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Abstract

The limited availability of analytical solutions and the high cost associated with experimental testing
motivate the use of computational tools to assess the dynamic behavior of load-bearing components,
especially when a wide design space must be explored, as is often the case with composite struc-
tures. In this context, a novel high-order accurate discontinuous Galerkin formulation for transient
and free-vibration analysis of multilayered plates and shells is presented and numerical validated. The
starting point of the formulation is a generalized structural theory for multilayered shells with arbitrary
curvature based on the expansion of the displacement covariant components throughout the shell thick-
ness. The variational statement of three-dimensional elastodynamics allows deriving the strong form
of the governing differential equations, which form the basis to obtain the corresponding discontinuous
Galerkin weak statements. As the order of the through-the-thickness expansion and the order of the
discontinuous Galerkin basis functions are free parameters, the proposed approach allows tuning the
order of accuracy of the computed solution throughout both the shell thickness and the shell modeling
domain. Numerical results are reported and discussed for several validation test cases in terms of h-
and p-convergence analyses, demonstrating the high-order accuracy, robustness, and computational
savings of the formulation.

Keywords: High-order accuracy, discontinuous Galerkin methods, composite shells, transient
analysis, free-vibration analysis

1. Introduction

Laminated composite plates and shells are today widely employed in several engineering appli-
cations, especially where it is important to achieve high structural stiffness at low weight, as in the
automotive and aerospace sectors [1, 2, 3, 4].

Recent advancements in manufacturing methods allow the fabrication of structural members or
components whose shape, lay-up, and load paths may be tailored on their specific employment, thus
granting the designers and engineers remarkable design freedom [5, 6]. However, the accessibility of
a larger design space requires the capability of the designer of objectively assessing a larger number
of options for the intended application to select the most suitable structural configuration and/or
architecture for considered function.

While experimental characterization and testing play an important role in the development of
novel engineering products, especially at higher technology readiness levels, virtual testing has become
a fundamental part of the earlier development process, when several alternative solutions need to be
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assessed, as typically happens in the conceptual design stage [7, 8, 9, 10, 11]. Indeed, the employment
of fast, effective, and reliable computational models complements today the implementation of exper-
imental campaigns, reducing their costs in terms of both time and hardware, and their availability
constitutes an invaluable asset for engineers and manufacturers [12, 13, 14].

Depending on the specific application, the set of conditions for which functional and safe operation
must be demonstrated varies from simple, well-defined static tests, to complex dynamic scenarios
under multiple loads, up to impact tests that may involve the destruction of the component. In
aircraft design, for example, where structural requirements are obviously very stringent, according to
Title 14 CFR §25.305 — Strength and deformation — at letter (a) it is stipulated that the structure
must be able to support limit loads without detrimental permanent deformation. At any load up to limit
loads, the deformation may not interfere with safe operation. Moreover, at letter (e), it is required that
the airplane must be designed to withstand any vibration and buffeting that might occur in any likely
operating condition [...], and, at letter (f), that unless shown to be extremely improbable, the airplane
must be designed to withstand any forced structural vibration resulting from any failure, malfunction
or adverse condition in the flight control system/[...| and, in general, this must be shown by analysis,
flight tests, or other tests found necessary by the Administrator. It is then apparent that both static
and dynamic assessments are relevant.

In this context, the present contribution proposes a novel discontinuos Galerkin (DG) formulation
for the linear free-vibration and transient analysis of isotropic and laminated plates and shells. Such
structures feature inherent heterogeneity, which strongly affect their mechanical response, rendering
their study a complex engineering task — further complicated by the presence of curvature in shells.
While fully three-dimensional models are always an option, high-order structural theories built con-
sidering the characteristic component features, for example the small thickness of the plate or shell,
are able to provide high accuracy at reduced computational costs. Plates and shells may be modeled
using FEquivalent Single Layer (ESL) theories, where the displacement components are assumed to
vary according to assumed high-order functions throughout the thickness [15]. The plate or shell is
thus replaced by an individual layer with equivalent mechanical properties and it is governed by a
system of differential equations depending, in general, on two curvilinear variables. Such governing
equations are generally solved employing approximate numerical schemes, as analytical solutions are
only available for a limited set of problems that do not cover the whole set of possible applications. The
most widely employed numerical method for structural analysis is the Finite Element Method (FEM),
whose application to the solution of dynamic problems of plates and shells modeled by variable-order
structural theories is still an active topic of research, see, e.g., Refs.[16, 17, 18, 19]. Other techniques
have also been proposed in the literature with the aim to improve the flexibility of numerical schemes
with respect to FEM. Examples include the meshless methods, which do not require a partition of the
domain of analysis into elements and have been employed in conjunction with the First-order Shear De-
formation Theory (FSDT) [20, 21] as well as higher-order structural theories [22], or the Ritz methods,
which offer a variational setting where boundary/interface conditions can be enforced either strongly
by suitably modifying the set of basis functions [23, 24, 25, 26] or weakly by suitable penalization
techniques [27, 28].

DG methods have also shown to be a powerful and flexible alternative, offering adjustable high-
order accuracy over conventional and non-conventional meshes, and have been successfully employed
for the static analysis of plates and shells, also in presence of complex morphological features and
boundary conditions, as in the case of presence of cut-outs [29, 30, 31]. DG methods have also been
used for eigenvalue problems (not related to shells), see, e.g., [32, 33], and, more recently, for the linear
buckling analysis of plates and shells [34]. However, a thorough investigation of the performance of
DG methods for free-vibration and transient analysis of multilayered plates and shells appears lacking
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in the literature. It is therefore presented for the first time in this work. The considered shells, which
include plate geometries as a particular case, are assumed to have a general curvature and are modeled
using ESL kinematics in the displacement covariant components. The DG technique is then used to
discretise the resulting governing equations in space, whereas the temporal integration is performed
using a standard Newmark scheme.

