) proposed the introduction of new transport services 
based on the use of AVs. Nevertheless, the integration of such vehicles 
could represent a challenge in suburban areas both for road infrastruc-
ture and signage, complexity in social interactions and legal frameworks 
linked to the context analysis. This can be further configured as a limi-
tation since the major costs associated with a transport system are the 
operational ones, which include the drivers’ costs.

Sayarshad and Chow (2015) introduced the service pricing under the 
assumption of elastic demand to derive the optimal fleet size and 
maximize social welfare. Therefore, we considered an analysis of the 
financial economic sustainability of the service modelling a microtransit 
service demand with different timing and spatial distribution.

We also introduced the possibility of trip sharing respect to the study 
of Scheltes and de Almeida Correia (2017), incrementing the vehicle 
capacity fixed to a maximum of 6 passengers by Sayarshad and Chow 
(2015), thus considering 9-seater vehicles to favour trip sharing, limit 
the number of vehicles needed to perform the service and reduce the 
costs.

In summary, the novelties we want introduce in our research are 
related to (i) rigorous microtransit demand modelling through RP and 
SP data; (ii) economic and financial analysis to design microtransit 
service considering trip sharing; (iii) testing the methodology within 
low-density suburban areas during off-peak hours in Italian context.

In this paper we propose an integrated methodological approach to 
design microtransit services considering a comprehensive perspective of 
the economic and financial factors related to microtransit, i.e. service 
operational parameters; user satisfaction; fares; service costs and ex-
ternalities. Starting from RP and SP data (derived from a survey deeply 
detailed in Capodici, D’Orso, Migliore and Vittorietti, 2024), we 
developed a four-stage model to estimate the microtransit demand, 
characterized by an iterative procedure between the demand modelling 
and service simulation to ensure waiting and walking times meeting the 
users’ needs, improving accessibility to POIs and quality of life. Addi-
tionally, we also included in our microtransit design methodology the 
fare setting problem, performing a sensitivity analysis and determining 
the fare to be selected.

Suburban and rural areas with low population density require a 
different service design than urban areas (Schasché, Sposato, & Hampl, 
2022). Thus, to the best of our knowledge, we are the first to consider an 
on-demand service operating in low-density areas, which integrates the 
PT during off peak-hours in a suburban area of an Italian city. Specif-
ically, we decided to test our methodology considering a stop-based 
service that serves as a feeder system to a high capacity and high reg-
ularity transportation hub, connecting suburbs to the city center.

3. Method

The methodological approach to design the microtransit service in 
suburban areas is multi-step, as schematized in Fig. 1:

1) Identification of the study area and zoning;
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2) Transport supply modelling: building the road network and the 
microtransit network;

3) Microtransit demand modelling: RP/SP surveys, mode choice 
model and OD matrix estimation for non-commuting trips made by 
microtransit;

4) Development of the microtransit simulation model, simulation 
and scenario evaluation through Key Performance Indicators (KPIs) and 
comparative analysis, in order to identify the fleet size based on demand 
for microtransit;

5) Sensitivity analysis based on an objective function to identify the 
fare to be selected.

A detailed description of each methodological steps is reported in the 
next subsections.

3.1. Identification of the study area and zoning

The first step is the identification of the study area and the definition 
of the zoning scheme to divide the study area into smaller zones, usually 
coinciding with census blocks, block groups or census tracts. All trip 
origins and destinations are represented at the spatially aggregate level 
of the movement from an origin zone to a destination zone. Thus, a 

centroid is assigned to each zone and considered as source of each trip 
starting in this zone. External centroids are also defined to represent the 
main traffic generators and attractors outside the study area.

3.2. Transport supply modelling

The second step is the modelling of the transport supply, consisting of 
building the road network in a GIS software, to constitute the base 
network of the simulation model. The road network consists of links 
(roads) and nodes (road intersections). The links are weighted by their 
corresponding road lengths. Then, the next step is the microtransit 
network definition. In this phase, the type of microtransit service to 
implement (or simulate) in the study area must be identified: a door-to- 
door service (without predefined stops), a stop-based service with flex-
ible routes, or a stop-based service with fixed routes and some detours. 
Thus, the main features of the microtransit service must be defined 
(vehicles performing the service, presence of predefined stops, presence 
of fixed routes and detours). For example, considering the vehicles’ size, 
roads where microtransit vehicles can’t circulate must be identified and 
excluded from the microtransit network. In the case of a stop-based 
service with flexible routes, the Pick-Up and Drop-Off nodes need to 

Fig. 1. Methodological framework.
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be identified. Moreover, in the case of a stop-based service with fixed 
routes and detours, they also need to be identified.

3.3. Microtransit demand modelling

The third step consists in modelling the microtransit demand in the 
study area. To do this, using a combination of RP and SP surveys could 
be useful. RP surveys are used to record the mobility behaviour that 
users adopt at the present time. Conversely, the SP survey collected the 
mode choice decisions of the respondents under future scenarios; thus, it 
can be used to predict the behaviour of the users when a service does not 
yet operate in the study area. Conducting RP and SP surveys at the same 
time allows assessing the mobility habits of people living in the study 
area and their propensity to use microtransit in the future.

Using the findings of the RP/SP surveys, a traditional transport de-
mand model can be developed and calibrated. The transport demand 
model consists of a set of sub-models: trip generation model, trip dis-
tribution model, mode choice model, and trip assignment model.

The demand for microtransit can be presented by an origin- 
destination (OD) matrix. In the OD matrix each cell represents the 
number of trips per day from an origin zone (row) to a destination zone 
(column). There are many methods to determine the trips generated by a 
zone. In conventional ways, we can count these trips by conducting a 
survey.

We can also develop a trip generation model, with dependent and 
independent variables. The total number of person-trips generated by a 
zone is the dependent variable; on the other hand, the independent 
variable consists of household and socio-economic factors, which in-
fluence the trip making behaviour of users.