The paper is organized as follows. Section 2 recalls the key items of the shell structural theory,
namely its geometric description, the generalized kinematic assumption, the constitutive modelling,
and retrieves the strong form of the shell dynamics equations starting from the appropriate variational
statements. The strong form of the governing equations is the starting point for the development of
the proposed DG formulation, whose derivation is presented in Section 3, where also different meshing
strategies are described, including the employment of implicitly-defined meshes. Several test cases
are then considered in Section 4, where different meshing schemes are employed and in-depth hp-
convergence assessments for both isotropic and laminated plates and shells are performed, proving
the accuracy and robustness of the method. Some possible avenues of future developments and the
conclusions are eventually drawn.

2. Problem statement

In this section all the items entering the formulation of the structural shell theory are recalled.
The geometry description is discussed in Section 2.1, the kinematic modelling in Section 2.2, and the
constitutive description in Section 2.3. Eventually, the strong form of the shell dynamics equations,
which provide the starting point for the subsequent DG formulation, is retrieved in Sec.2.4 for transient
and free-vibrations analysis.

2.1. Geometry description

The formulation is developed for shells whose geometry can be described as schematically illus-
trated in Fig.(1) and discussed in Refs.[35, 31, 34]. The shell can be analyzed identifying a reference
surface, featuring general curvature, in the physical space Ox z2x3, and adopting over such surface a
suitable parametrization based on the set of curvilinear coordinates (£1,&2). The shell volume V' in
the coordinates system Ozjxox3 can thus be represented, and conveniently built, through a mapping
x : Ve — V that associates the point & € V' to the natural coordinates & = (§1,&2,&3) € Ve = Q¢ X Igy,
as shown in Fig.(1a), where Q¢ denotes the reference surface of the shell spanned by (&,£2) in the

curvilinear coordinates space and Ig, = [—(/2,(/2] is the thickness interval spanned by &;. Under the
above assumptions, the mapping can be expressed in the form
x = x(&1,8,83) = To(&1, &) + E3n0(61,&2) V€ e Ve (1)

where xg is a generic point of the shell reference surface and ny is the corresponding unit vector normal,

which can be expressed as

0
M XD ith a, = 9% (2)

ng= - ——
* 7 la; x as| 0.,

Once the mapping in Eq.(1) has been introduced, it is possible to define, see Fig.(1a), the covariant
basis vectors as
ox

nga—fk,

that will be used to express the kinematic model in Section 2.2.

k=123 (3)
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Domain V in physical space

x = x(&1, &2, &3 = const)

—

Figure 1: (a) The geometry of the shell in the physical space Ozixo23 can be described through the mapping x =
x(&1,62,83), V(€1,62,&3) € Ve = Q¢ X I,; once the mapping « = x(£) is defined, the covariant basis vectors g, can be
associated with it; (b) A material orthonormal basis m; can be defined to facilitate the description of the constitutive
behavior of the different material layers, see Section 2.3.

2.2. Shell kinematic model
The shell formulation is built starting from the kinematic ESL representation [15], which, following
the matrix notation introduced in Ref.[30, 35], is expressed as

ue = Z(83)U (&1, &2), (4)

where u¢ collects the covariant components of the displacement field with respect to the contravariant
basis g*, k = 1,2,3, defined as g* - g, = 0F, while Z is a 3 x N, matrix collecting the known
thickness functions and U is a N,-dimensional vector collecting the unknown generalized displacement
components. More specifically, N, = 3 + N, + Ny, + N,,, where N,,, expresses the order of expansion
of the ¢-th displacement component. It worth noting that N, and the expressions of the thickness
functions contained in Z depend on the selected structural ESL theory [29, 30, 35]. Following a
consolidated notation [15], the theories generated by the kinematic model in Eq.(4) will be denoted
in the remainder of the article as ED;j,, with ¢ = Ny, 7 = N,,, k = N,,. Note that the present
formulation allows considering the FSDT as an EDqyo theory where the plane stress hypothesis and the
presence of shear factors are introduced in the constitutive behavior.

The displacement components can be expressed in the global Cartesian coordinate system Oxzox3
— which simplifies the expression of the weak statement — through the transformation

U = RE“’& = REZ(§3)U(€17 g?)a (5)

where the k-th column of the matrix R collects the Cartesian components of g*. Subsequently, the
derivatives with respect to the Cartesian coordinates can be retrieved applying the chain derivation
rule, which leads to

ou ouUu
a—xk = DQkU + Daka—é_a, (6)
where ot OR. . 0& . dZ o¢
Dy= 227+ S Re— Doy =Rz
%= e 08, 2 oy g, M Dan =75, ReZ. (M)
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and implicit summation with respect to the repeated indexes is assumed, according to the Einstein
notation, with the caveat that Greek indexes span the set {1,2}, while Latin indexes span the set
{1, 2,3} throughout the paper.
The Cartesian components of the small strain tensor, collected according to the Voigt notation, are
retrieved from the kinematic model in Eq.(5) through the relationships
ou oUu

‘Y:Ika—xk:JoUﬂLJaa—ga, (8)

where I, are matrices whose entries are either 0 or 1, see e.g. Ref.[29], and
JoEIkDOk and JQEIkDak (9)
with o« =1,2 and k =1, 2, 3.

2.5. Constitutive behavior

In composite laminated shells, the point @ spans different material layers as &3 varies. If &5 is
kept constant and only (£1,&,) are varied, @ spans a surface embedded in a certain material layer, for
which some specific material reference directions can be identified, as for example in the case of fiber
reinforced composites, where a material reference system is identified by the fibers direction and their
transverse plane. At each point (£, &, &) of a material layer, an angle 6 between the relevant material
direction and the covariant vector g, can be identified. A local material Cartesian reference basis m,<f>
can then be attached to each point of the generic composite layer (¢) through the relationships

m§€> =R, (1) HQIH, my) =ng, and mi’ = m§€> X m§£>. (10)
g1

In the material reference basis m,iO, the constitutive law is expressed in Voigt notation as

~ ~ ()
&\ = C’< >’y<€> (11)

where the form of the matrix C directly reflects the existing material symmetries (e.g. isotropy,
orthotropy, etc.). The stress-strain relationship linking the components of the stress and strain tensors
in the global reference system Oxzizoxs can thus be obtained from Eq.(11) through the standard
transformation rules [36, 37], leading to

ol = C, (12)

which simplifies the expression of the variational statement in the next sections.

2.4. Governing equations for shell dynamic analysis

The variational statement providing the weak formulation of the shell dynamic problem can be
written resorting to the d’Alembert principle and treating the inertial term as a volume force term
in the classical expression of the principle of virtual displacements, which, in the global Cartesian
reference system Oxx923, leads to

Ny 9u Ne Ne Ne
SuT v + / 5~Tod dv = / SuTbdV + / JuTtds, 13
; Vi P ot? ; R0) v ; 0] ezl v (13)

where de denotes the first variation operator, p{ is the mass density of the layer ¢, b is the known
volume force term, ¢ is the known surface traction and the summation is extended over the Ny layers of
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the laminated shell. Employing the kinematic model in Eq.(5), the strain-displacement relationships in
Eq.(8) and the constitutive relations in Eq.(12) and expanding the first variation, the above variational
statement leads to

0*U o6UT ou ou
T o= - T RTZ= —
Q{cSUMaLLZ de—i-/Qg [ 7. (Qaﬁa§B+RaU>+5U (Raa§a+SU>] d€2e

_ / SUTBAQ, + / SUTTA0, (14)
Qe 09

where
Ny ééi)
M=) Z'RIp\" R Z.\/gd¢s (15)
1 e
is a generalized mass matrix, the terms
Ny gé?
Q=) /M J1CO J 5\ /gdés, (16a)
(=1 3b
Ne o elD
R,=)_ /E " JTCY Jo\/g dés (16b)
£=1 " S3b
and
Ne gl
s=>" /m JICO J4\/g dgs, (16¢)
=1 " S3b
are generalized stiffness matrices, whereas the terms
— _ ¢/2 -
B = (ZTRgt\/gw/nigiinj)f i</2+/ / ZTRgb\/§d§3 (17a)
3= —¢/2

and P
T = / / ZTRIt\/g+/nign; &y (17b)
—¢/2
are generalized volume forces and generalized boundary tractions respectively. In Eqs.(15) to (17), g is
the determinant of the metric tensor and ¢¥ = g° - g’ are its contravariant components. Additionally,
in Eq.(17), the first term represents the surface traction applied over the top and bottom surfaces of
the shell, while n; is the i-th component of the unit vector normal to the shell surface.

The variational statement in Eq.(14) is used to derive the strong form of the equations for the shell

dynamics, which provides the starting point for the development of the DG formulation discussed in
Section 3. In particular, performing the integration by parts and applying the standard rules of the
calculus of variations, Eq.(14) leads to the following set of generalized equilibrium equations
0*U 0 oUu oUu —
_— = = —+ R, U R — +SU =B, in |0,T] x €, 18
s e (Quigg + R ) + R + 0,.7) x (18)
with the associated essential and natural generalized boundary conditions (GBCs) and the generalized
initial conditions (GICs) defined as

GBC U= in [0, 7] x 9QP
S0 (Qaﬁg‘g + RaU) —T in[0,7] x 00

cl

(19a)

6
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and

GICs : {gU't—o = in O, (19b)
U —U
ot 1t=0 0

where T defines the width of the analyzed time window, 5’9? and (‘99? are the regions of the boundary
0 of the analysis domain ¢ over which Dirichlet (essential) or Neumann (natural) boundary condi-
tions are assigned, respectively, v, is the a-th component of the unit vector normal to 0€2, over-bars
denote known boundary conditions on either generalized displacements or tractions, which may also
depend on time, and the subscript 0 denotes known initial conditions.

Eventually, free vibrations are investigated by neglecting the external loads and assuming, as cus-
tomary, harmonic response with unknown frequency w and homogeneous kinematic boundary condi-
tions, leading to the following eigenvalue problem

0 oUu ou
- — T— —WwM)U = in €. 2
9¢. <Q“58§ﬁ +RaU) +Raa£a + (S —w’M)U =0, in (20)

3. Discontinuous Galerkin formulation

In this section, the recently-developed DG formulation for the mechanical behavior of structural
components, such as beams [38], plates [29, 30, 39] and shells [35, 31, 34], is extended to solve the partial
differential equations introduced in the preceding section for either transient analysis, see Eqs.(18) and
(19), or free-vibration analysis, see Eq.(20), of composite shells.