Thus, we can assess the average number of trips per day made by 
users belonging to a certain socio-economic group. In this regard, trips 
per day generated by a zone can be estimated using census data and trip 
generation rates for user groups. The trips generated from each zone are 
attracted to the other zones based on a trip distribution model.

These trips may be within the study area (internal-internal) or be-
tween the study area and areas outside the study area (internal- 
external). There are several methods to distribute trips among zones; the 
most widely used trip distribution model is the gravity model. According 
to this model, the number of trips between two zones is directly pro-
portional to the ability of the zone of destination to attract trips and 
inversely proportional to a function of travel time between the two 
zones. The ability of a zone to attract trips can be estimated as a function 
of the number of employees or services existing in that zone.

Knowing the non-commuting trips per day attracted by each zone, 
we can calculate the OD matrix. We have as many matrices as the socio- 
economic categories of users considered.

Finally, for each user group, the microtransit OD matrix, considering 
the trips made by microtransit by this user group can be calculated as a 
fraction of the total OD matrix, considering all the trips made by this 
user group. Indeed, the next step is the development of a mode choice 
model to assess the choice probability for microtransit for different 
groups of users. Many models can be used to assess the choice proba-
bilities: multinomial logit models, conditional logit models, mixed logit 
etc. In the case study presented in Section 4, we specified the use of a 
multinomial logit model. The choice probability for microtransit for a 
specific user group can be calculated for each OD pair. For each user 
group, we can assess each element of the microtransit OD matrix 
multiplying the corresponding element of the total OD matrix, i.e. the 
number of trips from zone o to zone d, by the choice probability for 
microtransit for the o-d pair. This step must be repeated for all the 
considered user groups. Thus, the daily microtransit OD matrix is the 
sum of the microtransit matrices for every user group. Each element of 
the matrix is the number of trip requests that users can express to make a 
trip from a zone to another.

Finally, the trip assignment stage is developed using a simulation- 
based approach.

3.4. Development of microtransit simulation model

The fourth step implies the development of the microtransit simula-
tion model which consists of two procedures: (i) the creation of trip 
requests and (ii) the creation of paths.

The first procedure starts from the disaggregation of the demand on 
the network nodes to generate travel requests.

The demand associated with the microtransit service, determined in 
the third step, is represented within a “Zone Based” matrix which is 
associated with the macroscopic model. To simulate the service, it is 
necessary to associate this demand with a microscopic model. The 
transition from a macroscopic “zone based” model to a microscopic 
“node and time based” model requires the disaggregation of the demand 
from zones to nodes. In this way, each trip will have an origin node and a 
destination node. Once the demand has been disaggregated, we proceed 
with the creation of the list of the trip requests, which will be processed 
during the simulation of the service.

For the trip requests’ generation, it will be necessary to define the 
following input parameters:

- duration of the service (time interval of the day);
- travel request aggregation rate;
- pre-booking time;
- maximum waiting time.

After the definition of these parameters, it will be possible to 
generate the list of requests having the desired characteristics to be 
associated with the service. For each request, we will have identified the 
origin and destination nodes of the trip, the time at which the request is 
made, the scheduled pick-up time and the total number of passengers (in 
the case of passengers traveling together).

The second procedure consists of the creation of paths. Once the list 
of trip requests has been defined, it will be necessary to plan the oper-
ational service in order to satisfy all requests. This is carried out through 
a “Dispatcher” procedure (see Fig. 2). The procedure is based on 
assigning the trip request to the closest vehicle available to arrive within 
the maximum waiting time, defined for each request.

During the procedure, to facilitate the sharing of the vehicles, pri-
ority is always given to “active” vehicles, i.e. vehicles that already have 
passengers on board.

Considering each available vehicle, the ideal travel time (ITT) and 
the detour time (DT) are calculated for each passenger. The ITT repre-
sents the time required to make the trip between origin and destination, 
considering the shortest path without any stops. DT is defined as the 
additional time due to the detour required to collect additional trip 
requests.

Through the following equation it will be possible to calculate the 
detour factor (DF) associated with each passenger. Thus, the DF is a non- 
dimensional factor used to quantitatively evaluate the DT in relation to 
the ITT, according to Eq. 1: 

DT = (DF − 1) • ITT (1) 

Within the procedure, it is necessary to define the following quali-
tative service attributes:

- All accepted detour time (all. Acc. DT), represents the minimum 
value always accepted of DT in addition to the ITT;

- Maximum detour time (Max DT) represents the maximum DT value 
accepted by the user in addition to his ITT;

- Maximum detour factor (Max DF) represents the maximum deviation 
factor accepted by the user in relation to his ITT.

Once these parameters have been defined based on the characteris-
tics of the service, it will be possible to start the Dispatcher procedure, 
and three conditions can occur:
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- If: DT < all.acc.DT, it is not necessary to check the DF and the vehicle 
will detour from the scheduled route, satisfying the trip request it has 
received;

- If: all.acc.DT < DT < Max DT, it is necessary to check the DF. If the 
DF values do not exceed the maximum accepted DF, the vehicle will 
proceed to make the deviation of the scheduled route, satisfying the 
travel request it has received. If, on the other hand, the maximum DF 
is exceeded, a search will be carried out among “inactive” vehicles, i. 
e. vehicles which are stationary with no passengers on board at that 
moment of the trip request, but which are still available to provide 
the service. If one of the vehicles can satisfy the trip request 
respecting the value of the maximum DF, then the request will be 
satisfied, otherwise it will remain unsatisfied.

- If: Max DT < DT, it is not necessary to check the DF and a search will 
be carried out directly among “inactive” vehicles, i.e. vehicles which 
are stationary at that moment with no passengers on board, but 
which are available to provide the service. Similarly, to the previous 
condition, if one of the vehicles can satisfy the trip request respecting 
the value of the maximum DF, then the request will be satisfied, 
otherwise it will remain unsatisfied.