Similar to other domain-based numerical techniques, such as the FEM, a DG-based approach
requires a suitable partition of the domain where the governing equations are defined. Here, such a
domain is (¢, which is partitioned into N. non-overlapping elements, i.e., ()¢ ~ Q? = Ué\f:el Qf, where
Q¢ is a generic e-th element. The mesh leads to a partition of the boundary 0QP ~ 9QP" = (J)*, 00P°

and the boundary 89? ~ 3Qé\7h = Ui\[:el 00N where 8Q§De and 39?6 are the portions the e-th
element’s boundary where Dirichlet and Neumann boundary conditions, respectively, are enforced; is
it clear that, for some elements, these boundaries can be empty sets. The mesh also leads to the set of
inter-element interfaces anh = Uf\;l an, where 892 is the i-th generic interface. Then, the so-called
broken integrals are defined as follows

Ne
/ o= Z/ ¢ df), (21a)
Q? e=1 7%
Ne Ne
° = o° dof ), / ° = / o° dof ), 21b
/emgh ;/aszge ¢ ayr ; anye ¢ (21b)

N;
o= ' dOQ,. 21c
/aszgh ; /aszg ¢ (21e)

Additionally, it is possible to define the average operator {#} and the jump operator [e]¢, at the
generic i-th interface between the e-th and e’-th elements as

and

. 1 , . roor
{e}' = 3 <oe + o° ) and [e]!, = v o +1; o (22)
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where v¢ is the a-th component of the outer unit normal vector v° = (1§, 5) to the e-th element’s
boundary.

Once the domain partition has been selected, the space of discontinuous basis functions is introduced
as

Vip={v: Q >R | v(Qf) € PsVe=1,...,N.}, (23)

where P} is the space of polynomials up to degree p defined over the element €. The corresponding
space of discontinuous N,-dimensional vector basis functions is then denoted by V,]l\;“ = (Vp). The
DG formulations for transient and free-vibration analysis of composite shells are presented in the next
two sections.

3.1. Transient analysis
Upon following the same steps discussed, e.g., in Refs.[35, 31, 34], it is possible to show that the
weak DG formulation corresponding to Egs.(18) and (19) reads: find U" € V,]L\;“ such that

Bu(V,U" + Bg(V,U") = L(V,B,T,U), YV €V (24)

hp
subjected to the approximate initial conditions
Joy VIU" = oy VU,

' : . YV e YN, 25
fﬂg VT% = fgg ViU, e (25)

In Eqs.(24) and (25), U™ denotes the approximate DG solution, the bilinear forms By(V,U") and
Bk(V,U") are defined as

oru”
Bu(V,U") = 4 VM g (26)
3
and
oVT ou™ ou™
B h = h T T h
k(V, UM /Qg e <Qaﬁ—a£ﬁ +RU > +V <Ra 3 + SU >+
ou™ oVT
- [ovi{ene s Rt { S au iR s [ VoL
anLn Cs €a ot

ou™ ovT
—/ VT Q. ,— +RU" ) + Q.;+V'R], th/g—i—/ pVIU", (27)
oapn E 0o oaph

and the linear form L(V, B, T,U) reads

ovrT

WQQB +V TR}) Uvs + / pVTU. (28)
« Is}

LV, BT.0) = [ ViB+ / VIT - (
Qh BQNh BﬂDh QDh
€ ¢ ¢ 3
3.2. Free-vibration analysis
In case of free-vibration analysis, it is possible to show the weak DG formulation corresponding to

Eq.(20) reads: find (w,U") € R x V' such that
—B,(V,U"w)+ Bc(V,U") =0 VYV eV (29)

where

B,(V.U"w)=w® | VIMU" (30)
Qh
3
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3.83. Meshing

The DG formulation presented in this section is not limited to a specific domain partition strategy.
In fact, it could be employed in conjunction with both conventional partitions, such as structured or
unstructured meshes, and less conventional ones, such as polygonal or implicitly-defined meshes.

In this work, we consider both structured meshes and implicitly-defined meshes, which are briefly
described in this section. Let us assume that the curvilinear coordinates (&1, £2) span a rectangle R =
(€L, V] x [, €Y], where (€F,€E) and (£V,£Y) are the bottom-left and top-right corners, respectively,
of the rectangle. The rectangle is then partitioned using a structured grid of n; x ngy cells of size
hy = (& = &) /m and hy = (& — &5)/na, such that a generic c-th cell R§ may be identified by
R¢ = (EE41ihy, EE+ (L +1) My} [Eb+10ha, EE4(19+1)hy], with oy = 0,..., (ny—1) and 15 = 0, ..., (ng—1).

In case of structured meshes, the domain (¢ simply coincides with Rg, each element (f coincides
with one of the grid cell, and the total number of elements is N, = nin,.

In case of implicitly-defined meshes, R represents a background space containing the domain €2,
which is implicitly-defined by a level set function ¢ : Re — R as follows

Qe ={(&1, &) € Re = 9(&,&) <0} (31)
Similarly, the boundary 0€) is defined as
0 = {(&1,82) € ORe = p(§1,&2) < 0FU{(61,6) € Re = (&1, &) = 0}, (32)

where OR¢ is the boundary of Re. Then, the partition of )¢ is obtained by intersecting (2 with
the structured grid defined for Re. Such an intersection leads to a classification of the grid cells. In
particular, one obtains: entire cells falling entirely within Q¢, empty cells falling entirely outside €2,
and partial cells that are cut by the zero-contour of the level set function ¢. Partial cells are further
classified based on their volume fraction into large cells, which have a volume fraction above a certain
user-defined threshold, and small cells, which are the remaining partial cells. Each small cell is then
merged with the one neighboring cell that has the largest volume fraction. Such a merging procedure
allows avoiding the presence of overly small elements, which would ill-condition the algebraic system
of equations. Eventually, the mesh elements are defined as the set of entire, large and merged cells.

An illustration of the construction of the implicitly-defined mesh as discussed above is reported
in Fig.(2), which shows a level set function ¢ defined over a square that is partitioned with an 8 x 8
grid of mesh size h, see Fig.(2a), the corresponding cell classification, see Fig.(2b), and the obtained
implicitly-defined mesh after the cell-merging procedure, see Fig.(2c).

Finally, it is worth noting that, the implicit definition of {2 as given in Eq.(31) allows introducing
curved boundaries into the space of curvilinear coordinates, thereby extending the space of shell geome-
tries that can be modeled within the present framework whilst retaining the simplicity of structured
mesh generation. Additionally, the discontinuous nature of DG methods combined with the use of
high-order accurate quadrature rules for implicitly-defined domains and boundaries allows obtaining
a high-order accurate solution of the governing equations also in case of implicitly-defined geometries.
The interested reader is referred to Refs.[40, 41, 42, 43] for a more extensive discussion on the combined
use of implicitly-defined meshes, including adaptive mesh refinement, and DG methods for two- and
three-dimensional problems.
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Figure 2: (a) Level set function. (b) Cell classification based on the volume fraction. (c) Implicitly-defined mesh.

Table 1: Properties of the considered materials.

Material ID Property Component Value
My Young’s modulus F 1
Poisson’s ratios v 0.25
Density P 1
My Young’s moduli  Fj 25
Es, Es 1
Poisson’s ratios Vo3, V13, V19 0.25
Shear moduli Gas 0.2
G13, G12 0.5
Density p 1

4. Results

The developed formulation has been implemented in PySCo!, a collection of python routines for
scientific computing, and tested with several test cases, whose results are reported and discussed in
the present section.

Plates and shells with different material layups have been analyzed. Table 1 summarizes the
mechanical properties of the materials My, isotropic, and M,, transversely isotropic, used for the
individual plies. Table 2 details the layups, labeled as Py, Po, Cy, Cy, Sy, considered for the analyzed
plates and shells.

For all the considered cases, relevant hp-convergence analyses have been performed, considering
both the characteristic size h of the mesh and the order p of the DG basis functions, which here consist
of tensor-product Legendre polynomials. The obtained results have been presented upon introducing
the following error measures:

| — wref| B \u" — UrefHLm(Qg) B U — UrEf\|Wgo(Qg)

ey = and evy =
| 0T,

where the superscript h refers to the scalar or vector output provided by the proposed DG-based

€y =

re re (33)
|wre| U waolo(Q’g)

'https://gitlab.com/aeropa/pysco

10
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Table 2: Properties of the considered plate/shell sections.

Shell ID Material Layup Layer(s) thickness

P, M, 0] ¢
P, M, [0/90] ¢/4
C, M, 0] ¢
Cy M, [0/90]2 /4
51 M, [0] ¢

T3

Simply-supported

) lateral faces o

(a) (b)

Figure 3: Geometry, constraints and loads of the investigated (a) square plate and (b) cylindrical shell.

numerical scheme, the superscript ref refers to the considered reference solution, while || e || Loo(21) and

|| ® ||W§O(Qg) are the standard L., norm and W1 norm defined over Q? as the maximum value among
all the components of e and among all the components of e and its derivatives, respectively, evaluated
at the domain quadrature points. In some of the convergence studies, the following non-dimensional
angular frequency is also employed

LY [p
2\ E.(?
where L,, p, and E, are suitably specified reference values of length, density and stiffness, respectively.
Eventually, for transient analysis, time-integration is performed via a standard second-order accurate
Newmark scheme [44].

W= w, (34)

4.1. Square plate

In the first set of tests, the square plate shown in Fig.(3a), which schematically describes its
geometry, boundary conditions and loads later considered in the transient analysis, is investigated.
The geometry of the plate reference surface is described by the parametrization

&1
xo=| & |, V(&,&)€[0,L] x[0,L] = Q.. (35)
0
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Figure 4: hp-convergence analysis for the (first and third columns) first eigenvalue and the (second and fourth columns)
first eigenvector for the free-vibration response of the analyzed square plate. Each row of diagrams groups results
provided by the corresponding structural theory; the first two columns refer to the plate with layup Py, while the last
two refer to the plate with layup Ps.

where L = 1m and (/L = 0.01. The two different layups P; and Py in Table 2 are considered, for
isotropic and laminated plate, respectively.

First the free-vibrations problem is considered. Fig.4 shows the results of a Ap-convergence analysis
for the first eigenvalue and the associated eigenvector, for the proposed numerical scheme. In each
diagram, the relevant error, either e, or ey, is computed using the exact solution as the reference
solution [37] and is plotted against h/L = 1/n, i.e. the ratio between the mesh element edge length h
and the plate edge length L. Each curve corresponds to a different polynomial order p assumed in the
DG scheme — Section 3 — as expressed through the label DG,. The diagrams are grouped so that each
row refers to a certain structural theory, namely FSDT, ED;;; and EDs33. On the other hand, each
column refers to the results computed for an eigenvalue or the corresponding eigenvector, with either
the layup Py or Ps. It is observed that the numerical scheme features convergence of order O(hP*1)
for the eigenvector error and convergence of order O(h*P~V) for the eigenvalue error. It is worth
noting that, although the results have been presented in terms of the first eigenvalue and associated
eigenvector of the free-vibration problem, a convergence analysis for higher frequency modes is reported
for the geometries considered in Sec.(4.3) and Sec.(4.4).