These conditions must be verified and satisfied both for the passen-
ger who made the request and for each passenger on board: only in this 
way the trip request can be satisfied.

This “Dispatcher” procedure, which serves individual requests based 
on the order in which they were generated, depends on the input pa-
rameters reported in Table 1.

After these procedures and configurations, it is possible to simulate 
the service by running the simulation model. We can perform several 
simulations varying the microtransit demand for different fare values (e. 
g. Scenarios 1, Scenario 2 and Scenario n in Fig. 1). Indeed, the fare 
impacts on the choice probability for microtransit and, consequentially, 
on the microtransit O/D matrix used as input in the simulation model. 
After simulating the service, a scenario evaluation can be made through 
Key Performance Indicators (KPIs) to evaluate the performance of the 
service and optimize the fleet according to demand. The list of simula-
tion output parameters is reported in Table 2.

The simulation output parameters must be consistent with the mode 
choice model input parameters (i.e. waiting time, walking time, in- 
vehicle time). Otherwise, the procedure must be iterated until conver-
gence (see the loop represented in Fig. 1 by red arrows).

3.5. Sensitivity analysis

The fifth and last step is the sensitivity analysis to set the fare. This 
sensitivity analysis is performed using an objective function with 
constraints.

Considering the discrete set of possible fares used in the definition of 
the scenarios, the best fare can be estimated by maximizing the objective 
function (Eq. 2), taking into account the equilibrium among fare, modal 
split and fleet size (see Fig. 1): 

Argmax(f) = Surplususers +RevenuesDRT − Costoperating DRT +Externality
(2) 

Fig. 2. Dispatcher procedure.

Table 1 
Input parameters for the dispatcher procedure.

INPUT parameters Description

I1 –DRT matrix Number of DRT travel requests [pass]

I2 –Max vehicles
Maximum number of vehicles used to perform the DRT service 
[vehicles]

I3 – Seats Number of available seats for each vehicle [pass]

I4 – Max DF
Maximum Detour Factor, defined as the ratio between the 
travel time with the deviations due to the sharing and the 
direct travel time [dimensionless].

I5 – Max DT Maximum Detour Time due to the sharing [min,sec].
I6 – Min DT Minimum Detour Time due to the sharing [min,sec].
I7 – All acc DT Detour Time value always accepted [min,sec]
I8 – Max wait Maximum waiting time at the DRT stop [min,sec]
I9 – Max O/PUDO 

walk
Maximum walking time to cover the distance between the 
origin and the DRT stop (PUDO) [min,sec]

I10 – Max PUDO/D 
walk

Maximum walking time to cover the distance between the 
DRT stop (PUDO) and the destination [min,sec]

I11 – Boarding 
Time

Time needed to board and alight a vehicle per passenger [min, 
sec]
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subject to the constraints:
fmin ≤ f ≤ fmax.
where fmin and fmax are within an admissible range for the urban 

context, and where:

- the term “Surplususers” shows the user’s “surplus”, expressed as the 
product of the total demand and the variation in satisfaction between 
the project scenario and the initial one, then divided by the coeffi-
cient to express the surplus in Euros; the satisfaction could be 
calculated using the logsum function (user maximum perceived util-
ity) for each o-d pair, if we have calibrated a random utility model for 
the mode choice model;

- the term “RevenuesDRT” shows the revenues of the microtransit 
system, considering the fare paid by the microtransit users and the 
fare paid by the users who move from the private to the PT system; 
the revenues of the microtransit system depend on the number of trip 
requests satisfied by the service.

- “Costoperating DRT” shows the additional operating costs due to the 
expansion of the PT system using microtransit; the operating costs 
depend on the number of vehicles used to perform the DRT service 
and the number of kilometers travelled by the DRT vehicles.

- the term “Externality” shows fewer externalities due to the transfer 
of a part of the demand from the private car to the PT system. The 
externalities depend on the number of kilometers travelled by the 
DRT service.

4. Case study

The proposed methodology has been tested to a real case study to 
understand the performance of the system depending on several oper-
ational parameters and demand scenarios. We present the steps followed 
to design a new microtransit service in a suburban area of the city of 
Palermo (Italy).

4.1. Study area

The study area encompasses the neighbourhoods of Tommaso Natale 
and Partanna Mondello, located in the northern part of the city of 
Palermo (Italy), and the small seaside villages of Mondello and Addaura. 
Therefore, the study area covers an area of about 10.5 km2, which is 
characterized by poor-quality PT services and a discontinuous urban 
fabric. As we can see from census data in Table 3, a total population of 
27,789 lives in the study area in 2021. About 26 % of the residents 
belong to the over-60 age group.

The area is almost purely residential with few traffic attractors such 
as a shopping mall, some restaurants, beaches, and sports centers. Ac-
cording to the Industry and Services census conducted in 2011 by ISTAT, 

the study area has a relatively low number of services, although several 
small commercial activities are located along Tommaso Natale Road, i. 
e., the main street of Tommaso Natale neighborhood.

As shown in Fig. 3, the main points of interest are in the coastal strip 
of Mondello and Addaura where there are beaches, hotels, sports centers 
and restaurants; in Viale dell’Olimpo, where there are several sports 
centers and a high school; and in Partanna Mondello road where there 
are several food shops and drugstores. Tommaso Natale train station 
connects the area with other areas of the city through the railway line.

Indeed, the railway mainly connects the study area with the city 
centre, with a low frequency (about 1 train per hour). Therefore, this low 
frequency motivates residents to use their private vehicles for their 
commuting trips. There are also 7 bus lines, operated by the municipal 
transportation company AMAT S.p.A. These bus lines also have low 
frequency; thus, users face high waiting times at stops. It’s not surprising 
that only users who have no other options use the bus, and thus buses 
always have few passengers on board. Indeed, only 9 % of the residents 
in the study area use PT (Capodici, D’Angelo, D’Orso, & Migliore, 2022).

To improve the use of PT in the study area, we proposed a micro-
transit service with flexible routes and on-demand stops located 
throughout the area and reachable within 10 min by the inhabitants. In 
the proposed scenario, microtransit will replace the low-frequency bus 
lines during the off-peak hours, becoming an on-demand mobility option 
within the study area and a feeder service towards the Palermo Tom-
maso Natale station. During the peak hours, the microtransit fleet could 
operate as a conventional PT service with fixed routes and schedules. 
The fleet consists of nine-seater minivans.

The study area was divided into 136 Traffic Analysis Zones (TAZs), 
using census tracts’ borders as zone limits (Fig. 4). A centroid was 
assigned to each TAZ and all trips starting or ending in a TAZ were 
assumed to do so at its centroid.

4.2. Transport supply

The road network was modelled in a GIS software, importing it from 
OpenStreetMap. Subsequently, we classified the links into roads where 
microtransit cannot access (private roads or roads where the necessary 
stopping spaces are not available) and those where the service fleet can 
transit (Fig. 5).

Therefore, the road network had 4516 links of which 957 can be 
travelled by the DRT service, constituting the microtransit flexible 
routes. In addition, the on-demand stops along these routes were 
defined. All links could be travelled by pedestrians.

We imagined that riders could request a pickup at the existing bus 
stops. To increase pedestrian access to the service, we added some stops 
in areas where bus stops didn’t exist. A total of 165 virtual stops were 
defined as PUDO. Centroids were connected to the road and microtransit 
networks via artificial links known as centroid connectors.

These links were built using a tool in the software QGIS allowing 
points to be connected to the closest line through virtual links.

4.3. The RP/SP survey

To develop a mode choice model and calibrate it, we conducted a 
field survey; in this way, we modelled the mode choice behaviour of the 

Table 2 
Output parameters for the dispatcher procedure.

OUTPUT 
parameters

Description

P1 –DRT requests Number of trip requests satisfied by DRT [pass]
P2 – Experienced 

DF Detour Factor experienced by the users

P3 – T wait Average waiting time at the DRT stop [min,sec]

P4 – T O/PUDO
Average walking time to cover the distance between the origin 
and the DRT stop [min,sec]

P5 – T PUDO/D Average walking time to cover the distance between the DRT 
stop and the destination [min,sec]

P6 – In-vehicle DT In-vehicle Detour Time [min, sec]: additional in-vehicle travel 
time experienced by the users

P7 – Vehicles Number of vehicles used to perform the DRT service [vehicles]
P8 –V DRT Average travel speed of the DRT vehicle [km/h]
P9 – Km all Number of kilometers travelled by all DRT vehicles [km]

P10 – Pass all Average number of passengers per vehicle served by the service 
[pass]

Table 3 
Census data (source: ArcGIS Business Analyst database, 
2021).

Age group Number of residents

0–14 3970
15–29 4658
30–44 5295
45–59 6737
Over 60 7129
Total 27,789
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residents of the study area and assessed their propensity to use a DRT 
service. Indeed, we conducted RP and SP surveys simultaneously 
through the administration of a single questionnaire. An in-depth dis-
cussion on the RP/SP survey conducted in the study area and the cali-
bration of the multinomial logit model investigating factors affecting 
microtransit choice can be found in Capodici, D’Orso, Migliore and 
Vittorietti, 2024. We reported in this subsection some relevant aspects 
useful to understand how RP/SP surveys were included in the method-
ology framework.

The questionnaire consisted of three parts: in the first part, the socio- 

economic characteristics of the respondents were recorded; in the sec-
ond part, the mobility habits of the respondents were assessed: the 
survey administrators asked respondents to recall what trips they made 
during the day before the survey (recall technique). To reduce the 
chance that major trips will be forgotten, we asked respondents to think 
in the framework of activities and places where they did these activities. 
The last part of the questionnaire was the SP survey, containing a set of 
choice experiments; four hypothetical scenarios were presented to re-
spondents, asking them to choose between four alternatives (car, 
motorcycle, walking, and DRT) for each scenario. To preliminary 

Fig. 3. Study area and points of interest.

Fig. 4. Traffic Analysis Zones.
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introduce to respondents the discrete choice experiments, a description 
of the microtransit service was presented to them beforehand. Micro-
transit was described as a first-mile/last-mile service connecting to a 
high-capacity or high-regularity transit node (Stazione Palermo Tom-
maso Natale) and operating during off-peak hours, with PUDO stops 
within a maximum 10-min walk from the residences and a fare similar to 
a bus’s.

To calculate the desired number of completed surveys, we consid-
ered the study budget and timeline. We determined that 145 completed 
surveys would provide sufficient power to detect significant effects 
when exploring mode choice preferences and propensity to use micro-
transit services, i.e. our primary outcomes of interest. A random sam-
pling method was used to form the interview sample, ensuring that it 
was representative of the population residing in the study area.

We selected and trained some students from the University of 
Palermo as survey administrators. Personal interviews were conducted 
during off-peak hours stopping respondents near the main points of in-
terest in the study area. We attempted to reduce response bias by 
tracking and varying day of week and time of day, although considering 
working days and off-peak hours. The survey was administered between 
November 2021 to December 2021 with successful completion of 145 5- 
min face-to-face interviews.

We used the results of the survey to calibrate a mode choice model, 
with the help of the statistical software “R”. We used a Multinomial Logit 
model to estimate the choice probability for microtransit for different 
users’ groups (considering age, gender, and level of education as vari-
ables). The considered attributes are reported in Table 4. A stepwise 
regression method with backward elimination was adopted. We started 
with a model that includes all the variables, then removing one variable 
and comparing the two models. If the goodness of fit statistics improved, 
the old model is discarded. Then, a new model is developed while 
dropping another variable. Many iterations were performed until the 
model with the most satisfactory results was chosen and presented. 
Following this approach, we dropped all the variables having not sta-
tistical significance, leading to a calibration not affected by non- 

significant variables. The significant attributes and the results of the 
model calibration are reported in Table 5.