A transient analysis is then performed for the laminated plate with layup Ps, considering the
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Figure 5: Convergence assessment for the dynamic transient analysis of the laminated square plate with layup P and
constraints and loads specified in Fig.(3a). The transient response is computed adopting the FSDT kinematic model. The
h-convergence of the DGz scheme is investigated in terms of time history of (a) displacements and (d) stress components
at the location (&1,&2,&3) = (L/2,L/2,(/2). The p-convergence is investigated in terms of time histories of the same
(b) displacement and (e) stress components, setting n = 2. The hp-convergence of the solution computed at ¢t = T'/2 is
eventually investigated for the (c) displacement field and (f) its derivatives.

dynamic loading term ¢ in Fig.(3a), where ¢ is assumed as unitary, being used in the non-dimensional
measures of stress, H(t) is the Heaviside step function, and Z; = Z3 = L. The related results
are reported in Fig.(5). In particular, Fig.(5a,d) investigate the h-convergence of the plate dynamic
response, reporting the time history for the non-dimensional displacement and stress components

3 2

ﬁﬂg and (3'11 = L—ZQUH, (36)

U3 =
sampled at the point (&1, &s,&3) = (L/2,L/2,(/2), belonging to the plate’s top surface. The response
of the plate for ¢ € [0,27], with T" = 27/wy, is reported as computed using the FSDT with DG,,
i.e. polynomial interpolation degree p = 2 and n = 2,4,8,16. The computed time histories are
compared with the available exact solution and it is observed that the employed scheme provides
satisfyingly accurate results when n > 4, both for the displacement and stress component. Fig.(5b,e)
show the time histories for the same non-dimensional components at the same physical location as
computed selecting n = 2 and different orders of polynomial interpolation p for the DG, scheme. The
computed transient responses converge to the analytic exact solutions for both the displacement and
stress components. Satisfying results are provided by p > 3 for the displacement and by p > 4 for
the stress component. Eventually, Figs.(5c) and (5f) report the errors ey and eyy of the computed
solutions with respect to the exact solutions at ¢ = T'/2, showing orders of convergence O(hP™!) and
O(h?), respectively.

4.2. Quarter of cylinder

The second application considers the cylindrical shell whose geometry, constraints and loads for
the transient analysis are schematically depicted in Fig.(3b). The shell geometry is described by the
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Figure 6: hp-convergence analysis for the (first and third columns) first eigenvalue and the (second and fourth columns)
first eigenvector for the free-vibration response of the analyzed cylindrical shell. Each row groups diagrams provided by
the indicated structural theory — FSDT, ED111, or ED333; the first two columns refer to the plate with layup C;, while
the last two refer to the plate with layup C,.

parametrization
&
g = —R Sin(fl) , V(fl, 52) c [O, @] X {0, L] = Qg (37)
Rcos(&y)

where R =1m, L/R =2, (/R =0.01, and © = 7/2.

First a free-vibrations analysis is performed, considering both sections C; and Cs; in Table 2, for
isotropic and laminated shells respectively. Fig.(6) reports the results of a hp-convergence assessment
of the first eigenvalues and the corresponding eigenvectors for the layups C; and Cy. The results are
presented and grouped analogously to what has been done for previous plate analysis. Also in this
application the method features convergence of order O(h?P*1) for the eigenvectors error and convergence
of order O(h*®~1) for the eigenvalues error.

A transient dynamic analysis for the cylindrical shell with laminated layup C, is then performed.
The shell is subject to the loads defined in Fig.(3b) where, in the case of the cylindrical shell, =, = ©/2
and Zp = L. The results are collected in Fig.(7) and presented analogously to what has been done
for the above plate transient analysis. Fig.(7a,d) investigate the h-convergence of the shell dynamic
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Figure 7: Convergence assessment for the dynamic transient analysis of the laminated cylindrical shell with layup Cy, and
constraints and loads specified in Fig.(3b). The transient response is computed adopting the EDs33 kinematic model.
The h-convergence of the DGy scheme is investigated in terms of time history of non-dimensional (a) displacements and
(d) stress components at the location (&1,&2,&3) = (0/4,L/2,(/2). The p-convergence is investigated in terms of time
histories of the same (b) displacement and (e) stress non-dimensional components, setting n = 2. The hp-convergence
of the solution computed at ¢t = T'/2 is eventually investigated for the (c) displacement field and (f) its derivatives.

response, reporting the time history for the non-dimensional displacement and stress components

2

lig, = T3l and 61 = R—qan (38)
sampled at the point (&1,&,&) = (©/4,L/2,(/2). The shell transient response is computed for
t € [0,27], with T = 27 /w;, adopting a EDss3 structural theory coupled with a DGy scheme and
n = 2,4,8,16. It is observed that the computed transient responses converge to the available exact
solutions, although more slowly than in the case of the plate, and satisfyingly accurate results are
obtained only with the finer mesh, i.e. with n = 16. On the other hand, Fig.(5b,e) show the time
histories for the same non-dimensional components at the same physical location as computed selecting
n = 2 and different polynomial orders p for the DG, scheme. The computed responses converge to
the analytic exact solutions for both the displacement and stress components and satisfying results
are provided by p > 3 for both the displacement and stress component. Eventually, Figs.(7c) and (7f)
show the errors ey and eyy of the numerical versus the exact solutions at t = T'/2, revealing orders of
convergence O(hPT1) and O(hP), respectively, analogous to those observed in the plate analysis.

4.3. Clircular plate
The circular plate shown in Fig.(8) is considered for the third set of tests. In this case, the
reference surface ()¢ of the circular plate is defined using the implicit approach described in Sec.(3.3).
In particular, upon employing the same mapping @y = x¢(&1, &) given in Eq.(35), where (£;,&;) span
the background rectangle Re = [0, 2R] x [0, 2R], being R = 1m, ) is implicitly defined by the following
level set function
p=(G—a)+ (&) R, (39)
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Figure 8: Geometry, constraints and loads of the investigated circular plate.

where ¢; = ¢ = R. The considered circular plates have the isotropic and laminated sections denoted by
P, and P, in Tab.(2), have thickness (/R = 0.01 and are modeled using the FSDT. The discretization
of the circular plate is obtained by dividing the background rectangle R, using a n x n structured grid
and following the procedure discussed in Sec.(3.3).