Travel time, total cost and transfer have negative coefficients: as 
expected, an increase in the value assumed by these variables means 
having a decrease in utility. Age is significant for motorcycle, car and 
microtransit, and having negative signs means that younger people are 
more willing to use these modes rather than walk (the base alternative). 
The number of cars per person is significant for car and microtransit, and 
positive coefficients imply that people having more household cars are 
more likely to choose the car or microtransit rather than walking. 
Holding a driving license is significant only for microtransit and the 
negative coefficient implies that people that don’t own a driving license 
are more inclined to use microtransit. The level of education is signifi-
cant for all the transport modes and the negative coefficient means that 
high educated people are more willing to walking rather than use the 
other transport modes. Moreover, an increase in the level of education 
implies an increase in the utility associated with microtransit. Based on 
the results of the calibration and the significant attributes showed in 
Table 5, the utility function for microtransit was expressed by the 
following Eq. 3: 

VDRT = βtmv • tDRT + βc • CtotDRT +ASCDRT + βNumber carDRT

• Number car+ βDriving licenceDRT
• Driving licence+ βAgeDRT

• Age+ βEducationDRT
• Education (3) 

4.4. The O/D matrix estimation

The next step of the methodology involves estimating the micro-
transit O/D matrix. Since the proposed microtransit service would 
operate during off-peak hours, we considered only non-commuting trips, 
neglecting the contribution that commuters may provide in terms of 
users. Thus, non-commuting trips generated by each zone were first 
assessed, developing a trip generation model. They were calculated as a 
function of the number of people living in each zone divided into two 

Fig. 5. The road network: roads where microtransit is not allowed (blue lines), microtransit stops (orange points) and flexible routes (red lines). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)

A.E. Capodici et al.                                                                                                                                                                                                                             Research in Transportation Business & Management 56 (2024) 101191 

9 



age groups: a first group of users with residents aged between 15 and 59 
and a second group with residents aged over 60. For these two user 
groups, trip generation rates for non-commuting trips were estimated as 
the average between the rates detected by the Audimob Observatory 
(ISFORT, 2021) and those detected by the RP survey. This approach was 
followed because the sample is small (1 %) and only people who made 
trips were interviewed, so using trip generation rates derived from the 
RP survey could lead to an overestimation of the real generation rates.

By multiplying the number of residents in a zone belonging to an age 
group by the relative trip generation rate, the total number of non- 
commuting trips originated by that zone was calculated.

A gravity model was then applied as trip distribution model. Non- 
commuting trips attracted by each zone were estimated according to 
the attractiveness of the zone in terms of the percentage of employees in 
retail and service sector working in that zone compared to the number of 
employees working in the study area. The distance between centroids 
was considered as a cost. Indeed, the number of non-commuting trips 
generated by zone o and attracted by zone d was estimated using the 
following Eq. 4: 

nod = no
Ad

b1 e− b2*xod

∑

∀j
Aj

b1 e− b2*xoj
(4) 

where no is the number of non-commuting trips generated by zone o, Ad 
is the number of employees in retail and service sector working in the 
zone d; xod is the distance between zone o and zone d; b1 = 0.4 and b2 =

0.05 are coefficients calibrated for non-commuting trips made in the city 
of Palermo during the drafting of the Urban Traffic Plan. Non- 
commuting trips attracted by external centroids are also estimated as 
a function of the attractiveness of areas outside the study area, expressed 
in terms of the number of trips made by respondents stated in the RP 
survey. External-internal trips were not considered.

Non-commuting trips made by microtransit derive from the appli-
cation of the mode choice model. Indeed, trips made by microtransit are 
a fraction of total non-commuting trips. Therefore, the OD matrix for 
non-commuting trips made by microtransit by users belonging to the 
socio-economic category i has as element mi

od the product between the 
number of total non-commuting trips between zone o and zone d and the 
choice probability for microtransit for this od pair considering the socio- 
economic category i. Considering the same socio-economic category, the 
choice probability for DRT varies for each OD pair since the travel times 
for the various modes of transport are different from one OD pair to the 
others. In the first case, we considered a fare for microtransit equal to € 
1.5.

The OD matrix for non-commuting trips made by microtransit is the 
sum of all the matrices for non-commuting trips made by microtransit 
for each socio-economic category. Then, we hypothesized a temporal 
distribution of the non-commuting trips made by microtransit to define 
the OD matrix for non-commuting trips made by microtransit during the 
morning.

To consider how the fare affects the use of the service, we considered 
different service fares (i.e. four levels: € 1.50, € 2.00, € 2.50, € 3.00), 
determining different choice probabilities for microtransit. Thus, 
repeating the method for the other price levels, we identified four 
different OD matrices considering a different willingness to pay of users 
for the DRT service. Starting from a rate of 1.50 € and considering in-
cremental steps of 50 cents, four different O/D matrices were obtained, 
respectively:

- Matrix for scenario 1: considering a fare of € 1.50 resulted in 1919 
trip requests;

- Matrix for scenario 2: considering a fare of € 2.00 resulted in 1785 
trip requests;

- Matrix for scenario 3: considering a fare of € 2.50 resulted in 1659 
trip requests;

- Matrix for scenario 4: considering a fare of € 3.00 resulted in 1537 
trip requests.

4.5. The simulation model

Each O/D matrix was used as demand input in the simulation model 
implemented through the VISUM software. In the disaggregation pro-
cedure, the demand was equally assigned from the zones to the nodes. 
Specifically, the demand was distributed over 1012 of the 1800 nodes 
within the study area. Simulations were carried out for all four sce-
narios, assigning the demand on the DRT network. These simulations, in 
addition to providing the output parameters defined in the methodology 
section, allowed us to observe the flows on the network deriving from 
the assignments of the four OD matrices. In detail, both the DRT volumes 
on board (DRT_vol) and the pedestrian flows to arrive at the stops or to 
the destination node (Volume Tsys [Pers]) were analyzed. Fig. 6 shows 
the results relating to the assignment of the OD matrix for scenario 1.

As for the other simulation input parameters, they were considered 
constant for the four simulated scenarios.

Table 4 
Attributes of the mode choice model.

Attribute Symbol Description

Walking time twalking Travel time for walking as 
transport mode.

Motorized 
travel time

tmotorized Time that motorized vehicles 
(motorbike, car and 
microtransit) spend to complete 
the trip. Motorbike: in-vehicle 
time; car: in-vehicle time and 
parking time; microtransit: in- 
vehicle time, waiting time and 
walking time to the nearest 
microtransit stop.

Total travel cost Ctot Motorbike: fuel cost; Car: fuel 
cost and parking rate; 
microtransit: cost of the ticket 
plus the cost of the conventional 
PT service ticket, if any.

Transfer Transfer Binary variable. 0: no transfers 
towards other conventional PT 
systems; 1: otherwise.

Alternative 
Specific 
Constant

ASCmotorbike 

ASCcar, 
ASCDRT

Alternative specific constants 
for motorbike, car and 
microtransit respectively.

Age Agemotorbike, 
Agecar, 
AgeDRT

Middle value of the age groups 
considered in the questionnaire 
(22 for age between 15 and 29; 
37 for age between 30 and 44; 
52 for age between 45 and 59; 
67 if the age is between 60 and 
74; 82 if the respondent is older 
than 74).

Gender Gendermotorbike, 
Gendercar, 
GenderDRT

Binary variable relating to the 
gender of the respondents (0 for 
males and 1 for females).

Number of cars 
per person

Numbercarmotorbike, 
Numbercarcar, NumbercarDRT

Number of cars owned per 
person per household. This 
variable is obtained from the 
ratio of the number of cars 
owned per household to the 
number of members in the 
household, as recorded in the 
RP survey.

Driving license Drivinglicencemotorbike, 
Drivinglicencecar, 
DrivinglicenceDRT

Binary variable which is equal 
to 1 in case of driving license 
ownership and 0 otherwise.

Education Educationmotorbike, 
Educationcar, 
EducationDRT

Number of years needed to 
obtain a specific qualification (5 
for primary school certificate, 8 
for junior high school diploma, 
13 for high school diploma and 
17 for degree).
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5. Results and discussion

To simulate the possible operational configurations of the micro-
transit service, due to the demand variation, several simulations were 
performed. Specifically, we assumed a fixed OD matrix for each sce-
nario, and we performed ten runs of simulation for each of them. Thus, 
for each run, the procedure for the generation of trip requests dis-
aggregated the O/D demand from origin and destination zones by sto-
chastically associating each trip request to nodes contained within these 
zones. So, we were able to simulate the demand variation associating a 
request with a different origin node, destination node and desired de-
parture time, varying for each run of simulation. In this way, the 
generated list of trip requests was characterized by variations in terms of 
their spatial and temporal distribution.

Therefore, for each scenario we performed ten simulations, obtaining 
ten lists of trip requests served through the dispatcher procedure, by 
generating ten different service operational configurations.

We summarize in Table 6 the statistics associated for each scenario, 
obtained from the simulations. For the considered KPIs, we report the 
average value μ, the standard deviation σ and the coefficient of variation 
CV.

Considering around 9000 non-commuting trips made by people 
living in the study area during the morning (Capodici, D’Orso, Migliore 
and Vittorietti, 2024), we found that non-commuting trips which could 
be made using microtransit goes from around 20 % in the Scenario 1 to 
around 16 % in the Scenario 4.

The average Detour Factor experienced by users goes from 2.75 for 
Scenario 4 to respectively 2.76 and 2.77 for Scenarios 2 and 3. This 

Table 5 
Significative attributes (Significance: 0 (***); 0.001 (**); 0.01 (*); 0.05 (.); 0.1 (,)) (from Capodici, D’Orso, Migliore and Vittorietti, 2024).

Coeff β Std. Err. z P > |z|

twalking − 0.0886945 0.0148455 − 5.97 0.000 ***
tmotorized vehicles − 0.0120287 0.0070721 − 1.70 0.089 ,
Ctot − 0.1987762 0.0448350 − 4.43 0.000 ***
Transfer − 0.7227308 0.2664712 − 2.71 0.007 **
ASAmotorcycle 9.7808605 2.6472395 3.69 0.000 ***
ASAcar 8.0833144 2.5087600 3.22 0.001 **
ASADRT 10.7439860 2.5182978 4.27 0.000 ***
Motorcycle

Age − 0.1790616 0.0321480 − 5.57 0.000 ***
Gender − 2.4914474 0.7297172 − 3.41 0.001 ***
Level of education − 0.3999587 0.1131814 − 3.53 0.000 ***

Car
Age − 0.1262652 0.0302785 − 4.17 0.000 ***
Cars per person 4.7736104 1.2125511 3.94 0.000 ***
Level of education − 0.3357910 0.0977002 − 3.44 0.001 ***

DRT
Age − 0.1320482 0.0301695 − 4.38 0.000 ***
Cars per person 3.3907248 1.2030916 2.82 0.005 **
Driving license possession − 1.5824563 0.7650447 − 2.07 0.039 *

Level of education − 0.3049811 0.0962529 − 3.17 0.002 **

Log-Likelihood: − 469.31; Likelihood ratio test: chisq = 233.52 (p.value ≤ 2.22e-16); McFadden R^2: 0.19923.

Fig. 6. The assignment of the OD matrix for scenario 1: pedestrian flows (green) and DRT volumes on board (blue). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
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means that users will experience a travel time around 2.7 times higher 
than the one needed for traveling using a direct route without detours. 
The walking time to reach the pick-up points is around 5 min for all the 
Scenarios, while the walking time to reach the destination from the 
drop-off points does not exceed 4 min. The waiting time at stops is 
around 5 min, while the in-vehicle Detour time is around 10 min. These 
values are consistent with the values used as input parameters in the 
mode choice model.