The results obtained for free-vibration problem are considered first. Tab.(3) shows the eigenvalues
Wy, with k = 1,2,4,6,7, for the isotropic circular plate, computed using a DG4 scheme as a function
of the mesh size h = 2R/n, with n = 2,3,4,6,8. With reference to Eq.(34), the non-dimensional
eigenvalues are computed using L, = R, £, = E and p, = p, where F and p are the Young’s
modulus and the density, respectively, of the material My. In Tab.(3), the top row shows the implicitly
defined mesh for each considered value of n, the second column from the right reports the converged
FEM results, while the rightmost column shows the eigenmodes associated with each eigenvalue and
computed by the present approach using the finest mesh.

Similarly, Tab.(4) shows some selected eigenvalues for the laminated circular plate computed using a
DGg scheme and the same mesh sizes employed for the isotropic plate. In this case, the non-dimensional
eigenvalues are computed using the Young’s modulus and the density of the material My. The table
also reports the converged FEM results and the eigenmodes associated with each eigenvalue.

In both the isotropic and the laminated plate cases, it is possible to observe that the proposed ap-
proach is able to recover the reference FEM solution; as expected, the higher the computed eigenvalue,
the finer is the required mesh to achieve convergence. A more detailed convergence analysis is reported
in Fig.(9), which illustrates a comparison between the present DG formulation and two FEM models
in terms of computed eigenvalues versus the total number of degrees of freedom (DOF). In the plots
of Fig.(9), each colored curve corresponds to the results obtained using a specific value p of the DG
basis functions and different mesh sizes, while the dashed gray and black lines correspond to the results
obtained via Abaqus’ S4R and S8R elements, respectively. Figs.(9a,b) refer to the isotropic plate, while
Figs.(9¢c,d) refer to the laminated plate. In all cases, it is possible to observe the savings in terms of
DOF enabled by the use of higher-order basis functions, which allows the proposed formulation to
achieve faster convergence than FEM.

A transient analysis is then performed considering a uniform load ¢ applied over the top surface
of the circular plate as sketched in Fig.(8). Similar to the square plate and cylindrical shell, the
transient response is computed for ¢ € [0,27], where T' = 2w /w;. The obtained results are reported
in Fig.(10) for the isotropic plate case and in Fig.(11) for the laminated plate case. Figs.(10a,c)
and Figs.(11a,c) illustrate the h-convergence of the transient response in terms of the following non-
dimensional components of displacement and stress

2

TR

13 uz and &0y = =011, (40)

Rq
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Table 3: Effect of the mesh size on some selected eigenvalues for the isotropic circular plate computed using the DGy

scheme.
n 2 3 4 6 8 FEM | Eigenmode
Mesh :
w1 0.3091 0.3085 0.3086 0.3085 0.3085 0.3085 . )
_ S
o 0.6560 0.6467 0.6426 0.6419 0.6419 0.6419 ‘.“ )
-
Wy 1.0819 1.0568 1.0580 1.0529 1.0527 1.0527 .'. 3
We 1.2291 1.2041 1.2056 1.2005 1.2004 1.2004 ) /-L _
w ~c< -
Wy 1.8944 1.6431 1.5777 1.5405 1.5399 1.5398 i -
|||
0 05 10

Table 4: Effect of the mesh size on some selected eigenvalues for the laminated circular plate computed using the DGg

scheme.
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Figure 9: Comparison between the proposed DG formulation and two FEM schemes in terms of computed eigenvalues
vs number of degrees of freedom. Figures (a) and (b) refers to the first and seventh eigenvalues, respectively, for the
isotropic circular plate, while figures (¢) and (d) refers to the sixth and tenth eigenvalues, respectively, for the laminated
circular plate. Light and dark gray areas denote the regions of less than 5% and 1% deviation, respectively, from the
converged values.

computed using the DGy scheme. The p-convergence for the same displacement and stress components
is reported in Figs.(10b,d) and Figs.(11b,d), for n = 4. The obtained results confirm the benefits of
using high-order basis functions to obtain a converged solution, in terms of both displacement and
stress components, using relatively coarse meshes.

4.4. Generally-curved shell

As the last set of tests, we consider the free-vibration response of the generally-curved shell shown
in Fig.(12). The shell’s reference surface is a B-spline surface [45] defined by the mapping

K1 Ko

2o(€1,6) = ) D NE(EINE (&) Prije, V(6 &) €[0,1] x [0,1] = Q, (41)

k1=0 ko=0

where Py, i,, with k; = 0,...,K; and ky = 0,..., K>, are the so-called control points, and N/(§) is
the k-th B-spline basis function of degree ¢. For the shell of Fig.(12), K1 = Ky = 3 and ¢ = ¢2 = 2,
while the control points are reported in Tab.(5).

The shell has thickness ¢ = 0.01 m, is made of the isotropic material M; reported in Tab.(1) and
is modeled by the FSDT. A convergence analysis in terms of some selected computed eigenvalues
as functions of DOF is reported in Fig.(13), which shows a comparison between the results obtained
with the proposed formulation using different DG schemes and the results obtained using Abaqus’
S4R and S8R elements. In this case, the non-dimensional eigenvalues are evaluated setting F, = E
and p, = p of material My and L, = 1m in Eq.(34). From Fig.(13), it is possible to notice that the
present approach recovers the FEM results within an error of less than 3% and, similar to the case of
the circular plate, higher-order basis functions enable faster convergence. Eventually, the computed
eigenmodes associated with the eigenvalues of Fig.(13) are reported in Fig.(14) as contour plots of the
magnitude of the displacement field. The figures also show the same contour levels of the eigenmodes
computed using FEM as solid black lines, which match well with the contour levels computed using
the present formulation, thus confirming its accuracy.