The fleet needed to satisfy the travel requests is composed of a 
minimum of 27 vans for Scenario 4 and a maximum of 32 vans for 
Scenario 1.

Comparative analyses of the four scenarios were carried out in order 
to identify the impact of changes in the fleet on the performance of the 
DRT service.

As can be seen in Table 6, low variations in KPIs were registered. 
These variations are due to the different service operational configura-
tions required to satisfy demand, which demonstrates the adaptability of 
the service to demand variations while guarantying the required quality 
standards (e.g. maximum waiting time; walking time and in-vehicle 
time). Therefore, the following evaluations are provided considering 
the average values for the KPIs of each scenario.

Fig. 7 shows the trend in the percentage of passengers served by DRT 
for the four scenarios. It can be observed that not all the travel requests 
are satisfied by the service. However, the number of users served by the 
service is always higher than 97.9 % of the total users that make a travel 
request.

This occurs because OD pairs associated with trips of less than 1.8 km 
were excluded during the demand reconstruction procedure, because it 
was more comfortable to make the journey walking. Furthermore, in the 

disaggregation of the demand, from a zonal OD matrix to a nodal OD 
matrix, the “isolated” nodes of the network were excluded, in corre-
spondence with which a generation of travel demand was not assumed.

Analyzing the operational parameters associated with the service, it 
is evident that an increase in the number of vehicles to perform the 
service does not lead to an increase in the percentage of served pas-
sengers. Moreover, load factor of the vehicles is around an average value 
of 56 % (see Fig. 8).

Reducing the number of vehicles available to perform the service, 
this does not lead to an increase in the load factor, but rather to a 
decrease in the number of served users. This is due to the distribution of 
demand over a large area and the generation of individual travel 
requests.

Fig. 9 shows that reducing the percentage of satisfied requests from 
98 % to 95 % leads to a reduction in the number of vehicles from a 
minimum of 7 % in the scenario 2 and scenario 3 up to a maximum of 11 
% in the scenario 4 (9 % in the scenario 1). This is an important result in 
the view of optimizing the service: in fact, while maintaining the per-
centage of satisfied requests very high (i.e. 95 %), a significant reduction 
in the number of vehicles is obtained, thus with an advantage for the 
service providers.

By analyzing the parameters associated with the user experience, 
Fig. 10 compares the results obtained for the four scenarios in terms of 
travel times. Considering the sum of the walking time to reach the stop 
from the origin node, the increase in in-vehicle time due to the detours 
and the walking time to reach the destination from the drop-off point, 
this value remains almost constant in the four analyzed scenarios. This 
means that the DRT service maintains constant performance with 
changes in the demand and number of vehicles.

Table 6 
Summary statistics of output simulation runs for the considered scenarios.

Output parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4

μ σ CV μ σ CV μ σ CV μ σ CV

Pass DRT [pass] 1882 4.34 0.23 % 1748 6.65 0.38 % 1625 5.36 0.33 % 1507 7.43 0.49 %
Experienced DF 2.75 0.02 0.66 % 2.76 0.02 0.80 % 2.77 0.03 0.94 % 2.75 0.02 0.83 %
T wait [min, sec] 5.42 0.03 0.49 % 5.41 0.05 0.97 % 5.37 0.06 1.12 % 5.33 0.10 1.85 %
T O/PUDO [min, sec] 5.11 0.05 0.90 % 5.12 0.04 0.84 % 5.11 0.05 1.00 % 5.13 0.10 2.02 %
T PUDO/D [min, sec] 3.45 0.06 1.87 % 3.46 0.03 0.98 % 3.46 0.04 1.21 % 3.47 0.06 1.64 %
In-vehicle DT [min, sec] 10.21 0.06 0.57 % 10.19 0.10 0.97 % 10.28 0.09 0.92 % 10.20 0.11 1.11 %
Vehicles [vehicles] 32 1.08 3.32 % 30 1.57 5.17 % 29 1.78 6.24 % 27 1.56 5.79 %
V DRT [km] 21.95 0.08 0.36 % 21.97 0.09 0.39 % 21.98 0.07 0.34 % 22.00 0.09 0.41 %
Km all [km] 2521 47.18 1.87 % 2352 39.10 1.66 % 2226 49.38 2.22 % 2075 35.25 1.70 %
Pass all [pass] 58 1.91 3.29 % 57 3.12 5.40 % 57 3.35 5.86 % 56 3.49 6.21 %

Fig. 7. Comparative analysis of the total number of users (trip requests) and percentage of passengers served with the DRT.
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In the final step, we assessed the change in users’ satisfaction, the 
revenues, the operating costs and the externalities for the four scenarios 
(Table 7). The revenues increase with increasing fare, because despite 

the fare increases, served demand slightly decreases (from 1882 to 1507 
users), but pays more. Operating costs decrease with increasing fare 
because fewer vehicles are needed (from 32 to 27) and fewer kilometers 

Fig. 8. Comparative analysis of the relationship between the number of vehicles and load factors.

Fig. 9. Number of vehicles for the DRT service and its optimization.

Fig. 10. Comparative analysis of travel times.
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are travelled by the service vehicles. The users’ satisfaction decreases as 
microtransit fare increases, because an increase in the fare does not 
correspond to an improvement in service performance, which remains 
almost costant across the scenarios, and thus making the users less 
satisfied. Externalities increase with the increasing fare because users 
and kilometers travelled by them using PT decrease, while the kilome-
ters travelled by private cars increase. As it can be noted, operating costs 
decrease less than user satisfaction because, even if there is a reduction 
in users with increasing fare, a given number of vehicles is always 
needed to maintain good service performance. Indeed, considering 
scenarios 2 and 3, demand decreases but the number of vehicles needed 
remains almost constant (going from 30 to 29).