5. Discussion and further developments

In this study, a novel computational framework has been developed and assessed for the analysis
of transient and free vibrations in composite laminated plates and shells. The proposed formulation
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Figure 10: Convergence assessment for the transient analysis of the isotropic circular plate having layup P; and modeled
by the FSDT. The h-convergence of the DGy scheme is investigated in terms of time history of non-dimensional (a)
displacements and (c) stress components at the location (&1,&2,&3) = (c1,¢2,(/2). The p-convergence is investigated for
the same non-dimensional displacements and stress components in figures (b) and (d), respectively, setting n = 4.
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Figure 11: Convergence assessment for the transient analysis of the laminated circular plate having layup Ps and
modeled by the FSDT. The h-convergence of the DGs scheme is investigated in terms of time history of non-dimensional
(a) displacements and (c) stress components at the location (£1,&2,&3) = (c1, ¢2,(/2). The p-convergence is investigated
for the same non-dimensional displacements and stress components in figures (b) and (d), respectively, setting n = 4.
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Figure 12: (a) Control points and reference surface, and (b) geometry and boundary conditions of the investigated
generally-curved shell.

Table 5: Control points defining the reference surface of the generally-curved shell of Fig.(12).

Pk1,k2 [m} k‘l =0 1 2 3
ks =0 | (0.0,0.0,+0.1831) (1/3,0.0,+0.0263) (2/3,0.0,—-0.1955) (1.0,0.0,+0.1495)
1 (0.0,1/3,—0.0061) (1/3,1/3,—0.1650) (2/3,1/3,—0.0696) (1.0,1/3,—0.1007)
2 (0.0,2/3,—0.1183) (1/3,2/3,40.0601) (2/3,2/3,+0.1219) (1.0,2/3,+0.1659)
3 (0.0,1.0,—0.1334)  (1/3,1.0,—0.1146)  (2/3,1.0,40.1499)  (1.0,1.0, —0.0208)
5.00 1 —e=- S4R —=— DG, 9.501 —=- S4R —m— DG, 1201 ‘\\ —e=- S4R —m— DG, 1354 ‘\\ —=- S4R —=— DG,
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Figure 13: Comparison between the proposed DG formulation and two FEM schemes in terms of computed eigenvalues
vs number of degrees of freedom for the considered generally-curved shell. Light and dark gray areas denote the regions
of less than 5% and 1% deviation, respectively, from the converged FEM values.
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Figure 14: Comparison between the results obtained by the proposed DG formulation (the contour plots) and those
obtained by FEM (the solid lines) in terms of the computed eigenmodes for the generally-curved shell. Figures (a), (b),
(c) and (d) refer to the first, fourth, seventh and tenth eigenmodes associated with the eigenvalues of the plots (a), (b),
(c) and (d) of Fig.(13), respectively.
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allows the analysis of general laminated configurations as well as general geometrical curvatures, thus
providing an effective tool for the design of components with potential applications in the automotive
and aerospace sectors. Owing to the combined use of variable-order ESL theories and DG methods,
a key feature of the formulation is related to the possibility of tuning independently the order of the
fields interpolations throughout both the shell thickness and the shell modeling domain, which allows
tailoring the analysis to the application of interest. The high-order of accuracy of the formulation has
been thoroughly assessed through several hp-convergence tests involving square and circular plates,
cylindrical shells and generally-curved shells, ultimately demonstrating that a selected level of accuracy
can be attained with a comparatively reduced number of degrees of freedom with respect to other
numerical techniques, such as FEM.

The framework also offers several avenues for further research. First, the considered tests involve
relatively simple geometries and material properties; therefore, a natural extension of the present study
is the application of the proposed formulation to the analysis of composite structures featuring multiple
cutouts [46, 47], through-the-thickness cracks [48, 49], assembly of shells [28], and/or variable stiffness
due to curved fiber placement [50, 51]. Another interesting development could consist in moving beyond
the assumptions of small strains and linear elastic constitutive behavior, so to investigate geometrical
and material non-linearity and their effect on the free-vibration [52, 53] and transient [54, 55] response.
Eventually, plate and shell problems involving multiple fields coupling, such as thermo-elasticity [56],
piezo-electricity [57], or magneto-electro-elasticity [58, 59], are of scientific and engineering interest in
energy harvesting, morphing or structural health monitoring applications [60, 61, 62], and can benefit
from the savings in terms of degrees of freedom offered by the present formulation to reduce the
computational effort associated with the numerical analysis.

6. Conclusions

A novel high-order formulation for the dynamic analysis of general laminated shells has been devel-
oped and validated. Its key features can be summarized as follows: i) the geometry of the shells can
be described by a general mapping, thus allowing the modeling of structures with general curvature;
it) a variable-order ESL approach based on the expansion of the covariant components of the displace-
ment field allows tuning the order of approximation throughout the shell thickness; iii) the use of the
implicitly-defined mesh allows introducing curved boundaries in the space of the curvilinear coordi-
nates while retaining the simplicity of generation of structured meshes; iv) the developed DG methods
allows using variable-order basis functions and solving the governing equations associated with a chosen
ESL theory with high-order accuracy; v) the obtained results show that the method offers high-order
accuracy for the calculation of the eigenvectors, eigenfunctions and the transient response; vi) the use
of high-order basis functions enables faster convergence with respect to using standard finite elements,
which has been measured in terms of error versus overall number of degrees of freedom.
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