The objective function has the maximum value when the micro-
transit fare is € 2.00 (Scenario 2). Considering that microtransit could 
replace up to 8 buses during off-peak hours, the service with a fare of € 
2.00 would be financially sustainable as it could take advantage of the 
municipal and regional funding that the PT company currently receives 
for the operation of these 8 buses. Finally, Scenario 2 is the best scenario: 
the microtransit service with 30 nine-seater vans and costing € 2.00 
serves a high number of users and has good performances, while guar-
anteeing the financial sustainability.

6. Concluding remarks

This paper presented an integrated methodological approach to 
design a microtransit service in a suburban area. The transport demand 
was assessed through the simultaneous administration of RP and SP 
surveys, which allows for developing a mode choice model and esti-
mating the propensity to use microtransit by people living in a suburban 
area. Then, it was demonstrated how GIS software could be a valuable 
tool to model the supply, building the road network and the microtransit 
network with flexible routes and on-demand stops, and how simulation 
models are powerful tools for optimizing the fleet and setting the fares 
for on-demand services. As far as we know, this is one of the few studies 
using an integrated approach to model microtransit demand and design 
different features of a microtransit service (e.g. routes, PUDOs, fleet size, 
and fares), verifying the economic financial sustainability of the service. 
Moreover, few studies used the SP survey to predict microtransit choice 
and this paper is the only one that made it considering the Italian 
context.

A suburban area in Palermo (Italy) was chosen as study area since 
this part of the city is not well connected with the city centre and the PT 
services have poor regularity and low frequency. Indeed, a survey con-
ducted in the study area found that people may experience a waiting 
time that can reach up to 20 min.

The results highlight how introducing a microtransit service could 
change the mobility habits of people living in suburban areas. Indeed, 
from the user perspective, the service is flexible and improves accessi-
bility, constituting an effective transport alternative to the private ve-
hicles and a reliable option to reach social services, education, and job 
opportunities in a faster and easier way. The increase in accessibility is 
mainly due to the introduction of stops in areas not covered by the 
existing bus stops;

Moreover, the access to essential services is higher with microtransit 
rather than the existing bus service because, spatially, there are more 
PUDOs than the existing bus stops and, temporally, people can make 
trips avoiding the fixed schedules of conventional PT services. As the 
simulation showed, PUDOs are within 10 min walking from origins and 
destinations, and the average walking time spent by users is around 8 
min. Indeed, the travel experience of people living in suburban areas and 
usually using PT could be improved by the introduction of the micro-
transit service; moreover, there is a reduction in waiting times and a 
greater number of POIs reachable in less time. The waiting times at stops 
are around 5 min for all scenarios: these waiting times are significantly 
lower than those currently experienced by PT users. These time-related 
results are more or less similar among the four scenarios, even if a 
rationalisation of the vehicle fleet is carried out. These improvements 
would cause PT use to increase from the current 9 % to around 20 %, as 
shown in Capodici, D’Orso, Migliore and Vittorietti, 2024.

The travelled kilometers decrease proportionally to the reduction of 
the OD matrix considered in each of the four scenarios; whereas, the 
number of vehicles does not decrease proportionally (i.e. if demand 
decreases by 20 %, it should decrease by about 6 vehicles between one 
scenario and the next one). However, this does not happen because in 
order to guarantee good performance and satisfy trip requests, the ser-
vice must have a well-sized fleet.

From the service provider perspective, the advantage is represented 
by the ability to implement a service which is able to meet the demand 
reduction in off-peak hours, optimizing the service and maintaining high 
performances. This consideration is significant if we make a comparison 
with conventional PT services: indeed, for conventional bus services, a 
reduction in the number of vehicles due to a decreasing demand usually 
results in a reduction in service hours and shorter routes with a conse-
quent increase of the average waiting time, thus considerably reducing 
the performance of the service. A microtransit service operating as on- 
demand service during off-peak hours and as a fixed route service dur-
ing peak hours may maintain high performances and alleviate access 
inequality, especially for vulnerable rider groups.

6.1. Limitations and further works

This research has some limitations. The first limitation is that we 
consider spatially and timing demand variation but not considering the 
day-to-day equilibrium. This means that no day-to-day adjustment 
processes were developed. Realistically, passengers learn and adjust 
their choices day-to-day, as well as the operator is likely to have a day- 
to-day dynamic operating policy, updating its policy as a result of 
learning from the users (modifying the service coverage, the fleet size or 
the fares). In particular, variations in transport demand between 
weekdays and weekends were not considered, by referring only to 
average working day demand. Therefore, the demand may be over-
estimated, and the fleet size needs to be adjusted to fit the demand 
variation. To overcome this limitation, an agent-based model could be 
developed taking into account the day-to-day adjustment process 
described by Djavadian and Chow (2017).

A second limitation is not considering commuting trips in the esti-
mation of the microtransit demand. Surely, the possibility of having 
extra time due to detours is a feature leading microtransit to better serve 
non-commuting trips without time constraints rather than commuting 
trips with time constraints. However, microtransit services may be used 
for both commuting and non-commuting trips; thus, an increase in the 
estimated microtransit demand could be derived from users undertaking 
commuting trips. However, in our case study, the on-demand service 
would operate during off-peak hours; thus, the contribution of 
commuting trips in the estimation of the microtransit demand is not 
expected to be high. Further studies, which take a variation in fare based 
on different groups of users (students, the elderly, etc.) into account, will 
need to be performed. Moreover, we will test the methodology consid-
ering other types of microtransit.

Table 7 
Sensitivity analysis: consumer surplus, revenues, operating costs, externalities, 
and objective function.

Variables Scenario 
1

Scenario 
2

Scenario 
3

Scenario 
4

Consumer surplus [€] 2600.46 730.15 − 1008.5 − 2621.9
Revenues [€] 5915 7079 8042.4 8799.4
Operating costs [€] 5625.8 4821.6 4344.8 3573
Externalities [€] 161.26 135.37 105.6 82.06
Objective function (as 

calculated with Eq. 2) 3050.92 3122.92 2794.74 2686.61
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